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abstract

Motivated by the fact that the (inverse) tem-

perature might be a function of the energy lev-

els in the Planck distribution nε = 1
z−1eβ(ε)ε−1

for the occupation number nε of the level ε

for free bosons, we show that it can be natu-

rally achieved by imposing the constraint con-

cerning the conservation of a weighted sum∑
ε f(ε)εnε, with a fixed positive weight func-

tion f , of the contributions of the single en-

ergy levels occupation in the Microcanonical

Ensemble scheme, obtaining β(ε) ∝ f(ε). This

immediately addresses the possibility that also

a weighted sum
∑
ε g(ε)nε of the particles occu-

pation number is conserved, having as a con-

sequence that the chemical potential might be

a function of the energy levels of the system as

well. This scheme leads to a thermodynamics

of open systems in the following way:



the equilibrium is reached when the entropy

function is maximised under the constraints

that some weighed sums of occupation of the

energy levels and the occupation numbers are

conserved.

The standard case of isolated systems corre-

sponds to the weight functions being trivial

(i.e. f, g are identically 1).

Concerning the theoretical investigation of such

open systems, new and unexpected phenom-

ena can appear. Among them, we mention the

appearance of the Bose Einstein Condensation

both in dimension less than 3 in configuration

space, and even in excited levels of the energy

spectrum. In addition, this suggests a new

approach to the condensation which allows an

unified analysis involving also the condensation

of q-particles, −1 ≤ q ≤ 1, where q = ±1 cor-

responds to the Bose/Fermi alternative. For



such q-particles, it is shown that the conden-
sation can occur only if 0 < q ≤ 1, the case
1 corresponding to the standard Bose-Einstein
condensation. In this more general approach,
completely new and unexpected states exhibit-
ing condensation phenomena naturally occur
even in the usual situation of equilibrium ther-
modynamics involving bosons.

The new approach proposed for the situation
of 2nd quantisation of free particles, is based
on the theory of the distributions, which might
hopefully be extended to more general cases
involving nontrivial interaction.

The talk is based on the following papers:

Accardi L., Fidaleo F. Condensation of Bose
and q-particles in equilibrium and non equilib-
rium thermodynamics, Rep. Math. Phys. 77
(2016), 153-182.



Fidaleo F., Viaggiu S. A proposal for the ther-

modynamics of certain open systems, Physica

A 468 (2017), 677-690.

introduction

The present project on which is based the talk

was suggested/based on the phenomenon of

the Bose–Einstein Condensation (BEC for short).

Such a phenomenon is a well–known one con-

cerning the fact that at high density/low tem-

perature regime, a macroscopic portion of Bose

particles (i.e. quantum particles of integer spin)

can occupy the ground level in the infinite vol-

ume limit of finite volume states constructed

by using the Gibbs grand canonical ensemble

prescription. All such states satisfy the Kubo–

Martin–Schwinger (KMS for short) boundary

condition. The KMS boundary condition can



be then considered essentially the unique sur-

viving condition after the infinite volume limit,

in order to select states which are meaning-

ful in the thermodynamics of the equilibrium.

Due to Pauli exclusion principle, it is well know

that the condensation cannot occur for half–

integer spin quantum particle (i.e. Fermi par-

ticles). This can be seen by considering the

(parallel) analysis involving the ideal Bose and

Fermi gas, see e.g. the seminal book(s) by O.

Bratteli and D. Robinson and the huge litera-

ture cited therein. Even if the ideal Bose gas

(as well as the Fermi one) is only a theoret-

ical model, it explain in a very clear way the

motivation of the occurrence of the BEC. On

the other hand, several phenomena are more or

less directly connected with the BEC. Among

them we mention the superfluidity of He4, and

the superconductivity of the Bardeen–Cooper–

Schrieffer (BCS for short) pairs of electrons



in superconductors.∗ Recently, it seems that

some BEC condensation of photons has been

also observed.†

All these states describing these very important

condensation phenomena are then equilibrium

states w.r.t. a fixed dynamics, hence automat-

ically stationary. The aim of the present talk is

to discuss such condensation phenomena in the

light of the so–called Local Equilibrium Prin-

ciple recently pointed out by Accardi, Fagnola

and Quezada (cf. Weighted detailed balance

and local KMS condition for non–equilibrium

stationary states, Bussei Kenkyu 97 (2011),

∗Also the other isotope He3 presents the λ-point tran-
sition at around ≈ 0.2K which is a combined effect of
the formation of the BCS pairs of He3.
†The photon gas (together with the massive Z0 Boson
entering in the electroweak interaction), is the unique
gas of Bosons which does not interact at any high
density/low temperature regime. Recently (cf. Klaers
et. al. doi:10.1038/nature09567) the BEC of photons
in optical micro cavity was experimentally proved.



