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1 Introduction

Da et al. (2017) have highlighted the role of (industrial) electricity usage in fore-

casting stock returns of the United States (U.S.), as well as that of Japan and

the United Kingdom (UK). We build on their research by analyzing the ability

of (commercial, industrial, and residential) electricity sales in forecasting stock

returns volatility of the U.S. over the monthly period of April 1995 to February

2025.

In this regard, we explore the predictive value of electricity sales for stock re-

turns volatility along three dimensions. First, we forecast stock market volatility

at the state-level rather than at the market-wide level. Stock prices for the states

are derived from the sub-aggregation of firm-level stock prices within each of the

50 states considered, based on the location of their headquarters. The under-

lying reason for taking a disaggregated regional perspective is derived from the

premise that core business activities of firms often occur close to their headquar-

ters (Pirinsky and Wang, 2006; Chaney et al., 2012) and, hence, equity prices

should contain a non-negligible regional component, to the extent that investors

overweight local firms in their portfolios (Coval and Moskowitz, 1999, 2001; Ko-

rniotis and Kumar, 2013). Understandably then, the forecasting exercise that we

undertake in this research should be of immense value to investors, given that

accurate forecasts of stock market volatility carry widespread implications for

portfolio selection, derivative pricing, and risk management (Poon and Granger

2003; Rapach et al., 2008; Bollerslev et al., 2018).

Second, rather than relying on model-based estimates of conditional vari-

ance, as can be derived from generalized autoregressive conditional heteroskedas-
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ticity (GARCH) and stochastic volatility (SV) models, we employ a model-free

method of computing monthly realized volatility (RV ) as the square root of the

sum of the available daily-data-based squared returns over a month (Andersen

and Bollerslev, 1998). As a side effect, this realized approach also allows us ac-

commodate for the role of other realized moments (leverage, skewness, kurtosis,

and lower and upper tail risks) in our predictive framework, given widespread

evidence of their importance in forecasting realized volatility of overall, regional

and, sectoral stock returns (Mei et al., 2017; Zhang et al.,2021; Bonato et al.,

2022, 2023a, forthcoming; Somani et al., forthcoming), and hence, control for

possibly important omitted variables.

Third, because we consider realized moments and electricity sales both for the

state and the overall U.S., this leads to inflating the number of predictors in our

forecasting models. Hence, besides using the standard ordinary least squares

(OLS) estimator, we rely on a boosting algorithm, and we conduct an in-depth

analysis of the characteristics of the boosted forecasting models. In addition,

we compare the boosting algorithm with two alternative statistical learning algo-

rithms. Such a comparison helps to put the boosting results into perspective,

but also renders it possible to synthesize the different algorithms by means of

a model-averaging approach. We consider as a first alternative algorithm a for-

ward best predictor selection algorithm, which is conceptually simpler than the

boosting approach. As a second algorithm, we consider random forests, which

yield forecasting models that are structurally more complex than the boosted

forecasting models, but which also accommodate for the possibility of nonlinear-

ity and potential interaction effects among the various predictor variables that
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can enter into our forecasting models.

At this stage, it is important to discuss the underlying theoretical founda-

tion of our analysis, and to put our research into perspective relative to earlier

research. In much significant earlier research, electricity usage data have long

been used to capture business cycles or the general state of the economy (Jorgen-

son and Griliches, 1967; Burnside et al., 1995, 1996; King and Rebello, 2000;

Comin and Gertler, 2006). Electricity usage data are available in high quality

because such data are accurately measured and reported due to the highly reg-

ulated electric utilities subjected to extensive disclosure requirements. Moreover,

electricity usage data inform about the general state of the economy more or less

in real time because electricity is difficult to store and the vast majority of mod-

ern (consumption and production) activities involves electricity usage in one way

or the other (Payne, 2010; Pirlogea and Cicea, 2012; Da et al., 2017; Shahbaz

et al., 2017; Doruk, 2024). Why then can data on electricity usage be useful for

asset pricing? The standard present value model of asset pricing (Shiller, 1981a,

b) predicts that asset market volatility depends on two factors: the variability of

cash flows and the discount factor. Given that business cycles or changing eco-

nomic conditions affect the volatility of variables that reflect future cash flows

through fluctuations in economic uncertainty (Bernanke, 1983; Ludvigson et

al., 2021) and by impacting the discount factor (Schwert, 1989), one can, in gen-

eral, hypothesize a (negative) predictive relationship between electricity usage, in

particular industrial sales reflecting the state of the business cycle, and equity

market volatility.

While Lu et al. (2024) have recently highlighted the role of energy consump-
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tion, including commercial, industrial, and residential electricity sales, in fore-

casting volatility of the aggregate S&P 500 index using various dimension reduc-

tion techniques,1 to the best of our knowledge, ours is the first study to forecast

state-level stock market volatility by utilizing the role of (year-on-year) growth

rates of electricity sales, over and above realized moments (not considered by Lu

et al., 2024), based on various statistical learning algorithms. Nationally aggre-

gated data tends to overlook the heterogeneous nature of the comprising states,

thus, potentially obscuring the true dynamics, unique characteristics, and vari-

ations within specific groups of states involving the nexus between stock returns

volatility and electricity sales. In the process, our paper adds to the burgeoning

literature on forecasting the U.S. state-level stock market volatility based on the

information content of a wide range of state and national predictors, such as

business applications (Bonato et al., 2023a), disaggregated oil shocks (Salisu et

al., 2024), economic conditions and its volatility, energy-market and economic

policy uncertainties (Salisu et al., 2025, forthcoming a; Candila et al., forth-

coming), housing-price and its sentiment sentiment and attention (Salisu et al.,

forthcoming b), and even climate risks (Bonato et al., 2023b).2

In terms of earlier studies on forecasting state-level stock returns volatil-

ity of the U.S., we need to discuss how our research differs from a somewhat

1In-sample evidence for volatility, in addition to returns, at the aggregate- and industry-level
due to industrial usage of electricity, based on a higher-order nonparametric causality model,
has been reported by Bonato et al. (2018). See also Apergis and Payne (2014) for an earlier study
providing evidence of bidirectional causal relationship between electricity consumption and stock
prices in the Organization for Economic Cooperation and Development (OECD) countries.

