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Suppose U : E — F is an isometry.
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A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

Suppose U : E — F is an isometry. Describe its structure.
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Isometries of LP-spaces
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Background

Isometries of LP-spaces

Let (21,X1,11) and (2,2, up) be o-finite measure spaces
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A brief history: the non-commutative setting

Background

Isometries of LP-spaces

Let (21,X1,11) and (2,2, up) be o-finite measure spaces
U: Lp(Ql,Zl,ul) — Lp(Qz,Zg,‘LLQ), (1 <p<oo,p 75 2) a linear
isometry.
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Isometries of LP-spaces

Let (21,X1,11) and (2,2, up) be o-finite measure spaces
U: Lp(Ql,Zl,ul) — Lp(Qz,Zg,‘LLQ), (1 <p<oo, p# 2) a linear
isometry.

Then there exists a regular set isomorphism 11: X1 — Yo
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Background

Isometries of LP-spaces

Let (21,X1,11) and (2,2, up) be o-finite measure spaces
U: Lp(Ql,Zl,ul) — Lp(Qz,Zg,‘LLQ), (1 <p<oo, p# 2) a linear
isometry.

Then there exists a regular set isomorphism 11: X1 — Yo

and a function h: €y — F such that

U(f)=h.Ty(f)  VfeLp(m)
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Background

Isometries of LP-spaces

Let (21,X1,11) and (2,2, up) be o-finite measure spaces
U: Lp(Ql,Zl,ul) — Lp(Qz,Zz,‘UQ), (1 <p<oo, p# 2) a linear
isometry.

Then there exists a regular set isomorphism 11: X1 — Yo

and a function h: €y — F such that

U(f)=h.Ty(f)  VfeLp(m)

where T, is the transformation induced by 7
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Background

Isometries of LP-spaces

Let (21,X1,11) and (2,2, up) be o-finite measure spaces
U: Lp(Ql,Zl,ul) — Lp(Qz,Zz,‘UQ), (1 <p<oo, p# 2) a linear
isometry.

Then there exists a regular set isomorphism 11: X1 — Yo

and a function h: €y — F such that

U(f)=h.Ty(f)  VfeLp(m)

where T, is the transformation induced by 1 (i.e. Ty(xa) = Xn(a))
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Key ingredient
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Key ingredient

If f and g belong to L,(u), then

If+glb+1If -l < 2lf[b+2llgllf  o0<p<2
If+ello+1If—glly > 2[lfl2+2[ell; P2

For p # 2, equality holds if and only if f.g =0.
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Isometries of Lorentz spaces
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Isometries of Lorentz spaces

If U is a surjective isometry of the space L, 1[0,1], then there exist
a +1-valued Borel measurable function h and a trace-preserving
Borel measurable map ¢ :[0,1] — [0,1] such that

(Uf)(t) = h(t)(Ca(F))(t)  0<t<1,

where Cs is the composition operator induced by o.
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Key ingredient

Let w be a strictly decreasing weight function and let E be the
Lorentz spaces L, 1(0,0). f is an extreme point of the unit ball Bg
of E if and only if |f| = s xa for some A C (0,00) with

w(m
0 < m(A) < oo.
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Isometries of rearrangement invariant spaces

Suppose (21,%1, 1) and (Q2,X2, U2) are purely non-atomic
o-finite measure spaces and suppose E; and E;, are rearrangement
invariant spaces of functions on (Q1,X1,11) and (Q2,X2, U2),
respectively. Assume that the norm on E; is not proportional to the
norm of the space Ly(u1). If U is a surjective isometry from E;
onto Ey, then there exist a measurable function h and a regular set
isomorphism 1 from ¥; onto X such that

U(f)=h.Ty(f) VFeE.
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A brief history: the non-commutative setting

Background

Key ingredient

Suppose (2,X, 1) is a purely non-atomic o-finite measure space
and let E be a rearrangement invariant space such that the norm
on E is not proportional to the norm on Ly(it). H is a bounded
Hermitian operator on E, if and only if there exists an h € Lo(u)
such that H(f) = h.f = Mp(f) for all f € E. In this case,

1H] = 1lAll...