318–356), which roughly asserts that the (in-

verse) temperature is a function of the energy

of the levels, and can be considered for all the

cases under consideration as a generalization

of the KMS boundary condition.‡ Such a lo-

cal principle, which is perfectly meaningful for

systems with compact resolvent Hamiltonian,

cannot be easily generalised to more compli-

cated systems. Indeed, such a description is

possible for the pivotal model describing a gas

of infinitely many non interacting (boson) par-

ticles.§

The results we are going to describe are sum-

marised as follows:
‡Probably, the idea to consider the temperature as a
function of the energy levels is an old idea already
present in literature. In addition, a similar but not
equivalent approach was carried out by De Cannière
from a mathematical point of view by using the mod-
ular theory, see below.
§Such a generalisation is still possible for systems de-
scribed by quadratic Hamiltonians.



(i) The Local Equilibrium Principle can be eas-

ily generalised for quasi free states of the

CCR algebra when the dynamics arises by a

one parameter group of Bogoliubov auto-

morphisms of the one–particle space, with-

out any additional condition.

(ii) We exhibit states satisfying Local Equilib-

rium Principle and exhibiting BEC, not only

on the ground state, but also (or only)

on exited level, depending on the function

β(h), entering in the definition of the Local

Equilibrium Principle.

(iii) We can exhibit states satisfying Local Equi-

librium Principle, for which the condensa-

tion can occur also for models living in spa-

tial dimensions d different from the usual

ones d ≥ 3.



(iv) For such states describing the condensa-

tion on excited levels, the rotation sym-

metry can be spontaneously broken, so we

can obtain in a natural way states exhibit-

ing BEC which are rotationally invariant or

not.

(v) By using a quite natural principle involving

the theory of the distributions in order to

derive the BEC for the Local Equilibrium

Principle (where the standard KMS condi-

tion is a particular case corresponding to

thermodynamic equilibrium), we can con-

sider the general case of the q–Deformed

Commutation Relations with q ∈ [−1,1],

the cases q = ±1 corresponding to the

Bose and Fermi cases, respectively. We

prove that the BEC can occur also for the

q–relations provided that q ∈ (0,1]. In ad-

dition, the distribution describing all such



states must solve an equation in the space
of the distribution, where the appearance
of the BEC corresponds to additional (dis-
tributional) terms concentrated on a hyper–
surface of codimension one in the space
of momenta (typically a disjoint union of
spheres).

(vi) By using the last result, even in the usual
case of equilibrium thermodynamics we ex-
hibit new states describing BEC, which are
mathematically (and possibly also physi-
cally) meaningful, but are unknown at the
knowledge of the author.¶

After such an analysis, some natural questions
can be naturally addressed. Among them, we
¶This is due to the fact that the spatial distribution
of the condensate has an infinite mean density, which
excludes the appearance of such states after a stan-
dard thermodynamic limit process obtained by fixing a
(finite) mean density.



mention the main one concerning the appear-

ance of the Local Equilibrium Principle from

the prescriptions of the basic concepts of the

thermodynamics which is never explained in

the previous analysis.

(vii) We can show that it will naturally emerge

by enlarging the natural prescription in deal-

ing with the Microcanonical Ensemble:

– on one hand, the computable function is

still the Entropy, and the equilibrium is

reached always when the Entropy Func-

tional reaches the maximum;

– on the other hand, such a maximum

is reached relaxing the constrains rela-

tive to the conserved energy and parti-

cle number of the system as explained

before.



Local Equilibrium Principle

We start with a physical system whose observ-

ables are described by the C∗–algebra of all

the bounded operators B(H) acting on a sep-

arable Hilbert space H, and the time evolution

is given in Heisenberg picture as

a ∈ B(H) 7→ αt(a) = eıHtae−ıHt ∈ B(H) , t ∈ R ,

being H, acting on H, the Hamiltonian of the

system. To simplify the matter, we suppose

that H =
∑∞
n=0 εn|ψn〉〈ψn| is a the densely de-

fined closed positive operator with compact re-

solvent, with eigenvalues and eigenvectors (re-

peated according the multiplicity) rearranged

in increasing order. Fix any positive function

(i.e. the local inverse temperature) β : R+ →
R+ such that e−β(H)H is a trace–class opera-

tor. According to the Local Equilibrium Prin-

ciple, define the state

ωβ(a) := Tr
(
e−β(H)Ha

)
, a ∈ B(H) .



