On Some Ergodic Properties for C*-dynamical systems arising from Yang-Baxter-Hecke Quantisation

> Vito Crismale Dipartimento di Matematica, Università di Bari (joint work with F. Fidaleo and Y.G. Lu)

Workshop Operator Algebras and Quantum Dynamics Pretoria, 12.07.2017

Outline

- Preliminaries about some ergodic properties for C* dynamical systems.
- Connections with Yang-Baxter-Hecke quantisation
- Classification of stationary states in the monotone case
- Classification of stationary and symmetric states in the Boolean case

Motivations

 Dykema-Fidaleo (HJM 2010) The shift on the C*-algebras generated by Fock representation of q-commutation relations, for |q| < 1 is uniquely mixing

Motivations

- Dykema-Fidaleo (HJM 2010) The shift on the C*-algebras generated by Fock representation of q-commutation relations, for |q| < 1 is uniquely mixing
- ...what happens for Fermi, Bose, Boolean, Monotone? They are examples of the so-called Yang-Baxter-Hecke deformations firstly studied by Bożejko (2012)

On Ergodic Properties for Yang-Baxter-Hecke Quantization Let \mathfrak{A} be a C^* -algebra and G a group which acts as a group of automorphisms of \mathfrak{A} :

 $\alpha: g \in G \mapsto \alpha_g \in Aut(\mathfrak{A}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization Let \mathfrak{A} be a C^* -algebra and G a group which acts as a group of automorphisms of \mathfrak{A} :

$$\alpha: g \in G \mapsto \alpha_g \in Aut(\mathfrak{A}).$$

• The fixed point subalgebra

$$\mathfrak{A}^{\mathcal{G}} := \{ A \in \mathfrak{A} \mid \alpha_{g}(A) = A, g \in G \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization Let \mathfrak{A} be a C^* -algebra and G a group which acts as a group of automorphisms of \mathfrak{A} :

$$\alpha: g \in G \mapsto \alpha_g \in Aut(\mathfrak{A}).$$

• The fixed point subalgebra

$$\mathfrak{A}^{\mathcal{G}} := \{ A \in \mathfrak{A} \mid \alpha_{g}(A) = A, g \in G \}$$

• $S_G(\mathfrak{A})$ is the set of the *G*-invariant states

$$\varphi = \varphi \circ \alpha_{g}, \quad \varphi \in \mathcal{S}(\mathfrak{A}), \quad g \in G$$

is *-weakly compact in $S(\mathfrak{A})$. Its **extremal points** are called **ergodic** states.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()・

On Ergodic Properties for Yang-Baxter-Hecke Quantization Let \mathfrak{A} be a C^* -algebra and G a group which acts as a group of automorphisms of \mathfrak{A} :

$$\alpha: g \in G \mapsto \alpha_g \in Aut(\mathfrak{A}).$$

• The fixed point subalgebra

$$\mathfrak{A}^{\mathcal{G}} := \{ \mathcal{A} \in \mathfrak{A} \mid \alpha_{g}(\mathcal{A}) = \mathcal{A}, g \in \mathcal{G} \}$$

• $S_G(\mathfrak{A})$ is the set of the *G*-invariant states

$$\varphi = \varphi \circ \alpha_{g}, \quad \varphi \in \mathcal{S}(\mathfrak{A}), \quad g \in G$$

is *-weakly compact in $S(\mathfrak{A})$. Its **extremal points** are called **ergodic** states.

 (\mathfrak{A}, α_g) is a C*-dynamical system.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

• $G = \mathbb{P}_J$ Let J be any set. The group of the permutations \mathbb{P}_J of J is $\mathbb{P}_J := \bigcup \{\mathbb{P}_I \mid I \subset J \text{ finite } \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

• $G = \mathbb{P}_J$ Let J be any set. The group of the permutations \mathbb{P}_J of J is $\mathbb{P}_J := \bigcup \{\mathbb{P}_I \mid I \subset J \text{ finite } \}.$

A state φ on \mathfrak{A} is called *symmetric* if it is \mathbb{P}_J -invariant, i.e.

$$\varphi \circ \alpha_{\mathbf{g}} = \varphi \,, \ \forall \mathbf{g} \in \mathbb{P}_J \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

• $G = \mathbb{P}_J$ Let J be any set. The group of the permutations \mathbb{P}_J of J is $\mathbb{P}_J := \bigcup \{\mathbb{P}_I \mid I \subset J \text{ finite } \}.$

A state φ on \mathfrak{A} is called *symmetric* if it is \mathbb{P}_J -invariant, i.e.

$$\varphi \circ \alpha_{\mathbf{g}} = \varphi \,, \ \forall \mathbf{g} \in \mathbb{P}_J \,.$$

 G = Z. We have a (discrete) C*-dynamical system made by (𝔄, α) based on a single automorphism α of 𝔄, which automatically generates the action of Z.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

• $G = \mathbb{P}_J$ Let J be any set. The group of the permutations \mathbb{P}_J of J is $\mathbb{P}_J := \bigcup \{\mathbb{P}_I \mid I \subset J \text{ finite } \}.$

A state φ on \mathfrak{A} is called *symmetric* if it is \mathbb{P}_J -invariant, i.e.

$$\varphi \circ \alpha_{\mathbf{g}} = \varphi \,, \ \forall \mathbf{g} \in \mathbb{P}_J \,.$$

 G = Z. We have a (discrete) C*-dynamical system made by (𝔄, α) based on a single automorphism α of 𝔄, which automatically generates the action of Z. Invariant states are said stationary.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Focus on $G = \mathbb{Z}$. Suppose that $S^{\mathbb{Z}}(\mathfrak{A}) = \{\omega\}$ is a singleton. (\mathfrak{A}, α) is said to be *uniquely ergodic*. One can see that unique ergodicity is equivalent to