2In this regard, by using commercial and residential electricity sales, which are impacted
relatively more by weather conditions in comparison to industrial electricity sales, we are able
to incorporate indirectly the role of disaster events emanating from the growing concerns of
the association of physical risks with asset prices in the climate-finance literature (Giglio et al.,
2021).
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related paper by Salisu et al. (2025) mentioned above. This paper utilized the

GARCH-mixed data sampling (MIDAS) framework to forecast the daily volatility of

state-level stock returns of the U.S., based on a corresponding weekly economic

conditions index (ECI), and its volatility. These indexes of economic conditions,

as developed by Baumeister et al. (2024), apply a mixed-frequency dynamic fac-

tor model (DFM), to combine weekly, monthly, and quarterly data on mobility

measures, labor market indicators, real economic activity (including electricity

consumption), expectations measures, financial indicators, and household in-

dicators. Besides highlighting the role of the volatility of the ECI, capturing

economic uncertainty, in being a strong forecaster of state-level equity market

volatility, these authors also depict the importance of the level of the ECI in pro-

ducing forecasting gains for stock returns volatility of the states. While the ECI

provides a broad high-frequency metric of business cycles for the US states, the

fact that it contains data of various sectors and multiple frequencies, it, unlike

electricity sales used by us, cannot necessarily be considered a real-time proxy

for the state of the economy. This, in turn, is likely to over-emphasize its role in

the out-of-sample predictability of the stock returns volatility of the U.S. states,

more so because the univariate predictor-based GARCH-MIDAS approach that

Salisu et al. (2025) use could possibly be suffering from a omitted-variable-bias

by excluding the importance of state and market moments.

By analyzing for the first time the role of electricity sales for state-level U.S.

stock market volatility, we also add to the extant literature on forecasting eq-

uity returns volatility of the U.S. based on a wide array of linear and nonlinear

econometric models and economic, financial, and behavioral predictor variables.
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Though beyond the scope of our reserarch, the reader is referred to Salisu et al.

(2022) and Segnon et al. (2023) for comprehensive reviews of this literature.

In order to get to our empirical findings, we organize the rest of this research

as follows. In Section 2, we provide a description of the data we use in our study,

while we outline in Section 3 our methods. In Section 4, we present our empirical

results. In Section 5, we conclude.

2 The Data

We employ daily stock log-returns returns for the 50 states of the U.S., as well

as the same for the S&P 500, capturing the market-wide stock returns, to derive

our monthly estimates of realized volatility and other realized moments, which

we discuss in detail below. The state-level stock market indexes, and the S&P

500 index, are derived from the Bloomberg terminal, which, in turn, creates

these indexes by taking the capitalization-weighted index of equities domiciled

in a given state. The rationale behind this approach is grounded in the notion

that the core business activities of firms often take place near their headquarters,

influenced by the economic dynamics of that particular state.

As far as our dependent variable is concerned, we use the classical estimator

of RV , i.e., the square root of the sum of squared daily returns (Andersen and

Bollerslev, 1998), given as

RVt =

√√√√ M∑
i=1

r2t,i, (1)

where rt,i denotes the daily M × 1 returns vector, and i = 1, ...,M is the number of
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daily returns over month t.

We plot summary statistics of the natural logarithm of the the state-level

RV in Figure 1, where the solid line denotes the cross-state mean and the the

boundaries of the shaded area denote the maximum and minimum across states

in each month. It is evident from eyeballing Figure 1 that the RV s display a

substantial variation across time and across states.

− Figure 1 about here. −

As outlined in Section 1, we control for daily-data-based realized moments,

given their importance in the realized volatility literature, both at the state-

and market-level. The list of realized moments is given by: realized skewness,

RSKEW , realized kurtosis, RKURT , and realized upside and downside tail risks,

TRup and TRdown, besides a leverage effect, LEV , which is basically the value of

negative realized returns which occurs on a particular month, and zero other-

wise.

As in Amaya et al. (2015), we use RSKEW to capture the asymmetry of the

returns distribution, while RKURT captures extremes. We compute RSKEW as:

RSKEWt =

√
M

∑M
i=1 r

3
t,i

RV
3/2
t

, (2)

and RKURT as:

RKURTt =
M

∑M
i=1 r

4
t,i

RV 2
t

, (3)

Finally, we consider the tail risk estimator by Hill (1975) to derive our realized

upside and downside tail risks. We define Xt,i as the set of reordered daily returns

7



on month t, rt,i in such a way that

Xt,i ≥ Xt,j for i < j. (4)

Then, we derive the monthly positive tail risk estimator (TRup) as:

TRup
t =

1

k

k∑
i=1

ln(Xt,i)− ln(Xt,k). (5)

The (monthly) negative tail risk estimator (TRdown) is obtained as:

TRdown
t =

1

k

n∑
i=n−k

ln(Xt,i)− ln(Xt,n−k) (6)

where k is the observation denoting the chosen α (= 5%) tail interval.

We plot summary statistics on the state-level realized moments in Figure 2.

The solid lines denote the cross-state mean and the the boundaries of the shaded

area denote the maximum and minimum across states in each month.

− Figure 2 about here. −

We now turn to our main focus in terms of predictor variables, i.e., the elec-

tricity sales in the commercial (COMM ), industrial (INDUS), and residential

(RESID) sectors for the 50 states and the overall U.S., again derived from the

Bloomberg terminal. Electricity sales basically correspond to the monthly sales

in megawatt-hour (MWh) of electricity to ultimate customers in these three sec-

tors. In line with Da et al. (2017), to remove seasonality, we work with the

year-on-year growth rates of the sales, and also use a publication lag of two

months, i.e., in month t, a forecaster has access to electricity sales data from
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month t− 2.

− Figure 3 about here. −

We plot summary statistics of the growth rates of state-level electricity sales in

Figure 3, where the solid line in the panels for the state-level data denotes the

cross-state mean and the the boundaries of the shaded area denote the maxi-

mum and minimum across states in each month. The cross-state variation of

the growth rates of commercial and industrial electricity sales clearly is larger

than the cross-state variation of the growth rate of residential sales.

In order to differentiate a market-wide from a state-level predictor variable,

we add “-M” to the name of a predictor variable to denote a market-wide predictor

variable. For example, LEV denotes a state-level leverage effect, while LEV -M

denotes a market-wide leverage effect, and COMM denotes the growth rate of

state-level commercial electricity sales, while COMM-M denotes the correspond-

ing market-wide growth rate.

Based on data availability of the variables under consideration at the time

of writing of this paper, our analysis covers the effective sample period (that is,

the sample period that obtains after transforming the data as described in the

preceding paragraph) from April, 1995 to February, 2025.
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3 Methods

3.1 Forecasting Models

Our baseline forecasting model, which we simply call the RV -model, is given by

the following equation:

RV -model : RVs,t+h = β0 + β1RVs,t + us,t+h, (7)

where RVs,t+h denotes the average state-level, s, realized volatility over the fore-

cast horizon, h, and β0 and β1 denote the coefficients to be estimated, while us,t+h

denotes the state-level disturbance term. We compute the average state-level

realized volatility for h > 1 using data for the periods t+ 1, ..., t+ h. Given its sim-

plicity, we estimate the forecasting model given in Equation (7) by the ordinary

least squares (OLS) technique. We consider four forecast horizons ranging from

one month to one year. Hence, we set h = 1, 3, 6, 12.