Denoting F(H) the sub algebra consisting of

all the finite–rank operators acting on H, it is

immediate to show that

z ∈ C 7→ ωβ(aαz(b)) , a ∈ B(H) , b ∈ F(H) ,

is well defined and entire. The Local Equilib-

rium Principle simply means

ωβ(aαt+iβ(εi)
(|ψi〉〈ψj|))

=e[β(εi)−β(εj)]εjωβ(αt(|ψi〉〈ψj|a) , a ∈ B(H) .

The Local Equilibrium Principle, which reduces

to the usual Kubo–Martin–Schwinger bound-

ary condition when β is the constant function,

is not immediately generalizable to arbitrary

dynamical systems (A, αt) consisting of a C∗–
algebra, and an action αt by possibly outer ∗–
automorphisms. A way to get such a possible

generalisation is to look at the modified evo-

lution

α
(β)
t (a) = eıβ(H)Htae−ıβ(H)Ht ∈ B(H) .



There is no way to define this modified evo-

lution in the general case, but it is perfectly

meaningful in the previous setting. Even in

this modified evolution,

z ∈ C 7→ ωβ(aα(β)
z (b)) , a ∈ B(H) , b ∈ F(H) ,

is well defined and entire. The state ωβ satis-

fies for a ∈ B(H) , b ∈ F(H) , t ∈ R,

ωβ(aα(β)
t+ı(b)) = ωβ(α(β)

t (b)a) . (1)

which can be extended to the whole B(H) as α

is inner. Roughly speaking, for inner dynamics

on B(H):

a state ω satisfies the Local Equilibrium Prin-

ciple for the function β and the dynamics α,

if it satisfies the KMS boundary condition at

inverse temperature β = 1 for the modified dy-

namics α(β).

Consider any continuous compactly supported

function f on R, together with its Fourier anti



transform f̌ . It is almost immediate to see that

for each a ∈ B(H)

µ(f) :=
∫ +∞

−∞
f̌(t)ωβ(a∗α(β)

t (a)) ,

ν(f) :=
∫ +∞

−∞
f̌(t)ωβ(α(β)

t (a)a∗)

define Radon measures on R. It can be straight-

forwardly seen that µ and ν are linear combina-

tion of Dirac measures supported in a subset of

{β(εn)εn − β(εm)εm | n,m ∈ N}, depending on

a. In addition, these are equivalent measures

with Radon–Nikodym derivative given by

dµ

dν
(k) = e−k

where

k ∈ {β(εn)εn − β(εm)εm | n,m ∈ N} .

The last observation provides the bridge be-

tween the Local Equilibrium Principle and the

related related condition involving directly the

spectrum of the extension of the action αt



on the sector πω(A)′′. To conclude, we also

mention some connections with the strongly

2–spectrally passive states investigated by De

Cannière (cf. Commun. Math. Phys., 84

(1982),187–205; Publ. Res. Inst. Math. Sci.

20 (1984), 79–96).‖

‖The spectrum of an action describing the time evolu-
tion as in the present situation is given by {εn − εm |
n,m ∈ N} and is known as the set of the Bohr Fre-
quencies. The general case consisting of the spectrum
of an action of an Abelian group on a C∗–algebra is
denoted in mathematics as the Arveson Spectrum.



Local Equilibrium Principle for Quasi–Free Bosons

The C∗–algebra describing Bosons is that gen-

erated by the so–called Canonical Commuta-

tion Relations (CCR for short) and

a(f)a†(g)− a†(g)a(f) = 〈f |g〉 f, g ∈ h . (2)

Here, h is the one–particle Hilbert space equipped

with the one–particle Hamiltonian h > 0, and

the CCR C∗–algebra is meant in the Weyl form.

The time evolution is generated by a one–

parameter group of Bogoliubov automorphisms

which, on the on the Weyl generators {W (u) |
u ∈ h}, assumes the form

αt(W (f)) := eıtdΓ(h)W (u)e−ıtdΓ(h) = W (eıthf) .

