Intra-arterial Radionuclide therapy

Prof John Buscombe

Disclosures

- Consultancies
 - Navidea
 - Eli Lilly
 - MSD
- Paid lectureships
 - Sirtex
 - BTG
 - Bayer

Who am I

- First appointed Consultant in Nuclear
 Medicine Royal Free Hospital, London 1994
- Cambridge since 2010
- Have performed >500 I-131 Lipiodol therapies
- Help set up IAEA Re-188 Lipiodol project
- Over 70 SIRTS
- Wrote file for licensing SIR-Spheres[®] and TheraSphere[®]
- Published 12 papers on liver i/a treatment

Plan

- Trying to treat CRC liver mets with radionuclide therapy-A5B7
- Pioneering I/A radionuclide therapy Lipiodol in HCC
- Y-90 vs I-131
- Use of Y-90 particulates in primary and secondary liver cancers-CRC
- Guidelines

RIT colon cancer

- Renda et al 1987 B72.3 (mouse IgG)
- Chung et al 1993 CEA-79 (mouse IgG)
- Pedley et al 1995 MFE-23 (humanised scVF)
- Green et al 1997 A5B7 (mouse IgG)
- Murray et al 2004 CC-49 (mouse IgG & ScVF)

Movement of A5B7 over time in SW1222 xenografts

04DB SPECT Images A5B7 Uptake

A new idea the double whammy

5 French catheter in the RHA

Uptake of Lipiodol in HCC

Tc-99m colloid scan showing defect at site of Liver cancer

Scan performed after I-131 Lipiodol therapy in same patient showing uptake only in the liver cancer

Lipiodol in HCC cell

Battacharya et al Cancer 1995

- ► Randomised trial comparing epirubicin Lipiodol and I-131 Lipiodol
- ▶86 patients with epirubirin
- ► 37 I-131 Lipiodol
- ► Imaging at 48 hours to determine residence
- ► Response rate and survival measured

Response rate

- ► Measured by change in size of tumour on CT
- Any new tumours counted as progression
- ► All patients in DP when treatment given

Survival

➤ Survival determined at 6, 12 and 24 months

► In this patient group 50% **50%** survival at 6 and 0% at 12 months expected

Publication	Intervention	Survival				Liver disease	Tumor extent	Comment/misc.
		6-m	1-year	2-year	Sign			
Raoul J Nucl Med 1994	[¹³¹ I]Lipiodol (60 mCi) via hepatic artery × 4 over 1 year: n=14 No anticancer rx: n=13	48%			ρ<0.01	81% etoh 48% Child's B 52% Child's A	75% main PVT 25% branch PVT	
Order Int J Radiat Oncol Biol Phys 1991	[131 I]Antiferritin + doxorubicin 15 mg + 5-FU 500 mg q8 wk: n=48 Doxorubicin 60 mg/m ² + 5-FU 500 mg/m ² q3 wk: $n=50$	No dif.			NS	Not stated	No met.	
Bhattacharya Cancer 1995	[¹³¹ I]Lipiodol via hepatic artery: n=11 Lipiodol + epirubicin 75 mg/m ² via hepatic artery: n=17	58% 40%	25% 25%	0% 6%	NS	Child's A and B	No PVT	
Raoul <i>Hepatology</i> 1997	[131 I]Lipiodol via hepatic artery \times 5 over 18 m: n =65 TACE (including cisplatin 70 mg) \times 5 over 18 m: n =64	69% 66%	39% 42%	22%	NS	74% etoh 75% Child's A	50% unifocal 24% tumor involving >50% of liver volume	27% life-threatening toxicity and 9% fatal toxicity in TACE arm

TACE=transarterial chemoembolization; m=month; NS=non-significant; HBV=hepatitis B virus; HCV=hepatitis C virus; PVT=portal vein invasion/thrombosis; met.=metastatic; etoh=alcohol-induced liver disease; rx=therapy.

J. D. Schwartz and A. S. Beutler. Anticancer Drugs 15 (5):439-452, 2004.

New data

- ► Marelli et al 2009 JNM
- ► Reviewed results of 124 patients treated for HCC, 50 with I-131 Lipiodol 1996=2007
- ► No survival difference between TAE, TACE and I-131 Lipiodol
- ► In patients with PVT
 - Mean survival TAE/TACE = 171 days
 - Mean survival I-131 Lipiodol = 454 days
- ► In patients with advanced disease
 - Mean survival TAE/TACE = 36 days
 - Mean survival I-131 Lipiodol = 363 days

Learning points

- Successful treatment needs teams
 - Oncologist
 - NM Physician
 - NM Physics
 - Interventional Radiologist
- Rare in 1995, much more common now
- Need a bigger bang for our buck-new isotope

Y-90 particulates

2 main types From Australia Y-90 resin balls SIR-Spheres[®] From Canada Y-90 integrated glass balls TheraSphere[®]

Choice of Isotope

Higher beta energy and longer path length of 90Yttrium make it an optimal isotope for radioimmunotherapy

900000000000000000000000000000000000000	radioimmunotherapy		
00000	Properties	⁹⁰ Yttrium	¹³¹ lodine
	Energy	Beta emitter (2.3 MeV)	Gamma (0.36 MeV) Beta (0.6 MeV)
	Path length	X ₉₀ 5 mm	X ₉₀ 1 mm
	Administration	Outpatient	Inpatient or restrictions to protect family/ environment
	Half-life	64 hours	192 hours
V / V V V V V V V V V V V V V V V V V V	Urinary Excretion	Minimal 5% 7 days	Extensive/variable 48% - 90% in 48 hours

Y-90 particulates

- Non resectable liver tumour is a management challenge
- External beam radiation unable to deliver an effective dose (90Gy for most adenocarcinoma) without damaging surrounding parenchyma
- Y-90 is a beta emitter, deliver a target dose of > 100Gy, penetrates about 11mm in soft tissue
- Half life 64.1 hour

How do you give SIRT

- ▶ Day 1
- Need to block off collaterals including GDA with coils
- Prevents Sir spheres going to stomach or pancreas
- ► Inject 80-100MBq Tc-99m MAA into radiological catheter and flush line
- ► Image to determine shunt
- ► Also consider SPECT/CT

Removing collaterals

Calculating shunting

- ▶ 2 main problems with SIRT
- ► If too much shunt to lung leads to radiation pneumonitis
- ► Also in some patients shunting to small bowel/stomach often via small vessels
- ► All can be calculated from MAA scan
- ► In both TheraSphere® and Sir-Spheres® lung shunting >10% can modify results

Shunting

No shunting

27% shunting

Finding extra-hepatic uptake

Tc-99m MAA shows uptake in a falciform artery

Y-90 SIRT

Picking the activity for SIRT

- ▶ 3 methods
 - Individual dosimetry based on MAA scan +/- SPECT keep lung dose below 30Gy
 - Semi empirical
 - Degree of shunting
 - ► Size of patient-BSA
 - > % liver full of tumour
 - Fully empirical Give 2-3GBq
- ► No good evidence which is best

90Y-microspheres/ Chiesa C. et al. EANM 2010

Courtesy C. Chiesa, Milan

- dose reponse relationship exists for the tumour: importance of EU *Inhomogeneity is different for SIR-Spheres*® *compared to TheraSphere*®
- no clear correlation for toxicity,
 in particular not a clue for well compensated cirrhosis

Pivotal study van hazel JSO 2004

- ► Phase II RCT from Australia
- ▶ 21 patients metastatic CRC
- ><25% liver mets >80% mets in liver
- ► All patients received 4 cycles of 5F-U and leucovorin
- ► Half randomised to additional Y-90 Sir-Spheres

van Hazel et al 2004 Median PFS (p=0.005)

Confirmation

- Hendlisz et al J Clin Onc 2010
- Belgian study phase III 5FU vs 5FU+Y-90 SIRT
- 46 patients with unresectable CRC mets in the liver recruited but 44 assessed
- Median TTP was 2.1 months for 5FU and 4.5 months for 5FU and Y-90 SIRT (those not given SIRT were then given SIRT)
- Median OS was 7.3 months for 5FU vs 10 months for 5-FU and Y-90 SIRT

Time to progression-Hendlisz JCO

One patient's result

TOF PET-CT

Patient with large metastases in the posterior right lobe of the liver but unable to have surgery due to co-morbidities. The FDG PET shows the single liver metastases the Y-90 PET-CT shows the particles surrounding the tumour

SIR-Spheres® trials

Name	Disease	Comparison	Comment
Foxfire	1 st line Ca Colon	5FU+ox+folonic +/- SIRT	Closed
SirFLOX	1 st line Ca Colon	FOLFOX +/- SIRT	Closing
Foxfire global	1 st line Ca Colon	FOLFOX+Bev +/- SIRT	Open
SIRIUM	Melanoma mets	Sorafenib +/- SIRT	Open
Soramic	Unresectable HCC	Sorafenib +/- SIRT	Open

TheraSphere® Manufacturing Process

⁹⁰Y is integrated into the glass matrix:

- Results in high activity per microsphere¹
- High product stability²: ⁹⁰Y is not surface bound
- Minimizes risk of vascular stasis (due to low number of microspheres¹)

1. TheraSphere® US PI 2014. 2. Erbe, E.M., Day, D.E. J Biomed Mat Res (1993) 27; 1301-1308.

TheraSphere® Administration Accessory Kit Design

TheraSphere® Administration Accessory Kit

- •Provides 100% beta shielding to the user through the acrylic shield
- •Is supplied with a 2 L waste jar beta shield for handling and storing post-treatment waste
- •Is designed to contain any potential leaks from the dose vial (although leaks are exceedingly rare)

Adapted from the TheraSphere® website: http://www.therasphere.com.

TheraSphere® Administration Accessory Kit Design

Post treatment

HCC tumour

A Normal Parenchyma
B Fibrosis (Peripheral Rim)
C Complete Necrotic tumour

6 cm Right Lobe HCC

A Baseline CT

B Bremsstrahlung SPECT/CT

C PET/CT

D CT 1 month post treatment

1. Image on left side of slide from Riaz et al Hepatology April 2009 2. Image on right side of slide from Padia et al JVIR 2013

History of Treatment with Y90 Microspheres

- There is a long history of using Y90 microspheres to treat hepatocellular carcinoma
- Blanchard 1989 (Can Assoc Radiol J) liver metastases and hepatoma
 - Treatment with resin Y90 microspheres resulted in liver tumour volume reduction in 7/15 patients, including reduction of >50% observed in 5 patients
 - Mean survival was extended to 62 weeks vs. 30 weeks in Y90-treated and untreated patients, respectively
 - Gastritis or gastric ulceration occurred in 6/15 patients (in 3 cases due to unintended infusion of Y90 into gastric circulation)

Glass Y90 Microspheres for Liver Metastases from CRC: Overview of Studies

Publication	No. of patients	Population	Outcomes	Safety
Sato <i>et al</i> . (2008)	137 (CRC: 51)	 Unresectable, chemorefractory, liver metastases Primary site: CRC (37%), breast (15%), NET (14%), ICC (5%), etc. Median age: 61 yr ECOG PS ≤1 (89%; 0: 60%; 1: 29%) Extrahepatic metastases (50%) Bilobar disease (80%) Tumour burden ≤25% (80%) Median ⁹⁰Y dose: 112.8 Gy 	 ORR (WHO): 42.8% ORR (PET): 90% Median TTP: 462 d (15.4 mo) Median survival: 300 d (10 mo; NET vs. CRC vs. Other: 776 vs. 457 vs. 207 d [25.9 vs. 15.2 vs. 6.9 mo]) 1- and 2-yr OS: 47.8% and 30.9%, respectively 	 Fatigue (56%), abdominal pain (26%), nausea (23%) GI ulcer (n = 1), radiation-induced cholecystitis (n = 1), bilomas (n = 2), hepatic abscess (n = 1)

2. Sato KT, Lewandowski RJ, Mulcahy MF, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres--safety, efficacy, and survival. Radiology 2008;247:507-515.

Glass Y90 Microspheres for Liver Metastases from CRC: Overview of Studies

Publication	No. of patients	Population	Outcomes	Safety
Benson <i>et al.</i> (2013)	151 (CRC: 61)	 Unresectable liver metastases refractory to standard of care therapies Primary site: CRC (40%), NET (29%), Other (31%; incl. ICC) Median age: 66 yr ECOG PS ≤1 (96%; 0: 52%; 1: 44%) Extrahepatic metastases (35%) Bilobar (77%) and multifocal (89%) disease Tumour burden ≤25% (65%) Median ⁹⁰Y dose: 114.3, 115, and 115.7 Gy for CRC, NET, and Other, respectively 	 ORR (RECIST): 5.2%, 20.9%, and 6.5% in CRC, NET, and Other, respectively Median PFS: 2.9 and 2.8 mo in CRC and Other, respectively; not reached in NET (2-yr PFS: 67.4%) Median survival: 8.8 and 10.4 mo in CRC and Other, respectively; not reached in NET (2-yr OS: 79.1%) 	• Pain (12.8%), elevated alkaline phosphatase (8.1%) and bilirubin (5.3%), lymphopenia (4.1%), ascites (3.4%), vomiting (3.4%)

4. Benson AB, Geschwind JF, Mulcahy MF, et al. Radioembolisation for liver metastases: results from a prospective 151 patient multi-institutional phase II study. Eur J Cancer 2013;49:3122-3130.

Glass Y90 Microspheres for Liver Metastases from CRC: Summary Phase II trails

No. of patients ¹⁻⁵	Predominant population studied ¹⁻⁵	Outcomes	Safety ^{1-3,5}
425	 Unresectable liver metastases from CRC refractory to standard of care therapies >60 yr ECOG PS ≤1 (89–96%; 0: 52–70%) Extrahepatic metastases (35–78%) Bilobar disease (77–83%) Tumour burden ≤25% (65–81%) Median ⁹⁰Y dose: 112.8–156 Gy 	 ORR (WHO): 35-43%¹⁻³ ORR (PET): 73-90%¹⁻³ Median survival: 8.8-15.2 mo¹⁻⁵ ORR (RECIST): 5.2%⁴ Median TTP: 15.4 mo⁴ Median PFS: 2.9 mo⁴ 1- and 2-yr OS: 47.8% and 30.9%² 	• Fatigue (48–61%), abdominal pain (19–26%), and nausea (15–23%)

- 1. Lewandowski RJ, Thurston KG, Goin JE, et al. 90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: response to treatment at targeted doses of 135-150 Gy as measured by [18F]fluorodeoxyglucose positron emission tomography and computed tomographic imaging. J Vasc Interv Radiol 2005;16:1641-1651.
- 2. Sato KT, Lewandowski RJ, Mulcahy MF, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres--safety, efficacy, and survival. Radiology 2008;247:507-515.
- 3. Mulcahy MF, Lewandowski RJ, Ibrahim SM, et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009;115:1849-1858.
- 4. Benson AB, Geschwind JF, Mulcahy MF, et al. Radioembolisation for liver metastases: results from a prospective 151 patient multi-institutional phase II study. Eur J Cancer 2013;49:3122-3130.
- 5. Lewandowski RJ, Memon K, Mulcahy MF, et al. Twelve-year experience of radioembolization for colorectal hepatic metastases in 214 patients: survival by era and chemotherapy. Eur J Nucl Med Mol Imaging. 2014:41:1861-1869.

Resin Y90 Microspheres for Liver Metastases from CRC: Summary (Phase III/case control)

No. of patients ⁶⁻⁹	Predominant population studied ⁶⁻⁹	Outcomes	Safety ⁶⁻⁹
240	 Unresectable, chemorefractory liver metastases from CRC >60 yr ECOG PS 0 (71-83%) Extrahepatic metastases (22-48.3%) Bilobar disease (70-90%) Tumour burden ≤25% (40-56%) Median ⁹⁰Y activity: 1.7-1.81 GBq 	 ORR (RECIST): 9.5-41.4%^{6,8-9} Median survival: 7.9-12.6 mo⁶⁻⁹ 1-yr OS: 24-50.4%^{6,9} Median TTP: 3.7-4.5 mo^{6,8} Median TTHP: 5.5 mo⁸ 	Fatigue, abdominal pain, and nausea

- 6. Cosimelli M, Golfieri R, Cagol PP, et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010;103:324-331.
- 7. Evans KA, Richardson MG, Pavlakis N, et al. Survival outcomes of a salvage patient population after radioembolization of hepatic metastases with yttrium-90 microspheres. J Vasc Interv Radiol 2010;21:1521-1526.
- 8. Hendlisz A, Van den Eynde M, Peeters M, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 2010;28:3687-3694.
- 9. Seidensticker R, Denecke T, Kraus P, et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol 2012;35:1066-1073.

TheraSphere® trials

Name	Disease	Comparison	Comment
EPOCH	2nd line Ca Colon	Second line chemo +/- SIRT	Open
STOPHCC	Unresectable HCC	Kinase inhibitor +/- SIRT	Open
Yes-P	Unresectable HCC with PVT	Kinase inhibitor +/- SIRT	Open

Comparison

Factor	Y-90 SIR-Spheres®	Y-90 TheraSphere®
Effect	Radio-embolic	Radiation
Number of particles	++++++++++++++++	+
Calculation of activity	Based on patient size (BSA)	Based on target dosimetry
Activity given	1-3BGq	2-6GBq
Administration time	45-90 minutes	10 minutes
Bilobar treatment	1-2 administrations	2 administrations
Side effects	Liver pain, low grade fever abdominal pain, nausea, jaundice	Liver pain, nausea, jaundice abdominal pain,

Guidelines

- Procedural guidelines
- EANM revised 2011
- Based on safe practice
- Who to treat
 - Liver mets
 - Unresectable
 - ->95% of tumour load
- Reduce lung radiation dose <30Gy

Guidelines

- Clinical
- NICE (UK) 2013 to be considered in CRC mets and Ca cholangio: HCC trials only
- ESMO 2014 SIRT can be considered in patients with unresectable liver mets failing chemo (level IVB)
- ENETS, NANETS AUSNETS consider in liver mets of NETs

Conclusions

- SIRT useful in mets in the liver
- Possible to use in HCC
- Needs good teams to work