
On Ergodic
Properties for
Yang-Baxter-

Hecke
Quantization On Some Ergodic Properties for C ∗-dynamical

systems arising from Yang-Baxter-Hecke

Quantisation

Vito Crismale
Dipartimento di Matematica, Università di Bari
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Motivations

Dykema-Fidaleo (HJM 2010)
The shift on the C ∗-algebras generated by Fock
representation of q-commutation relations, for |q| < 1 is
uniquely mixing
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Motivations

Dykema-Fidaleo (HJM 2010)
The shift on the C ∗-algebras generated by Fock
representation of q-commutation relations, for |q| < 1 is
uniquely mixing

...what happens for Fermi, Bose, Boolean, Monotone?
They are examples of the so-called Yang-Baxter-Hecke
deformations firstly studied by Bożejko (2012)
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1. Symmetric and stationary states

Let A be a C ∗–algebra and G a group which acts as a group of
automorphisms of A:

α : g ∈ G 7→ αg ∈ Aut(A).
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1. Symmetric and stationary states

Let A be a C ∗–algebra and G a group which acts as a group of
automorphisms of A:

α : g ∈ G 7→ αg ∈ Aut(A).

The fixed point subalgebra

A
G := {A ∈ A | αg (A) = A, g ∈ G}
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1. Symmetric and stationary states

Let A be a C ∗–algebra and G a group which acts as a group of
automorphisms of A:

α : g ∈ G 7→ αg ∈ Aut(A).

The fixed point subalgebra

A
G := {A ∈ A | αg (A) = A, g ∈ G}

SG (A) is the set of the G–invariant states

ϕ = ϕ ◦ αg , ϕ ∈ S(A) , g ∈ G

is ∗–weakly compact in S(A).
Its extremal points are called ergodic states.
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1. Symmetric and stationary states

Let A be a C ∗–algebra and G a group which acts as a group of
automorphisms of A:

α : g ∈ G 7→ αg ∈ Aut(A).

The fixed point subalgebra

A
G := {A ∈ A | αg (A) = A, g ∈ G}

SG (A) is the set of the G–invariant states

ϕ = ϕ ◦ αg , ϕ ∈ S(A) , g ∈ G

is ∗–weakly compact in S(A).
Its extremal points are called ergodic states.

(A, αg ) is a C ∗-dynamical system.
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1. Symmetric and stationary states

Examples

G = PJ

Let J be any set. The group of the permutations PJ of J is

PJ :=
⋃

{PI | I ⊂ J finite } .



On Ergodic
Properties for
Yang-Baxter-

Hecke
Quantization

1. Symmetric and stationary states

Examples

G = PJ

Let J be any set. The group of the permutations PJ of J is

PJ :=
⋃

{PI | I ⊂ J finite } .

A state ϕ on A is called symmetric if it is PJ–invariant,i.e.

ϕ ◦ αg = ϕ , ∀g ∈ PJ .
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1. Symmetric and stationary states

Examples

G = PJ

Let J be any set. The group of the permutations PJ of J is

PJ :=
⋃

{PI | I ⊂ J finite } .

A state ϕ on A is called symmetric if it is PJ–invariant,i.e.

ϕ ◦ αg = ϕ , ∀g ∈ PJ .

G = Z. We have a (discrete) C ∗-dynamical system made
by (A, α) based on a single automorphism α of A, which
automatically generates the action of Z.
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1. Symmetric and stationary states

Examples

G = PJ

Let J be any set. The group of the permutations PJ of J is

PJ :=
⋃

{PI | I ⊂ J finite } .

A state ϕ on A is called symmetric if it is PJ–invariant,i.e.

ϕ ◦ αg = ϕ , ∀g ∈ PJ .