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(\alpha^k(a))=f(\mathbf{1})\omega(a)\,,\quad a\in\mathfrak{A}\,,f\in\mathfrak{A}^*\,,$$

or to

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}\alpha^k(a)=\omega(a)\mathbf{I},\quad a\in\mathfrak{A}\ ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

in norm.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Some natural generalisations are the unique weak mixing:

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}|f(\alpha^k(a))-f(\mathbf{1})\omega(a)|=0\,,\quad a\in\mathfrak{A}\,,f\in\mathfrak{A}^*\,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Some natural generalisations are the unique weak mixing:

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}|f(\alpha^k(a))-f(\mathbf{1})\omega(a)|=0\,,\quad a\in\mathfrak{A}\,,f\in\mathfrak{A}^*\,,$$

or the unique mixing

$$\lim_{n\to+\infty}f(\alpha^n(a))=f(\mathbb{1})\omega(a)\,,\quad a\in\mathfrak{A}\,,f\in\mathfrak{A}^*\,,$$

for some state $\omega \in \mathcal{S}(\mathfrak{A})$ which is necessarily invariant.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Some natural generalisations are the unique weak mixing:

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}|f(\alpha^k(a))-f(\mathbb{1})\omega(a)|=0\,,\quad a\in\mathfrak{A}\,,f\in\mathfrak{A}^*\,,$$

or the unique mixing

$$\lim_{n\to+\infty}f(\alpha^n(a))=f(\mathbb{1})\omega(a)\,,\quad a\in\mathfrak{A}\,,f\in\mathfrak{A}^*\,,$$

for some state $\omega \in \mathcal{S}(\mathfrak{A})$ which is necessarily invariant.

Remark

Unique mixing \Rightarrow unique weak mixing \Rightarrow uniquely ergodic

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For all these cases, $\mathfrak{A}^{\mathbb{Z}} = \mathbb{C}\mathbf{1}$, and the (unique) invariant conditional expectation onto the fixed-point subalgebra is $E(a) = \omega(a)\mathbf{1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For all these cases, $\mathfrak{A}^{\mathbb{Z}} = \mathbb{C}\mathbf{1}$, and the (unique) invariant conditional expectation onto the fixed-point subalgebra is $E(a) = \omega(a)\mathbf{1}$. But in general $\mathbb{C}\mathbf{1} \subset \mathfrak{A}^{\mathbb{Z}}$... Now suppose there exists a conditional expectation $E^{\mathbb{Z}} : \mathfrak{A} \to \mathfrak{A}^{\mathbb{Z}}$. Is it uniquely invariant? So one has that, for $a \in \mathfrak{A}$ and $f \in \mathfrak{A}^*$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For all these cases, $\mathfrak{A}^{\mathbb{Z}} = \mathbb{C}\mathbf{I}$, and the (unique) invariant conditional expectation onto the fixed-point subalgebra is $E(a) = \omega(a)\mathbf{I}$. But in general $\mathbb{C}\mathbf{I} \subset \mathfrak{A}^{\mathbb{Z}}$... Now suppose there exists a

conditional expectation $E^{\mathbb{Z}} : \mathfrak{A} \to \mathfrak{A}^{\mathbb{Z}}$. Is it uniquely invariant? So one has that, for $a \in \mathfrak{A}$ and $f \in \mathfrak{A}^*$,

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\alpha^{k}(a)) = f(E^{\mathbb{Z}}(a)), \ (E^{\mathbb{Z}}\text{-ergodicity})$$
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} |f(\alpha^{k}(a)) - f(E^{\mathbb{Z}}(a))| = 0, \ (E^{\mathbb{Z}}\text{-weak mixing})$$
$$\lim_{n \to +\infty} f(\alpha^{n}(a)) = f(E^{\mathbb{Z}}(a)), \ (E^{\mathbb{Z}}\text{-mixing})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization Let \mathcal{H} be a Hilbert space. $T : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ such that $T = T^*$, $T \ge -I$ and

$$T_1 T_2 T_1 = T_2 T_1 T_2 \; ,$$

where $T_1 := T \otimes I$ and $T_2 := I \otimes T$ on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$, is called a Yang-Baxter operator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization Let \mathcal{H} be a Hilbert space. $T : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ such that $T = T^*$, $T \ge -I$ and

$$T_1 T_2 T_1 = T_2 T_1 T_2 \; ,$$

where $T_1 := T \otimes I$ and $T_2 := I \otimes T$ on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$, is called a Yang-Baxter operator. If

$$T_k := \underbrace{I \otimes \cdots \otimes I}_{k-1 \text{ times}} \otimes T \otimes \underbrace{I \otimes \cdots \otimes I}_{n-k-1 \text{ times}} \text{ on } \mathcal{H}^{\otimes n}.$$

then

$$T_i T_j = T_j T_i$$
 for $|i - j| \ge 2$

 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For each n, the T-symmetrizator is defined as

$$P_T^{(n)}: \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}$$
,

where
$${\cal P}_{{\cal T}}^{(1)}:={\it I},~{\cal P}_{{\cal T}}^{(2)}:={\it I}+{\cal T}_1$$
 and, for $n\geq 2$,

$$P_T^{(n+1)} := (I \otimes P_T^{(n)}) R^{(n+1)} = (R^{(n+1)})^* (I \otimes P_T^{(n)}) ,$$