In order to bring the data closer to normality, and to make sure that forecasts

of RV do not take on negative values, we use the natural logarithm of RV for

estimating the forecasting model given in Equation (7), and in order to ensure

comparability across models, also for all other forecasting models that we study

in our research. For forecast evaluation, however, we convert the forecasts back

to anti-logs, where we account for the usual Jensen-Ito term.

We next modify Equation (7) to include a vector of state-level realized mo-

ments, Ms,t. As realized moments we consider a leverage effect, realized skew-

ness, realized kurtosis, and the realized positive and realized negative tail risks.
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We call the resulting forecasting model the RV -M model. This forecasting model

is given by the following equation:

RV -M model : RVs,t+h = β0 + β1RVs,t + β2Ms,t + us,t+h, (8)

where β2 denotes an appropriately dimensioned vector of coefficients to be esti-

mated.

As yet another extension, we add to Equation (8) a vector of market-wide

realized moments, MMt. The resulting RV -MM forecasting model is given by the

following equation:

RV -MM model : RVs,t+h = β0 + β1RVs,t + β2Ms,t + β3MMt + us,t+h, (9)

where β3 denotes a vector of coefficients to be estimated.

In order to explore the role of the growth rates of state-level electricity sales,

we extend the forecasting model given in Equation (9) to include a vector of the

growth rates of state-level electricity sales, Et. The resulting RV -MM-E forecast-

ing model is given by the following equation:

RV -MM-E model : RVs,t+h = β0 + β1RVs,t + β2Ms,t + β3MMt + β4Es,t + us,t+h, (10)

where β4 denotes a vector of coefficients to be estimated.

Finally, we extend the forecasting model given in Equation (10) a vector of

growth rates of market-wide electricity sales, EMs,t, resulting in the following
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RV-MM-EM forecasting model:

RV -MM-EM model : RVs,t+h = β0+β1RVs,t+β2Ms,t+β3MMt+β4Es,t+β5EMs,t+us,t+h,

(11)

where β5 denotes a vector of coefficients to be estimated.

3.2 Boosting Algorithm

Given that the forecasting models outlined in Equations (8) to (11) feature several

predictor variables, we use a component-wise functional gradient descent boost-

ing algorithm to estimate them. Here, we outline in a non-technical way the

main elements of the boosting algorithm, closely following the exposition in Bon-

ato et al. (2025). A technically-minded reader can find detailed descriptions and

derivations in the research by, for example, Bühlmann (2006) and Bühlmann

and Hothorn (2007).

In order to set the stage for our description of the boosting algorithm, we

introduce some basic notation. We define the vector of predictor variables as

xt, and f(xt) as the corresponding prediction function (dropping the state-level

subindex to simplify the notation), that is, the right-hand side of our forecasting

models. In addition, we let F (RVt+h, f(xt) denote the standard L2 loss function,

and we define the empirical risk as R =
∑T

t=1 F (RVt+h, f(xt), where T denotes the

latest period of time for which data are available when a forecasting model is to

be estimated.3

3When we estimate our forecasting model over a recursively expanding estimation window,
the parameter T successively increases as we move the estimation window forward in time until
we reach the end of the sample period. Similarly, when we consider a rolling-estimation win-
dow, the parameter T increases over time, but in addition the starting point for the summation
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The boosting algorithm minimizes R over f which, unlike in the case of the

OLS technique, does not only require estimation of the vector of parameters, β,

but also a decision as to which predictor variables from the vector xt to include

in a forecasting model. The basic idea motivating the component-wise functional

gradient descent boosting algorithm is to solve this minimization problem by us-

ing the fact that the OLS residuals of the forecasting models equal the negative

of the derivative of the L2 loss function with respect to f . Hence, upon using

every predictor variable as a component, also known in the boosting literature

as a base learner, one proceeds by estimating by the OLS technique univariate

regression models of the negative of the gradient vector, ∂F/∂f , on all base learn-

ers separately. These regression models give predictions that are estimates of

the negative gradient vector. It then is straightforward to identify, in terms of

the residual sum of squares, the base learner that best fits the negative gradient

vector. The best-fitting base learner is used to update the function, f , in small

steps.

Next, one uses the updated function, f , to compute a new negative gradi-

ent vector. Based on this new negative gradient vector, one identifies a new

base learner. The new base learner gives another update of f . This sequential

process of selecting base learners results in the construction of what is called

in the boosting literature a strong learner. Only those base learners (predictor

variables) enter the strong learner that the boosting algorithm selects while de-

scending along the gradient of R. Once the updating process stops, one obtains

a final strong learner, that is, a forecasting model that has been optimized by the

successively increases as well. In order to keep the notation simple, we focus on the case of a
recursive-estimation window.
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boosting algorithm in a data-driven way. Moreover, because only selected base

learners enter the strong learner, the boosting algorithm can be interpreted also

as a model-shrinkage technique that helps a researcher to identify a parsimo-

nious forecasting model.

Model-selection criteria can be used to determine when the updating process

that underlies the component-wise functional gradient descent boosting algo-

rithm stops. In the boosting literature, the following four model-selection criteria

are commonly used: the Akaike Information Criterion (AIC) (trace), the AIC (ac-

tive set), the gMDL (trace) criterion, and the the gMDL (active set) criterion. Here,

MDL is the abbreviation for minimum description length, and the active set refers

to the number of base learners used to construct a strong learner.

It is a well-known result in the boosting literature, and the results of our

forecasting experiments confirm this result, that the trace-based model-selection

criteria imply a larger number of updating iterations than the active-set based

model-selection criteria. Hence, the trace-based model-selection criteria should

result in more complex forecasting models than the active-set-based model-

selection criteria. Similarly, the AIC-based model-selection criteria typically pro-

duce more complex forecasting models than the gMDL-based model-selection

criteria.

3.3 Forecast Evaluation

We use statistics based on the mean-absolute forecast error (MAFE) and the

root-mean-squared forecast error (RMSFE) to evaluate the out-of-sample predic-

tive performance of our forecasting models. Specifically, we assess the relative
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predictive performance of our forecasting models by computing, for every state,

s, the forecasting gain (in percent) as

MAFE-FGs = 100×
(
MAFEs,B

MAFEs,R

− 1

)
, (12)

RMSFE-FGs = 100×
(
RMSFEs,B

RMSFEs,R

− 1

)
, (13)

where B denotes a benchmark forecasting model and R denotes a rival fore-

casting model. In case the MAFE (RMSFE) ratio exceeds unity, the rival fore-

casting model outperforms the benchmark forecasting model. A forecasting gain

(loss), in percentages, is indicated by a positive (negative) value of the MAFE-FG

(RMSFE-FG) statistic.

In order to study the statistical significance of a difference in the predic-

tive performance of a benchmark and a rival forecasting model, we use two ap-

proaches. As our first approach, we use the Clark and West (2007) test statistic,

which is a test of the null hypothesis that a benchmark forecasting model and

a rival forecasting model have equal predictive performance. The one-sided al-

ternative hypothesis is that the rival model performs better than the benchmark

model.