G = Z. We have a (discrete) C ∗-dynamical system made
by (A, α) based on a single automorphism α of A, which
automatically generates the action of Z.
Invariant states are said stationary.
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1. Symmetric and stationary states

Focus on G = Z. Suppose that SZ(A) = {ω} is a singleton.
(A, α) is said to be uniquely ergodic. One can see that unique
ergodicity is equivalent to

lim
n→+∞

1

n

n−1∑

k=0

f (αk(a)) = f (1I)ω(a) , a ∈ A , f ∈ A
∗ ,

or to

lim
n→+∞

1

n

n−1∑

k=0

αk(a) = ω(a)1I, a ∈ A ,

in norm.
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1. Symmetric and stationary states

Some natural generalisations are the unique weak mixing:

lim
n→+∞

1

n

n−1∑

k=0

|f (αk(a))− f (1I)ω(a)| = 0 , a ∈ A , f ∈ A
∗ ,
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1. Symmetric and stationary states

Some natural generalisations are the unique weak mixing:

lim
n→+∞

1

n

n−1∑

k=0

|f (αk(a))− f (1I)ω(a)| = 0 , a ∈ A , f ∈ A
∗ ,

or the unique mixing

lim
n→+∞

f (αn(a)) = f (1I)ω(a) , a ∈ A , f ∈ A
∗ ,

for some state ω ∈ S(A) which is necessarily invariant.
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1. Symmetric and stationary states

Some natural generalisations are the unique weak mixing:

lim
n→+∞

1

n

n−1∑

k=0

|f (αk(a))− f (1I)ω(a)| = 0 , a ∈ A , f ∈ A
∗ ,

or the unique mixing

lim
n→+∞

f (αn(a)) = f (1I)ω(a) , a ∈ A , f ∈ A
∗ ,

for some state ω ∈ S(A) which is necessarily invariant.

Remark

Unique mixing ⇒ unique weak mixing ⇒ uniquely ergodic
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1. Symmetric and stationary states

For all these cases, AZ = C1I, and the (unique) invariant
conditional expectation onto the fixed-point subalgebra is
E (a) = ω(a)1I.
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1. Symmetric and stationary states

For all these cases, AZ = C1I, and the (unique) invariant
conditional expectation onto the fixed-point subalgebra is
E (a) = ω(a)1I.
But in general C1I ⊂ AZ... Now suppose there exists a
conditional expectation EZ : A → AZ. Is it uniquely invariant?
So one has that, for a ∈ A and f ∈ A∗,
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1. Symmetric and stationary states

For all these cases, AZ = C1I, and the (unique) invariant
conditional expectation onto the fixed-point subalgebra is
E (a) = ω(a)1I.
But in general C1I ⊂ AZ... Now suppose there exists a
conditional expectation EZ : A → AZ. Is it uniquely invariant?
So one has that, for a ∈ A and f ∈ A∗,

lim
n→+∞

1

n

n−1∑

k=0

f (αk(a)) = f (EZ(a)), (EZ-ergodicity)

lim
n→+∞

1

n

n−1∑

k=0

|f (αk(a))− f (EZ(a))| = 0, (EZ-weak mixing)

lim
n→+∞

f (αn(a)) = f (EZ(a)), (EZ-mixing)
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2. Yang-Baxter Deformation

Let H be a Hilbert space. T : H⊗H → H⊗H such that
T = T ∗, T ≥ −I and

T1T2T1 = T2T1T2 ,

where T1 := T ⊗ I and T2 := I ⊗T on H⊗H⊗H, is called a
Yang-Baxter operator.
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2. Yang-Baxter Deformation

Let H be a Hilbert space. T : H⊗H → H⊗H such that
T = T ∗, T ≥ −I and

T1T2T1 = T2T1T2 ,

where T1 := T ⊗ I and T2 := I ⊗T on H⊗H⊗H, is called a
Yang-Baxter operator. If

Tk := I ⊗ · · · ⊗ I
︸ ︷︷ ︸

k−1 times

⊗T ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

n−k−1 times

on H⊗n.

then
TiTj = TjTi for |i − j | ≥ 2

TiTi+1Ti = Ti+1TiTi+1 .
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2. Yang-Baxter Deformation