(3)

Here, dΓ(h) is the second quantised Hamilto-

nian H = dΓ(h). For systems with finite de-

grees of freedom (i.e. when h is finite–dimensional),

the second quantised Hamiltonian H := dΓ(h)

has compact resolvent and, in our framework



e−β(H)H is automatically trace–class. In this

situation, it is almost immediate to show that

the unique state ωβ satisfying the Local Equi-

librium Principle w.r.t. the time evolution (3)

is the quasi–free state uniquely determined by

the two–point function

ωβ(a†(g)a(f)) =
〈
f
∣∣∣(eβ(h)h−1

)−1∣∣∣g〉 , f, g ∈ h .

In addition, we have

ωβ(a(g)a†(e−β(h)hf)) = ωβ(a†(f)a(g)) , (4)

or equivalently

ωβ(a†(g)a(eβ(h)hf)) = ωβ(a(f)a†(g)) . (5)

The boundary conditions (4), (5) can be easily

proved by using the commutation relations (2),

and they are nothing else than the boundary

condition (1) for the (unbounded) annihilator

and creator operators a, a†. Even if the Local

Equilibrium Principle is not immediately gen-

eralizable to arbitrary C∗–dynamical systems,



it is now possible to provide its definition for

CCR.

Fix on h a quadratic form Q : h→ [0,+∞] with

domain DQ. Consider the sesquilinear form

F : DF ×DF → C uniquely determined by polar-

isation, DF = spanDQ being the linear span of

DQ. In order to achieve the chemical potential,

we fix a Borel function γ : (0,+∞)→ (1,+∞),

which satisfies γ > 1 almost everywhere w.r.t.

the Lebesgue measure.∗∗ Let h0 ⊂ h be a dense

subspace such that, h0 ⊂ DF , γ(h)−1h0 ⊂ DF ,

and consider the CCR algebra (always in the

Weyl form) CCR(h0) generated by the annihi-

lators in h0. In order to have a reasonable dy-

namical behaviour of the physical system under

consideration, we also suppose that eıthh0 =

h0, even if the last condition plays no role in

the foregoing analysis.

∗∗In our situation, γ is nothing else eβ(h)h.



Definition The quasi–free state ω ∈ S(CCR(h0))

uniquely defined by the two–point function

ω(a†(f)a(g)) := F (g, f)

satisfies the Local Equilibrium Principle w.r.t.

γ if it fulfils the boundary condition

ω(a(g)a†(γ(h)−1f)) = ω(a†(f)a(g)) . (6)

It is possible to prove for many interesting sit-

uations, and by direct inspection for the cases

of interests exhibiting BEC, that states satis-

fying the Local Equilibrium Principle are auto-

matically invariant under the dynamics gener-

ated by the one–parameter Bogoliubov auto-

morphisms given on the one particle space by

f 7→ eıthf .

Now we exhibit in details concrete quasi–free

states satisfying the Local Equilibrium Princi-

ple and exhibiting BEC possibly in excited lev-

els. We specialise the matter to the simplest



models describing free Bosons living on Rd. To

simplify, we put m = 1/2 for their mass. Anal-

ogous considerations can be done for Bosons

on lattices Zd. Indeed, fix the functions in the

Schwartz class S(Rd) ⊂ L2(Rd,ddx) equipped

with the Hamiltonian

h = −
d∑

j=1

∂2

∂x2
j

≡ −∆

given by the opposite of the Laplace opera-

tor on Rd, and consider the CCR algebra A :=

CCR(S(Rd)). By passing to the momentum

space, the Hamiltonian will be the multipli-

cation function h(k) = k2. Another situation

of interest will be the photon/phonon hamil-

tonian (in suitable unity) h(k) = k. Let β :

(0,+∞) → (0,+∞) be a Borel function with

β > 0 almost everywhere w.r.t. the Lebesgue

measure, such that

ρc(β) =
∫
Rd

ddp

eβ(p2)p2 − 1
< +∞ , (7)



Consider the set S ⊂ [0,+∞) made of points
x0 such that

lim
x→x0

β(x)x = 0 . (8)

and, to simplify, choose a finite set of vectors
F ⊂ Rd such that p ∈ F ⇒ p2 ∈ S. For a vector
with non negative entries D := (Dk)k2∈F define

ωβ,D(a†(f)a(g)) :=
∫
Rd

f̂(p)ĝ(p)

eβ(p2)p2 − 1
ddp (9)

+
∑
k∈F

Dkf̂(k)ĝ(k) , f, g ∈ S(Rd) .

If some coefficient Dk0
> o in (9), then the

state ωβ,D exhibits the BEC on the energy level
k2

0.
Proposition The states ωβ,D with two–point
function given in (9) satisfy the Local Equi-
librium Principle w.r.t. the function γ(x) =
eβ(x)x.

proof (scketch) As noticed that the sesquilin-
ear form defining ωβ,D is well defined on S(Rd)×



S(Rd). In addition, thanks to (8), e−β(h)hf

determines an equivalence class of functions

which admits a representative such that its

Fourier transform ̂e−β(h)hf(p) is continuous in

0, with ̂e−β(h)hf(0) = f̂(0). Finally,

∫
Rd

∣∣∣f̂(p)ĝ(p)
∣∣∣ e−β(p2)p2

eβ(p2)p2 − 1
ddp

≤
∫
Rd

ddp

eβ(p2)p2 − 1
< +∞ .

This implies that ωβ,D(a(g)a†(e−β(p2)p2
f)) is well

defined, obtaining

ωβ,D(a(g)a†(e−β(h)hf))

=ωβ,D(a†(e−β(h)hf)a(g)) +
〈
g
∣∣∣e−β(h)h

∣∣∣f〉
=
∫
Rd

∣∣∣f̂(p)ĝ(p)
∣∣∣ ( e−β(p2)p2

eβ(p2)p2 − 1
+ e−β(p2)p2

)
ddp

+D ̂e−β(h)hf(0)ĝ(0) =
∫
Rd

f̂(p)ĝ(p)

eβ(p2)p2 − 1
ddp

+Df̂(0)ĝ(0) = ωβ,D(a†(f)a(g))



Notice that, the density of ωβ,D is heuristically

described as

ρ(ωβ,D) = lim
Λ↑Rd

(
1

vol(Λ)

∫
Λ
ωβ,D(a†(δx)a(δx)) ddx

)

=
∫
Rd

ddp

eβ(p2)p2 − 1
+ ρcond(ωβ,D) ,

where δx is Dirac point mass concentred in the

point x ∈ Rd, and ρcond(ωβ,D) is the portion of

the condensed given by

ρcond(ωβ,D) = lim
Λ↑Rd

∑
k∈F Dk

vol(Λ)

∫
Λ

∣∣∣δ̂x(0)
∣∣∣2 ddx

=
∑
k∈F

Dk .

By averaging on the spheres, we provide states

ωβ,D satisfying the Local Equilibrium princi-

ple, and exhibiting BEC whose condensed is

equidistributed on the shell k2 = x, provided

x ∈ S. Let Sk ⊂ Rd be the sphere in Rd of

radius k, together with the rotationally invari-

ant measure dΩk on it. As before, for F ⊂ S,



D := (Dk)k2∈F is a vector with non negative
entries. Their two–point function is given by

ωβ,D(a†(f)a(g)) :=
∫
Rd

f̂(p)ĝ(p)

eβ(p2)p2 − 1
ddp (10)

+
∑
k∈F

Dk

∫
Sk
f̂(p)ĝ(p) dΩk(p) , f, g ∈ S(Rd) .

We end by showing that the Local Equilibrium
Principle allows condensation phenomena also
for spatial dimensions different than the usual
ones d ≥ 3. Suppose that β is continuous with
β(x) > 0, and

β(x) ≈ xα0 for x→ 0+ ; β(x) ≈ α∞
lnx

x
for x→ +∞ .

Conditions (8) and (7) implies α0 + 1 > 0 and
α∞ > 0. We then compute∫ +∞

0

ddp

eβ(p2)p2 − 1

≈
∫ 1

0
pd−1−2(α0+1) dp+

∫ +∞

1
pd−1−2α∞ dp ,

which converges if and only if

2(α0 + 1) < d < 2α∞ .



A new approach to the condensation

The difficulty to obtain the above mentioned

stationary states as infinite volume limit of fi-

nite volume Gibbs states subjected to suitable

boundary conditions suggests to approach to

the problem of the BEC, directly by consid-

ering conditions on the infinite volume states.

The idea is that to work directly by using dis-

tributions. The simplest model will be that

describing free Bosons, that is to work directly

in momentum space. The technique we are

going to outline might be generalised to other

situations involving Hamiltonians with a poten-

tial.††

For our purposes we treat the case for which

the one–particle Hamiltonian h(k) = kν, ν > 0

††Here, the possible generalisations can involve one–
particle Hamiltonians of the form h = p2/2m+V (q), or
multi–particle quadratic Hamiltonians.