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For each n, the T-symmetrizator is defined as

$$P_T^{(n)}: \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}$$
,

where
$$P_T^{(1)} := I$$
, $P_T^{(2)} := I + T_1$ and, for $n \ge 2$,
 $P_T^{(n+1)} := (I \otimes P_T^{(n)})R^{(n+1)} = (R^{(n+1)})^*(I \otimes P_T^{(n)})$,
 $R^{(n)} : \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}$ is

$$R^{(n)} := I + T_1 + T_1 T_2 + \ldots + T_1 T_2 \cdots T_{n-1}.$$

On Ergodic Properties for Yang-Baxter-Hecke Quantization

An operator $V:\mathcal{H}
ightarrow \mathcal{H}$ is called a Hecke operator if there exists $q \geq -1$ such that

$$V^2=(q-1)V+qI$$
 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

On Ergodic Properties for Yang-Baxter-Hecke Quantization

An operator $V:\mathcal{H}
ightarrow \mathcal{H}$ is called a Hecke operator if there exists $q \geq -1$ such that

$$V^2=(q-1)V+qI$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We get T a selfadjoint Yang-Baxter-Hecke operator.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

An operator $V:\mathcal{H}
ightarrow \mathcal{H}$ is called a Hecke operator if there exists $q \geq -1$ such that

$$V^2=(q-1)V+qI$$
 .

We get T a selfadjoint Yang-Baxter-Hecke operator.

Bożejko proved that for each n

$$(P_T^{(n)})^2 = \underline{n}! P_T^{(n)} = \underline{n}! (P_T^{(n)})^* \ge 0,$$

where $\underline{n} := 1 + q + q^2 + \ldots + q^{n-1}$, $\underline{n}! := \underline{1} \cdot \underline{2} \cdots \underline{n}$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

An operator $V:\mathcal{H}
ightarrow \mathcal{H}$ is called a Hecke operator if there exists $q \geq -1$ such that

$$V^2=(q-1)V+qI$$
 .

We get T a selfadjoint Yang-Baxter-Hecke operator.

Bożejko proved that for each n

$$(P_T^{(n)})^2 = \underline{n}! P_T^{(n)} = \underline{n}! (P_T^{(n)})^* \ge 0,$$

where $\underline{n} := 1 + q + q^2 + \ldots + q^{n-1}$, $\underline{n}! := \underline{1} \cdot \underline{2} \cdots \underline{n}$ and $\|P_{\tau}^{(n)}\| = n!$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Define a pre-inner product for $\xi\in \mathcal{H}^{\otimes n},~\eta\in \mathcal{H}^{\otimes m},$ by

$$\langle \xi, \eta \rangle_T := \delta_{n,m} \langle \xi, P_T^{(n)} \eta \rangle ,$$

By "routine" arguments, the T-deformed Fock space is

$$\mathcal{F}_{\mathcal{T}}(\mathcal{H}) := \bigoplus_{n=0}^{\infty} \mathcal{H}_{\mathcal{T}}^n$$

for $\mathcal{H}^0_T = \mathbb{C}$ and $\mathcal{H}^1_T = \mathcal{H}$. $\Omega := (1, 0, 0, ...)$ is the vacuum.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Define a pre-inner product for $\xi\in\mathcal{H}^{\otimes n}$, $\eta\in\mathcal{H}^{\otimes m}$, by

$$\langle \xi, \eta \rangle_T := \delta_{n,m} \langle \xi, P_T^{(n)} \eta \rangle ,$$

By "routine" arguments, the T-deformed Fock space is

$$\mathcal{F}_{\mathcal{T}}(\mathcal{H}) := \bigoplus_{n=0}^{\infty} \mathcal{H}_{\mathcal{T}}^n$$

for $\mathcal{H}_T^0 = \mathbb{C}$ and $\mathcal{H}_T^1 = \mathcal{H}$. $\Omega := (1, 0, 0, ...)$ is the vacuum. For each $f \in \mathcal{H}$, $n \in \mathbb{N}$, the creation operator is given by

$$a^{\dagger}(f)\xi := f \otimes \xi, \ \xi \in \mathcal{H}_T^n.$$

Its conjugate a(f) s.t. $a(f)\Omega = 0$ is called the annihilator.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

From now on $\mathcal{H} := \ell^2(J)$ for some index-set J with cardinality the Hilbertian dimension of \mathcal{H} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

From now on $\mathcal{H} := \ell^2(J)$ for some index-set J with cardinality the Hilbertian dimension of \mathcal{H} .

If e_j , $j \in J$, is the generic element of the canonical basis, we get

$$a_j := a(e_j) \;, \;\; a_j^\dagger := a^\dagger(e_j) \;.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

On Ergodic Properties for Yang-Baxter-Hecke Quantization

From now on $\mathcal{H} := \ell^2(J)$ for some index-set J with cardinality the Hilbertian dimension of \mathcal{H} .

If e_j , $j \in J$, is the generic element of the canonical basis, we get

$$a_j := a(e_j) \;, \;\; a_j^\dagger := a^\dagger(e_j) \;.$$

Define *t* by

$$T(e_i \otimes e_j) := \sum_{k,l \in J} t_{ij}^{kl} e_k \otimes e_l,$$

and get the commutation rule for creation and annihilations operators:

$$a_i a_j^{\dagger} - \sum_{k,l \in J} t_{jl}^{ik} a_k^{\dagger} a_l = \delta_{ij} I, \ i,j \in J.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

◆□ > ◆□ > ◆ □ > ◆ □ > □ = つへぐ

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

Bosons or CCR relations

Take $\sigma : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ the flip map $(\sigma(x \otimes y) := y \otimes x)$. The Symmetric Fock spaces (and the CCR algebra) are obtained with $T_{Bose} = \sigma$ and

$$P_{\mathsf{Bose}}^{(n)} = \sum_{\pi \in \mathbb{P}_n} \pi \,.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Examples