For each n, the T -symmetrizator is defined as

P
(n)
T : H⊗n → H⊗n ,

where P
(1)
T := I , P

(2)
T := I + T1 and, for n ≥ 2,

P
(n+1)
T := (I ⊗ P

(n)
T )R (n+1) = (R (n+1))∗(I ⊗ P

(n)
T ) ,
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2. Yang-Baxter Deformation

For each n, the T -symmetrizator is defined as

P
(n)
T : H⊗n → H⊗n ,

where P
(1)
T := I , P

(2)
T := I + T1 and, for n ≥ 2,

P
(n+1)
T := (I ⊗ P

(n)
T )R (n+1) = (R (n+1))∗(I ⊗ P

(n)
T ) ,

R (n) : H⊗n → H⊗n is

R (n) := I + T1 + T1T2 + . . . + T1T2 · · ·Tn−1 .
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2. Yang-Baxter Deformation

An operator V : H → H is called a Hecke operator if there
exists q ≥ −1 such that

V 2 = (q − 1)V + qI .
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2. Yang-Baxter Deformation

An operator V : H → H is called a Hecke operator if there
exists q ≥ −1 such that

V 2 = (q − 1)V + qI .

We get T a selfadjoint Yang-Baxter-Hecke operator.
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2. Yang-Baxter Deformation

An operator V : H → H is called a Hecke operator if there
exists q ≥ −1 such that

V 2 = (q − 1)V + qI .

We get T a selfadjoint Yang-Baxter-Hecke operator.

Bożejko proved that for each n

(P
(n)
T )2 = n!P

(n)
T = n!(P

(n)
T )∗ ≥ 0 ,

where n := 1 + q + q2 + . . .+ qn−1, n! := 1 · 2 · · · n
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2. Yang-Baxter Deformation

An operator V : H → H is called a Hecke operator if there
exists q ≥ −1 such that

V 2 = (q − 1)V + qI .

We get T a selfadjoint Yang-Baxter-Hecke operator.

Bożejko proved that for each n

(P
(n)
T )2 = n!P

(n)
T = n!(P

(n)
T )∗ ≥ 0 ,

where n := 1 + q + q2 + . . .+ qn−1, n! := 1 · 2 · · · n and

‖P
(n)
T ‖ = n!
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2. Yang-Baxter Deformation

Define a pre-inner product for ξ ∈ H⊗n, η ∈ H⊗m, by

〈ξ, η〉T := δn,m〈ξ,P
(n)
T η〉 ,

By ”routine” arguments, the T -deformed Fock space is

FT (H) :=

∞⊕

n=0

Hn
T

for H0
T = C and H1

T = H.
Ω := (1, 0, 0, . . .) is the vacuum.
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2. Yang-Baxter Deformation

Define a pre-inner product for ξ ∈ H⊗n, η ∈ H⊗m, by

〈ξ, η〉T := δn,m〈ξ,P
(n)
T η〉 ,

By ”routine” arguments, the T -deformed Fock space is

FT (H) :=

∞⊕

n=0

Hn
T

for H0
T = C and H1

T = H.
Ω := (1, 0, 0, . . .) is the vacuum.
For each f ∈ H, n ∈ N, the creation operator is given by

a†(f )ξ := f ⊗ ξ , ξ ∈ Hn
T .

Its conjugate a(f ) s.t. a(f )Ω = 0 is called the annihilator.
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2. Yang-Baxter Deformation

From now on H := ℓ2(J) for some index-set J with cardinality
the Hilbertian dimension of H.
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2. Yang-Baxter Deformation

From now on H := ℓ2(J) for some index-set J with cardinality
the Hilbertian dimension of H.
If ej , j ∈ J, is the generic element of the canonical basis, we get

aj := a(ej) , a
†
j := a†(ej ) .
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2. Yang-Baxter Deformation

From now on H := ℓ2(J) for some index-set J with cardinality
the Hilbertian dimension of H.
If ej , j ∈ J, is the generic element of the canonical basis, we get

aj := a(ej) , a
†
j := a†(ej ) .