The Clark-West (CW) test is a test of nested models. Hence, in order to use

this test, we have to treat our forecasting models as nested models, which is

justified because we add in a step-by-step way additional predictor variables to

our forecasting models as we move from the simple RV forecasting model to the

more complex RV -MM-EM forecasting model. We are aware of the fact, however,

that statistical testing often is complicated by the complex structure of forecast-
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ing models obtained from applying statistical learning techniques. For example,

the RV -MM-E forecasting model is not necessarily a strictly nested version of

the RV -MM-EM forecasting model in case the growth rate of the market-wide

electricity sales drives the growth rate of state-level electricity sales out of a fore-

casting model. Similarly, in one of our extensions, we study random forests as

an alternative statistical learning technique. Random forests are highly nonlin-

ear, non-parametric estimators, and this clearly complicates statistical testing of

differences in predictive performance across forecasting models.

We, therefore, also use a second approach that fully makes use of the cross-

state dimension of our data. Specifically, we estimate by the OLS technique a

regression model with the MAFE-FG (RMSFE-FG) statistic on the left-hand side

and an intercept coefficient on the right-hand side. The regression model is of

the following format:

MAFE-FGs = αMAFE + es, (14)

RMSFE-FGs = αRMSFE + es, (15)

where es denotes some state-specific disturbance term. A statistically significant

positive intercept coefficient, α, indicates that, in the cross-section of states, the

forecasting gains from using the rival rather than the benchmark forecasting

model are positive and statistically significant. We use this regression model to

test the null hypothesis that the intercept coefficient is equal to zero, against the

one-sided alternative hypothesis that the intercept coefficient is positive.

In sum, we do not rely on a single test statistic to assess forecasting gains,

but rather use different statistics (the MAFE-FG and RMSFE-FG statistics and
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the CW test). In addition, we shall study in Section 4 whether the relative per-

formance of our forecasting models is stable when we use alternative statistical

learning techniques to estimate our forecasting models.

It is also interesting to study the potential economic benefits a forecaster

can derive from applying the forecasting models. To this end, we consider, like

Bollerslev et al. (2018), a mean-variance investor who allocates wealth between

a risk-free money market account and a stock-market investment, given a con-

stant Sharpe ratio and a given risk-aversion parameter. We then compute the

expected utility (EU ) using the out-of-sample volatility forecasts from our fore-

casting models for the rival forecasting model and the benchmark forecasting

model. Equipped with the results for expected utility, we compute the utility

forecasting gain as follows:

Utility-FGs = 100×
(
EUs,R

EUs,B

− 1

)
, (16)

for every state, s. It should be noted that, as compared to the MAFE-FG and

RMSFE-FG statistics, the roles of the rival and the benchmark forecasting mod-

els in the nominator and denominator on the right-hand-side of Equation (16)

are reversed. Finally, we estimate the following cross-state regression model:

U-FGs = αU + es. (17)

Equipped with the estimation result, we test the null hypothesis that the inter-

cept coefficient, αU , is equal to zero, against the one-sided alternative hypothesis

that the intercept coefficient is positive.
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3.4 Computational Issues

We use the R language and environment for statistical computing (R Core Team,

2025) and the R add-on package “mboost” (version 2.9-11; Hofner et al., 2014;

Hothorn et al., 2010; Bühlmann and Hothorn, 2007) to implement the boosting

algorithm. We fix the maximum number of iterations at 500, but as the results

that we summarize in Table 1 (see Section 4.1) demonstrate, the number of

iterations typically is much smaller in our forecasting experiment. In addition, a

common choice in the boosting literature is to set the learning rate to 0.1, and

we follow this convention.

In order to setup our forecasting experiments, we use a recursively expand-

ing estimation window to estimate our forecasting models, but we shall also

present results for a rolling-estimation window (see Section 4.3). We implement

the recursive-estimation-window approach by using the first half of the sample

period to initialize the estimations. We then use the boosting algorithm to esti-

mate our forecasting models. Based on the estimated boosted forecasting mod-

els, we compute out-of-sample forecasts. We then add another observation at the

end of the recursive-estimation window to reestimate our forecasting models. We

continue in this way until we reach the end of the sample period.
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4 Empirical Results

4.1 Characteristics of the Boosted Forecasting Models

As mentioned in Section 3, the boosting algorithm can be implemented using

alternative model-selection criteria. We, therefore, start our empirical analysis by

studying which one of the four different model-selection criteria that we consider

in our empirical analysis yields the best out-of-sample forecasting performance

for our various forecasting models. To this end, we use the MAFE and RMSFE

statistics. Specifically, we study for every combination of forecasting model and

state which model-selection criterion minimizes the MAFE and RMSFE statistics.

We summarize the results in Table 1, where we report for every forecast-

ing model the number of states for which a model-selection criteria yields the

best performance. We do not report results for the RV forecasting model, be-

cause we estimate this model by the OLS technique. Two results emerge. First,

the gMDLtrace and gMDLactset model-selection criteria clearly dominate the AICtrace

and AICactset model-selection criteria for the majority of states, and for all fore-

casting models. Second, the gMDLactset model-selection criterion outperforms the

MDLtrace model-selection criterion, where the gMDLactset model-selection criterion

performs particularly well under the RMSFE statistic.

− Table 1 about here. −

The results that we report in Figures 4 are in line with these results. We report

in Figure 4 the cross-state distribution of the number of iterations, averaged

across the out-of-sample period, the boosting algorithm needs to minimize the

empirical risk function, given a model-selection criterion. Evidently, the boosting
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algorithm stops iterating after fewer iterations when we use the active-set-based

model-selection criteria rather than the trace-based model-selection criteria. In

addition, the two gMDL-based model-selection criteria imply that the boosting

algorithm takes fewer iterations than when we use the AIC-based model-selection

criteria. We observe this pattern four all four forecast horizons.

− Figure 4 and 5 about here. −

In Figure 5 we report, for every base-learner, its variable importance (VIMP) as

defined as the contribution of a base-learner to the reduction of the empirical risk

function, accumulated across boosting iterations. We report the VIMP statistic,

expressed in percent, for the RV -MM-EM forecasting model, because this model

contains the largest number of candidate predictor variables. We compute the

VIMP statistic for all states, and average the VIMP statistic for every state over

the out-of-sample period. The results in Figure 5, for the gMDLtrace and gMDLactset

model-selection criteria, represent the distribution of the VIMP statistic across

states. The VIMP statistic demonstrates that RV is the single most important

predictor variable of the subsequent RV . The second most important predictor

variable, especially at the short (h = 1) and intermediate (h = 3) forecast horizons,

in terms of the VIMP statistic is the market-wide leverage effect (we add “-M”

to the name of a predictor variable to denote market-wide predictor variable),

although this predictor variable is far less important than the RV predictor vari-

able.