Bosons or CCR relations

Take $\sigma : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ the flip map $(\sigma(x \otimes y) := y \otimes x)$. The Symmetric Fock spaces (and the CCR algebra) are obtained with $T_{Bose} = \sigma$ and

$$P_{\mathsf{Bose}}^{(n)} = \sum_{\pi \in \mathbb{P}_n} \pi \,.$$

• Fermions or CAR relations

In this case $T_{\text{Fermi}} = -\sigma$, and

$${\cal P}_{{\sf Fermi}}^{(n)} = \sum_{\pi \in \mathbb{P}_n} \epsilon(\pi) \pi \, ,$$

where $\epsilon(\pi)$ denotes the sign of the permutation π .

3. Ergodic Properties in Yang-Baxter-Hecke Case

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Monotone

Here one has

$$T_m(e_i \otimes e_j) := \begin{cases} 0 & \text{if } i < j, \\ -(e_i \otimes e_j) & \text{if } i \ge j. \end{cases}$$

and $P_m^{(n)}$ is the orthogonal projection of $\mathcal{H}^{\otimes n}$ onto the linear span of $\{e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_n} | i_1 < i_2 < \cdots < i_n\}$.
On Ergodic Properties for Yang-Baxter-Hecke Quantization

Monotone

Here one has

$$T_m(e_i \otimes e_j) := \begin{cases} 0 & \text{if } i < j, \\ -(e_i \otimes e_j) & \text{if } i \ge j. \end{cases}$$

and $P_m^{(n)}$ is the orthogonal projection of $\mathcal{H}^{\otimes n}$ onto the linear span of $\{e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_n} | i_1 < i_2 < \cdots < i_n\}$.

Boolean

Here T = -I and, consequently, $P^{(n)} = 0$ if $n \ge 2$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへぐ

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Our aim: finding ergodic properties for (\mathfrak{A}, α) , where α is the shift and \mathfrak{A} is a C^* -algebras generated by creation and annihilation operators on $\mathcal{F}_T(\mathcal{H})$. We have basically 2 obstructions:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Our aim: finding ergodic properties for (\mathfrak{A}, α) , where α is the shift and \mathfrak{A} is a *C*^{*}-algebras generated by creation and annihilation operators on $\mathcal{F}_{\mathcal{T}}(\mathcal{H})$. We have basically 2 obstructions:

One has

$$\left\|a_i\left[\mathcal{H}_{T}^{n}\right]\right\|_{\mathcal{T}} = \left\|a_i^{\dagger}\left[\mathcal{H}_{T}^{n}\right]\right\|_{\mathcal{T}} \leq \left\|R^{(n+1)}\right\|^{\frac{1}{2}},$$

i.e. a_i and a_i^{\dagger} are not necessarily bounded

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Our aim: finding ergodic properties for (\mathfrak{A}, α) , where α is the shift and \mathfrak{A} is a C^* -algebras generated by creation and annihilation operators on $\mathcal{F}_T(\mathcal{H})$. We have basically 2 obstructions:

One has

$$\left\|a_i \left[\mathcal{H}_{\mathcal{T}}^n\right]\right\|_{\mathcal{T}} = \left\|a_i^{\dagger} \left[\mathcal{H}_{\mathcal{T}}^n\right]\right\|_{\mathcal{T}} \leq \left\|R^{(n+1)}\right\|^{\frac{1}{2}},$$

i.e. a_i and a_i^{\dagger} are not necessarily bounded

This is the case of Canonical Commutation Relation (CCR) algebra (Bosons).

On Ergodic Properties for Yang-Baxter-Hecke Quantization

In

$$\mathbf{a}_i \mathbf{a}_j^\dagger - \sum_{k,l \in J} t_{jl}^{ik} \mathbf{a}_k^\dagger \mathbf{a}_l = \delta_{ij} \mathbf{I}, \ \ i,j \in J.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

we may have infinite sums.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

In

$$a_i a_j^{\dagger} - \sum_{k,l \in J} t_{jl}^{ik} a_k^{\dagger} a_l = \delta_{ij} I, \ i, j \in J.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

we may have infinite sums.

This case appears, e.g., for Boolean and Monotone C^* -algebras...

But we can reach our goal even in this situation.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

To pursue the goal, we need to make another condition:

$$M_T := \sup_{n\in\mathbb{N}} \|R^{(n)}\| < \infty$$
.

Then one has that, for each $f \in \mathcal{H}$

$$||a_i||_T = ||a_i^{\dagger}||_T \le \sqrt{M_T}$$
.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

On Ergodic Properties for Yang-Baxter-Hecke Quantization

To pursue the goal, we need to make another condition:

$$M_{\mathcal{T}}:=\sup_{n\in\mathbb{N}}\|R^{(n)}\|<\infty$$
 .

Then one has that, for each $f \in \mathcal{H}$

$$||a_i||_T = ||a_i^{\dagger}||_T \le \sqrt{M_T}$$
.

The uniform boundedness above is satisfied in many cases of interests (e.g. Boolean and Monotone).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

To pursue the goal, we need to make another condition:

$$M_{\mathcal{T}}:=\sup_{n\in\mathbb{N}}\|R^{(n)}\|<\infty$$
 .

Then one has that, for each $f \in \mathcal{H}$

$$\|a_i\|_T = \|a_i^{\dagger}\|_T \leq \sqrt{M_T}.$$

The uniform boundedness above is satisfied in many cases of interests (e.g. Boolean and Monotone).