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-fini



Aim

A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative sett

Background

The non-commutative setting
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The non-commutative setting

Ingredients:
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A brief history: the non-commutative setting

Background

The non-commutative setting

Ingredients:
von Neumann algebra: &7 C B(H)
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Background

The non-commutative setting

Ingredients:
von Neumann algebra: o7 C B(H) (we will stick to semi-finite
ones!)
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Background

The non-commutative setting

Ingredients:

von Neumann algebra: o7 C B(H) (we will stick to semi-finite
ones!)

Faithful normal semi-finite (fns) trace: 7: &/ — [0,]
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Background

The non-commutative setting

Ingredients:

von Neumann algebra: o7 C B(H) (we will stick to semi-finite
ones!)

Faithful normal semi-finite (fns) trace: 7: &/ — [0,]
T-measurable operators: 5(7)
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The non-commutative setting

Ingredients:

von Neumann algebra: o7 C B(H) (we will stick to semi-finite
ones!)

Faithful normal semi-finite (fns) trace: 7: &/ — [0,]
T-measurable operators: 5(7)

o closed, densely defined operators
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Background

The non-commutative setting

Ingredients:

von Neumann algebra: o7 C B(H) (we will stick to semi-finite
ones!)

Faithful normal semi-finite (fns) trace: 7: &/ — [0,]
T-measurable operators: 5(7)

o closed, densely defined operators

o affiliated with the von Neumann algebra
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

The non-commutative setting

Ingredients:
von Neumann algebra: o7 C B(H) (we will stick to semi-finite
ones!)
Faithful normal semi-finite (fns) trace: 7: &/ — [0,]
T-measurable operators: 5(7)

o closed, densely defined operators

o affiliated with the von Neumann algebra

o 7(ell(A,00)) < oo for some A >0
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A brief history: the non-commutative sett

Background

The generalized singular value
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

The generalized singular value

For x € S(7,7), let

d(x)(s) :=1(eM(s,00)),  s>0
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

The generalized singular value

For x € S(7,7), let
d(x)(s) :=1(eM(s,00)),  s>0
In the commutative setting we have that

d(f)(s) =u({t € Q:[f(t)] > s})
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

The generalized singular value

For x € S(7,7), let

d(x)(s) = 1(e(s,2)), 520
In the commutative setting we have that

d(f)(s) =u({t € Q:[f(t)] > s})
For x € S(7, 1), let

Ux(t) :=inf{s >:d(x)(s) < t}, t>0
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

The generalized singular value

For x € S(7,7), let
d(x)(s) = 1(e(s,2)), 520
In the commutative setting we have that
d(f)(s) =u({t € Q:[f(t)] > s})
For x € S(7, 1), let
Ux(t) :=inf{s >:d (x)(s) < t}, t>0

In the commutative setting

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-finite



Aim

A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Non-commutative L,-space
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Background

Non-commutative L,-space

Suppose 7 is a von Neumann algebra equipped with a fns trace.
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Non-commutative L,-space

Suppose 7 is a von Neumann algebra equipped with a fns trace.

Lp(7) == {x € 5(7) - 7(|x|?) <o}
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Background

Non-commutative L,-space

Suppose 7 is a von Neumann algebra equipped with a fns trace.

Lp(7) == {x € 5(7) - 7(|x|?) <o}

Ixll, == T(|x[P)M/P
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A brief history: the non-commutative setting

Background

Non-commutative L,-space

Suppose 7 is a von Neumann algebra equipped with a fns trace.

Lp(7) == {x € 5(7) - 7(|x|?) <o}

Ixll, == T(|x[P)M/P

Generalizations of these spaces:
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Non-commutative L,-space

Suppose 7 is a von Neumann algebra equipped with a fns trace.

Lp(7) == {x € 5(7) - 7(|x|?) <o}

Ixll, == T(|x[P)M/P

Generalizations of these spaces: Symmetric spaces
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative sett

Background

Symmetric space

A linear subspace E C S(/, 1),
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Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if
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A brief history: the non-commutative setting

Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if

@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E
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A brief history: the commutative setting
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A brief history: the non-commutative setting

Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if

@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E

e xe€ 5(,1),
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A brief history: the commutative setting
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A brief history: the non-commutative setting

Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if

@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E

e xeS(#,1)yckE
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if

@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E

o xe S(a,1),y € E with u, <p,
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if

@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E

o x € S(4,1),y € E with u, < p, implies that x € E
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if