− Figure 6 about here. −

A small numerical value of variable importance does not necessarily imply that

a predictor variable is not included in the boosted forecasting model. Hence,
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we plot in Figure 6 how often the boosting algorithm includes a predictor vari-

able in the boosted forecasting model in the out-of-sample forecasting period,

again for the RV -MM-EM forecasting model and the gMDLtrace and gMDLactset

model-selection criteria. We find that, across all states, the RV predictor and

market-wide leverage effects are often included in the boosted forecasting model,

the latter mainly at the short and intermediate forecast horizons. The state-

level leverage effect and realized kurtosis also are relatively often included in the

boosted forecasting model, but mainly at the short forecast horizon only. An-

other predictor variable that stands out, at the intermediate and long forecast

horizons, is the growth rate of market wide commercial electricity sales. As in-

dicated by the circles in the figure, which point to “outlier” states, the boosted

forecasting models also feature the other state-level and market-wide realized

moments and the growth rates of the other electricity-sales predictor variables

for some states, especially under the gMDLtrace model-selection criterion. For

example, under the gMDLtrace model-selection criterion, the growth rate of in-

dustrial electricity sales tends to gain in importance as the length of the forecast

horizon increases. As expected, the gMDLactset model-selection criterion is more

restrictive in this regard and tends to yield more parsimonious forecasting mod-

els with fewer predictor variables.

At a more disaggregated level, it is interesting to analyze time series that

show in how many states which growth rate of electricity sales is included in the

out-of-sample forecasting period in the boosted RV -MM-EM forecasting model.

We plot these time series in Figure 7. Apparently, the gMDLtrace model-selection

criterion is less restrictive in including the electricity-sales predictor variables
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in a forecasting model than the gMDLactset model-selection criterion. The growth

rate of commercial market-wide electricity sales is included in the forecasting

model in several states, but the importance of this predictor variable declines

over time.4

− Figure 7 about here. −

In order to further illustrate the role played by the growth rates of electricity

sales, we plot in Figures 8 and 9 wordclouds. In order to compute the word-

clouds, we record for every state how often the different growth rates of electricity

sales are included in the forecasting model under the gMDLtrace and the gMDLactset

model-selection criteria during the out-of-sample period. We then sum up across

the different categories of electricity sales to capture the total frequency of inclu-

sion of electricity sales in the boosted RV -MM-EM forecasting model for a state.

The worldclouds illustrate this frequency.5

− Figures 8 and 9.bout here. −

Under the gMDLtrace model-selection criterion (Figure 8), the wordcloud shows

that the growth rate of electricity sales, aggregated across the six different cat-

egories, plays an important role (that is, relative to other states) at the short

forecast horizon in the states New Mexico, Nevada, Rhode Island, Alaska, Idaho,

and Oklahoma. When we consider the intermediate and long forecast horizons,

we can add states like Arkansas, Idaho, Kanas, Mississippi, Maine, Wyoming,

4In Figure A1 at the end of the paper (Appendix), we plot for the out-of-sample period time
series of the number of states for which the boosting algorithm includes at least one subcategory
of the growth rates of electricity sales in the forecasting model.

5We use the R-add-on package “wordcloud2” (version 0.2.1; Lang and Chien, 2028) to compute
the worldclouds.
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and Vermont to this list. Because the gMDLactset model-selection criterion is

more restrictive with regard to the inclusion of predictor variables in a forecast-

ing model than the gMDLtrace model-selection criterion, the wordclouds tend to

depict fewer states under the gMDLactset model-selection criterion (Figure 9). For

the short forecast horizon, the wordcloud depicts mainly New Mexico and, to a

lesser extent, Kansas and Rhode Island. New Mexico and Alaska tend to domi-

nate the wordclouds at the intermediate and long forecast horizons, but we can

also include in this list Nevada, Mississippi, Maine, Rhode Island, West Virginia,

and Vermont.

4.2 Forecasting Gains of the Boosted Forecasting Models

We start our analysis of the performance of the competing forecasting models

by studying the MAFE-FG and RMSFE-FG statistics, where a statistic larger

than zero indicates that the rival model performs better than the corresponding

benchmark model. As rival and benchmark models, we consider the following

model combinations: RV versus RV -M, RV -M versus RV -MM, RV -MM versus

RV -MM-E, and RV -MM-E versus RV -MM-EM, that is, we include, step-by-step,

additional predictor variables in the array of predictor variables from which the

boosting algorithm can select predictor variables. In this way, we study whether

the additional predictor variables help the rival model to go beyond the bench-

mark model in terms of predictive performance. We focus on the gMDLactset

model-selection criterion (and to a lesser extent on the gMDLtrace model-selection

criterion), which gives the best MAFE and RMSFE statistics for the large major-

ity of states (see Table 1), and we use box-and-whisker plots to summarize the
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cross-state distribution of the MAFE-FG and RMSFE-FG statistics.

− Figures 10 and 11 about here. −

We summarize the results in Figures 10 and 11. Three results stand out. First,

the RV -M forecasting model, that is, the model that results when the boosting

algorithm can select predictor variables among the state-level realized moments,

often fares better in terms of the MAFE-FG and RMSFE-FG statistics than the

RV -model, which is estimated by the OLS technique and only features the con-

temporaneous RV as a predictor variable. We observe that this good performance

of the RV -M forecasting model somewhat strengthens as the length of the fore-

cast horizon increases. Second, adding market-wide realized moments to the

array of predictor variables, so that the rival model is the RV -MM forecasting

model, improves forecasting performance relative to the RV -M forecasting model

for several states, especially at the short and intermediate forecast horizons,

and under the RMSFE-FG statistic also for the long forecast horizon. Third, the

RV -MM-E forecasting model, which obtains by adding the growth rates of the

state-level electricity sales to the array of predictors, improves predictive per-

formance for roughly half of the states at the short forecast horizon and at the

intermediate (h = 6) forecast horizon. The sharp peak of the box-and-whisker

plots at zero, however, indicate that the forecasting gains from using the growth

rates of state-level electricity sales as additional predictor variables are moderate

in most cases. This is also true for the growth rates of market-wide electricity

sales, that is, the RV -MM-EM forecasting model. Moreover, the cross-state dis-

tributions of the MAFE-FG and the RMSFE-FG statistics are tilted to the left at

the intermediate and long forecast horizons.
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− Figure 12 about here. −

We next use the Clark and West (2007) test statistic to study the statistical sig-

nificance of the potential gains in predictive performance from the competing

forecasting models. The box-and-whisker plots that we summarize in Figure 12

display the cross-state distribution of the p-values (based on heteroscedastic-

ity and autocorrelation consistent standard errors; Zeileis (2004) and Zeileis et

al. (2020)) of this test statistic for the gMDLactset model-selection criterion (the

results for the gMDLtrace model-selection criterion are similar and are not re-

ported for brevity). The emerging pattern of test results is largely in line with the

results of our analysis of the MAFE-FG and RMSFE-FG statistics. Using state-

level realized moments often leads to a rejection of the null hypothesis of an

equal predictive performance when the RV forecasting model is the benchmark

model. For market-wide realized moments, the test statistic also yields, albeit to

a lesser extent than for state-level realized moments, statistically significant re-

sults for several states, mainly at the intermediate forecast horizons. Finally, we

find evidence against the null hypothesis of an equal predictive performance for

the RV -MM and the RV -MM-E forecasting models for approximately half of the

states when we study an intermediate forecast horizon, h = 6. The test results

for the RV -MM and RV -MM-E forecasting models, are only significant for a few

states.