Remark The condition above is only sufficient for the boundedness of the annihilators!

For Fermions creators and annihilators are bounded **but** the operators $R^{(n)}$ are not *uniformly* bounded.

3. Ergodic Properties in Yang-Baxter-Hecke Case On Ergodic Properties for Yang-Baxter-Hecke Take: Quantization

◆□ > ◆□ > ◆ □ > ◆ □ > □ = つへぐ

On Ergodic Properties for Yang-Baxter-Hecke Quantization

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Take:
•
$$\mathfrak{R}_{\mathcal{T}} := \overline{* - alg\{a_i \mid i \in \mathbb{Z}\}}^{\|\cdot\|}$$

• $\mathfrak{G}_{\mathcal{T}} := \overline{* - alg\{a_i + a_i^{\dagger} \mid i \in \mathbb{Z}\}}^{\|\cdot\|}$

We suppose the unitary $e_i \mapsto e_{i+1}$, $i \in \mathbb{Z}$ acts as Bogoliubov automorphisms α^n , $n \in \mathbb{Z}$ on \mathfrak{R}_T by

$$\alpha(a_i) := a_{i+1} , i \in \mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Then it acts also on \mathfrak{G}_T by restriction.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Problem: the C*-dynamical systems $(\mathfrak{R}_{\mathcal{T}}, \alpha)$ and $(\mathfrak{G}_{\mathcal{T}}, \alpha)$ enjoy some strong ergodic property?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Problem: the C*-dynamical systems $(\mathfrak{R}_{\mathcal{T}}, \alpha)$ and $(\mathfrak{G}_{\mathcal{T}}, \alpha)$ enjoy some strong ergodic property?

What we already know:

For a Yang-Baxter operator T with ||T|| < 1, Dykema-Fidaleo proved that these C^* -algebras are uniquely mixing for the shift with the vacuum expectation as the only invariant state.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Problem: the C*-dynamical systems $(\mathfrak{R}_{\mathcal{T}}, \alpha)$ and $(\mathfrak{G}_{\mathcal{T}}, \alpha)$ enjoy some strong ergodic property?

What we already know:

For a Yang-Baxter operator T with ||T|| < 1, Dykema-Fidaleo proved that these C^* -algebras are uniquely mixing for the shift with the vacuum expectation as the only invariant state. But for a Yang-Baxter-Hecke operator: $||T|| \ge 1...$

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on $\mathcal{H} = \ell^2(\mathbb{Z})$. Suppose that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シのの◇

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on $\mathcal{H} = \ell^2(\mathbb{Z})$. Suppose that

• the sum below is finite:

$$m{a}_im{a}_j^\dagger - \sum_{k,l} t_{jl}^{ik}m{a}_k^\daggerm{a}_l = \delta_{ij}m{l}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シのの◇

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on $\mathcal{H}=\ell^2(\mathbb{Z}).$ Suppose that

• the sum below is finite:

$$oldsymbol{a}_ioldsymbol{a}_j^\dagger - \sum_{k,l} t_{jl}^{ik}oldsymbol{a}_k^\daggeroldsymbol{a}_l = \delta_{ij}oldsymbol{I}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シのの◇

• $M_T < +\infty$.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on $\mathcal{H} = \ell^2(\mathbb{Z})$. Suppose that

• the sum below is finite:

$$oldsymbol{a}_ioldsymbol{a}_j^\dagger - \sum_{k,l} t_{jl}^{ik}oldsymbol{a}_k^\daggeroldsymbol{a}_l = \delta_{ij}oldsymbol{I}$$

• $M_T < +\infty$.

 $\bullet\,$ the group $\mathbb Z\,$ acts as a group of automorphisms on $\mathfrak R_T$

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on $\mathcal{H} = \ell^2(\mathbb{Z})$. Suppose that

• the sum below is finite:

$$m{a}_im{a}_j^\dagger - \sum_{k,l} t_{jl}^{ik}m{a}_k^\daggerm{a}_l = \delta_{ij}m{I}$$

• $M_T < +\infty$.

• the group \mathbb{Z} acts as a group of automorphisms on \mathfrak{R}_T Then the dynamical system (\mathfrak{R}_T, α) is uniquely mixing with $\langle \cdot \Omega, \Omega \rangle$ as the unique invariant state.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on $\mathcal{H} = \ell^2(\mathbb{Z})$. Suppose that

• the sum below is finite:

$$m{a}_im{a}_j^\dagger - \sum_{k,l} t_{jl}^{ik}m{a}_k^\daggerm{a}_l = \delta_{ij}m{I}$$

• $M_T < +\infty$.

• the group \mathbb{Z} acts as a group of automorphisms on \mathfrak{R}_T Then the dynamical system (\mathfrak{R}_T, α) is uniquely mixing with $\langle \cdot \Omega, \Omega \rangle$ as the unique invariant state.

The result above holds for $(\mathfrak{G}_{\mathcal{T}}, \alpha)$ by restriction.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For $k \geq 1$

$$I_k := \{ (i_1, i_2, \dots, i_k) \mid i_1 < i_2 < \dots < i_k, i_j \in \mathbb{Z} \},\$$

and for k = 0, we take $I_0 := \{\emptyset\}$, \emptyset being the empty sequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Hilbert space $\mathcal{H}_k := \ell^2(I_k)$ is the *k*-particles space. The 0-particle space is identified with \mathbb{C} .

The monotone Fock space is $\mathcal{F}_m = \bigoplus_{k=0}^{\infty} \mathcal{H}_k$.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Given an increasing sequence $(i_1, i_2, ..., i_k)$ of integers, we take $e_{(i_1, i_2, ..., i_k)}$ a vector of the canonical basis of $\ell^2(I_k)$.