@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E

o x € S(,1),y € E with u, <, implies that x € E and
x| <l
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A brief history: the commutative setting
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A brief history: the non-commutative setting

Symmetric space

A linear subspace E C S(7, 1), equipped with a norm HHE is
called a symmetric space if
@ uxv € E and HuvaE < HuHﬂHxHEHde whenever u,v € &7
and x € E
o x € S(,1),y € E with u, <, implies that x € E and
x| <l
@ E is complete

Isometries on symmetric spaces associated with semi
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative set

Background

Using commutative spaces to generate non-commutative
ones
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Using commutative spaces to generate non-commutative
ones

Suppose <7 is semi-finite von Neumann algebra equipped with a fns
trace T
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Using commutative spaces to generate non-commutative
ones

Suppose <7 is semi-finite von Neumann algebra equipped with a fns
trace T
E C L°(0,00) a Banach function space
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Using commutative spaces to generate non-commutative
ones

Suppose <7 is semi-finite von Neumann algebra equipped with a fns
trace T

E C L°(0,00) a Banach function space

Define E(7) = {x € S(#/,7) : ux € E}
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Using commutative spaces to generate non-commutative
ones

Suppose <7 is semi-finite von Neumann algebra equipped with a fns
trace T

E C L°(0,00) a Banach function space
Define E(7) = {x € S(#/,7) : ux € E}
Norm [[x[| () = |||
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Isometries on non-commutative L,-spaces
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A brief history: the non-commutative setting

Background

Isometries on non-commutative L,-spaces

(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)
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Background

Isometries on non-commutative L,-spaces

(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)

If U:L,(t)— L,/(Vv) is an isometry,
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Isometries on non-commutative L,-spaces

(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)

If U:L,(t)— L/(v) is an isometry, then there exist, uniquely,
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Background

Isometries on non-commutative L,-spaces

(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)

If U:L,(t)— L/(v) is an isometry, then there exist, uniquely,

@ a partial isometry w € 4,

U(x) = wbd(x) forall xe L, (7)N<.
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Isometries on non-commutative L,-spaces

(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)

If U:L,(t)— L/(v) is an isometry, then there exist, uniquely,
@ a partial isometry w € 4,

@ a positive operator b affiliated with 4, and

U(x) = wbd(x) forall xe L, (7)N<.
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Isometries on non-commutative L,-spaces

(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)

If U:L,(t)— L/(v) is an isometry, then there exist, uniquely,
@ a partial isometry w € 4,
@ a positive operator b affiliated with 4, and

@ a Jordan *-isomorphism ¢ of & onto a weakly closed
x-subalgebra of % such that

U(x) = wbd(x) forall xe L, (7)N<.
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(«7,7) and (A, V) semi-finite von Neumann algebras (1 < r < oo,

r#2)

If U:L,(t)— L/(v) is an isometry, then there exist, uniquely,
@ a partial isometry w € 4,
@ a positive operator b affiliated with 4, and

@ a Jordan *-isomorphism ¢ of & onto a weakly closed
x-subalgebra of % such that

U(x) = wbd(x) forall xe L, (7)N<.
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A brief history:
nm

Key ingredient

Suppose (7, 7) is a semi-finite von Neumann algebra and
1<p<eo, p#2. If x,y € Lp(7), then equality

e w1l + b =1l = 2l ][5 +2ll 1l
holds in Clarkson's inequality

x+y |5 +[x =y
x4+ |12+ [Ix=yl"

2llxlfp+2llvll;  =p<2)
2xlo+2lyll;  @<p<e)

AVARRVAN

if and only if xy* =0=x"y.
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Key ingredient

Suppose (7, 7) is a semi-finite von Neumann algebra and
1<p<eo, p#2. If x,y € Lp(7), then equality

e w1l + b =1l = 2l ][5 +2ll 1l
holds in Clarkson's inequality

x+y |5 +[x =y
x4+ |12+ [Ix=yl"

2llxlfp+2llvll;  =p<2)
2xlo+2lyll;  @<p<e)

AVARRVAN

if and only if xy* =0=x"y.