− Table 2 about here. −

In Table 2, we summarize the results of the cross-state regressions of the MAFE-

FG and RMSFE-FG statistics on a constant. We report the p-values of a test of

the null hypothesis that the constant is zero, against the alternative hypothesis
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that the constant is positive, where we use heteroscedasticity and autocorre-

lation consistent standard errors. The results for the RV -M forecasting model

are statistically significant relative to the RV forecasting model, except at the

short forecast horizon. In turn, the RV -MM forecasting model yields statisti-

cally significant test results when compared with the RV -M forecasting model at

the short and intermediate forecasting horizons for the MAFE-FG statistic, and

at all forecasting horizons for the RMSFE-FG statistic. The RV -MM-E and RV -

MM-EM forecasting models only yield statistically significant test results at the

short forecasting horizon, but not for the MAFE-FG statistic and the gMDLtrace

model-selection criterion.

4.3 Boosting Results for a Rolling-Estimation Window

We next present results for a rolling-estimation window. To this end, we estimate

the boosted forecasting models on a rolling-estimation window that covers 50% of

the data. As compared to the recursive-estimation window, the rolling-estimation

window features a constant number of observations, as we delete one observation

at the beginning of the estimation window when we add a new observation at its

end. We summarize the results (that is, the p-values) of the Clark-West test

statistic in Figure 13, again for the gMDLactset model-selection criterion. The

results for the rolling-estimation window confirm the results for the recursive-

estimation window that we report in Figure 12. We find the strongest evidence

against the null hypothesis of an equal predictive performance when we compare

the RV -M forecasting model with the RV forecasting model. We further find that

the test results for the RV -MM forecasting model, when compared with the RV -
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M forecasting model, strengthen somewhat at the two short forecast horizons

(h = 1, 3).

− Figure 13 and Table 3 about here. −

In Table 3, we summarize the results of the cross-state regressions of the MAFE-

FG and RMSFE-FG statistics for a rolling-estimation window. The RV -M fore-

casting model yields several statistically significant test results, especially at the

intermediate and long forecast horizons, when we compare this model with the

RV forecasting model. The test results are statistically insignificant in three

cases at the short forecast horizon. As for the RV -MM forecasting model, this

model gives statistically significant test results when compared with the RV -M

forecasting model mainly at the short forecast horizons (h = 1, 3). Finally, three

test results for the RV -MM-E forecasting model are statistically significant at the

short forecast horizon, but only one test result is statistically significant for the

RV -MM-EM forecasting model.

4.4 Results for a Forward Best Predictor Selection Algorithm

The next step of our analysis is to estimate our forecasting models by means of

an alternative statistical learning algorithm. A forward stepwise best predictor

selection algorithm is the first alternative statistical learning algorithm that we

consider (see Hastie et al. (2009), Chapter 3, for a textbook exposition). In order

to setup this algorithm, we start with a forecasting model that features a con-

stant as the only predictor variable. Estimation is done by the OLS technique.6

6We use the R-add-on package “leaps” (version 3.2; see Lumley, 2024, based on Fortran code
by Miller) for estimation.
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We then proceed by estimating, again by the OLS technique, all forecasting mod-

els that feature one additional predictor variable. For example, in case of the

RV -M model, we estimate forecasting models that feature one of the state-level

realized moments. We identify the one forecasting model that minimizes the in-

sample residual sum of squares. This forecasting model then is the basis for

the next estimation round, in which we estimate all models that feature two

predictor variables, that is, the predictor variable selected in the first step plus

one of the other predictor variables (in the case of the RV -M forecasting model,

this is one of the remaining state-level realized moments). Again, we identify

the model that minimizes the in-sample residual sum of squares, and then we

proceed, using this model as a basis, to a model that features three predictor

variables. In this way, we obtain a sequence of forecasting models. We identify

the “best” forecasting model in this sequence as the one that (i) maximizes the

adjusted R2 statistic, (ii) minimizes the Bayesian Information Criterion (BIC), or,

(iii) minimizes Mallow’s Cp criterion. We carry out the estimations for a recursive-

estimation window and, thereby, compute sequences of “best” forecasting mod-

els. For example, we compute, for every model-selection criterion, sequences of

optimal variants of the RV -MM-EM forecasting model, that is, models that can

feature all or a subset of the predictor variables among which we can choose to

build the RV -MM-EM forecasting model. Finally, we select the “best” forecast-

ing model among the three “best” forecasting models identified by means of the

adjusted R2 statistic, the BIC, and Mallow’s Cp criterion. As witnessed by the

results that we summarize in Table A1 at the end of the paper (Appendix), the

clear winner of this competition is the forecasting model selected by means of

28



the BIC.

− Table 4 about here. −

In this way, we obtain recursively estimated sequences of optimal RV (again

estimated by means of the OLS technique), RV -M, RV -MM, RV -MM-E, and RV -

MM-EM forecasting models, which we can compare by means of the cross-state

regressions of the MAFE-FG and RMSFE-FG statistics (Table 4).7 While the

test results for the comparison of the RV -MM with the the RV -M forecasting

model are still significantly significant at the short and intermediate forecast

horizons (h = 1, 3), the latter does not deliver forecasting gains that are, on av-

erage across the states, statistically significantly different from zero relatively to

the RV -model. The test results for the RV -MM-E, and RV -MM-EM forecasting

models indicate that the growth rates of electricity sales do not contribute to pre-

dictive performance in the cross-section of states beyond the performance that is

already achieved by the respective benchmark models. Hence, on balance, and

especially so for the growth rates of electricity sales, the results are weaker than

those for the boosting algorithm.

− Figure 14 about here. −

Figure 14 plots for the RV -MM-EM model and the BIC model-selection criterion

how often the predictor variables are included in the forecasting model. Resem-

bling the results we obtain for the boosting algorithm, we find that RV is a top

predictor variable, and that the market-wide leverage effect is often included in

the forecasting model mainly at the short and intermediate forecast horizons.

7We summarize the cross-state distribution of the MAFE-FG and RMSFE-FG statistics at the
end of the paper (Appendix). The reader is referred to Figures A2 and A3.
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Across the states, the realized kurtosis tends to play a more important role than

the state-level leverage effect, while the growth rate of market-wide commercial

electricity sales is another relatively often selected predictor variable. The growth

rate of industrial electricity sales tends to enter the forecasting model more often

as the length of the forecast horizon increases.

