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Isometries of Lp-spaces

Let (Ω1,Σ1,µ1) and (Ω2,Σ2,µ2) be σ -�nite measure spaces

U : Lp(Ω1,Σ1,µ1)→ Lp(Ω2,Σ2,µ2), (1≤ p < ∞, p 6= 2) a linear

isometry.

Then there exists a regular set isomorphism η : Σ1→ Σ2

and a function h : Ω2→ F such that

U(f ) = h.Tη (f ) ∀f ∈ Lp(µ1)

where Tη is the transformation induced by η (i.e. Tη (χA) = χη(A))
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Key ingredient

If f and g belong to Lp(µ), then∥∥f +g
∥∥p
p

+
∥∥f −g

∥∥p
p
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For p 6= 2, equality holds if and only if f .g = 0.
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Isometries of Lorentz spaces

If U is a surjective isometry of the space Lw ,1[0,1], then there exist

a ±1-valued Borel measurable function h and a trace-preserving

Borel measurable map σ : [0,1]→ [0,1] such that

(Uf )(t) = h(t)(Cσ (f ))(t) 0≤ t ≤ 1,

where Cσ is the composition operator induced by σ .
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Key ingredient

Let w be a strictly decreasing weight function and let E be the

Lorentz spaces Lw ,1(0,∞). f is an extreme point of the unit ball BE

of E if and only if |f |= 1
ψ(m(A)) χA for some A⊂ (0,∞) with

0<m(A) < ∞.
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Isometries of rearrangement invariant spaces

Suppose (Ω1,Σ1,µ1) and (Ω2,Σ2,µ2) are purely non-atomic

σ -�nite measure spaces and suppose E1 and E2 are rearrangement

invariant spaces of functions on (Ω1,Σ1,µ1) and (Ω2,Σ2,µ2),
respectively. Assume that the norm on E1 is not proportional to the

norm of the space L2(µ1). If U is a surjective isometry from E1
onto E2, then there exist a measurable function h and a regular set

isomorphism η from Σ1 onto Σ2 such that

U(f ) = h.Tη (f ) ∀f ∈ E1.
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Key ingredient

Suppose (Ω,Σ,µ) is a purely non-atomic σ -�nite measure space

and let E be a rearrangement invariant space such that the norm

on E is not proportional to the norm on L2(µ). H is a bounded

Hermitian operator on E , if and only if there exists an h ∈ L∞(µ)
such that H(f ) = h.f = Mh(f ) for all f ∈ E . In this case,∥∥H∥∥=

∥∥h∥∥
∞
.
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The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite

ones!)

Faithful normal semi-�nite (fns) trace: τ : A +→ [0,∞]
τ-measurable operators: S(τ)

closed, densely de�ned operators

a�liated with the von Neumann algebra

τ(e |x |(λ ,∞)) < ∞ for some λ > 0

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

The generalized singular value

For x ∈ S(A ,τ), let

d (x)(s) := τ(e |x |(s,∞)), s ≥ 0

In the commutative setting we have that

d (f )(s) = µ({t ∈ Ω : |f (t)|> s})

For x ∈ S(A ,τ), let

µx(t) := inf{s ≥: d (x)(s)≤ t}, t ≥ 0

In the commutative setting

µf (t) = f ∗(t)
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Non-commutative Lp-space

Suppose A is a von Neumann algebra equipped with a fns trace.