Define t by

T (ei ⊗ ej) :=
∑

k,l∈J

tklij ek ⊗ el ,

and get the commutation rule for creation and annihilations
operators:

aia
†
j −

∑

k,l∈J

t ikjl a
†
kal = δij I , i , j ∈ J.
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2. Yang-Baxter Deformation

Examples
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2. Yang-Baxter Deformation

Examples

Bosons or CCR relations

Take σ : H⊗H → H⊗H the flip map
(σ(x ⊗ y) := y ⊗ x).
The Symmetric Fock spaces (and the CCR algebra) are
obtained with TBose = σ and

P
(n)
Bose =

∑

π∈Pn

π .
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2. Yang-Baxter Deformation

Examples

Bosons or CCR relations

Take σ : H⊗H → H⊗H the flip map
(σ(x ⊗ y) := y ⊗ x).
The Symmetric Fock spaces (and the CCR algebra) are
obtained with TBose = σ and

P
(n)
Bose =

∑

π∈Pn

π .

Fermions or CAR relations

In this case TFermi = −σ, and

P
(n)
Fermi =

∑

π∈Pn

ǫ(π)π ,

where ǫ(π) denotes the sign of the permutation π.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Monotone

Here one has

Tm(ei ⊗ ej ) :=

{
0 if i < j ,

−(ei ⊗ ej ) if i ≥ j .

and P
(n)
m is the orthogonal projection of H⊗n onto the

linear span of {ei1 ⊗ ei2 ⊗ · · · ⊗ ein |i1 < i2 < · · · < in}.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Monotone

Here one has

Tm(ei ⊗ ej ) :=

{
0 if i < j ,

−(ei ⊗ ej ) if i ≥ j .

and P
(n)
m is the orthogonal projection of H⊗n onto the

linear span of {ei1 ⊗ ei2 ⊗ · · · ⊗ ein |i1 < i2 < · · · < in}.

Boolean

Here T = −I and, consequently, P(n) = 0 if n ≥ 2.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Our aim: finding ergodic properties for (A, α), where α is the
shift and A is a C ∗-algebras generated by creation and
annihilation operators on FT (H). We have basically 2
obstructions:
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Our aim: finding ergodic properties for (A, α), where α is the
shift and A is a C ∗-algebras generated by creation and
annihilation operators on FT (H). We have basically 2
obstructions:

One has

∥
∥ai⌈Hn

T

∥
∥
T
=

∥
∥a

†
i ⌈Hn

T

∥
∥
T
≤

∥
∥R (n+1)

∥
∥

1
2 ,

i.e. ai and a
†
i are not necessarily bounded
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Our aim: finding ergodic properties for (A, α), where α is the
shift and A is a C ∗-algebras generated by creation and
annihilation operators on FT (H). We have basically 2
obstructions:

One has

∥
∥ai⌈Hn

T

∥
∥
T
=

∥
∥a

†
i ⌈Hn

T

∥
∥
T
≤

∥
∥R (n+1)

∥
∥

1
2 ,

i.e. ai and a
†
i are not necessarily bounded

This is the case of Canonical Commutation Relation
(CCR) algebra (Bosons).
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3. Ergodic Properties in Yang-Baxter-Hecke Case

In
aia

†
j −

∑

k,l∈J

t ikjl a
†
kal = δij I , i , j ∈ J.

we may have infinite sums.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

In
aia

†
j −

∑

k,l∈J

t ikjl a
†
kal = δij I , i , j ∈ J.

we may have infinite sums.

This case appears, e.g., for Boolean and Monotone
C ∗–algebras...
But we can reach our goal even in this situation.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

To pursue the goal, we need to make another condition:

MT := sup
n∈N

‖R (n)‖ < ∞ .

Then one has that, for each f ∈ H

‖ai‖T = ‖a†i ‖T ≤
√

MT .
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3. Ergodic Properties in Yang-Baxter-Hecke Case

To pursue the goal, we need to make another condition:

MT := sup
n∈N

‖R (n)‖ < ∞ .

Then one has that, for each f ∈ H

‖ai‖T = ‖a†i ‖T ≤
√

MT .

