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Abstract. The concept of balance between two state preserving
quantum Markov semigroups is introduced and studied as an ex-

tension of conditions appearing in the theory of quantum detailed

balance. This is partly motivated by the theory of joinings. Basic

properties of balance are derived and the connection to correspon-

dences in the sense of Connes is discussed. Some applications and

possible applications, including to non-equilibrium statistical me-

chanics, are briefly explored.
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1. Introduction

Motivated by quantum detailed balance, we define and study the

notion of balance between pairs of quantumMarkov semigroups on von

Neumann algebras, where each semigroup preserves a faithful normal

state. Ideas related to quantum detailed balance continue to play an

important role in studying certain aspects of non-equilibrium statistical
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mechanics, in particular non-equilibrium steady states. See for example

[2], [3] and [5]. A theory of balance as introduced here is therefore

potentially applicable to non-equilibrium statistical mechanics. In this

paper, however, we just lay the foundations by developing the basics

of a theory of balance. Non-equilibrium is only touched on.

The papers on quantum detailed balance that most directly lead

to the work presented in this paper are [27], [28], [29], and [25]. Of

particular relevance are ideas connected to standard quantum detailed

balance conditions mentioned in [20], and discussed and developed in

[29] and [28]. However, a number of other papers develop ideas related

to standard quantum detailed balance and dualities, of which [12], [13]

and [49] contributed to our line of investigation.

The theory of balance can be viewed as being parallel to the the-

ory joinings for W*-dynamical systems. The latter was developed in

[22, 23, 24], and studied further in [10], for the case where the dynamics

are given by ∗-automorphism groups. Some aspects of noncommuta-

tive joinings also appeared in [56] and [44] related to entropy, and in

[32] related to certain ergodic theorems. In [46] results closely related

to joinings were presented regarding a coupling method for quantum

Markov chains and mixing times.

The theory of joinings is already a powerful tool in classical ergodic

theory, which is what motivated its study in the noncommutative case

(see the book [36] for an exposition). Analogously, we expect a theory

of balance between quantum Markov semigroups to be of use in the

study of such semigroups.

The definition of balance is given in Section 2, along with relevant

mathematical background, in particular regarding the definition of a

dual of certain positive maps. Couplings of states on two von Neumann

algebras are also defined here.

In Section 3 we show how couplings lead to unital completely positive

(u.c.p.) maps from one von Neumann algebra to another. These maps

play a key role in developing the theory of balance. This is related to

[10, Section 4], although in the latter, certain assumptions involving

modular groups are built into the framework, while analogous assump-

tions do not form part of the theory developed here.

Section 4 gives a characterization of balance in terms of intertwine-

ment with the u.c.p. maps defined in Section 3. The role of KMS-duals

and the special case of KMS-symmetry are also briefly discussed in the

context of symmetry of balance. Two simple applications are then

given to illustrate the possible use of balance. One is to characterize a

certain ergodicity condition in a way analogous to the theory of join-

ings. The other is related to the convergence of states to steady states

in open quantum systems and non-equilibrium statistical mechanics.
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The development of the theory of balance continues in Section 5,

where balance is shown to be transitive. The connection to correspon-

dences in the sense of Connes is also discussed. The connection to

correspondences in the context of joinings was already pointed out in

[10] and [44, Section 5].

Next, in Section 6, we discuss a quantum detailed balance condition

(namely standard quantum detailed balance with respect to the revers-

ing operation from [29] and [28]) in terms of balance. Based on this,

we briefly speculate on non-equilibrium steady states in the context of

balance.

We turn to a simple example to illustrate a number of the ideas from

this paper in Section 7.

In the final section, possible further directions of study are men-

tioned.

2. The definition of balance

This section gives the definition of balance, but for convenience and

completeness also collects some related known results that we need in

the formulation of this definition as well as later on in the paper. Some

of the notation used in the rest paper is also introduced.

In this paper we consider systems defined as follows:

Definition 2.1. A system A = (A,α,μ) consists of a faithful normal

state μ on a (necessarily σ-finite) von Neumann algebra A, and a unital

completely positive (u.c.p.) map α : A→ A, such that μ ◦ α = μ.

Remark 2.2. Note that we only consider a single u.c.p. map, since

throughout the paper we can develop the theory at a single point in

time. This can then be applied to a semigroup of u.c.p. maps by

applying the definitions and results to each element of the semigroup

separately (also see Remarks 2.6, 2.11, 4.4 and 6.6, Proposition 4.8,

and Section 7).

In the rest of the paper the symbols A, B and C will denote sys-

tems (A,α,μ), (B,β, ν) and (C, γ, ξ) respectively. The unit of a von

Neumann algebra will be denoted by 1. When we want to emphasize

it is the unit of, say, A, the notation 1A will be used. We naturally

also assume that A 6= 0 for all the von Neumann algebras A that we
consider, i.e. 1A 6= 0.
Without loss of generality, in this paper we always assume that these

von Neumann algebras are in the cyclic representations associated with

the given states, i.e. the cyclic representation of (A,μ) is of the form

(Gμ, idA,Λμ), where Gμ is the Hilbert space, idA denotes the identity

map of A into B(Gμ), and Λμ is the cyclic and separating vector such

that μ(a) = hΛμ, aΛμi. Often one uses the notation Hμ instead of

Gμ, and Ωμ instead of Λμ, but we reserve these symbols for cyclic

representations which will appear in the next section and onwards.
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The dynamics α of a systemA is necessarily a contraction, since it is

positive and unital (see for example [11, Proposition II.6.9.4]. Further-

more, α is automatically normal. This is due to the following result:

Theorem 2.3. Let M and N be von Neumann algebras on the Hilbert

spaces H and K respectively, and consider states on them respectively

given by μ(a) = hΩ, aΩi and ν(b) = hΛ, bΛi, with Ω ∈ H and Λ ∈ K
cyclic vectors, i.e. MΩ = H and NΛ = K. Assume that ν is faithful

and consider a positive linear (but not necessarily unital) η : M → N

such that

ν(η(a)∗η(a)) ≤ μ(a∗a)

for all a ∈M . Then it follows that η is normal, i.e. σ-weakly continu-
ous.

Results of this type appear to be well known, so we omit the proof.

This result applies to a system A, since from the Stinespring dilation

theorem [58] one obtains Kadison’s inequality α(a)∗α(a) ≤ α(a∗a) for
all a ∈ A, i.e. α is a Schwarz mapping; see for example [11, Proposition
II.6.9.14]

A central notion in our work is the dual of a system, defined as

follows:

Definition 2.4. The dual of the systemA, is the systemA0 = (A0,α0,μ0)
where A0 is the commutant of A (in B(Hμ)), μ

0 is the state on A0 given
by μ0(a0) = hΛμ, a

0Λμi for all a0 ∈ A, and α0 : A0 → A0 is the unique
map such that

hΛμ, aα
0(a0)Λμi = hΛμ,α(a)a

0Λμi
for all a ∈ A and all a0 ∈ A0.
Note that in this definition we have

μ0 = μ ◦ jμ
where

(1) jμ := Jμ(·)∗Jμ
with Jμ the modular conjugation associated to μ.

The dual of a system is well-defined because of the following known

result:

Theorem 2.5. Let H and K be Hilbert spaces, M a (not necessarily

unital) ∗-subalgebra of B(H), and N a (not necessarily unital) C*-

subalgebra of B(K). Let Ω ∈ H with kΩk = 1 be cyclic for M , i.e.

MΩ is dense in H, and let Λ ∈ K be any unit vector. Set

μ :M → C : a 7→ hΩ, aΩi
and

ν : N → C : b 7→ hΛ, bΛi .
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Consider any positive linear η : M → N , i.e. for a positive operator

a ∈ M , we have that η(a) is a positive operator. Assume furthermore
that

ν ◦ η = μ

Then there exists a unique map, called the dual of η,

η0 : N 0 →M 0

such that

hΩ, aη0(b0)Ωi = hΛ, η(a)b0Λi
for all a ∈ M and b0 ∈ N 0. The map η0 is necessarily linear, positive
and unital, i.e. η0(1) = 1, and kη0k = 1. Furthermore the following

two results hold under two different sets of additional assumptions:

(a) If η is n-positive, then η0 is n-positive as well. In particular, if η
is completely positive, then η0 is as well.
(b) If M and N contain the identity operators on H and K respec-

tively, and η is unital (i.e. η(1) = 1), then it follows that

μ0 ◦ η0 = ν 0,

where μ0(a0) := hΩ, a0Ωi and ν 0(b0) := hΛ, b0Λi for all a0 ∈ M 0 and
b0 ∈ N 0. If in addition Λ is separating for N 0, then η0 is faithful in the
sense that when η0(b0∗b0) = 0, it follows that b0 = 0.

Proof. This is proven using [21, Lemma 1 on p. 53]. See [1, Proposition

3.1] and [8, Theorem 2.1]. ¤
Strictly speaking, η0 is the dual of η with respect to μ and ν, but the

states will always be implicitly clear.

In particular, with M = N = A and Ω = Λ = Ωμ, we see from this

theorem that the dual of the system A is well-defined.

Remark 2.6. If instead of the single map α we have a semigroup of

u.c.p. maps (αt)t≥0 leaving μ invariant, then α0t ≡ (αt)
0 also gives

a semigroup of u.c.p. maps leaving μ0 invariant. The continuity or
measurability properties of this dual semigroup (as function of t) will

depend on those of αt. Consider for example the standard assumption

made for (continuous time) quantum Markov semigroups, namely that

t 7→ αt(a) is σ-weakly continuous for every a ∈ A. Then it can be
shown that t 7→ ϕ(α0t(a

0)) is continuous for every a0 ∈ A0 and every
normal state ϕ on A0, so t 7→ α0t(a

0) is σ-weakly continuous for every
a0 ∈ A0. I.e. (α0t)t≥0 is also a quantum Markov semigroup (with the

same type of continuity property). If we were to include these assump-

tions in our definition of a system, then the dual of such a system would

therefore still be a system. Our example in Section 7 will indeed be

for semigroups indexed by t ≥ 0, with even stronger continuity proper-
ties. Also, see for example the dynamical flows considered in [8], where

weaker assumptions are made.

It is helpful to keep the following fact about duals in mind:



6 ROCCO DUVENHAGE AND MACHIEL SNYMAN

Corollary 2.7. If in addition to the assumptions in Theorem 2.5 (prior

to parts (a) and (b)), we have thatM and N are von Neumann algebras,

and Λ is cyclic for N 0, then we have

η00 = η.

Proof. This follows directly from the theorem itself, since η00 :M → N

is then the unique map such that hΛ, b0η00(a)Λi = hΩ, η0(b0)aΩi for all
a ∈ M and b0 ∈ N 0, while we know (again from the theorem) that

hΛ, b0η(a)Λi = hΩ, η0(b0)aΩi for all a ∈M and b0 ∈ N 0. ¤
We also record the following simple result:

Proposition 2.8. If in Theorem 2.5 we assume in addition that μ and

ν are faithfull normal states on von Neumann algebras M and N (so

Ω and Λ are the corresponding cyclic and separating vectors), then

(jν ◦ η ◦ jμ)0 = jμ ◦ η0 ◦ jν
for the map jν ◦ η ◦ jμ :M 0 → N 0 obtained in terms of Eq. (1).