Lp(τ) := {x ∈ S(τ) : τ(|x |p) < ∞}

‖x‖p := τ(|x |p)1/p

Generalizations of these spaces: Symmetric spaces
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Symmetric space

A linear subspace E ⊆ S(A ,τ), equipped with a norm
∥∥·∥∥

E
, is

called a symmetric space if

uxv ∈ E and
∥∥uxv∥∥

E
≤
∥∥u∥∥

A

∥∥x∥∥
E

∥∥v∥∥
A

whenever u,v ∈A
and x ∈ E

x ∈ S(A ,τ),y ∈ E with µx ≤ µy implies that x ∈ E and∥∥x∥∥≤ ∥∥y∥∥
E is complete
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Using commutative spaces to generate non-commutative
ones

Suppose A is semi-�nite von Neumann algebra equipped with a fns

trace τ

E ⊆ L0(0,∞) a Banach function space

De�ne E (τ) = {x ∈ S(A ,τ) : µx ∈ E}
Norm

∥∥x∥∥
E(τ)

:=
∥∥µx

∥∥
E
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Isometries on non-commutative Lp-spaces

(A ,τ) and (B,ν) semi-�nite von Neumann algebras (1≤ r < ∞,

r 6= 2)

If U : Lr (τ)→ Lr (ν) is an isometry, then there exist, uniquely,

a partial isometry w ∈B,

a positive operator b a�liated with B, and

a Jordan ∗-isomorphism Φ of A onto a weakly closed

∗-subalgebra of B such that

U(x) = wbΦ(x) for all x ∈ Lr (τ)∩A .
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Key ingredient

Suppose (A ,τ) is a semi-�nite von Neumann algebra and

1≤ p < ∞, p 6= 2. If x ,y ∈ Lp(τ), then equality∥∥x + y
∥∥p
p

+
∥∥x− y

∥∥p
p

= 2
∥∥x∥∥p

p
+2
∥∥y∥∥p

p

holds in Clarkson's inequality∥∥x + y
∥∥p
p

+
∥∥x− y

∥∥p
p
≤ 2

∥∥x∥∥p
p

+2
∥∥y∥∥p

p
(1≤ p < 2)∥∥x + y

∥∥p
p

+
∥∥x− y

∥∥p
p
≥ 2

∥∥x∥∥p
p

+2
∥∥y∥∥p

p
(2< p < ∞)

if and only if xy∗ = 0 = x∗y .
If T (e)∗T (f ) = 0 = T (e)T (f )∗ whenever e and f are orthogonal

projections, then we will call T disjointness-preserving.

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

Key ingredient

Suppose (A ,τ) is a semi-�nite von Neumann algebra and

1≤ p < ∞, p 6= 2. If x ,y ∈ Lp(τ), then equality∥∥x + y
∥∥p
p

+
∥∥x− y

∥∥p
p

= 2
∥∥x∥∥p

p
+2
∥∥y∥∥p

p

holds in Clarkson's inequality∥∥x + y
∥∥p
p

+
∥∥x− y

∥∥p
p
≤ 2

∥∥x∥∥p
p

+2
∥∥y∥∥p

p
(1≤ p < 2)∥∥x + y

∥∥p
p

+
∥∥x− y

∥∥p
p
≥ 2

∥∥x∥∥p
p

+2
∥∥y∥∥p

p
(2< p < ∞)

if and only if xy∗ = 0 = x∗y .
If T (e)∗T (f ) = 0 = T (e)T (f )∗ whenever e and f are orthogonal

projections, then we will call T disjointness-preserving.

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

Key ingredient

Suppose (A ,τ) is a semi-�nite von Neumann algebra and

1≤ p < ∞, p 6= 2. If x ,y ∈ Lp(τ), then equality∥∥x + y
∥∥p
p

+
∥∥x− y

∥∥p
p

= 2
∥∥x∥∥p

p
+2
∥∥y∥∥p

p

holds in Clarkson's inequality∥∥x + y
∥∥p
p

+
∥∥x− y

∥∥p
p
≤ 2

∥∥x∥∥p
p

+2
∥∥y∥∥p

p
(1≤ p < 2)∥∥x + y

∥∥p
p

+
∥∥x− y

∥∥p
p
≥ 2

∥∥x∥∥p
p

+2
∥∥y∥∥p

p
(2< p < ∞)

if and only if xy∗ = 0 = x∗y .
If T (e)∗T (f ) = 0 = T (e)T (f )∗ whenever e and f are orthogonal

projections, then we will call T disjointness-preserving.