The uniform boundedness above is satisfied in many cases of
interests (e.g. Boolean and Monotone).
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3. Ergodic Properties in Yang-Baxter-Hecke Case

To pursue the goal, we need to make another condition:

MT := sup
n∈N

‖R (n)‖ < ∞ .

Then one has that, for each f ∈ H

‖ai‖T = ‖a†i ‖T ≤
√

MT .

The uniform boundedness above is satisfied in many cases of
interests (e.g. Boolean and Monotone).
Remark The condition above is only sufficient for the
boundedness of the annihilators!
For Fermions creators and annihilators are bounded but the
operators R (n) are not uniformly bounded.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Take:
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Take:

RT := ∗ − alg{ai | i ∈ Z}
‖·‖

GT := ∗ − alg{ai + a
†
i | i ∈ Z}

‖·‖
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Take:

RT := ∗ − alg{ai | i ∈ Z}
‖·‖

GT := ∗ − alg{ai + a
†
i | i ∈ Z}

‖·‖

We suppose the unitary ei 7→ ei+1, i ∈ Z acts as Bogoliubov
automorphisms αn, n ∈ Z on RT by

α(ai ) := ai+1 , i ∈ Z

Then it acts also on GT by restriction.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Problem: the C ∗-dynamical systems (RT , α) and (GT , α)
enjoy some strong ergodic property?
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Problem: the C ∗-dynamical systems (RT , α) and (GT , α)
enjoy some strong ergodic property?

What we already know:
For a Yang-Baxter operator T with ‖T‖ < 1, Dykema-Fidaleo
proved that these C ∗-algebras are uniquely mixing for the shift
with the vacuum expectation as the only invariant state.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Problem: the C ∗-dynamical systems (RT , α) and (GT , α)
enjoy some strong ergodic property?

What we already know:
For a Yang-Baxter operator T with ‖T‖ < 1, Dykema-Fidaleo
proved that these C ∗-algebras are uniquely mixing for the shift
with the vacuum expectation as the only invariant state.
But for a Yang-Baxter-Hecke operator: ‖T‖ ≥ 1...
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on

H = ℓ2(Z). Suppose that
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on

H = ℓ2(Z). Suppose that

the sum below is finite:

aia
†
j −

∑

k,l

t ikjl a
†
kal = δij I
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on

H = ℓ2(Z). Suppose that

the sum below is finite:

aia
†
j −

∑

k,l

t ikjl a
†
kal = δij I

MT < +∞.
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on

H = ℓ2(Z). Suppose that

the sum below is finite:

aia
†
j −

∑

k,l

t ikjl a
†
kal = δij I

MT < +∞.

the group Z acts as a group of automorphisms on RT
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3. Ergodic Properties in Yang-Baxter-Hecke Case

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on

H = ℓ2(Z). Suppose that

the sum below is finite:

aia
†
j −

∑

k,l

t ikjl a
†
kal = δij I

MT < +∞.

the group Z acts as a group of automorphisms on RT

Then the dynamical system (RT , α) is uniquely mixing with

〈·Ω,Ω〉 as the unique invariant state.



On Ergodic
Properties for
Yang-Baxter-

Hecke
Quantization

3. Ergodic Properties in Yang-Baxter-Hecke Case

Theorem (C. -Fidaleo -Lu)

Let T be a Yang-Baxter-Hecke selfadjoint operator on

H = ℓ2(Z). Suppose that

the sum below is finite:

aia
†
j −

∑

k,l

t ikjl a
†
kal = δij I

MT < +∞.

the group Z acts as a group of automorphisms on RT

Then the dynamical system (RT , α) is uniquely mixing with

〈·Ω,Ω〉 as the unique invariant state.

The result above holds for (GT , α) by restriction.
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4. Stationary states on Monotone C
∗-algebra

For k ≥ 1

Ik := {(i1, i2, . . . , ik) | i1 < i2 < · · · < ik , ij ∈ Z},

and for k = 0, we take I0 := {∅}, ∅ being the empty sequence.

The Hilbert space Hk := ℓ2(Ik) is the k-particles space.
The 0-particle space is identified with C.