Proof. It is a straightforward calculation to show that

hΩ, a0jμ ◦ η0 ◦ jν(b)Ωi = hΛ, jν ◦ η ◦ jμ(a0)bΛi
for all a0 ∈M 0 and b ∈ N . ¤
This proposition is related to KMS-duals and KMS-symmetry which

appear in Sections 4 and 6 via the following definition:

Definition 2.9. The map ησ := jμ ◦ η0 ◦ jν : N → M in Proposition

2.8 will be refered to as the KMS-dual of the positive linear map η :

M → N .

Combining Corollary 2.7 and Proposition 2.8, we see that

(ησ)σ = η.

Further remarks and references on the origins of KMS-duals can be

found in Section 4.

Let us now finally turn to our main concern in this paper:

Definition 2.10. Let μ and ν be faithful normal states on the von

Neumann algebras A and B respectively. A coupling of (A,μ) and

(B, ν), is a state ω on the algebraic tensor product A¯B0 such that
ω(a⊗ 1) = μ(a) and ω(1⊗ b0) = ν 0(b0)

for all a ∈ A and b ∈ B0. We also call such an ω a coupling of μ and ν.

Let A and B be systems. We say that A and B (in this order) are in

balance with respect to a coupling ω of μ and ν, expressed in symbols

as

AωB,

if

ω(α(a)⊗ b0) = ω(a⊗ β0(b0))
for all a ∈ A and b0 ∈ B0.
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Notice that this definition is in terms of the dual B0 rather than in
terms of B itself. To define balance in terms of ω(α(a) ⊗ b) = ω(a ⊗
β(b)), for a ∈ A and b ∈ B, turns out to be a less natural convention,
in particular with regards to transitivity (see Section 5). Also, strictly

speaking, saying that A and B are in balance, implies a direction, say

from A to B. These points will become more apparent in subsequent

sections. For example, symmetry of balance will be explored in Section

4 in terms of KMS-symmetry of the dynamics α and β.

Remark 2.11. For systems given by quantum Markov semigroups

(αt)t≥0 and (βt)t≥0, instead of a single map for each system, we note
that balance is defined by requiring ω(αt(a) ⊗ b0) = ω(a ⊗ β0t(b

0)) at
every t ≥ 0.
Remark 2.12. For comparison to the theory of joinings [22, 23, 24],

note that a joining of systemsA andB, where α and β ∗-automorphisms,
is a state ω on A¯B such that ω(a⊗ 1) = μ(a), ω(1⊗ b) = ν(b) and

ω ◦ (α¯ β) = ω. In addition [10] also assumes that ω ◦ (σμ
t ¯ σν

t ) = ω,

where σ
μ
t and σν

t are the modular groups associated to μ and ν. In

[10], however, it is formulated in terms of the opposite algebra of B,

which is in that sense somewhat closer to the conventions used above

for balance.

3. Couplings and u.c.p. maps

Here we define and study a map Eω associated to a coupling ω. This

map is of fundamental importance in the theory of balance, as will be

seen the next two sections. We do not consider systems in this section,

only couplings. At the end of Section 5 we discuss how Eω appears

in the theory of correspondences. Some aspects of this section and

the next are closely related to [10, Section 4] regarding joinings (see

Remark 2.12).

Let ω be a coupling of (A,μ) and (B, ν) as in Definition 2.10. To clar-

ify certain points later on in this and subsequent sections, we consider

multiple (but necessarily unitarily equivalent) cyclic representations of

a given von Neumann algebra and state. This requires us to have corre-

sponding notations. We assume without loss of generality that (B, ν) is

in its cyclic representation, denoted here by (Gν, idB,Λν), which means

that (Gν, idB0 ,Λν) is a cyclic representation of (B
0, ν 0). Similarly, we

assume that (A,μ) is in the cyclic representation (Gμ, idA,Λμ).

Denoting the cyclic representation of (A¯B0,ω) by (Hω,πω,Ωω), we

obtain a second cyclic representation (Hμ,πμ,Ωμ) of (A,μ) by setting

(2) Hμ := πω(A⊗ 1)Ωω, πμ(a) := πω(a⊗ 1)|Hμ
and Ωμ := Ωω

for all a ∈ A, since
hΩμ,πμ(a)Ωμi = hΩω,πω(a⊗ 1)Ωωi = ω(a⊗ 1) = μ(a).
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Similarly

(3) Hν := πω(1⊗B0)Ωω, πν0(b
0) := πω(1⊗ b0)|Hν

and Ων := Ωω,

gives a second cyclic representation (Hν ,πν0 ,Ων) of (B
0, ν 0). In partic-

ular Hμ and Hν are subspaces of Hω.

We can define a unitary equivalence

(4) uν : Gν → Hν

from (Gν ,idB0 ,Λν) to (Hν ,πν0 ,Ων) by

uνb
0Λν := πν0(b

0)Ων

for all b0 ∈ B0. Then
(5) πν0(b

0) = uνb
0u∗ν

for all b0 ∈ B0. By setting
(6) πν(b) := uνbu

∗
ν

for all b ∈ B, we also obtain a second cyclic representation (Hν,πν,Ων)

of (B, ν), which has the property

πν(B) = πν0(B
0)0

as is easily verified.

Let

Pν ∈ B(Hω)

be the projection of Hω onto Hν.

Proposition 3.1. In terms of the notation above, we have

u∗νι
∗
Hν

πω(a⊗ 1)ιHν
uν = u

∗
νPνπω(a⊗ 1)uν ∈ B

for all a ∈ A, where ιHν
: Hν → Hω is the inclusion map, and ι∗Hν

:

Hω → Hν its adjoint.

Proof. Note that Pν = ι∗Hν
, so indeed u∗νι

∗
Hν

πω(a⊗1)ιHν
uν = u

∗
νPνπω(a⊗

1)uν . We now show that this is in B.

For any b0 ∈ B0 we have πω(1⊗ b0)H⊥
ν ⊂ H⊥

ν , since πω(1⊗ b0∗)Hν ⊂
Hν . It follows that Pνπω(1⊗ b0) = πω(1⊗ b0)Pν. Therefore

Pνπω(a⊗ 1)|Hν
πν0(b

0) = Pνπω(a⊗ 1)πω(1⊗ b0)|Hν

= Pνπω(1⊗ b0)πω(a⊗ 1)|Hν

= πω(1⊗ b0)Pνπω(a⊗ 1)|Hν

= πν0(b
0)Pνπω(a⊗ 1)|Hν

for all a ∈ A and b0 ∈ B0. So Pνπω(a⊗1)|Hν
∈ πν0(B

0)0 = πν(B). Hence

u∗νPνπω(a⊗ 1)uν ∈ B by Eq. (6). ¤
This proposition proves part of the following result, which defines

the central object of this section, namely the map Eω : A→ B.
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Theorem 3.2. In terms of the notation above we have the following

well-defined linear map

(7) Eω : A→ B : a 7→ u∗νι
∗
Hν

πω(a⊗ 1)ιHν
uν

which is normal and completely positive. It has the following properties:

Eω(1) = 1

kEωk = 1

(8) ν ◦Eω = μ

Proof. The map a 7→ πω(a ⊗ 1) is completely positive, since it is a
∗-homomorphism. Therefore Eω is completely positive, as it is the

composition of the completely positive maps a 7→ πω(a⊗ 1), ι∗Hν
(·)ιHν

and u∗ν(·)uν.
From Eq. (7) we have Eω(1) = u

∗
νι
∗
Hν

ιHν
uν = 1 as well as kEωk ≤ 1,

thus it follows that kEωk = 1. Furthermore,
ν ◦Eω(a) = hΛν, Eω(a)Λνi = hΩω,πω(a⊗ 1)Ωωi = ω(a⊗ 1) = μ(a)

for all a ∈ A.
Lastly, Kadison’s inequality, Eω(a)

∗Eω(a) ≤ Eω(a
∗a), holds, since

Eω is a completely positive contraction, so ν(Eω(a)
∗Eω(a)) ≤ ν(Eω(a

∗a)) =
μ(a∗a), for all a ∈ A. Hence, Eω is normal, due to Theorem 2.3. ¤

Remark 3.3. The map a 7→ πω(a⊗ 1) itself can also be shown to be
normal (see for example the proof of [10, Theorem 3.3]).

We proceed by discussing some further general properties of Eω

which will be useful for us later.

The map Eω is closely related to the diagonal coupling of ν with

itself, which we now define: Let

$B : B ¯B0 → B(Gν)

be the unital ∗-homomorphism defined by extending $B(b ⊗ b0) = bb0
via the universal property of tensor products. Here B(Gν) is the von

Neumann algebra of all bounded linear operators Gν → Gν. Now set

(9) δν(d) = hΛν, $B(d)Λνi
for all d ∈ B ¯ B0. Then δν is a coupling of ν with itself, which we

call the diagonal coupling for ν. In terms of this coupling we have the

following characterization of Eω which will often be used:

Proposition 3.4. The map Eω is the unique function from A to B

such that

ω(a⊗ b0) = δν(Eω(a)⊗ b0)
for all a ∈ A and b0 ∈ B0.
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Proof. We simply calculate:

δν(Eω(a)⊗ b0) = hΛν, Eω(a)b
0Λνi = hΛν , u

∗
νPνπω(a⊗ 1)uνb0Λνi

= hPνΩν,πω(a⊗ 1)πν0(b0)Ωνi
= hΩν ,πω(a⊗ b0)Ωνi = ω(a⊗ b0)

for all a ∈ A and b0 ∈ B0. Secondly, suppose that for some b1, b2 ∈ B
we have δν(b1 ⊗ b0) = δν(b2 ⊗ b0) for all b0 ∈ B0. Then hb∗1Λν, b

0Λνi =
hb∗2Λν, b

0Λνi for all b0 ∈ B0, so b∗1Λν = b
∗
2Λν , since B

0Λν is dense in Gν.

But Λν is separating for B, hence b1 = b2. Therefore Eω is indeed the

unique function as stated. ¤

This has three simple corollaries:

Corollary 3.5. If ω1 and ω2 are both couplings of μ and ν, then ω1 =

ω2 if and only if Eω1 = Eω2.

Corollary 3.6. The map Eω is faithful in the sense that if Eω(a
∗a) = 0,

then a = 0.

Proof. If Eω(a
∗a) = 0, then μ(a∗a) = ω((a∗a)⊗1) = δν(Eω(a

∗a)⊗1) =
0, but μ is faithful, hence a = 0. ¤

The latter also follows from Theorem 2.5(b) and E00ω = Eω.

The next corollary is relevant when we consider cases of trivial bal-

ance, i.e. balance with respect to μ ¯ ν 0, and will be applied toward
the end of the next section, in relation to ergodicity:

Corollary 3.7. Let ω be a coupling of (A,μ) and (B, ν). If ω = μ¯ν 0,
then Eω(a) = μ(a)1B for all a ∈ A. Conversely, if Eω(A) = C1B, then
ω = μ¯ ν 0.