P. de Jager, J. Conradie, R. Martin Isometries on symmetric spaces associated with semi-�nite von Neumann algebras



Background
Extension procedures

Isometries on non-commutative spaces

Aim
A brief history: the commutative setting
The non-commutative setting
A brief history: the non-commutative setting

Isometries on Lorentz spaces

Let (A ,τ) and (B,ν) be �nite von Neumann algebras with

τ(1) = 1 = ν(1) and suppose ψ : [0,1]→ [0,∞) is a strictly concave

continuous increasing function with ψ(0) = 0. A continuous

surjective linear mapping U : Λψ (τ)→ Λψ (ν) is an isometry if and

only if there exist uniquely a unitary operator a ∈B and a Jordan

∗-isomorphism Φ of A onto B such that

τ(x) = ν(Φ(x)) ∀x ∈A

and

U(x) = aΦ(x) ∀x ∈A .
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Key ingredient

Let (A ,τ) be a �nite von Neumann algebras with τ(1) = 1 and

suppose ψ : [0,1]→ [0,∞) is a strictly concave continuous

increasing function with ψ(0) = 0. An element x ∈ Λψ (τ) is an

extreme point of the unit ball of Λψ (τ) if and only if x = 1
ψ(τ(|v |))v

for some partial isometry v ∈A .
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Isometries on symmetric spaces

Suppose (A ,τ) is an AFD factor of type II1 or II∞ and suppose

E (0,∞) is a separable symmetric space such that the norms on

E (τ) and L2(τ) are not proportional. Then a continuous linear

mapping U of E (τ) onto itself is an isometry if and only if there

exist a unitary operator a ∈A and a Jordan ∗-automorphism Φ of

A such that

U(x) = aΦ(x) ∀x ∈A ∩E (τ).
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Key ingredient

Let H be a Hermitian operator on the separable symmetric space

E (A ,τ). If E (A ,τ) 6= L2(A ,τ), then H2 is Hermitian if and only

if H can be represented as either a left multiplication or a right

multiplication by a self-adjoint operator in A .
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Isometries on symmetric spaces

Let (A ,τ) and (B,ν) be trace-�nite von Neumann algebras and

suppose E ⊆ S(A ,τ) is a symmetric space and F ⊆ S(B,ν) is a

fully symmetric space. If U : E → F is a positive linear isometry

from E onto F , then there exist uniquely a positive operator

a ∈ S(Z (B),ν) and a Jordan ∗-isomorphism Φ of A onto B such

that s(a) = 1 and

U(x) = aΦ(x) ∀x ∈A .
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a ∈ S(Z (B),ν) and a Jordan ∗-isomorphism Φ of A onto B such

that s(a) = 1 and

U(x) = aΦ(x) ∀x ∈A .
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Extension procedures

Aim: De�ne a map on projections. Extend it to a Jordan

∗-homomorphism

Di�culties

Linearity of extension to linear combination of projections

Linearity of extension from F (τ) to A

Typically we will de�ne Φ(p) = s(U(p))
Why not use Dye's Theorem?
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Positive surjective isometries (2015)

If U is a positive linear isometry from E onto F such that

ν(s(U(p))) < ∞ whenever p ∈A is a projection with �nite trace,

then there exist uniquely

a positive operator a ∈ S(Z (B)) and

a Jordan ∗- isomorphism Φ of A onto B such that

U(x) = aΦ(x) ∀x ∈A ∩E
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Surjective isometries (2016)

If U is a linear isometry from E onto F such that

ν(s(U(p))) < ∞ whenever p ∈A is a projection with �nite

trace

U(p)∗U(q) = 0 = U(p)U(q)∗, whenever p and q are

orthogonal projections with �nite trace

then there exist uniquely

a unitary operator v ∈B

a positive operator b ∈ S(Z (B)) and

a Jordan ∗-isomorphism Φ of A onto B such that

U(x) = vbΦ(x) ∀x ∈A ∩E
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Two natural questions

Is this result useful?