If T(e)*T(f)=0=T(e)T(f)" whenever e and f are orthogonal
projections,
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Key ingredient

Suppose (7, 7) is a semi-finite von Neumann algebra and
1<p<eo, p#2. If x,y € Lp(7), then equality

e w1l + b =1l = 2l ][5 +2ll 1l
holds in Clarkson's inequality

x+y |5 +[x =y
x4+ |12+ [Ix=yl"

2llxlfp+2llvll;  =p<2)
2xlo+2lyll;  @<p<e)

AVARRVAN

if and only if xy* =0=x"y.
If T(e)*T(f)=0=T(e)T(f)" whenever e and f are orthogonal
projections, then we will call T disjointness-preserving.
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Aim

A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Isometries on Lorentz spaces

Let (<7, 1) and (4, V) be finite von Neumann algebras with

7(1) =1=v(1) and suppose y : [0,1] — [0,c0) is a strictly concave
continuous increasing function with y(0) = 0. A continuous
surjective linear mapping U : Ay(7) = Ay(V) is an isometry if and
only if there exist uniquely a unitary operator a € 4 and a Jordan
x-isomorphism ® of &/ onto % such that

T(x) =v(P(x)) Vxed

and
U(x) = a®(x) Vx € .
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A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Key ingredient

Let (<7, 7) be a finite von Neumann algebras with 7(1) =1 and
suppose Y : [0,1] — [0,e0) is a strictly concave continuous
increasing function with y(0) =0. An element x € Ay(7) is an
extreme point of the unit ball of Ay(7) if and only if x = mv
for some partial isometry v € 7.
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Aim

A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Isometries on symmetric spaces

Suppose (<7, 1) is an AFD factor of type Il or Il and suppose
E(0,c0) is a separable symmetric space such that the norms on
E(7) and Lp(7) are not proportional. Then a continuous linear
mapping U of E(7) onto itself is an isometry if and only if there
exist a unitary operator a € &/ and a Jordan x-automorphism & of
</ such that

U(x) = a®(x) Vx € o/ NE(7).
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Aim

A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Key ingredient

Let H be a Hermitian operator on the separable symmetric space
E(,7). If E(/,7) # La(7, 1), then H? is Hermitian if and only
if H can be represented as either a left multiplication or a right
multiplication by a self-adjoint operator in .
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A brief history: the non-commutative setting

Background

Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras
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A brief history: the non-commutative setting

Background

Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras and
suppose E C 5(«7,7) is a symmetric space
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A brief history: the non-commutative setting

Background

Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras and
suppose E C §(7,7) is a symmetric space and F C S(4,V) is a
fully symmetric space.
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Background

Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras and
suppose E C §(7,7) is a symmetric space and F C S(4,V) is a
fully symmetric space. If U: E — F is a positive linear isometry

from E onto F,
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Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras and
suppose E C §(7,7) is a symmetric space and F C S(4,V) is a
fully symmetric space. If U: E — F is a positive linear isometry
from E onto F, then there exist uniquely a positive operator
aeS(Z(B),v)
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Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras and
suppose E C §(7,7) is a symmetric space and F C S(4,V) is a
fully symmetric space. If U: E — F is a positive linear isometry

from E onto F, then there exist uniquely a positive operator

a€ S(Z(B),v) and a Jordan x-isomorphism ¢ of & onto %
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Aim

A brief history: the commutative setting
The non-commutative setting

A brief history: the non-commutative setting

Background

Isometries on symmetric spaces

Let (<7, 1) and (4, V) be trace-finite von Neumann algebras and
suppose E C §(7,7) is a symmetric space and F C S(4,V) is a
fully symmetric space. If U: E — F is a positive linear isometry
from E onto F, then there exist uniquely a positive operator

a€ S(Z(B),v) and a Jordan x-isomorphism ® of &/ onto & such
that s(a) =1 and

U(x)=ad(x) Vxe.
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Extension procedures

Aim:
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Extension procedures

Aim: Define a map on projections.
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Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
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Extension procedures

Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
Difficulties
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Extension procedures

Extension procedures

Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
Difficulties

@ Linearity of extension to linear combination of projections
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Extension procedures

Extension procedures

Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
Difficulties

@ Linearity of extension to linear combination of projections
e Linearity of extension from .% (1) to &/
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Extension procedures

Extension procedures

Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
Difficulties
@ Linearity of extension to linear combination of projections
e Linearity of extension from .% (1) to &/

Typically we will define ®(p) = s(U(p))
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Extension procedures