Proof. If ω = μ ¯ ν 0, then Eω(a) = μ(a)1B follows from Proposition

3.4. Conversely, again using Proposition 3.4, if Eω(A) = C1B, then
ω(a ⊗ b0)1B = δν(Eω(a) ⊗ b0)1B = Eω(a)δν(1 ⊗ b0) = Eω(a)ν

0(b0). In
particular, setting b0 = 1, Eω(a) = μ(a)1B, so ω = μ¯ ν0. ¤

Next we point out that u.c.p. maps from A to B with specific addi-

tional properties can be used to define couplings:

Proposition 3.8. Let μ and ν be faithful normal states on the von

Neumann algebras A and B respectively. Consider a linear map E :

A→ B and define a linear functional ωE : A¯B0 → C by

ωE := δν ◦ (E ¯ idB0),
i.e.

ωE(a⊗ b0) = δν(E(a)⊗ b0)
for all a ∈ A and b ∈ B0. Then ωE is a coupling of μ and ν if and only

if E is completely positive, unital and ν ◦E = μ. In this case E = EωE .
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Proof. Consider a completely positive linear map E : A → B. Then

E ¯ idB0 is positive, so ωE is positive, since δν is. If we furthermore

assume that E is unital, then ωE(1⊗1) = 1, so ωE is a state. Assuming
in addition that ν◦E = μ, we conclude that ωE(a⊗1) = ν(E(a)) = μ(a)

and ωE(1⊗b0) = ν 0(b0), so ωE is indeed a coupling of μ and ν. Because of
Proposition 3.4 we necessarily have E = EωE . The converse is covered

by Theorem 3.2 and Proposition 3.4. ¤
So in effect we can define couplings as maps E of the form described

in this proposition.

Lastly we study the dual E0ω of Eω, given by Theorem 2.5. Given a

coupling ω of μ and ν, we define

ω0 := δμ0 ◦ (E0ω ¯ idA) : B0 ¯A→ C

where δμ0(d
0) := hΛμ,$A0(d

0)Λμi for all d0 ∈ A0 ¯ A, i.e. δμ0(a0 ⊗ a) =
hΛμ, a

0aΛμi. Since E0ω is a u.c.p. map, it then follows, using Theorem
2.5, Proposition 3.8 and Proposition 3.4, that ω0 is a coupling of ν 0 and
μ0 such that

(10) ω0(b0 ⊗ a) = ω(a⊗ b0)
for all a ∈ A and b0 ∈ B0.
Proposition 3.9. In terms of the above notation we have

E0ω = Eω0 : B
0 → A0

and

Eω0(b
0) = u∗μι

∗
Hμ

πω(1⊗ b0)ιHμ
uμ

for all b0 ∈ B0, where uμ : Gμ → Hμ is the unitary operator defined by

uμaΛμ := πμ(a)Ωμ

for all a ∈ A, ιHμ
: Hμ → Hω is the inclusion map, and ι∗Hμ

: Hω → Hμ

its adjoint.

Proof. That E0ω = Eω0, follows from the definition of ω
0 and Proposition

3.4 applied to ω0 and δμ0 instead of ω and δν .

Note that uμ is defined in perfect analogy to uν in Eq. (4): As the

cyclic representation of (B0 ¯ A,ω0) we can use (Hω,πω0 ,Ωω) with πω0

defined via

πω0(b
0 ⊗ a) := πω(a⊗ b0)

(and the universal property of tensor products) for all b0 ∈ B0 and
a ∈ A. Then, referring to the form of Eq. (3), we see that in the

place of (Hν,πν0 ,Ων) we have (Hμ,πμ,Ωμ), as we would expect, since

πω0(1⊗A)Ωω = πω(A⊗ 1)Ωω = Hμ, πω0(1 ⊗ a)|Hμ
= πω(a ⊗ 1)|Hμ

=

πμ(a) and Ωμ = Ωω for all a ∈ A.
So uμ plays the same role for Eω0 as uν does for Eω, i.e. by definition

(see Theorem 3.2)

Eω0(b
0) = u∗μι

∗
Hμ

πω0(b
0 ⊗ 1)ιHμ

uμ = u
∗
μι
∗
Hμ

πω(1⊗ b0)ιHμ
uμ
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for all b0 ∈ B0. ¤

We are now in a position to apply Eω to balance in subsequent

sections. Also see Section 8 for brief remarks on how Eω may be related

to ideas from quantum information.

4. A characterization of balance

In this section we derive a characterization of balance in terms of

the map Eω from the previous section and consider some of its con-

sequences, including a condition for symmetry of balance in terms of

KMS-symmetry. This gives insight into the meaning and possible ap-

plications of balance. We continue with the notation from Section 3.

The dynamics α of a system A can be represented by a contraction

U on Hμ defined as the unique extension of

(11) Uπμ(a)Ωμ := πμ(α(a))Ωμ

for a ∈ A. Note that U is indeed a contraction, since from Kadison’s

inequality mentioned in Section 2, we have μ(α(a)∗α(a)) ≤ μ(a∗a). (It
is also simple to check from the definition of the dual system that U∗

is the corresponding representation of α0 on Hμ.) Similarly

V πν(b)Ων := πν(β(b))Ων

for all b ∈ B, to represent β on Hν by the contraction V .

Also set

(12) Pω := Pν|Hμ
: Hμ → Hν,

where Pν is again the projection of Hω onto Hν. Note that from Eqs.

(7) and (6) it follows that

(13) Pωπμ(a)Ων = πν(Eω(a))Ων

for all a ∈ A, so Pω is a Hilbert space representation of Eω.

The characterization of balance in terms of Eω is the following:

Theorem 4.1. For systems A and B, let ω be a coupling of μ and ν.

Then AωB, i.e. A and B are in balance with respect to ω, if and only

if

Eω ◦ α = β ◦Eω

holds, or equivalently, if and only if PωU = V Pω.

Proof. We prove it on Hilbert space level. Note that Pω as defined in

Eq. (12) is the unique functionHμ → Hν such that hPωx, yi = hx, yi for
all x ∈ Hμ and y ∈ Hν. (This is a Hilbert space version of Proposition

3.4, but it follows directly from the definition of Pω.)
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Assume that A and B are in balance with respect to ω. Then, for

x = πμ(a)Ωω ∈ Hμ and y = πν0(b
0)Ωω ∈ Hν , where a ∈ A and b0 ∈ B0,

hPωUx, yi = hUx, yi = hπω(α(a)⊗ 1)Ωω,πω(1⊗ b0)Ωωi
= hΩω,πω(α(a

∗)⊗ b0)Ωωi = ω(α(a∗)⊗ b0)
= ω(a∗ ⊗ β0(b0)) = hπω(a⊗ 1)Ωμ,πω(1⊗ β0(b0))Ωωi
= hx, V ∗yi = hPωx, V ∗yi = hV Pωx, yi

which implies that PωU = V Pω. Therefore, using Eqs. (7), (2) and

(6), and since uνΛν = Ωω,

Eω ◦ α(a)Λν = u
∗
νPωπμ(α(a))Ωω = u

∗
νPωUπμ(a)Ωω

= u∗νV Pωπμ(a)Ωω = u
∗
νV uνEω(a)u

∗
νΩω

= u∗νV πν(Eω(a))Ωω = u
∗
νπν(β ◦Eω(a))Ωω

= β ◦Eω(a)Λν

but since Λν is separating for B, this means that Eω ◦α(a) = β ◦Eω(a).

Conversely, if Eω ◦ α = β ◦Eω, then by Eq. (13),

PωUπμ(a)Ωμ = Pωπμ(α(a))Ωω = πν(Eω(α(a)))Ων

= πν(β ◦Eω(a))Ωω = V πν(Eω(a))Ωω

= V Pωπμ(a)Ωμ

so PωU = V Pω. Therefore, similar to the beginning of this proof,

ω(α(a∗)⊗ b0) = hPωUx, yi = hV Pωx, yi = ω(a∗ ⊗ β0(b0))

for all a ∈ A and b0 ∈ B0, as required. ¤

Remark 4.2. This theorem can be compared to the case of joinings

in [10, Theorems 4.1 and 4.3]. Keep in mind that in [10] the dynamics

of systems are given by ∗-automorphisms, and secondly an additional
assumption is made involving the modular groups (see Remark 2.12).

The u.c.p. map obtained in [10] from a joining then also intertwines

the modular groups, not just the dynamics.

A natural question is whether or not balance is symmetric. I.e.,

are A and B in balance with respect to ω if and only if B and A

are in balance with respect to some coupling (related in some way to

ω)? Below we derive balance conditions equivalent to AωB, but where

(duals of) the systems A and B appear in the opposite order. This is

then used to find conditions under which balance is symmetric.

As before, let

jμ : B(Gμ)→ B(Gμ) : a 7→ Jμa
∗Jμ,

where as in the previous section we assume that (A,μ) is in the cyclic

representation (Gμ, idA,Λμ) and Jμ is the corresponding modular con-

jugation. Similarly for jν .
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Given a coupling ω of μ and ν, this allows us to define

ωσ := δμ ◦ (E ¯ idA0) : B ¯A0 → C,

where

E := jμ ◦E0ω ◦ jν : B → A

and δμ(d) := hΛμ,$A(d)Λμi for all d ∈ A ¯ A0, i.e. δμ(a ⊗ a0) =
hΛμ, aa

0Λμi. Since jμ is a anti-∗-automorphism, the conjugate linear
map j∗μ : B(Gμ) → B(Gμ) obtained by composing jμ with the involu-

tion, i.e.

j∗μ(a) := jμ(a
∗)

for all a ∈ B(Gμ), is completely positive in the sense that if it is ap-

plied entry-wise to elements of the matrix algebraMn(A), then it maps

positive elements to positive elements for every n, just like complete

positivity of linear maps. It follows that E = j∗μ ◦ E0ω ◦ j∗ν is a u.c.p.
map, since E0ω is. Consequently, since μ◦E = μ0 ◦E0ω ◦ jν = ν 0 ◦ jν = ν,

it follows from Proposition 3.8 that ωσ is a coupling of ν and μ.

It is then also clear that

(14) Eωσ = E = jμ ◦E0ω ◦ jν
by applying Proposition 3.4. Therefore Eωσ is the KMS-dual of Eω; see

Definition 2.9. The KMS-dual of α is given by

(15) ασ = jμ ◦ α0 ◦ jμ
and similarly for β. This means that

hΛμ, a1jμ(α
σ(a2))Λμi = hΛμ,α(a1)jμ(a2)Λμi

for all a1, a2 ∈ A, which corresponds to the definition of the KMS-dual
given in [28, Section 2], in connection with quantum detailed balance.

(In [28], however, the KMS-dual is indicated by a prime rather than

the symbol σ.) Also see [52] and [50, Proposition 8.3]. In the latter the

KMS-dual is defined in terms of the modular conjugation as well, as

is done above, rather than just in terms of an analytic continuation of

the modular group, as is often done in other sources (including [28]).

Proposition 4.3. In terms of the notation above,

Aσ := (A,ασ,μ)

is a system, called the KMS-dual of A.