The monotone creation and annihilation operators are, for any $i \in \mathbb{Z}$,

$$\begin{aligned} a_i^{\dagger}(e_{(i_1,i_2,...,i_k)}) &:= \begin{cases} e_{(i,i_1,i_2,...,i_k)} & \text{if } i < i_1 ,\\ 0 & \text{otherwise} \end{cases} \\ a_i(e_{(i_1,i_2,...,i_k)}) &:= \begin{cases} e_{(i_2,...,i_k)} & \text{if } k \ge 1 \\ 0 & \text{otherwise} \end{cases} \\ \text{Note } \|a_i^{\dagger}\| = \|a_i\| = 1. \end{aligned}$$

On Ergodic Properties for Yang-Baxter-Hecke Quantization

 a_i^{\dagger} and a_i are mutually adjoint and satisfy the following relations

$$\begin{aligned} \mathbf{a}_i^{\dagger} \mathbf{a}_j^{\dagger} &= \mathbf{a}_j \mathbf{a}_i = \mathbf{0} & \text{if } i \geq j \,, \\ \mathbf{a}_i \mathbf{a}_i^{\dagger} &= \mathbf{0} & \text{if } i \neq j \,. \end{aligned}$$

On Ergodic Properties for Yang-Baxter-Hecke Quantization

 a_i^{\dagger} and a_i are mutually adjoint and satisfy the following relations

$$\begin{aligned} &a_i^{\dagger}a_j^{\dagger} = a_ja_i = 0 & \text{if } i \geq j \,, \\ &a_ia_j^{\dagger} = 0 & \text{if } i \neq j \,. \end{aligned}$$

In addition, the following commutation relation

$$a_i a_i^{\dagger} = I - \sum_{k \leq i} a_k^{\dagger} a_k$$

is also satisfied.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

The C*-algebra \mathfrak{R}_m and its subalgebra \mathfrak{G}_m acting on \mathcal{F}_m , are the unital C*-algebras generated by the annihilators $\{a_i \mid i \in \mathbb{Z}\}$, and the selfadjoint part of annihilators $\{s_i \mid i \in \mathbb{Z}\}$ respectively, with $s_i := a_i + a_i^+$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

The C^* -algebra \mathfrak{R}_m and its subalgebra \mathfrak{G}_m acting on \mathcal{F}_m , are the unital C^* -algebras generated by the annihilators $\{a_i \mid i \in \mathbb{Z}\}$, and the selfadjoint part of annihilators $\{s_i \mid i \in \mathbb{Z}\}$ respectively, with $s_i := a_i + a_i^+$.

Fact The shift α acts on both of them and the sum in "commutation relations" is infinite... In fact

On Ergodic Properties for Yang-Baxter-Hecke Quantization

..." problem"

 (\mathfrak{R}_m, α) is **not** uniquely ergodic (so not uniquely mixing) w.r.t. the fixed point subalgebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

..." problem"

 (\mathfrak{R}_m, α) is **not** uniquely ergodic (so not uniquely mixing) w.r.t. the fixed point subalgebra.

Let $i \in \mathbb{Z}$. For $n \to +\infty$, $\alpha^n(a_i a_i^{\dagger}) \downarrow P_{\Omega}$ and so, strongly,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\alpha^k(a_ia_i^{\dagger})=P_{\Omega}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

..." problem"

 (\mathfrak{R}_m, α) is **not** uniquely ergodic (so not uniquely mixing) w.r.t. the fixed point subalgebra.

Let $i \in \mathbb{Z}$. For $n \to +\infty$, $\alpha^n(a_i a_i^{\dagger}) \downarrow P_{\Omega}$ and so, strongly,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\alpha^k(a_ia_i^{\dagger})=P_{\Omega}$$

And the convergence is **not** in norm, since

$$1 \ge \left\|\frac{1}{n}\sum_{k=0}^{n-1}\alpha^{k}(a_{i}a_{i}^{\dagger}) - P_{\Omega}\right\| \ge \left\|\left(\frac{1}{n}\sum_{k=0}^{n-1}\alpha^{k}(a_{i}a_{i}^{\dagger}) - P_{\Omega}\right)e_{(i+n)}\right\| = 1$$

・ロト ・母 ・ キョ ・ キョ・ ・ も・ のへの

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Main goal now: classification of shift invariant states. How?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Main goal now: classification of shift invariant states. How?

A possibility: find the structure of \mathfrak{R}_m and infer in some way the result.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Main goal now: classification of shift invariant states. How?

A possibility: find the structure of \mathfrak{R}_m and infer in some way the result.

We gave standard reduced forms for words in the *-algebra generated by monotone commutation relations (and further we obtained also a basis)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Main goal now: classification of shift invariant states. How?

A possibility: find the structure of \mathfrak{R}_m and infer in some way the result.

We gave standard reduced forms for words in in the *-algebra generated by monotone commutation relations (and further we obtained also a basis)

Proposition

The the fixed-point subalgebra $\mathfrak{R}_m^{\mathbb{Z}}$ w.r.t. the action of the shift α is trivial: $\mathfrak{R}_m^{\mathbb{Z}} = \mathbb{C}I$.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Then there is more than a single stationary state. How many?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 - シスペ
On Ergodic Properties for Yang-Baxter-Hecke Quantization

Then there is more than a single stationary state. How many? **Fact**

$$\mathfrak{R}_m = \mathfrak{A}_m + \mathbb{C}I.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $...S(\mathfrak{R}_m)$ is the one-point compactification of all the positive functionals on \mathfrak{A}_m with norm less than or equal to 1.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Then there is more than a single stationary state. How many? **Fact**

$$\mathfrak{R}_m = \mathfrak{A}_m + \mathbb{C}I.$$

 $...S(\mathfrak{R}_m)$ is the one-point compactification of all the positive functionals on \mathfrak{A}_m with norm less than or equal to 1.