4.5 Results for Random Forests

Random forests are a widely studied “off-the-shelf” non-linear and non-parametric

ensemble statistical learning estimator (see Breiman, 2001). As compared to the

statistical learning algorithms that we have studied so far, random forests have

the advantages that they account in a fully data-driven way for potential non-

linear patterns in the data as well as potential interaction effects between the

predictors. A random forest consists of many individual regression trees, which,

in turn, consist of a root and several nodes and branches (see, Breiman et al.,

1984). These nodes and branches partition the space of the predictors in a

recursive and binary way into non-overlapping regions, which are formed in a

top-down way by applying a search-and-split algorithm that gives, at each level

of a regression tree, the best splitting predictor variable and a corresponding

splitting point. A recursive application of this search-and-split algorithm along

the branches of a regression tree yields finer and finer partitions of the predictor

space.

While finer partitions produce increasingly granular forecasts of RV , the com-

plex hierarchical structure of a regression tree easily results in overfitting and

data-sensitivity problems, which then hamper prediction performance. A ran-
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dom forest is constructed in a way so as to overcome these problems as it formed

by an ensemble of many regression trees. This ensemble is built by means of a

bootstrap algorithm. To this end, we first compute a large number of bootstrap

samples, where sampling is with replacement. Second, we estimate a random

regression tree on every bootstrap sample. The specific feature of a random re-

gression tree, as opposed to a conventional regression tree, is that tree growing is

done using a random subset of the predictor variables for splitting. In this way,

the effect of influential predictors on tree building is reduced. Third, we com-

bine the random regression trees to a random forest and compute a forecast of

RV by averaging across the individual random regression trees, which, in turn,

stabilizes forecasts.8

− Table 5 about here. −

In Table 5, we summarize the results for the cross-state regressions of forecast-

ing gains.9 The RV -M forecasting model, when compared with the RV forecasting

model, yields statistically significant test results, where the evidence is relatively

strong at the short and the two intermediate forecast horizons. For the RV -MM

forecasting model, only one of the test results is statistically significant (RMSFE-

FG, h = 1). For the RV -MM-E (RV -MM-EM) forecasting model, in turn, the test

results are statistically significant, when the model is compared with the RV -MM

(RV -MM-E), at the short forecast horizon.
8We use the R add-on package “”randomForestSRC” (version 3.3.3) to estimate random forests.

See Ishwaran and Kogalur (2025). We fix the maximum number of trees at 1,000, sample with
replacement, and use otherwise the default parameters (e.g., node size) of the package for esti-
mation of random forests.

9We summarize the results for random forests in Figure A4 (for the MAFE-FG statistic) and in
Figure A5 (for the RMSFE-FG statistic) at the end of the paper (Appendix).
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− Figure 15 about here. −

In order to study variable importance, we estimate random forests on the full

sample and then compute the VIMP statistic as the difference between the (out-

of-bag) prediction error under a perturbed predictor variable and the original

predictor variable. We do this for every tree and then average across all random

trees that form a random forest (Breiman, 2001). The box-and-whisker plots we

plot in Figure 15 visualize the distribution of the VIMP statistic we obtain in this

way across the states. The contemporaneous realization of RV stands out in

terms of the VIMP statistic at all four forecast horizons. Two other relatively im-

portant predictor variables are the state-level and market-wide leverage effects,

mainly at the short and intermediate forecast horizons. The growth rates of

electricity sales appear to gain somewhat in importance at the long forecast hori-

zon, especially as the growth rates of commercial electricity sales and industrial

electricity sales are concerned.

4.6 Comparing the Algorithms and a Synthesis

Our results are based on three different statistical learning algorithms. The

boosting algorithm is our main algorithm, but we also have presented results for

a forward best predictor selection algorithm and random forests. The results for

these three algorithm in part reinforce each other, and in other parts the algo-

rithms produce diverging results. An important question, therefore, is whether

we can somehow rank the three algorithms. In the context of our forecasting

experiments, such a ranking clearly must be based on the relative out-of-sample

predictive performance of the three statistical learning algorithms.
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In order to develop such a ranking, we use the MAFE-FG and RMSFE-FG

statistics. Specifically, we choose the benchmark forecasting model from one

algorithm, and the very same rival forecasting model from another algorithm. In

this way, we can compare the performance of the boosting algorithm as applied to

estimate, for example, the RV -MM model with the performance of one of the other

two algorithms, also applied to estimate the RV -MM model, where we evaluate

the predictive performance of both algorithms by means of either the MAFE or

der RMSFE statistic. We setup such a comparison for every combination of two

of the three algorithms, and for all states. We then estimate the cross-state

regression model for the MAFE-FG the and RMSFE-FG statistics to compare any

two algorithms.

The cross-state regression model that we use to compare our algorithms dif-

fers in one respect from the cross-state regression model we have laid out in

Section 3.3 to compare forecasting models, which is based on a one-sided test

based on the alternative hypothesis that the rival forecasting model has a better

predictive performance than the benchmark forecasting model. A one-sided al-

ternative hypothesis makes perfect sense in case we are interested in whether,

for example, the RV -MM-E forecasting model outperforms, on average across the

states, the RV -MM forecasting model. We now, however, are interested in the

question whether the predictive performance of a given forecasting model differs

across two statistical learning algorithms, and, if so, which statistical learning

algorithm yields the better performance for a given forecasting model. For this

reason, we modify the alternative hypothesis that we use to study the results of

estimating the cross-state regression model. Specifically, we now test the null
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hypothesis of equal predictive performance of two algorithms, given a forecasting

model, against the alternative that the two algorithms under scrutiny differ with

respect to their predictive performance (two-sided test). We, therefore, report in

Table 6 the estimated intercept coefficient (rather than its p-value), because sign

of the estimated coefficient informs which algorithm performs better on average

across states. As for the interpretation of the estimated intercept coefficient, it is

useful to remember that the MAFE-FG and RMSFE-FG statistics are expressed

in percent.

− Table 6 about here. −

When we compare the boosting algorithm with random forests, we find that these

two statistical learning algorithms do not deliver a statistically different predic-

tive performance at the short forecasting horizon, while the boosting algorithm

performs better than random forests in terms of out-of-sample forecasting gains

for the intermediate and long forecast horizons. Only for the RV -M model is the

predictive performance of the two algorithms not statistically significantly differ-

ent. The boosting algorithm also outperforms the forward best predictor selec-

tion algorithm, irrespective of whether we study the MAFE-FG or the RMSFE-FG

statistic, and at all four forecasting horizons. Finally, random forests perform

better than the forward best predictor selection algorithm at the short and inter-

mediate forecast horizons. The differences between these two statistical learning

algorithms get smaller, and in three cases statistically insignificant, at the long

forecast horizon.