Proof. Simply note that ασ is indeed a u.c.p. map (by the same argu-

ment as for E above) such that μ ◦ ασ = μ0 ◦ α0 ◦ jμ = μ0 ◦ jμ = μ. ¤
Remark 4.4. For a QMS (αt)t≥0 with the σ-weak continuity prop-

erty as in Remark 2.6, we again have that the same σ-weak continuity

property holds for (ασ
t )t≥0 as well, where α

σ
t := (αt)

σ for every t. This

follows from the corresponding property of (α0t)t≥0.
In terms of this notation, we have the following consequence of The-

orem 4.1:



BALANCE BETWEEN QUANTUM MARKOV SEMIGROUPS 15

Corollary 4.5. For systems A and B, let ω be a coupling of μ and ν.

Then

AωB⇔ B0ω0A0⇔ BσωσAσ.

Proof. By the definition of the dual of a map in Theorem 2.5 (which

tells us that (Eω ◦ α)0 = α0 ◦ E0ω, etc.), as well as Proposition 3.9 and
Eqs. (14) and (15), we have

Eω ◦ α = β ◦Eω ⇔ Eω0 ◦ β0 = α0 ◦Eω0 ⇔ Eωσ ◦ βσ = ασ ◦Eωσ

which completes the proof by Theorem 4.1. ¤
This is not quite symmetry of balance. However, we say that the

system A (and also α itself) is KMS-symmetric when

(16) ασ = α

holds. If both α and β are KMS-symmetric, we see that

AωB⇔ BωσA,

which expresses symmetry of balance in this special case.

KMS-symmetry was studied in [37], [38] and [17], and in [29] it

was considered in the context of the structure of generators of norm-

continuous quantum Markov semigroups on B(h) and standard quan-

tum detailed balance conditions.

We have however not excluded the possibility that there is some

coupling other than ωσ that could be used to show symmetry of balance

more generally. This possibility seems unlikely, given how natural the

foregoing arguments and constructions are.

We end this section by studying some simple applications of balance

that follow from Theorem 4.1 and the facts derived in the previous

section.

First we consider ergodicity of a system B, which we define to mean

(17) Bβ := {b ∈ B : β(b) = b} = C1B
in analogy to the case for ∗-automorphisms instead of u.c.p. maps. This
is certainly not the only notion of ergodicity available; see for example

[8] for an alternative definition which implies Eq. (17), because of

[8, Lemma 2.1]. The definition we give here is however convenient to

illustrate how balance can be applied: this form of ergodicity can be

characterized in terms of balance, similar to how it is done in the theory

of joinings (see [22, Theorem 3.3], [23, Theorem 2.1] and [10, Theorem

6.2]), as we now explain.

Definition 4.6. A system B is said to be disjoint from a system A if

the only coupling ω with respect to which A and B (in this order) are

in balance, is the trivial coupling ω = μ¯ ν 0.
In the next result, an identity system is a system A with α = idA.

Proposition 4.7. A system is ergodic if and only if it is disjoint from

all identity systems.
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Proof. Suppose B is ergodic and A an identity system. If AωB for

some coupling ω, then β ◦Eω = Eω by Theorem 4.1. So Eω(A) = C1B,
since B is ergodic. By Proposition 3.7 we conclude that ω = μ¯ ν 0.
Conversely, suppose that B is disjoint from all identity systems. Re-

call that A := Bβ is a von Neumann algebra (see for example [10,

Lemma 6.4] for a proof). Therefore A := (A, idA,μ) is an identity

system, where μ := ν|A. Define a coupling of μ and ν by ω := δν |A¯B0
(see Eq. (9)), then from Proposition 3.4 we have Eω = idA. So

Eω ◦ α = idA = β ◦ Eω, implying that A and B are in balance with

respect to ω by Theorem 4.1. Hence, by our supposition and Corollary

3.7, Bβ = Eω(A) = C1B, which means B is ergodic. ¤
It seems plausible that some other ergodic properties can be similarly

characterized in terms of balance, but that will not be pursued further

in this paper.

Our second application is connected to non-equilibrium statistical

mechanics, in particular the convergence of states to steady states. See

for example the early papers [57] and [34] on the topic, as well as more

recent papers like [31] and [26]. To clarify the connection between these

results (which are expressed in terms of continuous time t ≥ 0) and the
result below, we formulate the latter in terms of continuous time as

well. Compare it in particular to results in [34, Section 3]. It is an

example of how properties of one system can be partially carried over

to other systems via balance.

Proposition 4.8. Assume that A and B are in balance with respect

to ω. Suppose that

lim
t→∞

κ(αt(a)) = μ(a)

for all normal states κ on A, and all a ∈ A. Then
lim
t→∞

λ(βt(b)) = ν(b)

for all normal states λ on B, and all b ∈ Eω(A).

Proof. Applying Theorem 4.1 and setting κ := λ ◦Eω, we have

lim
t→∞

λ(βt(Eω(a))) = lim
t→∞

κ(αt(a)) = μ(a) = ν(Eω(a))

for all a ∈ A, by Theorem 3.2. ¤
We expect various results of this sort to be possible, namely where

two systems are in balance, and properties of the one then necessarily

hold in a weaker form for the other.

Conversely, one can in principle use balance as a way to impose less

stringent alternative versions of a given property, by requiring a system

to be in balance with another system having the property in question.

We expect that such conditions need not be directly comparable (and

strictly weaker) than the property in question. This idea will be dis-

cussed further in relation to detailed balance in Section 6.
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5. Composition of couplings and transitivity of balance

Here we show transitivity of balance: ifA andB are in balance w.r.t.

ω, and B and C are in balance w.r.t. ψ, then A and C are in balance

with respect to a certain coupling obtained from ω and ψ, and denoted

by ω ◦ψ. The coupling ω ◦ψ is the composition of ω and ψ, as defined

and discussed in detail below. Furthermore, we discuss the connection

between couplings and correspondences in the sense of Connes.

Let ω be a coupling of (A,μ) and (B, ν), and let ψ be a coupling of

(B, ν) and (C, ξ). Note that Eψ ◦ Eω : A → C is a u.c.p. map such

that ξ ◦ Eψ ◦ Eω = μ by Theorem 3.2. Therefore, by Proposition 3.8,

setting

(18) ω ◦ ψ := δξ ◦ ((Eψ ◦Eω)¯ idC0),
i.e.

ω ◦ ψ(a⊗ c0) = δξ(Eψ(Eω(a))⊗ c0)
for all a ∈ A and c ∈ C 0, we obtain a coupling ω ◦ ψ of μ and ξ such

that

(19) Eω◦ψ = Eψ ◦Eω.

This construction forms the foundation for the rest of this section.

We call the coupling ω ◦ψ the composition of the couplings ω and ψ.

We can view it as an analogue of a construction appearing in the theory

of joinings in classical ergodic theory; see for example [36, Definition

6.9].

We can immediately give the main result of this section, namely that

we have transitivity of balance in the following sense:

Theorem 5.1. If A and B are in balance w.r.t. ω, and B and C are

in balance w.r.t. ψ, then A and C are in balance w.r.t. ω ◦ ψ.
Proof. By Theorem 4.1 we have Eω ◦ α = β ◦Eω and Eψ ◦ β = γ ◦Eψ,

so

Eω◦ψ ◦ α = Eψ ◦ β ◦Eω = γ ◦Eω◦ψ,

which again by Theorem 4.1 means that A and C are in balance w.r.t.

ω ◦ ψ. ¤

In order to gain a deeper understanding of the transitivity of balance,

we now study properties of the composition of couplings.

Proposition 5.2. For the diagonal coupling δν in Eq. (9), we have

Eδν = idB. Consequently δν is the identity for composition of couplings

in the sense that δν ◦ ψ = ψ and ω ◦ δν = ω.

Proof. From Proposition 3.3 it follows that Eδν = idB. Hence, from Eq.

(19), we obtain Eδν◦ψ = Eψ ◦ Eδν = Eψ and Eω◦δν = Eδν ◦ Eω = Eω,

which concludes the proof by Corollary 3.5. ¤
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In order to treat further properties of ω ◦ψ and the connection with
the theory of correspondences, we need to set up the relevant notation:

Continuing with the notation in the previous two sections, also as-

suming (C, ξ) to be in its cyclic representation (Gξ, idC ,Λξ), and denot-

ing the cyclic representation of (B ¯ C 0,ψ) by (Kψ,ϕψ,Ψψ), it follows

that

Kν := πψ(B ⊗ 1)Ψψ, ϕν(b) := ϕψ(b⊗ 1)|Kν
and Ψν := Ψψ

gives a third cyclic representation (Kν,ϕν,Λν) of (B, ν), and that

(20) Kξ := πψ(1⊗ C 0)Ψψ, ϕξ0(c
0) := ϕψ(1⊗ c0)|Kξ

and Ψξ := Ψψ

gives a cyclic representation (Kξ,ϕξ0 ,Ψξ) of (C
0, ξ0). Note that to help

keep track of where we are, we use the symbol K instead of H for the

Hilbert spaces originating from ψ (as opposed to ω), and similarly we

use ϕ instead of π, and Ψ instead of Ω.

We can define a unitary equivalence

(21) vν : Gν → Kν

from (Gν , idB,Λν) to (Kν ,ϕν,Ψν) by

vνbΛν := ϕν(b)Ψν

for all b ∈ B. Then
ϕν(b) := vνbv

∗
ν

for all b ∈ B.
By Theorem 3.2 we can then define the normal u.c.p. map Eψ0 :

C 0 → B0. By Proposition 3.9 this map is the dual E0ψ of Eψ, and we

can write it as

(22) E0ψ : C
0 → B0 : c0 7→ v∗νι

∗
Kν

ϕψ(1⊗ c0)ιKν
vν = v

∗
νQνϕψ(1⊗ c0)vν

where Qν is the projection of Kψ onto Kν , and Qν = ι∗Kν
with ιKν

:

Kν → Kψ the inclusion map.