The state at infinity

$$\omega_{\infty}(X+cI) := c, \quad X \in \mathfrak{A}_m, c \in \mathbb{C},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

provides such a "point at infinity". It is shift-invariant.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Then there is more than a single stationary state. How many? **Fact**

$$\mathfrak{R}_m = \mathfrak{A}_m + \mathbb{C}I.$$

 $...S(\mathfrak{R}_m)$ is the one-point compactification of all the positive functionals on \mathfrak{A}_m with norm less than or equal to 1.

The state at infinity

$$\omega_{\infty}(X+cI):=c\,,\quad X\in\mathfrak{A}_m\,,c\in\mathbb{C}\,,$$

provides such a "point at infinity". It is shift-invariant. The monotone vacuum

$$\omega(Y) := \langle Y\Omega, \Omega \rangle, \quad Y \in \mathfrak{R}_m,$$

is shift-invariant

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

The structure of such invariant states

On Ergodic Properties for Yang-Baxter-Hecke Quantization

The structure of such invariant states

Theorem (C.-Fidaleo-Lu)

The weak *-compact set of shift-invariant states on \mathfrak{R}_m is given by

$$\mathcal{S}_{\mathbb{Z}}(\mathfrak{R}_m) = \{(1-\gamma)\omega_{\infty} + \gamma\omega \mid \gamma \in [0,1]\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

On Ergodic Properties for Yang-Baxter-Hecke Quantization

The structure of such invariant states

Theorem (C.-Fidaleo-Lu)

The weak *-compact set of shift-invariant states on \mathfrak{R}_m is given by

$$\mathcal{S}_{\mathbb{Z}}(\mathfrak{R}_m) = \{(1-\gamma)\omega_{\infty} + \gamma\omega \mid \gamma \in [0,1]\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

For the subalgebra of selfadjoints:

Theorem (C.-Fidaleo-Lu)

We have $\mathfrak{G}_m = \mathfrak{R}_m$.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Let \mathcal{H} be a complex Hilbert space. Recall that the Boolean Fock space over \mathcal{H} is given by $\Gamma(\mathcal{H}) := \mathbb{C} \oplus \mathcal{H}$, where the vacuum vector Ω is (1,0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Let \mathcal{H} be a complex Hilbert space. Recall that the Boolean Fock space over \mathcal{H} is given by $\Gamma(\mathcal{H}) := \mathbb{C} \oplus \mathcal{H}$, where the vacuum vector Ω is (1,0). On $\Gamma(\mathcal{H})$ the creation and annihilation operators, for $f \in \mathcal{H}$ are $a^{\dagger}(f)(\alpha \oplus g) := 0 \oplus \alpha f$, $a(f)(\alpha \oplus g) := \langle g, f \rangle_{\mathcal{H}} \oplus 0$, $\alpha \in \mathbb{C}$, $g \in \mathcal{H}$.

They are mutually adjoint, and satisfy the following relations

$$egin{aligned} &a(f)a^{\dagger}(g)=\langle g,f
angle P_{\Omega}=\langle g,f
angle (I-\sum_{j\in J}a^{\dagger}(e_j)a(e_j))\,,\ &a(f)a(g)=a^{\dagger}(f)a^{\dagger}(g)=0\,,\quad f,g\in\mathcal{H} \end{aligned}$$

for any orthonormal basis $\{e_j \mid j \in J\}$ of the involved Hilbert space.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Put $\mathcal{H} = \ell^2(\mathbb{Z})$, $\mathfrak{R}_{\mathsf{Boole}}$ the C^* -algebra generated by boolean annihilators and $\mathfrak{G}_{\mathsf{Boole}}$ that generated by position operators.

If $\mathcal{K}(\Gamma(\ell^2(\mathbb{Z}))$ denotes the compact linear operators on the Boolean Fock, one has

Proposition (C.-Fidaleo)

$$\mathcal{K}(\Gamma(\ell^2(\mathbb{Z})) + \mathbb{C}I = \mathfrak{R}_{Boole} = \mathfrak{G}_{Boole} = \mathfrak{b}$$
 .

The shift, as well as the permutations $\mathbb{P}_{\mathbb{Z}}$ naturally act on $\mathfrak b$ as Bogoliubov automorphisms.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Notice that here too the sum is infinite as soon as $dim(\mathcal{H})=\infty.$ But, one reaches the goal also in this case. In fact

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 - シスペ

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Notice that here too the sum is infinite as soon as $\dim(\mathcal{H}) = \infty$. But, one reaches the goal also in this case. In fact

Denote $\mathfrak{b}^{\mathbb{P}_{\mathbb{Z}}}$, $\mathfrak{b}^{\mathbb{Z}}$ the fixed-point subalgebras w.r.t. the actions of the permutations and the shift, that is the exchangeable and the invariant C^* -subalgebra, respectively. We get

Proposition (C.-Fidaleo-Lu)

For the fixed-point subalgebras $\mathfrak{b}^{\mathbb{P}_{\mathbb{Z}}},\,\mathfrak{b}^{\mathbb{Z}},$ one has

$$\mathfrak{b}^{\mathbb{P}_{\mathbb{Z}}} = \mathfrak{b}^{\mathbb{Z}} = \mathbb{C} P_{\Omega} \oplus \mathbb{C} P_{\Omega}^{\perp} ,$$

where $P_{\Omega} = a_i a_i^{\dagger}$ denotes the orthogonal projection onto the linear span of Ω .