The monotone Fock space is Fm =
⊕∞

k=0 Hk .
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4. Stationary states on Monotone C
∗-algebra

Given an increasing sequence (i1, i2, . . . , ik) of integers, we take
e(i1,i2,...,ik) a vector of the canonical basis of ℓ2(Ik).

The monotone creation and annihilation operators are, for any
i ∈ Z,

a
†
i (e(i1,i2,...,ik)) :=

{
e(i ,i1,i2,...,ik) if i < i1 ,

0 otherwise

ai(e(i1,i2,...,ik)) :=

{
e(i2,...,ik) if k ≥ 1 and i = i1 ,

0 otherwise

Note ‖a†i ‖ = ‖ai‖ = 1.
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4. Stationary states on Monotone C
∗-algebra

a
†
i and ai are mutually adjoint and satisfy the following relations
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4. Stationary states on Monotone C
∗-algebra

a
†
i and ai are mutually adjoint and satisfy the following relations

a
†
i a

†
j = ajai = 0 if i ≥ j ,

aia
†
j = 0 if i 6= j .
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4. Stationary states on Monotone C
∗-algebra

a
†
i and ai are mutually adjoint and satisfy the following relations

a
†
i a

†
j = ajai = 0 if i ≥ j ,

aia
†
j = 0 if i 6= j .

In addition, the following commutation relation

aia
†
i = I −

∑

k≤i

a
†
kak

is also satisfied.
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4. Stationary states on Monotone C
∗-algebra

The C ∗-algebra Rm and its subalgebra Gm acting on Fm, are
the unital C ∗-algebras generated by the annihilators
{ai | i ∈ Z}, and the selfadjoint part of annihilators {si | i ∈ Z}
respectively, with si := ai + a+i .
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4. Stationary states on Monotone C
∗-algebra

The C ∗-algebra Rm and its subalgebra Gm acting on Fm, are
the unital C ∗-algebras generated by the annihilators
{ai | i ∈ Z}, and the selfadjoint part of annihilators {si | i ∈ Z}
respectively, with si := ai + a+i .

Fact The shift α acts on both of them and the sum in
”commutation relations” is infinite... In fact
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4. Stationary states on Monotone C
∗-algebra

...”problem”
(Rm, α) is not uniquely ergodic (so not uniquely mixing) w.r.t.
the fixed point subalgebra.
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4. Stationary states on Monotone C
∗-algebra

...”problem”
(Rm, α) is not uniquely ergodic (so not uniquely mixing) w.r.t.
the fixed point subalgebra.
Let i ∈ Z. For n → +∞, αn(aia

†
i ) ↓ PΩ and so, strongly,

lim
n→∞

1

n

n−1∑

k=0

αk(aia
†
i ) = PΩ
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4. Stationary states on Monotone C
∗-algebra

...”problem”
(Rm, α) is not uniquely ergodic (so not uniquely mixing) w.r.t.
the fixed point subalgebra.
Let i ∈ Z. For n → +∞, αn(aia

†
i ) ↓ PΩ and so, strongly,

lim
n→∞

1

n

n−1∑

k=0

αk(aia
†
i ) = PΩ

And the convergence is not in norm, since

1 ≥

∥
∥
∥
∥

1

n

n−1∑

k=0

αk(aia
†
i )−PΩ

∥
∥
∥
∥
≥

∥
∥
∥
∥

(
1

n

n−1∑

k=0

αk(aia
†
i )−PΩ

)

e(i+n)

∥
∥
∥
∥
= 1 .



On Ergodic
Properties for
Yang-Baxter-

Hecke
Quantization

4. Stationary states on Monotone C
∗-algebra

Main goal now: classification of shift invariant states. How?
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4. Stationary states on Monotone C
∗-algebra

Main goal now: classification of shift invariant states. How?

A possibility: find the structure of Rm and infer in some way
the result.
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4. Stationary states on Monotone C
∗-algebra

Main goal now: classification of shift invariant states. How?