The coupling ω ◦ ψ can now be expressed in various ways:
Proposition 5.3. The coupling ω◦ψ is given by the following formulas:
(23) ω ◦ ψ = δν ◦ (Eω ¯E0ψ)
and

ω ◦ ψ = δμ ◦ (idA¯(E0ω ◦E0ψ))
in terms of Eq. (9), as well as

(24) ω ◦ ψ(a⊗ c0) = ψ(Eω(a)⊗ c0) = ω(a⊗E0ψ(c0))
and

(25) ω ◦ ψ(a⊗ c0) = hu∗νPνπμ(a∗)Ωω, v
∗
νQνϕξ0(c

0)Ψψi
(in the inner product of the Hilbert space Gν) for all a ∈ A and c0 ∈ C 0.
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Proof. From Eqs. (18) and (9), and Theorem 2.5, we have

ω ◦ ψ(a⊗ c0) = hΛξ, Eψ(Eω(a))c
0Λξi

=

Λν, Eω(a)E

0
ψ(c

0)Λν

®
(26)

fromwhich Eq. (23) follows. Continuing with the last expression above,

we respectively have by Theorem 2.5 that

ω ◦ ψ(a⊗ c0) = Λμ, aE
0
ω(E

0
ψ(c

0))Λμ

®
= δμ ◦ (idA¯(E0ω ◦E0ψ))(a⊗ c0),

by Proposition 3.4 that

ω ◦ ψ(a⊗ c0) = ω(a⊗E0ψ(c0))
and by Proposition 3.9 that

ω ◦ ψ(a⊗ c0) = hΛν , Eψ0(c
0)Eω(a)Λνi

= ψ0(c0 ⊗Eω(a))

= ψ(Eω(a)⊗ c0),
where in the second line we again applied Proposition 3.4, while the

last line follows from the definition of ψ0, as in Eq. (10).
On Hilbert space level we again have from Eq. (26) that

ω ◦ ψ(a⊗ c0) = Eω(a
∗)Λν, E

0
ψ(c

0)Λν

®
= hu∗νPνπω(a∗ ⊗ 1)uνΛν , v

∗
νQνϕψ(1⊗ c0)vνΛνi

= hu∗νPνπμ(a∗)Ωω, v
∗
νQνϕξ0(c

0)Ψψi
for all a ∈ A and c0 ∈ C 0, using Theorem 3.2 (and Proposition 3.1) as

well as Eqs. (22), (2) and (20). ¤
At the end of this section ω ◦ψ will also be expressed in terms of the

theory of relative tensor products of bimodules; see Proposition 5.7.

Next we consider triviality of transitivity, namely when ω◦ψ = μ¯ξ0,
in which case we also say that the couplings ω and ψ are orthogonal,

in analogy to the case of classical joinings [36, Definition 6.9]. We first

note the following:

Proposition 5.4. If either ω = μ¯ν 0 or ψ = ν¯ξ0, then ω◦ψ = μ¯ξ0.

Proof. By Proposition 3.4, Eμ¯ν0 = μ(·)1B and Eν¯ξ0 = ν(·)1C , so
(μ¯ν 0)◦ψ(a⊗c0) = δξ(μ(a)1C⊗c0) = μ(a)ξ0(c0) and ω◦(ν¯ξ0)(a⊗c0) =
δξ(ν(Eω(a))1C ⊗ c0) = μ(a)ξ0(c0) according to Eq. (18) and Theorem
3.2. ¤
However, as will be seen by example in Section 7, in general it is

possible that ω ◦ ψ = μ¯ ξ0 even when ω 6= μ¯ ν 0 and ψ 6= ν ¯ ξ0. In
order for ω ◦ ψ 6= μ ¯ ξ0 to hold, there has to be sufficient “overlap”
between ω and ψ. The following makes this precise on Hilbert space

level and also explains the use of the term “orthogonal” above:
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Proposition 5.5. We have ω ◦ ψ = μ¯ ξ0 if and only if

u∗ν[PνHμ ªCΩω] ⊥ v∗ν[QνKξ ªCΨψ]

in the Hilbert space Gν (see Section 3), where Pν and Qν are the pro-

jections of Hω onto Hν and Kψ onto Kν respectively, and uν and vν
are the unitaries defined above (see Eqs. (4) and (21)).

Proof. In terms of the projections PΩω
and QΨψ

of Hω and Kψ onto

CΩω and CΨψ respectively, we have
u∗νPΩω

πμ(a
∗)Ωω, v

∗
νQΨψ

ϕξ0(c
0)Ψψ

®
= hhΩω,πμ(a

∗)Ωωiu∗νΩω, hΨψ,ϕξ0(c
0)Ψψi v∗νΨψi

= μ(a)ξ0(c0) hΛν,Λνi
= μ¯ ξ0(a⊗ c0)

for all a ∈ A and c0 ∈ C 0. In terms of P := Pν−PΩω
andQ := Qν−QΨψ

,

it then follows from Eq. (25) that

ω ◦ ψ(a⊗ c0)− μ¯ ξ0(a⊗ c0)
= hu∗νPπμ(a∗)Ωω, v

∗
νQϕξ0(c

0)Ψψi
+

u∗νPπμ(a

∗)Ωω, v
∗
νQΨψ

ϕξ0(c
0)Ψψ

®
+ hu∗νPΩω

πμ(a
∗)Ωω, v

∗
νQϕξ0(c

0)Ψψi
= hu∗νPπμ(a∗)Ωω, v

∗
νQϕξ0(c

0)Ψψi .
For the last line we used u∗νPHω = Gν ªCΛν and v

∗
νQΨψ

Kψ = CΛν to

obtain the one term as zero, while the other term is zero, since v∗νQKψ =

GνªCΛν and u
∗
νPΩω

Hω = CΛν. Therefore ω ◦ψ(a⊗ c0)−μ¯ ξ0(a⊗ c0)
is zero for all a ∈ A and c0 ∈ C 0 if and only if u∗ν [PνHμ ª CΩω] ⊥
v∗ν [QνKξ ª CΨψ]. ¤

To conclude this section, we discuss bimodules and correspondences,

in particular showing how ω◦ψ can be expressed in terms of the relative
tensor product of bimodules obtained from ω and ψ. The goal is to give

an indication of the connection between couplings and correspondences.

Also see [10] for a related discussion of correspondences in the context

of joinings.

The theory of correspondences was originally developed by Connes,

but never published in full, although it is discussed briefly in his book

[18, Appendix V.B]. In short, a correspondence from one von Neumann

algebra, M , to another, N , is a M-N-bimodule (where the direction

from M to N , is the convention used in this paper).

See for example [60, Section IX.3] and [30] for details on the relative

tensor product, but also [55] for some of the early work on this topic.

We only outline some of the most pertinent aspects of relative tensor

products, and the reader is refered to these sources, in particular [60,

Section IX.3], for a more systematic exposition.

As before, let

jν(b) := Jνb
∗Jν
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for all b ∈ B(Gν), with Jν : Gν → Gν the modular conjugation asso-

ciated with (B,Λν). Similarly, with (C, ξ) in its cyclic representation

(Gξ,idC ,Λξ), let

jξ(c) := Jξc
∗Jξ

for all c ∈ B(Gξ), with Jξ : Gξ → Gξ the modular conjugation associ-

ated with (C,Λξ).

Given a coupling ω of the systems A and B, we can view H = Hω

as an A-B-bimodule by setting

πH(a) := πω(a⊗ 1)
and

π0H(b) := πω(1⊗ jν(b)),
and writing

axb := πH(a)π
0
H(b)x

for all a ∈ A, b ∈ B, and x ∈ H. As already mentioned in Remark 3.3,
πH is normal, as required for it to give a left A-moduled, and similarly

π0H gives a normal right action of B on H; again see [10, Theorem 3.3].
When viewing H as the A-B-bimodule thus defined, we also denote

it by AHB. This module is therefore an example of a correspondence

from A to B.

From K = Kψ we analogously obtain the B-C-bimodule BKC via

πK and π0K given by
πK(b) := ϕψ(b⊗ 1)

and

π0K(c) := ϕψ(1⊗ jξ(c))
which enables us to write

byc := πK(b)π
0
K(c)y

for all b ∈ B, c ∈ C, and y ∈ K.
Now we form the relative tensor product (see [60, Definition IX.3.16])

AXC := H ⊗ν K

with respect to the faithful normal state ν. This is also a Hilbert space

(its inner product will be discussed below) and, as the notation on the

left suggests, the relative tensor product is itself a A-C-bimodule. This

is a special case of [60, Corollary IX.3.18]. The reason it works is that

since H is a A-B-bimodule, any element of πH(A) can be viewed as an

element of L(HB), the space of all bounded (in the usual sense of linear
operators on Hilbert spaces) right B-module maps. Similarly for the

right action of C. So AXC is a correspondence from A to C, which can

be viewed as the compostion of the correspondences AHB and BKC.

As one may expect, the actions of A and C on H ⊗ν K are given by

a(x⊗ν y)c = (ax)⊗ν (yc)
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for all a ∈ A and c ∈ C. However, in general this does not hold for all
x ∈ H and y ∈ K. In fact the elementary tensor x⊗ν y does not exist

for all x ∈ H and y ∈ K. However, it does work if we restrict either x
or y to a certain dense subspace, say x ∈ D(H, ν) ⊂ H and y ∈ K. (See
below for further details on the space D(H, ν).) We correspondingly
use x ∈ H and y ∈ D0(K, ν) ⊂ K if we rather want to restrict y to a

dense subspace of K.

In particular we have Ωω ∈ D(H, ν) and Ψψ ∈ D0(K, ν), so we set

Ω := Ωω ⊗ν Ψψ ∈ H ⊗ν K,

which we use to define a state, denoted by ω ¦ψ, on A¯C 0 as follows:
(27) ω ¦ ψ(d) := hΩ,πX(d)Ωi
for all d ∈ A ¯ C 0, where πX is the representation of A ¯ C 0 on AXC
given in terms of its bimodule structure by

πX(a⊗ c0)x := axjξ(c0)
for all x ∈ AXC. Below we show that ω ¦ ψ = ω ◦ ψ, so have the com-
position of couplings expressed in terms of the relative tensor product

of bimodules, i.e. in terms of the composition of correspondences.

We first review the inner product of the relative tensor product in

more detail, in order to clarify its use below. Write

(28) η0ν(b) := jν(b)Λν = Jνb
∗Λν

for all b ∈ B.
For every x ∈ D(H, ν), define the bounded linear operator Lν(x) :

Gν → H by settting

Lν(x)η
0
ν(b) = xb ≡ π0H(b)x

for all b ∈ B, and uniquely extending to Gν. We note that the space

D(H, ν) is defined to ensure that Lν(x) is indeed bounded:

D(H, ν) = {x ∈ H : kxbk ≤ kx kη0ν(b)k for all b ∈ B, for some kx ≥ 0}
It then follows that Lν(x1)

∗Lν(x2) ∈ B for all x1, x2 ∈ D(H, ν). The
space H ⊗ν K and its inner product is obtained from a quotient con-

struction such that we have

(29) hx1 ⊗ν y1, x2 ⊗ν y2i = hy1,πK(Lν(x1)
∗Lν(x2))y2iK

for x1, x2 ∈ D(H, ν) and y1, y2 ∈ K, where for emphasis we have de-
noted the inner product of K by h·, ·iK . This is the “left” version,
but there is also a corresponding “right” version of this formula for

the inner product (see [60, Section IX.3]). It can be shown from the

definition of D(H, ν), that πH(a)πν(b)Ωω ∈ D(H, ν) for all a ∈ A and
b ∈ B, from which in turn it follows that D(H, ν) is dense in H, and
that Ωω ∈ D(H, ν). Similarly D0(K, ν), which is defined analogously,
is dense in K.
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From this short review of the inner product, we can show that it has

the following property:

Proposition 5.6. In H ⊗ν K,

(30) ha1Ωc1, a2Ωc2i = ψ(Eω(a
∗
1a2)⊗ jξ(c2c∗1))

for a1, a2 ∈ A and c1, c2 ∈ C.
Proof. Firstly, we obtain a formula for Lν(x) for elements of the form

x = πH(a)πν(b)Ωω ∈ D(H, ν), where a ∈ A and b. For all b1 ∈ B we

have

Lν(x)η
0
ν(b1) = π0H(b1)πH(a)πν(b)Ωω

= πH(a)πν(b)πν0(jν(b1))Ωω

= πH(a)πν(b)uνη
0
ν(b1),

by Eqs. (5) and (28), which means that

(31) Lν(πH(a)πν(b)Ωω) = πH(a)πν(b)uν .