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Denote *E* the conditional expectation onto $\mathfrak{b}^{\mathbb{Z}}$ given by $E(A + bI) := \langle A\Omega, \Omega \rangle P_{\Omega} + bI$, $A \in \mathcal{K}(\ell^{2}(\mathbb{Z})), b \in \mathbb{C}$.

It is invariant both for the action of the shift and the permutations.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Denote *E* the conditional expectation onto $\mathfrak{b}^{\mathbb{Z}}$ given by

 $E(A+bI) := \langle A\Omega, \Omega \rangle P_{\Omega} + bI, \quad A \in \mathcal{K}(\ell^2(\mathbb{Z})), b \in \mathbb{C}.$

It is invariant both for the action of the shift and the permutations.

Proposition (C.-Fidaleo-Lu)

The C^{*}-dynamical system (\mathfrak{b}, α) is $E^{\mathbb{Z}}$ -mixing with $E = E^{\mathbb{Z}}$ is the unique invariant conditional expectation onto the fixed-point subalgebra.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

Denote *E* the conditional expectation onto $\mathfrak{b}^{\mathbb{Z}}$ given by

 $E(A+bI) := \langle A\Omega, \Omega \rangle P_{\Omega} + bI, \quad A \in \mathcal{K}(\ell^2(\mathbb{Z})), b \in \mathbb{C}.$

It is invariant both for the action of the shift and the permutations.

Proposition (C.-Fidaleo-Lu)

The C^{*}-dynamical system (\mathfrak{b}, α) is $E^{\mathbb{Z}}$ -mixing with $E = E^{\mathbb{Z}}$ is the unique invariant conditional expectation onto the fixed-point subalgebra.

So, even if the fixed-point subalgebra is non trivial the $E^{\mathbb{Z}}$ -mixing property for the shift holds. It is the first case in our setting we find a strong mixing condition with a unique **non trivial** invariant: $E = E^{\mathbb{Z}}$.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For the symmetric and stationary states, one has

Proposition (C.-Fidaleo-Lu)

$$\mathcal{S}_{\mathbb{Z}}(\mathfrak{b}) = \mathcal{S}_{\mathbb{P}_{\mathbb{Z}}}(\mathfrak{b}) = \left\{ \gamma \omega_{\Omega} + (1-\gamma) \omega_{\infty} \mid \gamma \in [0,1]
ight\},$$

where

$$\omega_{\infty}(A+bI):=b\,,\quad A\in\mathcal{K}(\Gamma(\ell^2(\mathbb{Z})))\,,b\in\mathbb{C}\,.$$

and ω_{Ω} is the vacuum state.

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For the symmetric and stationary states, one has

Proposition (C.-Fidaleo-Lu)

$$\mathcal{S}_{\mathbb{Z}}(\mathfrak{b}) = \mathcal{S}_{\mathbb{P}_{\mathbb{Z}}}(\mathfrak{b}) = \left\{ \gamma \omega_{\Omega} + (1-\gamma) \omega_{\infty} \mid \gamma \in [0,1]
ight\},$$

where

$$\omega_{\infty}(A+bI):=b\,,\quad A\in\mathcal{K}(\Gamma(\ell^2(\mathbb{Z})))\,,b\in\mathbb{C}\,.$$

and ω_{Ω} is the vacuum state.

Hence, as in the monotone case, we have a "segment", although the situation is completely different...

Conclusions

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For C^* -dynamical systems considered, we found:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ★ □ ▶ → □ ● → のへで

Conclusions

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For C^* -dynamical systems considered, we found:

	$\mathfrak{A}^{\mathbb{Z}}$	ergodicity	stat/symm
Fermi	$\mathbb{C}1$	NO	CCH product states
Monotone	$\mathbb{C}1$	NO	\simeq segment / "No"
Boolean	$\mathbb{C}P_{\#}\oplus\mathbb{C}P_{\#}^{\perp}$	YES	\simeq segment

◆□ ▶ ◆□ ▶ ◆ □ ▶ ★ □ ▶ → □ ● → のへで

Conclusions

On Ergodic Properties for Yang-Baxter-Hecke Quantization

For C^* -dynamical systems considered, we found:

	$\mathfrak{A}^{\mathbb{Z}}$	ergodicity	stat/symm
Fermi	$\mathbb{C}1$	NO	CCH product states
Monotone	$\mathbb{C}1$	NO	\simeq segment / "No"
Boolean	$\mathbb{C}P_{\#}\oplus\mathbb{C}P_{\#}^{\perp}$	YES	\simeq segment

Other cases already studied not covered in the talk

For CCR (better Weyl algebra) and tensor product: not uniquely mixing. The symmetric are the closed convex hull of product states.

REFERENCES

On Ergodic Properties for Yang-Baxter-Hecke Quantization

- Bożejko M. Deformed Fock spaces, Hecke operators and monotone Fock space of Muraki, Dem. Math. XLV (2012), 399-413.
- Crismale V., Fidaleo F. *De Finetti theorem on the CAR algebra*, Comm. Math. Phys. **315** (2012), 135–152.
- Crismale V., Fidaleo F. Exchangeable stochastic processes and symmetric states in quantum probability, Ann. Mat. Pura Appl. **194** (2015), 969–993.
- Crismale V., Fidaleo F., Lu Y.G. Ergodic theorems in quantum probability: an application to the monotone stochastic processes, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Vol. XVII (2017), 113-141.
- Crismale V., Fidaleo F., *Symmetryes and ergodic* properties in quantum probability, Colloq. Math., to appear
- …work in progress…

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへぐ