Hybrid imaging in colorectal & esophageal cancer

Colorectal Cancer and FDG PET/CT
Clinical background

- Cancer of the colon and rectum is one of the most common (3rd) malignancy in developed countries
- **Adenocarcinoma**: this is the most common type of colorectal cancers (98%)
- The single most important **prognostic indicator** of colorectal carcinoma is the **extent of the tumor at the time of diagnosis**
- 40-50% of patients presents with liver metastasis
- The only **curative treatment** of liver metastasis is surgery

TNM

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T0</td>
<td>N0</td>
<td>M0</td>
<td>>90%</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
<td>80-95%</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
<td>65-75%</td>
</tr>
<tr>
<td>III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
<td>50-60%</td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
<td>25-50%</td>
</tr>
</tbody>
</table>

Note: TNM staging system for colorectal cancer. T represents tumor size and stage, N represents lymph node involvement, and M represents metastasis.
FDG PET/CT at staging

- **Low sensitivity** (43%) of FDG PET/CT for local and loco regional evaluation (Lu et al. *Metanalysis, Nucl. Med. Comm* 2012)
- FDG-PET/CT is usually not required if conventional imaging is normal
- FDG-PET/CT is usually not required if conventional imaging has already demonstrated widespread metastatic disease and the patient would not be eligible for radical treatment

FDG PET/CT at staging with suspect metastasis

- If conventional imaging (CT/MR) detects **synchronous liver metastases** and the patient could be considered for curative liver surgery, FDG PET/CT is useful
- FDG PET should also be performed if staging CT or MRI scan detects **nodal metastases in the common iliac region** or equivocal findings such as indeterminate pulmonary, liver or bony lesions

\[\begin{align*}
\text{Niekel et al, Radiology 2010} & \quad \text{Maffione et al, EJNMMI 2015} \\
\text{Metanalysis (39 studies, 3391 patients)} & \quad \text{Metanalysis (18 studies, 1059 patients)}
\end{align*}\]

- Diagnostic of colorectal liver metastasis in patients who have not previously undergone treatment
- On a per-lesion basis the sensitivity estimates of CT, MR imaging, and FDG PET were 74.4%, 80.3%, and 81.4%, respectively
- On a per-patient basis, the sensitivities of CT, MR imaging, and FDG PET were 83.6%, 88.2%, and 94.1%, respectively
- Specificity estimates were comparable

“Aim of the review was to obtain the diagnostic performance values of 18F-FDG PET for the detection and staging of liver metastases in patients with colorectal cancer (CRC)”

- FDG PET/CT is highly accurate for the detection of liver metastases on a patient basis but less accurate on a lesion basis. Compared to MRI, PET is less sensitive but more specific and affects the management of about one-quarter of patients.
FDG PET/CT at staging with suspect metastasis

- If conventional imaging (CT/MR) detects synchronous liver metastases and the patient could be considered for curative liver surgery, FDG PET/CT is useful
- FDG PET should also be performed if staging CT or MRI scan detects nodal metastases in the common iliac region or equivocal findings such as indeterminate pulmonary, liver or bony lesions

FDG PET/CT for surgical planning

- The liver is the most common site of metastasis
- No long-term survival with untreated liver metastases; 5-year survival 30-40% with hepatectomy
- Increasing the accuracy of preoperative staging may avoid the potential morbidity of unnecessary laparotomy
- FDG PET/CT is more sensitive than CT and MRI at identifying extrahepatic disease
- FDG PET/CT leads to Upstaging
- Unnecessary surgery can be avoided in 20-40% of patients with liver metastases

Adam et al, HPB, 2013
FDG PET/CT for suspicion of recurrence

The pooled estimates of sensitivity and specificity of FDG-PET/CT in the detection of tumor recurrence in CRC patients with elevated CEA were 94.1% (95% CI, 89.4–97.1 %) and 77.2% (95% CI, 66.4–85.9%) respectively.

- 18FDG-PET/CT should be performed in patients with rising tumour markers (e.g. CEA) and/or being clinically suspicious of recurrence but with negative or equivocal findings on other imaging.
FDG PET/CT for suspicion of recurrence