Applying the special case Lν(πH(a)Ωω) = πH(a)uν of this formula, for

a1, a2 ∈ A we have
Lν(πH(a1)Ωω)

∗Lν(πH(a2)Ωω) = u
∗
νPνπH(a

∗
1a2)uν

= Eω(a
∗
1a2).

by Theorem 3.2 and Proposition 3.1. From Eq. (29) we therefore have

ha1Ωc1, a2Ωc2i = hπ0K(c1)Ψψ,πK(Eω(a
∗
1a2))π

0
K(c2)ΨψiK

= hΨψ,πK(Eω(a
∗
1a2))π

0
K(c2c

∗
1)ΨψiK

= hΨψ,ϕψ(Eω(a
∗
1a2)⊗ jξ(c2c∗1))ΨψiK

= ψ(Eω(a
∗
1a2)⊗ jξ(c2c∗1)).

¤

Now we can confirm that Eq. (27) is indeed equivalent to the original

definition Eq. (18):

Corollary 5.7. We have

ω ¦ ψ = ω ◦ ψ
in terms of the definitions Eq. (27) and Eq. (18).

Proof. From Eq. (27)

ω ¦ ψ(a⊗ c0) = hΩ,πX(a⊗ c0)Ωi = hΩ, aΩjξ(c0)i
= ψ(Eω(a)⊗ c0))

by Eq. (30), for all a ∈ A and c0 ∈ C 0. By Eq. (24), ω ¦ψ = ω ◦ψ. ¤
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So we have ω ◦ ψ expressed in terms of the vector Ω ∈ H ⊗ν K.

Note, however, that in general H ⊗ν K is not the GNS Hilbert space

for the state ω ◦ ψ, although the former contains the latter. Consider
for example the simple case where ω = μ¯ν 0 and ψ = ν¯ξ0. Then, by
Proposition 5.4, ω ◦ ψ = μ ¯ ξ0, and the GNS Hilbert space obtained
from this state is Gμ ⊗Gξ, whereas H ⊗ν K = Gμ ⊗Gν ⊗Gξ.

When (A,μ) = (B, ν) and ω is the diagonal coupling δν in Eq. 9),

then by [60, Proposition IX.3.19], AXC is isomorphic to BKC, so in

this case the correspondence AHB acts as an identity from the left.

Similarly from the left when ψ is the diagonal coupling. This is the

correspondence version of Proposition 5.2.

Lastly, by Eq. (31) we have Lν(Ωω) = ιHν
uν, therefore Lν(Ωω)

∗ =
u∗νPν, which by Theorem 3.2 means that

Eω(a) = Lν(Ωω)
∗πH(a)Lν(Ωω)

for all a ∈ A. This is the form in which Eω has appeared in the the-

ory of correspondences, as a special case of maps of the form a 7→
Lν(x)

∗πH(a)Lν(x) for arbitrary x ∈ D(H, ν); see for example [53, Sec-
tion 1.2].

6. Balance, detailed balance and non-equilibrium

Our main goal in this section is to suggest how balance can be used to

define conditions that generalize detailed balance. We then speculate

on how this may be of value in studying non-equilibrium steady states.

In order to motivate these generalized conditions, we present a specific

instance of how detailed balance can be expressed in terms of balance.

We focus on only one form of detailed balance, namely standard quan-

tum detailed balance with respect to a reversing operation, as defined

in [29, Definition 3 and Lemma 1] and [28, Definition 1]. This form of

detailed balance has only appeared in the literature relatively recently.

The origins of quantum detailed balance, on the other hand, can be

found in the papers [6], [7], [15], [45] and [48].

The basic idea of this section should also apply to properties other

than detailed balance conditions, as will be explained.

We begin by noting the following simple fact in terms of the diagonal

coupling δμ (see Eq. (9)):

Proposition 6.1. A system A is in balance with itself with respect to

the diagonal coupling δμ, i.e. δμ(α(a)⊗a0) = δμ(a⊗α0(a0)) for all a ∈ A
and a0 ∈ A0. Conversely, if two systems A and B, with (A,μ) = (B, ν),
are in balance with respect to the diagonal coupling δμ, then A = B,

i.e. α = β.

Proof. The first part is simply the definition of the dual (see Definition

2.4 and Theorem 2.5). The second part follows from the uniqueness
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of the dual, given by Theorem 2.5; alternatively use Theorem and 4.1

Proposition 5.2. ¤

So, if A and B are in balance with respect to the diagonal coupling

and one of the systems has some property, then the other system has

it as well, since the systems are necessarily the same.

One avenue of investigation is therefore to define weaker versions of

a given property by demanding only that a system is in balance with

another system with the given property, with respect to a coupling that

is not necessarily the diagonal coupling. In particular we then do not

need to assume that the two systems have the same algebra and state.

We demonstrate this idea below for a specific property, namely stan-

dard quantum detailed balance with respect to a reversing operation.

In order to do so, we discuss this form of detailed balance along with

Θ-KMS-duals:

Definition 6.2. Consider a system A. A reversing operation for A

(or for (A,μ)), is a ∗-antihomorphism Θ : A → A (i.e. Θ is linear,

Θ(a∗) = Θ(a)∗, and Θ(a1a2) = Θ(a2)Θ(a1)) such that Θ
2 = idA and

μ ◦Θ = μ. Furthermore we define the Θ-KMS-dual

αΘ := Θ ◦ ασ ◦Θ
of α in terms of the KMS-dual ασ = jμ ◦ α0 ◦ jμ in Eq. (15).
The Θ-KMS-dual was introduced in [13] in the context of systems on

B(H), with H a separable Hilbert space, in order to study deviation

from standard quantum detailed balance with respect to a reversing

operation.

Using the Θ-KMS-dual, we can define this form of detailed balance

in general as follows:

Definition 6.3. A system A satisfies standard quantum detailed bal-

ance with respect to the reversing operation Θ for (A,μ), orΘ-sqdb,when

αΘ = α.

Note that [28] defines Θ-sqdb by ασ = Θ ◦α ◦Θ, which is equivalent
to the above definition, simply because Θ2 = idA.

To complete the picture, we state some straightforward properties

related to reversing operations Θ and the Θ-KMS-dual:

Proposition 6.4. Given a reversing operation Θ as in Definition 6.2,

we define an anti-unitary operator θ : Gμ → Gμ by extending

θaΛμ := Θ(a∗)Λμ

which in particular gives θ2 = 1 and θΛμ = Λμ. Then

Θ(a) = θa∗θ

for all a ∈ A, and consequently Θ is normal. This allows us to define

Θ0 : A0 → A0 : a0 7→ θa0∗θ
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which is the dual of Θ in the sense that

hΛμ, aΘ
0(a0)Λμi = hΛμ,Θ(a)a

0Λμi
for all a ∈ A and a0 ∈ A0. We also have

θJμ = Jμθ

from which

αΘ = (Θ ◦ α ◦Θ)σ
and

(αΘ)Θ = α

follow.

Proof. The first sentence is simple. From the definition of θ and the

properties of Θ, θΛμ = Λμ it follows that

θa∗θbΛμ = Θ((a∗Θ(b∗))∗)Λμ = Θ(a)bΛμ

for all a, b ∈ A, so Θ(a) = θa∗θ. Normality (i.e. σ-weak continuity)

follows from this and the definition of the σ-weak topology. For a ∈ A
and a0 ∈ A0 we now have aθa0θ = θΘ(a∗)a0θ = θa0Θ(a∗)θ = θa0θa,
hence θa0θ ∈ A0. So Θ0 is well-defined, and that it is the dual of Θ
follows easily.

Denoting the closure of the operator

AΛμ → AΛμ : aΛμ 7→ a∗Λμ

by Sμ = Jμ∆
1/2
μ , as usual in Tomita-Takesaki theory, we obtain Sμ =

θSμθ = θJμθθ∆
1/2
μ θ, hence θJμθ = Jμ by the uniqueness of polar de-

composition, proving θJμ = Jμθ.

Then by definition

αΘ = Θ ◦ jμ ◦ α0 ◦ jμ ◦Θ = jμ ◦Θ0 ◦ α0 ◦Θ0 ◦ jμ = jμ ◦ (Θ ◦ α ◦Θ)0 ◦ jμ
= (Θ ◦ α ◦Θ)σ

follows. So (αΘ)Θ = Θ ◦Θ ◦ α ◦Θ ◦Θ = α. ¤

Returning now to the main goal of this section, it will be convenient

for us to express the Θ-KMS dual as a system:

Proposition 6.5. For a reversing operation Θ as in Definition 6.2,

AΘ := (A,αΘ,μ)

is a system, called the Θ-KMS-dual of A.

Proof. Recall from Proposition 4.3 that Aσ is a system. Since ασ is

u.c.p., it can be checked as in Proposition 4.3 from αΘ = Θ∗ ◦ασ ◦Θ∗,
where Θ∗(a) := Θ(a∗) for all a ∈ A, that αΘ is u.c.p. as well. From

μ ◦Θ = μ, we obtain μ ◦ αΘ = μ. ¤
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Remark 6.6. Similar to before, for a QMS (αt)t≥0 with the σ-weak

continuity property as in Remark 2.6, we have that this continuity

property also holds for (αΘ
t )t≥0, where αΘ

t := (αt)
Θ for every t. This

follows from the continuity of (ασ
t )t≥0 in Remark 4.4, and the fact that

Θ is normal (Proposition 6.4).

As a simple corollary of Proposition 6.1 we have:

Corollary 6.7. The following are equivalent for a system A:

(a) A satisfies Θ-sqdb.

(b) A and AΘ are in balance with respect to δμ.

(c) AΘ and A are in balance with respect to δμ.

When two systems are in balance, we expect the one system to par-

tially inherit properties of the other. We saw an example of this in

Proposition 4.8. As mentioned there, this suggests that for any given

property that a system may have, we can in principle consider gener-

alized forms of the property via balance. In particular for Θ-sqdb:

• We can consider systems A and B which are in balance with

respect to a coupling ω (or a set of couplings) other than μ¯ν 0,
but not necessarily with respect to δμ. Assuming that either A

orB satisfiesΘ-sqdb, for some reversing operationΘ forA orB

respectively, the other system can then be viewed as satisfying

a weaker version of Θ-sqdb.

A second possible way of obtaining conditions generalizing Θ-sqdb

for a system A, is simply to adapt Corollary 6.7 more directly:

• We can requireA andAΘ to be in balance with respect to some

coupling ω (or a set of couplings) other than μ ¯ μ0, but not
necessarily with respect to δμ. Or A

Θ and A to be in balance

with respect to some coupling ω other than μ ¯ μ0, but not
necessarily with respect to δμ.