What can we say if some of these conditions are not met?
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What are Orlicz spaces?

An Orlicz function is a convex function φ : [0∞)→ [0,∞) with

φ(0) = 0 and lim
t→∞

φ(t) = ∞.

For a measurable function f de�ne

Iφ (f ) =
∫

Ω
φ(|f (t)|)dµ

The Orlicz space Lφ (µ) is de�ned as

{f ∈ L0(µ) : Iφ (λ f ) < ∞ for some λ > 0}

This is a Banach space when equipped with the norm∥∥f ∥∥ := inf{λ > 0 : Iφ (f /λ )≤ 1}

Non-commutative Orlicz spaces can be generated using the process

described earlier
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Isometries on Orlicz spaces

We will be interested in positive surjective modular isometries

A map U : Lφ (τ)→ Lφ (ν) is called a modular isometry if

Iφ (µU(x)) = Iφ (µx) ∀x ∈ Lφ (τ)

It is easily checked that every modular isometry is an isometry

In the commutative setting, all surjective isometries of Orlicz
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We will consider three scenarios corresponding to three types of

Orlicz functions

To distinguish these types, we will use the following quantities

aφ := sup{t ≥ 0 : φ(t) = 0}, bφ := sup{t ≥ 0 : φ(t) < ∞}
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Extension procedures

Isometries on non-commutative spaces

Positive surjective isometries
Surjective isometries on Symmetric spaces
Positive surjective isometries on Orlicz spaces

Scenario 1

A and B semi-�nite von Neumann algebras equipped with fns

traces τ and ν (with τ(1) = ∞ = ν(1)).
0< aφ < ∞, bφ = ∞, φ has at least one point of discontinuity

In this case A ⊆ Lφ (τ) and B ⊆ Lφ (ν).

Theorem

Suppose these conditions hold. If U : Lφ (τ)→ Lφ (ν) is a positive

surjective modular isometry, then the restriction of U to A is a

Jordan ∗-isomorphism from A onto B
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Background
Extension procedures

Isometries on non-commutative spaces

Positive surjective isometries
Surjective isometries on Symmetric spaces
Positive surjective isometries on Orlicz spaces

Sketch of the proof

Show that µU(1) = χ[0,∞). This can be used to show that U is

unital.

Show that U(A )⊆B
Show that U−1 is positive and that U−1(B)⊆A
Remark: It is interesting to note that one can show directly that U

is disjointness-preserving.
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Scenario 2

A and B semi-�nite von Neumann algebras equipped with fns

traces τ and ν (with τ(1) = ν(1) < ∞).

φ discontinuous Orlicz function with τ(1)φ(bφ ) < 1. In this case

A ⊆ Lφ (τ) and B ⊆ Lφ (ν).

Theorem

If U is a positive surjective modular isometry from Lφ (τ) onto

Lφ (ν),then the restriction of U to A is a Jordan ∗-isomorphism

from A onto B.
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Sketch of the proof

Show that there exists a Jordan ∗-isomorphism from A onto B
and a positive operator a such that U(x) = aΦ(x) for all x ∈A
Note that a = U(1)
Show that U is unital
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Scenario 3

If φ(t) =

{
t if 0≤ t ≤ 1

∞ if t > 1
, then Lφ (τ) = L1∩L∞(τ) with equality

of norms.

Theorem

Suppose (A ,τ) and (B,ν) are non-atomic semi-�nite von

Neumann algebras with τ(1) = ∞ = ν(1). If U is a positive

surjective isometry from L1∩L∞(τ) onto L1∩L∞(ν), then U is the

restriction of a trace-preserving Jordan ∗-isomorphism from A onto

B.
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Extension procedures

Isometries on non-commutative spaces

Positive surjective isometries
Surjective isometries on Symmetric spaces
Positive surjective isometries on Orlicz spaces

Sketch of the proof

Show that the extreme points of the unit balls of these spaces can

be characterized as the partial isometries with unit trace.
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