Surveillance

NCCN Guidelines Version 2.2017 Colon Cancer

<table>
<thead>
<tr>
<th>PATOLOGIC STAGE</th>
<th>SURVEILLANCE</th>
</tr>
</thead>
</table>
| Stage I | Colonoscopy at 1 y
- If advanced adenoma, repeat in 1 y
- If no advanced adenoma, repeat in 3 y, then every 5 y if
 - History and physical every 3-6 mo for 2 y, then every 6 mo for a total of 3 y
 - CEA every 3-6 mo for 2 y, then every 6 mo for a total of 3 y
 - Chest/abdominal/pelvic CT scan every 5-12 mo (category 2b) for frequency <3 y and 1 y, then every 6-12 mo for a total of 5 y
 - Colonoscopy* in 1 y except if no preoperative colonoscopy due to obstructing lesion, colonoscopy in 3-6 mo
 - If advanced adenoma, repeat in 1 y
- PET/CT scan is not recommended
- See Principles of Surveillance (COL-G1) |
| Stage II, III | Colonoscopy at 1 y
- If advanced adenoma, repeat in 1 y
- If no advanced adenoma, repeat in 3 y, then every 5 y if
 - History and physical every 3-6 mo for 2 y, then every 6 mo for a total of 3 y
 - CEA every 3-6 mo for 2 y, then every 6 mo for a total of 3 y
 - Chest/abdominal/pelvic CT scan every 5-12 mo (category 2b) for frequency <3 y and 1 y, then every 6-12 mo for a total of 5 y
 - Colonoscopy* in 1 y except if no preoperative colonoscopy due to obstructing lesion, colonoscopy in 3-6 mo
 - If advanced adenoma, repeat in 1 y
 - If no advanced adenoma, repeat in 3 y, then every 5 y if
 - See Principles of Surveillance (COL-G1) |
| Stage IV | Colonoscopy at 1 y
- If advanced adenoma, repeat in 1 y
- If no advanced adenoma, repeat in 3 y, then every 5 y if
 - History and physical every 3-6 mo for 2 y, then every 6 mo for a total of 3 y
 - CEA every 3-6 mo for 2 y, then every 6 mo for a total of 3 y
 - Chest/abdominal/pelvic CT scan every 5-12 mo (category 2b) for frequency <3 y and 1 y, then every 6-12 mo for a total of 5 y
 - Colonoscopy* in 1 y except if no preoperative colonoscopy due to obstructing lesion, colonoscopy in 3-6 mo
 - If advanced adenoma, repeat in 1 y
 - If no advanced adenoma, repeat in 3 y, then every 5 y if
 - See Principles of Surveillance (COL-G1) |

PET/CT scan is not recommended.
Treatment monitoring with FDG PET/CT

- Not to be considered out of a clinical trial
- But more and more studies...

- de Geus-Oei LF, J Nucl Med. 2009
- Engels B, Ann Oncol. 2011
- de Geus-Oei LF, Ann Oncol. 2008
- Skougaard, J Nucl Med 2013

Treatment monitoring: impact on long term outcomes

- 18F-FDG PET/CT-based treatment response evaluation in locally advanced rectal cancer: a prospective validation of long-term outcomes

 Locally advanced rectal cancer (cT3-4 ou cN+)
 FDG PET 5 weeks after end of RT

 - Prediction of histological response
 - Significant differences in OS and DFS between PET responders and non responders
 - Delta SUV cut-off 65 %

Incidental focal colonic FDG uptake

- Incidence of unexpected colorectal FDG uptake of 1.6% (95% CI: 1.4%–1.7%).
- However, the risk of malignancy and pre-malignancy is quite high, calculated to be 61.5% (95% CI: 55.6%–67.1%) in the group of 286 patients with further evaluation.
- Thus, refer patient to colonoscopy

64yo man restaging laryngeal carcinoma. Incidental uptake confirmed to be rectal adenocarcinoma

Pitfalls & artefacts

Misregistration

A. Sasikumar, 2017
Pitfalls & artefacts

Metformin

A. Sasikumar, 2017

Pitfalls & artefacts

4D respiratory gating
99mTc-mebrofenin SPECT/CT for liver function assessment before large hepatectomy in patients with liver metastasis from CCR

- Dynamic acquisition (anterior view) started immediately after injection of 99mTc-mebrofenin. Images over 6 minutes.

- Homogenous uptake of radiotracer on the whole liver

- Increase of uptake in contralateral liver (blue arrow)

- Whole liver clearance: 14.5 %/min
- Remnant liver (seg. II & III) clearance: 3.5 %/min

- Whole liver clearance: 11.6 %/min
- Remnant liver (seg. II & III) clearance: 6.1 %/min

- High increase of remnant liver function (+74%)
- Slight decrease of the whole liver function (-21%)
Extended liver venous deprivation before major hepatectomy induces marked and very rapid increase in future liver remnant function

Esophageal Cancer and FDG PET/CT
Anatomy

TNM

T, N, and M status and histologic grade definitions for esophagus and esophagogastric junction cancer in the 8th edition of the American Joint Committee on Cancer (AJCC) Cancer Staging Manual
• Are considered as **regional lymph nodes** any paraesophageal lymph node, including cervical or celiac node
• Only sus-clavicular and lomboaortic nodes are M1