Under KMS-symmetry (see Eq. (16)), the two options in the second

condition, namely A and AΘ in balance, versus AΘ and A in balance,

are equivalent:

Proposition 6.8. If the system A is KMS-symmetric, then AωAΘ if

and only if AΘωEA, where E := Θ ◦ Eω ◦Θ. (See Proposition 3.8 for
ωE.)

Proof. By KMS-symmetry αΘ = Θ ◦α ◦Θ. Note that for any coupling
ω we have that E = Θ∗ ◦ Eω ◦ Θ∗ is u.c.p. like αΘ in the proof of

Proposition 6.5, and μ ◦E = μ by Corollary 3.2 and μ ◦Θ = μ. Then

ωE is a coupling by Proposition 3.8. From Theorem 4.1 we have

AωAΘ ⇔ Eω ◦ α = Θ ◦ α ◦Θ ◦Eω ⇔ E ◦ αΘ = α ◦E ⇔ AΘωEA.

¤
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The two types of conditions suggested above will be illustrated by a

simple example in the next section, where the conditions obtained will

in fact be weaker than Θ-sqdb.

A basic question we now have is the following: can weaker conditions

like these be applied to characterize certain non-equilibrium steady

states μ which have enough structure that one can successfully analized

themmathematically, while also having physical relevance? This seems

plausible, given that these conditions are structurally so closely related

to detailed balance itself. We briefly return to this in Section 8.

7. An example

In this section we use an very simple example based on the examples

in [2, Section 6], [12], [27, Section 5] and [28, Subsection 7.1] to illus-

trate some of the ideas discussed in this paper. Our main reason for

considering this example is that it is comparatively easy to manipulate

mathematically. We leave a more in depth study of relevant examples

for further work.

LetH be a separable Hilbert space with total orthonormal set e1, e2, e3, ....
We are going to consider systems on the von Neumann algebra B(H).
These systems will all have the same faithful normal state ζ on B(H)
given by the diagonal (in the mentioned basis) density matrix

ρ =

⎡⎣ ρ1
ρ2

. . .

⎤⎦
where ρ1, ρ2, ρ3, ... > 0 satisfy

P∞
n=1 ρn = 1. I.e.

ζ(a) = Tr(ρa)

for all a ∈ B(H).
We now briefly explain what the cyclic representation and modular

conjugation look like for the state ζ:

The (faithful) cyclic representation of (B(H), ζ) can be written as
(H,π,Ω) where H = H⊗H,

π(a) = a⊗ 1
for all a ∈ B(H), and

Ω =

∞X
n=1

√
ρnen ⊗ en

is the cyclic vector. Our von Neumann algebra is therefore represented

as A = π(B(H)), and the state ζ is represented by the state μ on A

given by

μ(π(a)) = ζ(a)
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for all a ∈ A. However, we also consider a second representation π0

given by

π0(a) = 1⊗ a
for all a ∈ B(H), so A0 = π0(B(H)). The state μ0 on A0 is then given
by

μ0(π0(a)) = hΩ,π0(a)Ωi = ζ(a)

for all a ∈ A.
The modular conjugation J associated to μ (and to ζ) is then ob-

tained as the conjugate linear operator J : H → H given by

J(ep ⊗ eq) = eq ⊗ ep
for all p, q = 1, 2, 3, .... Furthermore,

j(π(a)) := Jπ(a)∗J = π0(aT )

for all a ∈ B(H), where aT denotes the transpose of a in the basis
e1, e2, e3, ....

This allows us to apply the general notions from the earlier sections

explicitly to this specific case.

Regarding notation: Instead of the notation |xi hy| for x, y ∈ H, we
use x on y, i.e.

(x on y)z := x hy, zi
for all z ∈ H.
7.1. The couplings. We consider couplings of ζ with itself. A cou-

pling of ζ with itself corresponds to a coupling of μ with itself in

the cyclic representation, which is a state ω on A ¯ A0 = π(B(H)) ¯
π0(B(H)) ∼= B(H)¯B(H) such that

ω(π(a)⊗ 1) = μ(π(a))

and

ω(1⊗ π0(a)) = μ0(π0(a))

for all a ∈ B(H). However, in this concrete example it is clearly

equivalent, and notationally simpler, to view ω directly as a state on

B(H)¯B(H) such that
(32) ω(a⊗ 1) = ζ(a)

and

(33) ω(1⊗ a) = ζ(a)

for all a ∈ B(H), rather than to work via the cyclic representation.
Consider any disjoint subsets Y1, Y2, Y3, ... of N+ := {1, 2, 3, 4, ...}

such that ∪∞n=1Yn = N+. We construct a coupling ω which is given by

a density matrix κ ∈ B(H⊗H), i.e.
ω(c) = Tr(κc)
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for all c ∈ B(H)¯B(H). Therefore we may as well allow c ∈ B(H⊗H),
and define ω on the latter algebra, even though our theory only needs

it to be defined on the algebraic tensor product B(H)¯B(H).
We begin by obtaining a positive trace-class operator κn correspond-

ing to the set Yn for every n. Each κn will be one of three types, namely

a (maximally) entangled type, a mixed type, or a product type, each

of which we now discuss in turn for any n.

First, the entangled type: We set

Ωn =
X
q∈Yn

√
ρqeq ⊗ eq

and

κn = Ωn on Ωn

=
X
p∈Yn

X
q∈Yn

√
ρpρq(ep on eq)⊗ (ep on eq)

for all n. It is straightforward to verify that

(34) Tr(κn) =
X
q∈Yn

ρq

and

(35) ωn(a⊗ 1) = ωn(1⊗ a) =
X
q∈Yn

ρq heq, aeqi

for all a ∈ B(H).
Secondly, the mixed type: Setting

κn =
X
q∈Yn

ρq(eq on eq)⊗ (eq on eq)

we again obtain Eqs. (34) and (35).

Thirdly, the product type: Setting

κn = dn ⊗ dn
where

dn :=

ÃX
p∈Yn

ρp

!−1/2X
q∈Yn

ρq(eq on eq)

we yet again obtain Eqs. (34) and (35).

For each type we take

κn = 0

if Yn is empty (this allows for a partition of N+ into a finite number of
non-empty subsets).

For each n, let κn be any of the three types above. Then κn is indeed

trace-class and positive, so setting

(36) ωn(c) = Tr(κnc)
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for all c ∈ B(H⊗H), we obtain a well-defined positive linear functional
ωn on B(H⊗H). Then

ω :=

∞X
n=1

ωn

converges in the norm of B(H⊗ H)∗, since kωnk = ωn(1) = Tr(κn), soP∞
n=1 kωnk = 1. Correspondingly,

(37) κ :=

∞X
n=1

κn

converges in the trace-class norm k·k1, since
P∞

n=1 kκnk1 =
P∞

n=1Tr(κn) =

1. Then it indeed follows that

ω(c) =

∞X
n=1

Tr(κnc) = Tr(κc),

since |Pm

n=1Tr(κnc)− Tr(κc)| ≤ k
Pm

n=1 κn − κk
1
kck.

Furthermore ω(1) =
P∞

n=1 ωn(1) =
P∞

n=1 ρn = 1, and from Eq. (35)

it follows that Eqs. (32) and (33) hold. So ω is a coupling of ζ with

itself as required.

For Y1 = N+, i.e. κ = κ1, we can get two extremes, namely the

diagonal coupling ω if κ1 is of the entangled type, and the product

state ω = ζ ⊗ ζ on B(H⊗H) when κ1 is of the product type. But the

construction above gives many cases in between these two extremes.

Then balance with respect to ω is non-trivial, but does not nessecarily

force two systems A and B on the same algebra A to have the same

dynamics as in Proposition 6.1.

7.2. The dynamics. We now construct dynamics in order to obtain

examples of systems on the von Neumann algebra B(H). Let rj ∈
{3, 4, 5, ...} and 0 < kj < 1 for j = 1, 2, 3, ..., and write k = (k1, k2, k3, ...).
In terms of the n× n matrix

On =

⎡⎢⎢⎣
0 · · · 0 1

1 0
. . .

...

1 0

⎤⎥⎥⎦
with the blank spaces all being zero, we then define Rk ∈ B(H) by the
infinite matrix

Rk =

⎡⎢⎣ k
1/2
1 Or1

k
1/2
2 Or2

. . .

⎤⎥⎦
in the basis e1, e2, e3, ..., where again the blank spaces are zero. In

other words, Rke1 = k
1/2
1 e2 etc. So Rk consists of a infinite direct sum

of finite cycles, each cycle including its own factor k
1/2
n . Replacing k

by 1− k := (1− k1, 1− k2, 1− k3, ...), we similarly obtain R1−k. In the
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same basis we consider a hermitian operator g ∈ B(H) defined by the
diagonal matrix

g =

⎡⎣ g1 g2
. . .

⎤⎦ ,
with g1, g2, g3, ... a bounded sequence inR. Note thatR∗kRk+R1−kR

∗
1−k =

1. So we can define the generator K of a uniformly continuous semi-

group S = (St)t≥0 in B(H) by
K(a) = R∗kaRk +R1−kaR∗1−k − a+ i[g, a]

for all a ∈ B(H). See for example [51, Corollary 30.13]; the original
papers on generators for uniformly continuous semigroups are [39] and

[47].

In the same way and still using the same basis, for l = (l1, l2, l3, ...)

with 0 < lj < 1 we define the generator L of a second uniformly

continuous semigroup T = (Tt)t≥0 in H by
L(b) = R∗l bRl +R1−lbR∗1−l − b+ i[h, b]

for all b ∈ B(H), where the diagonal matrix

h =

⎡⎣ h1 h2
. . .

⎤⎦ ,
with h1, h2, h3, ... a bounded sequence in R, defines a selfadjoint oper-
ator h ∈ B(H).
We furthermore assume:

ρ1 = ... = ρr1

ρr1+1 = ... = ρr1+r2

ρr1+r2+1 = ... = ρr1+r2+r3
...

Then the state is seen to be invariant under both S and T by checking
that ζ ◦K = 0 and ζ ◦ L = 0.
It is going to be simpler (but equivalent) to work directly in terms of

B(H), rather than its cyclic representation. Nevertheless, since much
of the theory of this paper is expressed in the cyclic representation, it

is worth expressing the various objects in this representation as well.

In particular we can then see how to obtain duals directly in terms of

B(H).
Our two systems A and B, viewed in the cyclic representation, are

in terms of A = B = π(B(H)), with the dynamics given by

αt(π(a)) = π(St(a))
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and

βt(π(b)) = π(Tt(b))
and the states μ and ν both given by

μ(π(a)) = ν(π(a)) = ζ(a) = Tr(ρa)

for all a, b ∈ B(H). The corresponding diagonal coupling
δμ : π(B(H))¯ π0(B(H))→ C

is given by

δμ(π(a)¯ π0(b)) = hΩ,π(a)π0(b)Ωi = hΩ, (a⊗ b)Ωi

=

∞X
p=1

∞X
q=1


ep, ρ

1/2aeq
® 
eq, ρ

1/2bTep
®

= Tr(ρ1/2aρ1/2bT )

where bT ∈ B(H) is obtained as the transpose of the matrix represen-
tation of b in terms of the basis e1, e2, e3, ....