Extension procedures

Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
Difficulties

@ Linearity of extension to linear combination of projections
e Linearity of extension from .% (1) to &/

Typically we will define ®(p) = s(U(p))
Why not use Dye's Theorem?
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Extension procedures

Aim: Define a map on projections. Extend it to a Jordan
x-homomorphism
Difficulties

@ Linearity of extension to linear combination of projections
e Linearity of extension from .% (1) to &/

Typically we will define ®(p) = s(U(p))
Why not use Dye's Theorem?
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Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F
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Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F such that
v(s(U(p))) < oo whenever p € &7 is a projection with finite trace,
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Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F such that
v(s(U(p))) < oo whenever p € &7 is a projection with finite trace,
then there exist uniquely

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-fini



Positive surjective isometries
S| metries on Symmetric spaces
Isometries on non-commutative spaces Positive surjective isometries on Orlicz spaces

Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F such that
v(s(U(p))) < oo whenever p € &7 is a projection with finite trace,
then there exist uniquely

@ a positive operator a € S(Z(#)) and
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Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F such that
v(s(U(p))) < oo whenever p € &7 is a projection with finite trace,
then there exist uniquely

@ a positive operator a € S(Z(#)) and
@ a Jordan *- isomorphism ¢ of &7 onto % such that
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Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F such that
v(s(U(p))) < oo whenever p € &7 is a projection with finite trace,
then there exist uniquely

@ a positive operator a € S(Z(#)) and
@ a Jordan *- isomorphism ¢ of &7 onto % such that
U(x) = a®(x) Vx € ZNE
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that

e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that
e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace

e U(p)*U(q) =0=U(p)U(q)*, whenever p and g are
orthogonal projections with finite trace
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If U is a linear isometry from E onto F such that

e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace

e U(p)*U(q) =0=U(p)U(q)*, whenever p and g are
orthogonal projections with finite trace

then there exist uniquely
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that

e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace

e U(p)*U(q) =0=U(p)U(q)*, whenever p and g are
orthogonal projections with finite trace

then there exist uniquely

@ a unitary operator v € &
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that

e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace

e U(p)*U(q) =0=U(p)U(q)*, whenever p and g are
orthogonal projections with finite trace

then there exist uniquely
@ a unitary operator v € &
@ a positive operator b € S(Z(%4)) and
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that

e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace

e U(p)*U(q) =0=U(p)U(q)*, whenever p and g are
orthogonal projections with finite trace

then there exist uniquely
@ a unitary operator v € &
@ a positive operator b € S(Z(%4)) and
@ a Jordan x-isomorphism ® of o7 onto 4 such that
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that

e v(s(U(p))) < e whenever p € o/ is a projection with finite
trace

e U(p)*U(q) =0=U(p)U(q)*, whenever p and g are
orthogonal projections with finite trace

then there exist uniquely
@ a unitary operator v € &
@ a positive operator b € S(Z(%4)) and
@ a Jordan x-isomorphism ® of o7 onto 4 such that
U(x) = vbP(x) Vx e NE
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Two natural questions

Is this result useful?
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Two natural questions

Is this result useful?
What can we say if some of these conditions are not met?
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What are Orlicz spaces?

An Orlicz function is a
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What are Orlicz spaces?

An Orlicz function is a convex function ¢ : [0cc) — [0,0) with

9(0) =0 and [im ¢(t) = co.
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What are Orlicz spaces?

An Orlicz function is a convex function ¢ : [0cc) — [0,0) with
¢(0) =0 and tlin O(t) =oo.
For a measurable function f define

Ib(F) = [ 9(F())d
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What are Orlicz spaces?

An Orlicz function is a convex function ¢ : [0cc) — [0,0) with
¢(0) =0 and tlin O(t) =oo.
For a measurable function f define

Ib(F) = [ 9(F())d
The Orlicz space L?(u) is defined as

{feL%u): Iy(Af) < o for some A > 0}
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What are Orlicz spaces?

An Orlicz function is a convex function ¢ : [0cc) — [0,0) with
¢(0) =0 and tlin O(t) =oo.
For a measurable function f define

Ib(F) = [ 9(F())d
The Orlicz space L?(u) is defined as
{feL%u): Iy(Af) < o for some A > 0}

This is a Banach space when equipped with the norm

[£]| :=inf{A >0: y(F/2) <1}
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What are Orlicz spaces?