T: N, and M status and histologic grade definitions for esophagus and esophagogastric junction cancer in the 8th edition of the American Joint Committee on Cancer (AJCC) Cancer Staging Manual

Staging

• **18F-FDG PET** does not clearly offers a significant benefit in nodal staging over EUS and CT (a pooled sensitivity and specificity with PET of 51% and 84%, respectively in a meta-analysis: van Westreenen HL, JCO, 2004)

• Significant FDG uptake in the primary lesion may obscure increased uptake in loco regional nodes

• FDG PET is particularly useful as a complementary imaging tool for **detecting distant metastases**, which are quite common in patients with esophageal cancer.
 • A meta-analysis showed that the sensitivity and specificity for detecting distant metastases were 71% and 93%, respectively, for 18F-FDG PET and 52% and 91%, respectively, for CT (van Vliet EP, Br J Cancer, 2008)
Staging

Thomas W. Barber, JNM, 2012

Staging

NCCN Guidelines Version 4.2017
Esophageal and Esophagogastric Junction Cancers

WORKUP

- H&P
- Upper GI endoscopy and biopsy
- Chest/abdominal CT with oral and IV contrast
- PET/CT evaluation if no evidence of N1 disease
- PET/CT with oral and IV contrast
- Endoscopic ultrasound (EUS), if no evidence of N1 unresectable disease
- Endoscopic resection (ER) is essential for the accurate staging of early-stage cancers (T1a or T1b)
- Biopsy of metastatic disease as clinically indicated
- MSI/HMS/MR testing if metastatic disease is documented/unknown
- Her2 and PD-L1 testing if metastatic adenocarcinoma is documented/unknown
- Bronchoscopy, if tumor is at or above the carina with no evidence of N1 disease
- Assign Swartz category
- Nutritional assessment and counseling
- Smoking cessation advice, counseling, and pharmacotherapy as indicated
- Screen for family history

CLINICAL STAGE

- Squamous cell carcinoma
 - See ESOPH-2
- Adenocarcinoma
 - See ESOPH-11
- Squamous cell carcinoma
 - See ESOPH-10
- Adenocarcinoma
 - See ESOPH-19

HISTOLOGIC CLASSIFICATION

Steps I-III (locoregional disease)

Steps IV (metastatic disease)
FDG PET/CT has an impact on clinical management

This multicenter prospective cohort study of 491 patients showed that PET/CT led to clinically significant changes in stage for 24% of patients.

FDG PET/CT has an impact on clinical management

This multicenter prospective cohort study of 491 patients showed that PET/CT led to clinically significant changes in stage for 24% of patients.

PET/CT changed management in 47 of 139 patients (34%).

Initial FDG PET/CT has a prognostic impact

Suzuki A, Cancer, 2011

- High FDG Uptake (SUV_{max} and MTV) has been described as pejoratively correlated to disease free and overall survival.

Bütof R, JNucl Med 2015

FDG PET/CT for treatment response assessment

Suzuki A, Cancer 2011

- Modifications of quantitative FDG PET parameters after completion of radiochemotherapy is correlated to histological response or may allow to detect recurrent disease.
FDG PET/CT for treatment response assessment

Early assessment after neoadjuvant therapy

- The MUNICON Study

- 119 patients with locally advanced adenocarcinoma of the oesophagogastric junction

Impact in OS and EFS

Lordick, Lancet Oncol 2007
Detection of recurrence

Diagnostic Performance of 18F-FDG PET and PET/CT for the Detection of Recurrent Esophageal Cancer After Treatment with Curative Intent: A Systematic Review and Meta-Analysis

Lucas Greiner1,2, Peter N.V. van Rooijen3,4, Johannes B. Richter5, Marini G.E.H. Land1, Gert J. Mijnheer1, Marco van Welken1, Jelle F. Reuten6, and Richard van Hillegersberg1

- FDG PET and PET/CT are reliable imaging modalities, with a high sensitivity and moderate specificity for detecting recurrent esophageal cancer.
- The use of 18F-FDG PET or PET/CT particularly allows for a minimal false negative rate.
- However, histopathologic confirmation of PET/CT suspected lesions remains required, because a considerable false positive rate is noticed.
Radiotherapy Planning

- Impact on GTV delineation
- However, needs further investigations

Comparison of Tumor Glucose Metabolism Before and After Artificial Nutrition (PETANC) in patients with esophageal cancer

NCT02382237

Preliminary results: no impact of nutrition on tumor glucose metabolism
Summary

Colorectal Cancer and FDG PET/CT

- Surgical planning of metastasis
- Detection of recurrences
- Focal incidental uptake

Esophageal Cancer and FDG PET/CT

- Initial Staging
- Treatment response assessment

THANK YOU FOR YOUR ATTENTION