The dual β0t : π
0(B(H))→ π0(B(H)) of βt is given by

hΩ,π(b)β0t(π0(b0))Ωζi = hΩ,βt(π(b))π0(b0)Ωi
for all b, b0 ∈ B(H).
We therefore define the dual L0 of L via the representations by re-

quiring

hΩ,π(b)π0(L0(b0))Ωi = hΩ,π(L(b))π0(b0)Ωi
for all b, b0 ∈ B(H), i.e.

Tr(ρ1/2aρ1/2(L0(b))T ) = Tr(ρ1/2L(a)ρ1/2bT )
for all a, b ∈ B(H). It is then straightforward to verify that
(38) L0(b) = R∗1−lbR1−l +RlbR∗l − b+ i[h, b]
for all b ∈ B(H). From this one can see that L0 is also the generator of
a uniformly continuous semigroup T 0 = (T 0t )t≥0 in H, which in addition
satisfies

hΩ,π(b)π0(T 0t (b0))Ωi = hΩ,π(Tt(b))π0(b0)Ωi
and therefore

π0(T 0t (b0)) = β0t(π
0(b0))

for all b, b0 ∈ B(H). So we can call T 0 the dual of T with respect to ζ.

We now have a complete description of the systems we are interested

in our example, as well as their duals.
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7.3. Balance. We now show examples of balance betweenA : = (B(H),S, ζ)
and B : = (B(H),T , ζ) and illustrate a number of points made in this
paper. Remember that since we now now have a continuous time pa-

rameter t ≥ 0, the balance condition in Definition 2.10 is required to
hold at every t. However, it then follows that A and B are in balance

w.r.t. ω if and only if

Tr(κ(K(a)⊗ b)) = Tr(κ(a⊗ L0(b))
for all a, b ∈ B(H). From this one can easily check that A and B are

in balance w.r.t. ω if and only if

(Rk ⊗ 1)κ(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κ(R1−k ⊗ 1)− i[g ⊗ 1,κ]
= (1⊗R1−l)κ(1⊗R1−l)∗ + (1⊗Rl)∗κ(1⊗Rl)− i[1⊗ h,κ]

holds. However, equating the real and imaginary parts respectively

(keeping in mind that κ as given in Subsection 7.1 is a real infinite

matrix in the basis ep ⊗ eq), we see that this is equivalent to
(Rk ⊗ 1)κ(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κ(R1−k ⊗ 1)
= (1⊗R1−l)κ(1⊗R1−l)∗ + (1⊗Rl)∗κ(1⊗Rl)(39)

and

(40) [g ⊗ 1,κ] = [1⊗ h,κ]
both being true.

To proceed, we refine the construction of κ in Subsection 7.1, by only

allowing

Yn =
[
p∈In

Zp

where Z1 = {1, 2, ..., r1}, Z2 = {r1 + 1, r1 + 2, ..., r1 + r2}, etc, and
where I1, I2, I3, ... is any sequence of disjoint subsets of N+ such that
∪n∈N+In = N+. Note that an In is allowed to be empty (then Yn is
empty), and it is also allowed to be infinite.

It then follows that A and B are in balance w.r.t. ω if and only if

(Rk ⊗ 1)κn(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κn(R1−k ⊗ 1)
= (1⊗R1−l)κn(1⊗R1−l)∗ + (1⊗Rl)∗κn(1⊗Rl)(41)

and

(42) [g ⊗ 1,κn] = [1⊗ h,κn]
both hold for every n. To see that Eq. (41) and Eq. (42) follow fromEq.

(39) and Eq. (40) respectively, place the latter into hep ⊗ eq, (·)ep0 ⊗ eq0i
for p, q, p0, q0 ∈ Yn. The converse holds, since Eq. (37) is convergent in
the trace-class norm,

To evaluate these conditions in detail is somewhat tedious, so we just

describe it in outline below.

Note that, roughly speaking, in a term like (Rk ⊗ 1)κn(Rk ⊗ 1)∗, for
κn is of the entangled or mixing type, the first slot in the tensor product
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structure of κn is advanced by one step in each cycle appearing in Rk.

In a term like (1⊗Rl)∗κn(1⊗Rl), on the other hand, the second slot
is rolled back by one step in each cycle, which is equivalent to the first

slot being advanced by one step. So, if κn is of the entangled or mixing

type, and

(43) kp = lp

for each p ∈ In, then Eq. (41) holds.
Conversely, note that since rp > 2 for all p, the terms (Rk⊗1)κn(Rk⊗

1)∗ and (1⊗Rl)∗κn(1⊗Rl) have to be equal for Eq. (41) to hold; the
terms (R1−k ⊗ 1)∗κn(R1−k ⊗ 1) and (1 ⊗ R1−l)κn(1 ⊗ R1−l)∗ involve
other basis elements and therefore can not ensure Eq. (41) when (Rk⊗
1)κn(Rk ⊗ 1)∗ 6= (1⊗Rl)∗κn(1⊗Rl).
For the product type κn Eq. (41) always holds, since κn then com-

mutes with Rk.

When κn is of the entangled type, one can verify by direct calculation

that Eq. (42) holds if and only if

(44) gp − gq = hp − hq
for all p, q ∈ Yn. For the other two types Eq. (42) always holds, since
then κn, g ⊗ 1 and 1⊗ h are diagonal, so the commutators are zero.
We conclude that A and B are in balance w.r.t. ω if and only if

Eq. (43) holds for all p ∈ In for every n for which κn is either of the

entangled or mixing type, and Eq. (44) holds for all p ∈ In for every n
for which κn is of the entangled type.

We now have an example showing that the transity in Theorem 5.1

can be trivial in the sense that we can have ω ◦ ψ = μ ¯ ξ0 despite
having ω 6= μ ¯ ν 0 and ψ 6= ν ¯ ξ0. To see this, let C be a system

constructed in the same way as A and B above, so it has the same von

Neumann algebra and state, but the generator giving its dynamics can

use different choices in place of k, g and l, h. As above, construct two

couplings ω and ψ (giving balance of A and B w.r.t. ω, and of B and

C w.r.t. ψ), but with entangled and mixed types not in overlapping

parts of the two couplings respectively (i.e. the respective Yn sets of

the two couplings should be disjoint), while the rest of each coupling

is a κn of the product type. Then it can be verified using Proposition

5.5 that we indeed obtain ω ◦ ψ = μ ¯ ξ0, despite having ω 6= μ ¯ ν 0

and ψ 6= ν ¯ ξ0. This illustrates that to have ω ◦ ψ 6= μ¯ ξ0, we need
sufficient “overlap” between ω and ψ, where this overlap condition has

been made precise in Hilbert space terms (in the cyclic representations)

by Proposition 5.5.

7.4. A reversing operation. Let us consider in particular Θ-sqdb in

Definition 6.3 and Corollary 6.7, as well as the two weaker conditions

suggested at the end of Section 6. Take Θ to be transposition in the
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basis e1, e2, e3, ..., i.e.

Θ(a) := aT

for all a ∈ B(H). It is simple to check that Θ is then indeed a reversing
operation for (B(H), ζ). In the cyclic representation, Θ would be given
by π(a) 7→ π(aT ). It is readily confirmed that in this case the Θ-KMS

dual of B is BΘ = (B(H), T 0, ζ), i.e. in the cyclic representation we
would have αΘ

t = α0t for all t.
If ω is the diagonal coupling, i.e. κ1 is of the entangled type with

Y1 = N+, then from Eqs. (43) and (38) we see that B and BΘ =

(B(H), T 0, ζ) are in balance with respect to ω, if and only if lp = 1− lp,
i.e. lp = 1/2, for all p.

Now consider the situation where B satisfies Θ-sqdb, and A and B

are in balance w.r.t. ω. It then follows that kp = 1/2 for all p in In
for which κn is of the entangled or mixed type, but we need not have

kp = 1/2 for other values of p. This illustrates that this is indeed a

strictly weaker condition on A than Θ-sqdb as long as not all the κn
are of the entangled or mixed type.

Next consider the situation where A and AΘ are in balance with

respect to ω, where again not all the κn are of the entangled or mixed

type. Then in a similar way we again see that kp = 1/2 for all p in

In for which κn is of the entangled or mixed type, but we need not

have kp = 1/2 for other values of p. So again this is a strictly weaker

condition than Θ-sqdb.

This illustrates the two conditions suggested at the end of Section 6,

albeit in a very simple situation. Here the two conditions are essentially

equivalent when applied to A, but we expect this not to be the case in

general.

8. Further work

Balance seems to indicate some common structure in the two sys-

tems. However, this is a subtle issue. We note that already in the clas-

sical case, in the context of joinings, it has been shown that (translating

into our context) two systems can be nontrivially in balance (by which

we mean the coupling is not the product state), while the two systems

have no “factor” (roughly speaking a subsystem) in common. This was

a difficult problem in classical ergodic theory posed by Furstenberg in

[35] in 1967, and was only solved a decade later by Rudolph in [54].

Therefore we suspect that balance between two systems is more gen-

eral than the existence of some form of common system inside the two

systems. This issue has not been pursued in this paper, but appears

worth investigating.

It also seems natural to study joinings directly for systems as defined

in Definition 2.1. The idea would be to replace the balance conditions

in Definition 2.10, by the joining conditions (possibly adapted slightly)

described in Remark 2.12.
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In principle we can view Eω as a quantum channel. It could be of

interest to see what the physical significance of this map is, considering

the well-known correspondence between completely positive maps and

bipartite states in finite dimensions (see [16], but also [19] and [41] for

earlier related work) which is of some importance in quantum informa-

tion theory. See for example [61], [9] and [42]. Some related work has

appeared in infinite dimensions for B(H) and B(H1,H2) as well [13],

[40]. Also see [10, Section 1] for further remarks.

A related question is what the physical implications or applications

of transitivity are. Transitivity appears to be a basic ingredient of the

theory of balance, but we have not explored its consequences in this

paper.

In Section 6 we only considered standard quantum detailed balance

with respect to a reversing operation. It certainly seems relevant to

investigate if balance can be used to give generalized forms of other

types of detailed balance.

Furthermore, if balance can indeed be used to formulate certain types

of non-equilibrium steady states, as asked in Section 6, then it seems

natural to connect this to entanglement and correlated states more

generally. Can results on entangled states be applied to a coupling ω

of μ and ν to study or classify certain classes of non-equilibrium steady

states μ (or ν) of quantum systems? Note that the two extremes are

the product state ω = μ ¯ ν 0, which is the bipartite state with no
correlations, and the diagonal coupling δμ of μ with itself, which can

be viewed as is the bipartite state which is maximally entangled while

having μ and μ0 as its reduced states, at least when the observable
algebra is (a cyclic representation of) B(H).

We have only studied one example in this paper. To gain a better un-

derstanding of balance, it is important to explore further examples, es-

pecially physical examples, in particular in relation to non-equilibrium.

Lastly we mention the dynamical, weighted and generalized detailed

balance conditions studied in [5], [2] and [3] respectively, along with

a local KMS-condition, which was explored further in [4] and [33].

We suspect that it would be of interest to explore if there are any

connections between these, and balance as studied in this paper.
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