An Orlicz function is a convex function ¢ : [0cc) — [0,0) with
¢(0) =0 and tlin O(t) =oo.
For a measurable function f define

Ib(F) = [ 9(F())d
The Orlicz space L?(u) is defined as
{feL%u): Iy(Af) < o for some A > 0}
This is a Banach space when equipped with the norm
]} :=inf{A > 0: fo(F/2) < 1}

Non-commutative Orlicz spaces can be generated using the process
described earlier
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Isometries on Orlicz spaces

We will be interested in positive surjective modular isometries
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Isometries on Orlicz spaces

We will be interested in positive surjective modular isometries
A map U: L?(t) — L?(v) is called a modular isometry if
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Isometries on Orlicz spaces

We will be interested in positive surjective modular isometries
A map U: L?(t) — L?(v) is called a modular isometry if

I¢(.“U(x)) = /¢(.ux) Vx € L(p(T)
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Isometries on Orlicz spaces

We will be interested in positive surjective modular isometries
A map U: L?(t) — L?(v) is called a modular isometry if

I¢(.“U(x)) = /¢(.ux) Vx € Ld)(T)

It is easily checked that every modular isometry is an isometry
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Isometries on Orlicz spaces

We will be interested in positive surjective modular isometries
A map U: L?(t) — L?(v) is called a modular isometry if

I¢(.“U(x)) = /¢(.ux) Vx € Ld)(T)

It is easily checked that every modular isometry is an isometry
In the commutative setting, all surjective isometries of Orlicz
spaces (over the complex numbers) are modular isometries
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We will consider three scenarios corresponding to three types of
Orlicz functions
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We will consider three scenarios corresponding to three types of
Orlicz functions
To distinguish these types, we will use the following quantities

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-fini



surjective isometries
Surjective isometries on Symmetric spaces
Isometries on non-commutative spaces Positive surjective isometries on Orlicz spaces

Isometries on Orlicz spaces

We will consider three scenarios corresponding to three types of
Orlicz functions

To distinguish these types, we will use the following quantities
ay :=sup{t >0:¢(t) =0}, by :=sup{t>0:¢(t) <oo}
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).
0< ag < oo,
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).
O<a¢<°°, b(]):ool
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).
0 < ay < oo, by =oo, ¢ has at least one point of discontinuity
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).

0 < ay < oo, by =oo, ¢ has at least one point of discontinuity
In this case .« C L?(7) and & C L?(v).
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).

0 < ay < oo, by =oo, ¢ has at least one point of discontinuity
In this case .« C L?(7) and & C L?(v).

Theorem

Suppose these conditions hold.
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).

0 < ay < oo, by =oo, ¢ has at least one point of discontinuity
In this case .« C L?(7) and & C L?(v).

Theorem

Suppose these conditions hold. If U : L?(t) — L?(V) is a positive
surjective modular isometry,
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Scenario 1

</ and Z semi-finite von Neumann algebras equipped with fns
traces T and v (with 7(1) = = v(1)).

0 < ay < oo, by =oo, ¢ has at least one point of discontinuity
In this case .« C L?(7) and & C L?(v).

Suppose these conditions hold. If U : L?(t) — L?(V) is a positive
surjective modular isometry, then the restriction of U to <7 is a
Jordan x-isomorphism from of onto %
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Sketch of the proof

Show that Hy(1) = X[0,)-
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Sketch of the proof

Show that ly(1) = X[0..)- This can be used to show that U is
unital.
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unital.

Show that U(«) C #

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-fini



Positive surjective isometries
Surj e isometries on Symmetric spaces
Isometries on non-commutative spaces Positive surjective isometries on Orlicz spaces

Sketch of the proof

Show that ly(1) = X[0..)- This can be used to show that U is
unital.

Show that U(«) C #

Show that U~! is positive and that U™1(%) C &/
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Sketch of the proof

Show that ly(1) = X[0..)- This can be used to show that U is
unital.

Show that U(«) C #

Show that U~! is positive and that U™1(%) C &/

Remark: It is interesting to note that one can show directly that U
is disjointness-preserving.
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Scenario 2

&/ and % semi-finite von Neumann algebras equipped with fns
traces 7 and v (with 7(1) = v(1) < ).
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Scenario 2

&/ and % semi-finite von Neumann algebras equipped with fns
traces 7 and v (with 7(1) = v(1) < ).
¢ discontinuous Orlicz function with 7(1)¢(by) < 1.
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¢ discontinuous Orlicz function with 7(1)¢(by) < 1. In this case
o CL%(t) and B C LI(V).
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Scenario 2

&/ and % semi-finite von Neumann algebras equipped with fns
traces 7 and v (with 7(1) = v(1) < ).

¢ discontinuous Orlicz function with 7(1)¢(by) < 1. In this case
o CL%(t) and B C LI(V).

Theorem

If U is a positive surjective modular isometry from L?(t) onto
Lo(v),
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Scenario 2

&/ and % semi-finite von Neumann algebras equipped with fns
traces 7 and v (with 7(1) = v(1) < ).

¢ discontinuous Orlicz function with 7(1)¢(by) < 1. In this case
o CL%(t) and B C LI(V).

If U is a positive surjective modular isometry from L?(t) onto
L?(v),then the restriction of U to </ is a Jordan %-isomorphism
from <7 onto A.
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Sketch of the proof

Show that there exists a Jordan *-isomorphism from <7 onto %4
and a positive operator a such that U(x) = a®(x) for all x € &/
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Sketch of the proof

Show that there exists a Jordan *-isomorphism from <7 onto %4
and a positive operator a such that U(x) = a®(x) for all x € &/
Note that a = U(1)
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Sketch of the proof

Show that there exists a Jordan *-isomorphism from <7 onto %4
and a positive operator a such that U(x) = a®(x) for all x € &/
Note that a = U(1)

Show that U is unital
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Scenario 3

fo<t<i1
If o(t) = ; :_ff;f—  then L9(7) = LN L=(c) with equality

of norms.
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Scenario 3

fo<t<i1
If o(t) = ; :_ff;f—  then L9(7) = LN L=(c) with equality

of norms.

Theorem

Suppose (7, t) and (A,Vv) are non-atomic semi-finite von
Neumann algebras with T(1) = = v(1).
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Scenario 3

fo<t<i1
If o(t) = ; :_ff;f—  then L9(7) = LN L=(c) with equality

of norms.

Theorem

Suppose (7, t) and (A,Vv) are non-atomic semi-finite von
Neumann algebras with t(1) =0 =v(1). If U is a positive
surjective isometry from L' N L=(t) onto L1 NL=(V),

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-fini



Positive surjective isometries
Surjective isometries on Symmetric spaces
Isometries on non-commutative spaces Positive surjective isometries on Orlicz spaces

Scenario 3

fo<t<i1
If o(t) = ; :_ff;f—  then L9(7) = LN L=(c) with equality

of norms.

Suppose (7, t) and (A,Vv) are non-atomic semi-finite von
Neumann algebras with t(1) =0 =v(1). If U is a positive
surjective isometry from L' N L*(t) onto LN L>(V), then U is the
restriction of a trace-preserving Jordan x-isomorphism from </ onto

AB.
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Sketch of the proof

Show that the extreme points of the unit balls of these spaces can
be characterized as the partial isometries with unit trace.
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Sketch of the proof

Show that the extreme points of the unit balls of these spaces can
be characterized as the partial isometries with unit trace.
Show that U is disjointness-preserving and finiteness-preserving.
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Sketch of the proof

Show that the extreme points of the unit balls of these spaces can
be characterized as the partial isometries with unit trace.

Show that U is disjointness-preserving and finiteness-preserving.
Let ®(p) = U(p) for projections p with finite-trace
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Sketch of the proof

Show that the extreme points of the unit balls of these spaces can
be characterized as the partial isometries with unit trace.

Show that U is disjointness-preserving and finiteness-preserving.
Let ®(p) = U(p) for projections p with finite-trace

® can be extended to a map which is square-preserving and
L.-isometric on self-adjoint elements of .7 (7).
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Sketch of the proof

Show that the extreme points of the unit balls of these spaces can
be characterized as the partial isometries with unit trace.

Show that U is disjointness-preserving and finiteness-preserving.
Let ®(p) = U(p) for projections p with finite-trace

® can be extended to a map which is square-preserving and
L.-isometric on self-adjoint elements of .7 (7).

Show that U and & agree on .7 (7).
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