(denoted with an abuse of notation directly as

h(k)). It includes the massive (non relativis-

tic) Hamiltonian h(k) = k2 and the massless

(relativistic) one h(k) = k.‡‡ In order to avoid

technicalities which do not add anything more

to the understanding of the analysis, we make

some reasonable restrictions to the function

β : R+ → R+. In fact we assume that

(i) limx↓0 β(x)x = l ∈ [0,+∞) ∪ {+∞} exists.

(ii) β : R+ → R+ is continuous but a possi-

bly finite number of points, including the

empty set, such that if x0 is one of such

points, limx→x0 β(x) = 0.

(iii) infR+
xβ(x) = 0

‡‡As in relativistic physics there is an upper limit to the
velocity, the physical meaningful situations might cor-
respond to ν ≥ 1.



(iv) If on Rd, h(k) = kν, ν > 0, we assume that∫ +∞

1
x
d
ν−1e−β(x)x dx < +∞ .

Denote F := {r ∈ [0,+∞) | limx→r xβ(x) = 0},
and for r ≥ 0, the shell Sr ⊂ R× R defined as

Sr := {(p,k) ∈ R× R | h(p) = h(q) = r} .

In order to unify the q–commutation relations,

we consider the cases with the parameters q ∈
[−1,1], the Bose and Fermi case being q = ±1,

respectively. By using Fourier Transform, we

can consider the density creators and annihila-

tors in momentum space by putting

a†(f) =
∫
f(k)a†(k) ddk .

Then the q–Commutation Relations can be

formally rewritten as

a(k)a†(p)− qa†(p)a(k) = δ(k− p)1I .



Under the usual assumptions, we limit our anal-

ysis to two–point function defining the state ω

which are described by a distribution on D(Rd×
Rd) as follows

ω(a†(f̌)a(ǧ) = Fω(f ⊗ ḡ) , (11)

where¯stands for the complex conjugate. Fix

the one–particle Hamiltonian as a function of

the momenta as before. In addition, we intro-

duce a chemical potential λ by using the prin-

ciple that the Local Equilibrium Principle for

the function β and the Hamiltonian H corre-

sponds to the standard equilibrium at (inverse)

temperature 1 for the Hamiltonian β(H)H. In

the equilibrium case for which β(H) = β, then

λ = βµ where µ is the standard equilibrium

chemical potential. Another choice in intro-

ducing the chemical potential is to pass to the

shifted Hamiltonian Hµ := H − µ. Although

being the last possibility more reasonable from

a physical point of view, it seems to introduce



many technical difficulties in order to capture

the appearance of the BEC. By using the com-

mutation relation (11), the Local Equilibrium

Principle (6) for the chemical potential λ that

for now we suppose to be any real number,

Mγλ⊗id−qFω = δ , (12)

where Mγλ⊗id−q is the multiplication operator

for the function

G(k,p) = eβ(h(k))k−λ − q ,

and δ is the Dirac distribution supported on

the diagonal. If q > 0 with λq := − ln q, define

ρ
(q)
c :=

∫
Rd

ddp

eβ(h(p))h(p)−λq − q
=
ρc

q
.

Now we are ready to show how the condensa-

tion regime naturally emerge without using the

thermodynamic limit of finite volume theories.

The results are summarised in the following



Theorem

Suppose that the inverse temperature function

β fulfils (i)–(iv) above, and a state ω satis-

fying the Local Equilibrium Principle uniquely

defines a distribution on D(Rd×Rd) as in (11)

(hence it is a quasi–free state). Then the fol-

lowing assertions hold true.

(i) If λ > − ln(0∨ q) (with the convention that

− ln 0 = +∞), no of such states can exist.

(ii) non condensation regime: For each λ <

− ln(0∨q), the quasi–free state ω with ker-

nel

Fω(k,p) =
δ(k− p)

eβ(h(p))h(p)−λ − q
(13)

is the unique quasi–free state in the se-

lected class as above.



(iii) condensation regime (corresponding to

q > 0 and λ = λq): The critical case can

occur only if ρc < +∞. If this is the case,

each Fω assumes the form

Fω(k,p) =
δ(k− p)

q(eβ(h(p))h(p) − 1)
+G(k,p) ,

(14)

where G is supported in
⋃
r∈F Sr.

proof (sketch) We have already seen that the

Local Equilibrium principle leads to (12), which

can be uniquely solved provided λ 6= − ln(0∨q),

by giving (13).