A possibility: find the structure of Rm and infer in some way
the result.
We gave standard reduced forms for words in in the ∗-algebra
generated by monotone commutation relations (and further we
obtained also a basis)
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4. Stationary states on Monotone C
∗-algebra

Main goal now: classification of shift invariant states. How?

A possibility: find the structure of Rm and infer in some way
the result.
We gave standard reduced forms for words in in the ∗-algebra
generated by monotone commutation relations (and further we
obtained also a basis)

Proposition

The the fixed-point subalgebra RZ
m w.r.t. the action of the

shift α is trivial: RZ
m = CI .
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4. Stationary states on Monotone C
∗-algebra

Then there is more than a single stationary state. How many?
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4. Stationary states on Monotone C
∗-algebra

Then there is more than a single stationary state. How many?
Fact

Rm = Am + CI .

...S(Rm) is the one-point compactification of all the positive
functionals on Am with norm less than or equal to 1.
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4. Stationary states on Monotone C
∗-algebra

Then there is more than a single stationary state. How many?
Fact

Rm = Am + CI .

...S(Rm) is the one-point compactification of all the positive
functionals on Am with norm less than or equal to 1.

The state at infinity

ω∞(X + cI ) := c , X ∈ Am , c ∈ C ,

provides such a ”point at infinity”. It is shift-invariant.
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4. Stationary states on Monotone C
∗-algebra

Then there is more than a single stationary state. How many?
Fact

Rm = Am + CI .

...S(Rm) is the one-point compactification of all the positive
functionals on Am with norm less than or equal to 1.

The state at infinity

ω∞(X + cI ) := c , X ∈ Am , c ∈ C ,

provides such a ”point at infinity”. It is shift-invariant.
The monotone vacuum

ω(Y ) := 〈YΩ,Ω〉 , Y ∈ Rm ,

is shift-invariant
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4. Stationary states on Monotone C
∗-algebra

The structure of such invariant states
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4. Stationary states on Monotone C
∗-algebra

The structure of such invariant states

Theorem (C.-Fidaleo-Lu)

The weak ∗-compact set of shift-invariant states on Rm is

given by

SZ(Rm) = {(1− γ)ω∞ + γω | γ ∈ [0, 1]} .
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4. Stationary states on Monotone C
∗-algebra

The structure of such invariant states

Theorem (C.-Fidaleo-Lu)

The weak ∗-compact set of shift-invariant states on Rm is

given by

SZ(Rm) = {(1− γ)ω∞ + γω | γ ∈ [0, 1]} .

For the subalgebra of selfadjoints:

Theorem (C.-Fidaleo-Lu)

We have Gm = Rm.
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5. The case of Boolean C
∗-algebra

Let H be a complex Hilbert space. Recall that the Boolean
Fock space over H is given by Γ(H) := C⊕H, where the
vacuum vector Ω is (1, 0).
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5. The case of Boolean C
∗-algebra

Let H be a complex Hilbert space. Recall that the Boolean
Fock space over H is given by Γ(H) := C⊕H, where the
vacuum vector Ω is (1, 0).
On Γ(H) the creation and annihilation operators, for f ∈ H are

a†(f )(α⊕g) := 0⊕αf , a(f )(α⊕g) := 〈g , f 〉H⊕0, α ∈ C, g ∈ H.

They are mutually adjoint, and satisfy the following relations

a(f )a†(g) = 〈g , f 〉PΩ = 〈g , f 〉(I −
∑

j∈J

a†(ej)a(ej )) ,

a(f )a(g) = a†(f )a†(g) = 0 , f , g ∈ H

for any orthonormal basis {ej | j ∈ J} of the involved Hilbert
space.
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5. The case of Boolean C
∗-algebra

Put H = ℓ2(Z), RBoole the C ∗-algebra generated by boolean
annihilators and GBoole that generated by position operators.

If K(Γ(ℓ2(Z)) denotes the compact linear operators on the
Boolean Fock, one has

Proposition (C.-Fidaleo)

K(Γ(ℓ2(Z)) + CI = RBoole = GBoole = b .