(i) and (ii) Being

np =
1

eβ(h(p))h(p)−λ − q
the occupation number at momentum p and

chemical potential λ, it must be positive, al-

most everywhere w.r.t. the Lebesgue measure.



This leads to λ < − ln(0 ∨ q), for which the
unique quasi–free states ω whose two–point
function is determined by a distribution Fω as
above are those for which Fω is given in (13).

(iii) By (ii), the condensation regime can occur
only if q ∈ (0,1] and λ = − ln q. So we consider
this case. By solving (12), we obtain (14),
provided

f 7→
∫
Rd

|f(p)|2

q(eβ(h(p))h(p) − 1)
ddp < +∞

for each f ∈ D(Rd). If F = ∅, ρc < +∞ by (iv)
above. Then for f ∈ D(Rd),∫

Rd
|f(p)|2

q(eβ(h(p))h(p) − 1)
ddp ≤

‖f‖2∞
q

ρc < +∞ .

Thus, for the kernel we obtain (14) with G

identically zero because
⋃
r∈F Sr = ∅. Thanks

to the conditions (i)–(iv) imposed to β, ρc =
+∞ if and only if, for some r0 ∈ F∫

Bε(r0)

ddp

eβ(h(p))h(p) − 1
= +∞ .



Here, Bε(r0) is a spherical shell of thickness
ε around h(p) = r0. Choose any f ∈ D(Rd)
which is identically 1 on Bε(r0). We compute

Fω(f ⊗ f̄) ≥
1

q

∫
Rd

|f(p)|2

eβ(h(p))h(p) − 1
ddp

≥
1

q

∫
Bε(r0)

|f(p)|2

eβ(h(p))h(p) − 1
ddp

≥
1

q

∫
Bε(r0)

ddp

eβ(h(p))h(p) − 1
= +∞ ,

that is Fω cannot define any distribution which
is the kernel of some two–point function. Con-
versely, if ρc < +∞, λ = − ln q is allowed as we
have already proven that the states in (9), (10)
have the form as in (14), and provides states
exhibiting BEC, the latter being the uniques
rotationally invariant because they are equidis-
tributed on the hyper surfaces h(k) = r for
r ∈ F .

We end by showing that, also in the standard
case of equilibrium, we can find states, mathe-
matically meaningful, satisfying the usual KMS



boundary condition, and exhibiting BEC. To

simplify matter we reduce the analysis to the

simplest case corresponding to the equilibrium

situation at inverse temperature β = 1 cor-

responding to usual Bosons with one–particle

Hamiltonian h(k) = kν. We start with states

which are not rotationally invariant, that is

there is a privileged direction which we can sup-

pose to be the first one x1 in the configuration

space, which correspond to k1 in momentum

space. Fix D > 0 and supposed that the crit-

ical density ρc < +∞. It is straightforward to

check that the states whose two–point func-

tion is given by

ω(a†(f̌)a(ǧ)) =
∫
Rd
f(p)g(p)

ep
ν − 1

ddp+D
∂f

∂p1
(0)

∂ḡ

∂p1
(0)

are equilibrium states for the dynamics gener-

ated by the one–particle Hamiltonian h(p) =

pν, provided ν > 1 Such states cannot be ob-

tained in the usual way as infinite volume limit

of finite volume Gibbs states constructed by



fixing the density of the environment, because
the local density

ρω(x) := ω(a†(δx)a(δx))

=
∫
Rd

ddp

ep
ν − 1

+D

∣∣∣∣∣∂δ̂x∂p1
(0)

∣∣∣∣∣
2

=
∫
Rd

ddp

ep
ν − 1

+Dx2
1

leads to an infinite mean density for the pres-
ence of the density of the condensate ∝ x2

1.
The corresponding isotropic state has the two–
point function given by

ω(a†(f̌)a(ǧ)) =
∫
Rd
f(p)g(p)

ep
ν − 1

ddp

+D
〈
∇pg(0)

∣∣∣∇pf(0)
〉
.

Remark For free q-particles whose one–particle
Hamiltonian is h(k) = kν as before, we point
out that we can search quasi–free states satis-
fying the (Local) Equilibrium Principle, exhibit-
ing or not BEC, for a fixed chemical potential
λ, among all positive–defined solutions in the



space of the distributions of the equation (12)
which assume the form

(eβ(h(k))kν−λ − 1)F (k,p) = δ(k− p) .

Already in the equilibrium case (i.e. β(h) =
const), it provides new and unexpected simple
nontrivial solutions.

The thermodynamics of certain open systems

The main question arising from the previous
analysis is then to derive from the basic princi-
ples of statistical mechanics the analogous of
the Planck distribution (for excited levels) of
the form

nε =
1

z−1eβ(ε)ε − 1
.

We now show that it will be a particular case
of the following simple consideration.

We start as usual from the microcanonical en-
semble corresponding to the (finite but ”huge”)



system whose hamiltonian H is a selfadjoint

strictly positive matrix

H =
∑

εi∈σ(H)

εiPεi

uniquely characterised up to unitary equiva-

lence, by the set {εi} of its eigenvalues and its

degeneracy of the levels (i.e. the multiplicity)

gi := dimR(Pεi) .

We can suppose equally well that H is a densely

defined positive selfadjoint unbounded opera-

tor with compact resolvent acting on an in-

finite dimensional Hilbert space, obtaining an

extreme problem on an infinite dimensional space.

As this technicality is not adding anything else

to our analysis, we decide not to pursue such

a generalisation.

Suppose that N indistinguishable particles are

occupying the levels εi with occupation num-

bers ni under the obvious condition N =
∑
i ni.



According to the three cases Bose/Fermi and
Boltzmann respectively, the number W ({ni})
of such possible configurations is given by

W ({ni}) =
∏
i

wi ,

with

wi =



(
ni+gi−1

ni

)
Bose ,(

gi
ni

)
Fermi ,

g
ni
i
ni!

Boltzmann ,

after dividing W ({ni}) by N ! in the Boltzmann
one. As usual, we suppose that all gi and ni
go to infinity justifying the replacement of the
factorials with their asymptotic by Stirling for-
mula m! ≈ mme−m, obtaining for the entropy
S({νi}) := lnW ({ni}) (in the units for which
kB = 1)

S({νi}) =


∑
i gi[νi ln(1/νi + 1) + ln(1 + νi)] Bose ,∑
i gi[νi ln(1/νi − 1)− ln(1− νi)] Fermi ,∑
i giνi(1− ln νi) Boltz. .

(15)



Here, we have put νi := ni/gi.

The entropies given in (15) for the Bose/Fermi

and Boltzmann alternative can be considered

as particular cases of of the q-entropy defined

for q ∈ [−1,0) ∪ (0,1],

Sq({νi}) :=
∑
i

gi

[
(1 + qνi)

q
ln(1 + qνi)−νi ln νi

]
.

(16)

In fact, the Bose/Fermi cases correspond to

the evaluation of Sq for q = ±1, respectively:

S+1/−1({νi}) = SBose/Fermi({νi}) .

Concerning the Boltzmann case, we get

lim
q→0

Sq({νi}) = SBoltzmann({νi}) ,

pointwise in the variables νi, and uniformly on

all bounded subsets (in the variables {νi}).

To avoid unpleasant situations, we fix two strictly

positive functions f , g on the spectrum {εi} of



the hamiltonian H. Concerning the continuum

case, we can allow the functions f , g to be

zero on a negligible subset w.r.t. the measure

determined by the resolution of the identity of

the one particle hamiltonian.

The main point of the present paper is to

consider the extreme problem for the Entropy

Functional (16) with the constraints∑
i

f(εi)εini = e ,
∑
i

g(εi)ni = n . (17)

Here, e, n correspond to the weighted sums in-

volving the number of particles and the energy

of the system which, in our thermodynamical

scheme, are considered as conserved quanti-

ties. They depend on the chosen functions f

and g, which are not explicitly mentioned to

shorten the notation. Notice that we can re-

cover the usual thermodynamics when they are

identically 1, obtaining e = E the total energy

of the system, and n = N the total number of



particles respectively.

Theorem

The values {ν̄i} which maximise the q-entropy

Sq in (16) subjected to the constraints (17) are

given by

ν̄i =
1

eb(f(εi)εi−mg(εi)) − q
. (18)

As usual, In order to obtain the entropy as

function of the conserved quantities e, n, the

Lagrange multipliers will be determined by us-

ing the constrains (17).

To end, we note that the case corresponding

to the Local Equilibrium Principle corresponds

to g(εi) = 1, identically.