The shift, as well as the permutations PZ naturally act on b as
Bogoliubov automorphisms.
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5. The case of Boolean C
∗-algebra

Notice that here too the sum is infinite as soon as
dim(H) = ∞. But, one reaches the goal also in this case. In
fact
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5. The case of Boolean C
∗-algebra

Notice that here too the sum is infinite as soon as
dim(H) = ∞. But, one reaches the goal also in this case. In
fact
Denote bPZ , bZ the fixed-point subalgebras w.r.t. the actions of
the permutations and the shift, that is the exchangeable and
the invariant C ∗-subalgebra, respectively. We get

Proposition (C.-Fidaleo-Lu)

For the fixed-point subalgebras bPZ , bZ, one has

b
PZ = b

Z = CPΩ ⊕ CP⊥
Ω ,

where PΩ = aia
†
i denotes the orthogonal projection onto the

linear span of Ω.
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5. The case of Boolean C
∗-algebra

Denote E the conditional expectation onto bZ given by

E (A + bI ) := 〈AΩ,Ω〉PΩ + bI , A ∈ K(ℓ2(Z)) , b ∈ C .

It is invariant both for the action of the shift and the
permutations.



On Ergodic
Properties for
Yang-Baxter-

Hecke
Quantization

5. The case of Boolean C
∗-algebra

Denote E the conditional expectation onto bZ given by

E (A + bI ) := 〈AΩ,Ω〉PΩ + bI , A ∈ K(ℓ2(Z)) , b ∈ C .

It is invariant both for the action of the shift and the
permutations.

Proposition (C.-Fidaleo-Lu)

The C ∗-dynamical system (b, α) is EZ-mixing with E = EZ is

the unique invariant conditional expectation onto the

fixed-point subalgebra.
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5. The case of Boolean C
∗-algebra

Denote E the conditional expectation onto bZ given by

E (A + bI ) := 〈AΩ,Ω〉PΩ + bI , A ∈ K(ℓ2(Z)) , b ∈ C .

It is invariant both for the action of the shift and the
permutations.

Proposition (C.-Fidaleo-Lu)

The C ∗-dynamical system (b, α) is EZ-mixing with E = EZ is

the unique invariant conditional expectation onto the

fixed-point subalgebra.

So, even if the fixed-point subalgebra is non trivial the
EZ-mixing property for the shift holds. It is the first case in our
setting we find a strong mixing condition with a unique non

trivial invariant: E = EZ.
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5. The case of Boolean C
∗-algebra

For the symmetric and stationary states, one has

Proposition (C.-Fidaleo-Lu)

SZ(b) = SPZ
(b) = {γωΩ + (1− γ)ω∞ | γ ∈ [0, 1]} ,

where

ω∞(A + bI ) := b , A ∈ K(Γ(ℓ2(Z))) , b ∈ C .

and ωΩ is the vacuum state.
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5. The case of Boolean C
∗-algebra

For the symmetric and stationary states, one has

Proposition (C.-Fidaleo-Lu)

SZ(b) = SPZ
(b) = {γωΩ + (1− γ)ω∞ | γ ∈ [0, 1]} ,

where

ω∞(A + bI ) := b , A ∈ K(Γ(ℓ2(Z))) , b ∈ C .

and ωΩ is the vacuum state.

Hence, as in the monotone case, we have a ”segment”,
although the situation is completely different...
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Conclusions

For C ∗-dynamical systems considered, we found:
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Conclusions

For C ∗-dynamical systems considered, we found:

AZ ergodicity stat/symm

Fermi C1I NO CCH product states

Monotone C1I NO ≃ segment / ”No”

Boolean CP# ⊕ CP⊥
# YES ≃ segment
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Conclusions

For C ∗-dynamical systems considered, we found:

AZ ergodicity stat/symm

Fermi C1I NO CCH product states

Monotone C1I NO ≃ segment / ”No”

Boolean CP# ⊕ CP⊥
# YES ≃ segment

Other cases already studied not covered in the talk

For CCR (better Weyl algebra) and tensor product: not
uniquely mixing. The symmetric are the closed convex hull of
product states.
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