− Table 7 about here. −
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Against the background of the results that we summarize in Table 6, it is in-

teresting to consider a synthesis of the three algorithms. To this end, we use

a simple model-averaging approach. Specifically, we form the average of the

forecasts we obtain from applying the boosting algorithm (gMDLactset), the for-

ward best predictor selection algorithm (BIC), and random forests. We then run

our cross-state regressions of forecasting gains and apply a one-sided test to

test the null hypothesis that the intercept coefficient is equal to zero, against

the one-sided alternative hypothesis that the intercept coefficient is positive. We

summarize the results in Table 7. The results indicate that we can reject the null

hypothesis for the RV forecasting model in a comparison with the RV -M forecast-

ing model, while the test results for h = 1, 3 are significant when we compare the

RV -M forecasting model with the RV -MM forecasting model. The test results for

the comparison of the RV -MM forecasting model with the RV -MM-E forecasting

model and for the comparison of the RV -MM-E forecasting model with the RV -

MM-EM forecasting model are significant at the short forecast horizon (h = 1),

lending support to the notion that the growth rates of electricity sales contribute

to forecasting gains at the short forecast horizon, but not beyond.

4.7 Results for Utility Forecasting Gains

In order to shed light on the utility gains that a forecaster can derive from ap-

plying the competing forecasting models, we summarize in Table 8 results of

the U-FG cross-state regressions.10 The results show that we can reject the

10We estimate the regression models as a least trimmed squares robust regression model to
account for occasional outliers, where we fix the percentage of squared residuals whose sum
is to be minimized to 90%. We use the R add-on package “robustbase” (version 0.99-6). See
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one-sided null hypothesis when we compare the RV with the RV -M forecasting

model for all three algorithms for h = 1, 3, and for random forests (the boosting

algorithm) also for h = 6 (h = 6, 12). Moreover, we reject the null hypothesis for

the short and the two intermediate forecast horizons when we compare the RV -M

forecasting model with the RV -MM forecasting model. Hence, realized state-level

and realized market-wide moments clearly yield utility forecasting gains when

the forecast horizon is not too long. For the pair RV -MM versus RV -MM-E,

the test results are significant for the boosting algorithm at h = 3, 6, and for

random forests for h = 1. For the pair RV -MM-E versus RV -MM-EM, the test

results are significant for the boosting algorithm at h = 3, 6 when we consider the

gMDLtrace model-selection criterion, and at h = 3 when we consider the gMDLactset

model-selection criterion. For random forests, we observe test results for the pair

RV -MM versus RV -MM-E at h = 1, and for the pair RV -MM-E versus RV -MM-

EM at h = 1, 3. The test results are all insignificant for the pairs of forecasting

models involving the growth rates of electricity sales when we consider the best

forward predictor selection algorithm. Taken together, we find some evidence

that the growth rates of electricity sales may yield utility forecasting gains at the

short and/or intermediate forecast horizons, but clearly not at the long forecast

horizon.

− Tables 8 and 9 about here. −

When we use a model-averaging approach to estimate the U-FG cross-state re-

gressions, we obtain the results that we summarize in Table 9. The test results

are statistically significant at all four forecast horizons for the pair RV versus

Maechler et al. (2025).
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RV -M, and for the short and intermediate forecast horizons for the pair RV -M

versus RV -MM. For the pair RV -MM versus RV -MM-E all test results are statis-

tically insignificant, while for the pair RV -MM-E versus RV -MM-EM only the test

result at h = 3 is statistically insignificant. Hence, we find some weak evidence

that using the growth rates of electricity sales yields utility gains at an intermedi-

ate forecast horizon, but the test results that we obtain when we setup the U-FG

cross-state regressions by means of model-averaging approach are weaker than

the test results that we report in Tables 8 for the scenario in which we analyze

the utility gains separately for the three statistical learning algorithms.

5 Summary and Concluding Remarks

We have used a boosting algorithm as well as a forward best predictor selec-

tion algorithm and random forests to study whether the growth rates of elec-

tricity sales have out-of-sample predictive value for the subsequently realized

state-level volatility of stock returns, where we have controlled for state-level and

market-wide realized moments. The broad picture that arises from our results

is that, in those configurations of our forecasting experiment for which we find

evidence of forecasting gains from extending a forecasting model to include the

growth rates of electricity sales, measured at the level of an individual state or

at the level of the market, such forecasting gains mainly are concentrated, in the

cross-section of states, at the short forecast horizon. Depending on the statisti-

cal learning algorithm being used, we find some evidence that utility forecasting

gains may also arise at intermediate forecast horizons. On balance, however, the
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evidence is mixed. We find stronger evidence that the predictive value of realized

moments, either measured at the level of an individual state or at the level of the

market, and utility forecasting gains, extend, in some model configurations, to

the intermediate and even to the long forecast horizon.

In terms of variable importance, we have found that the contemporaneous

realized state-level volatility plays a dominant role, followed by the market-wide

leverage effect. We further have found that the importance of the growth rates

of electricity sales as well as the inclusion of these predictors in the forecasting

models tend to strengthen on average across states as the length of the forecast

horizon increases, especially as far as the growth rates of commercial and in-

dustrial electricity sales are concerned. The details of the results, however, vary

somewhat across the statistical learning algorithms. For the boosting algorithm,

we have also identified, and visualized by means of wordclouds, the states for

which the growth rates of electricity sales are relatively often included in the

boosted forecasting model.

Moreover, the results of our cross-state regression models have shown that

the boosting algorithm and random forests perform equally well at the short

forecast horizon, but the boosting algorithm yields a better performance on av-

erage, except for the RV -M forecasting model, at the intermediate and long fore-

cast horizons. Both the boosting algorithm and random forests perform better

for several configurations of the forecasting experiment than the forward best

predictor selection algorithm, where the performance of the best predictor selec-

tion algorithm relative to random forests tends to improve as the length of the

forecast horizon increases. Results of a simple model-averaging approach that
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combines the forecasts from the three statistical learning algorithms have lent

further support to the notion that the growth rates of electricity sales contribute

to forecasting gains at the short forecast horizon.

The evidence that electricity sales may have some predictive value at a short

forecast horizon in the cross-section of states indicates that, in future research,

is interesting to study whether the growth rates of electricity sales help to pre-

dict the cross-sectional (that is, cross-state) realized volatility of stock returns.

Results of such research could be useful for improving portfolio diversification

strategies in that the mixture of stocks from firms residing in high-volatility and

low-volatility states could be optimized to improve the risk-returns profile of a

portfolio or to better control its risk profile.

For future research, expanding our study to a cross-country analysis involv-

ing both advanced and emerging stock markets, for example, within Europe and

otherwise, contingent on the availability of electricity sales data, would be in-

valuable to generalize our findings.
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Table 1: Boosting algorithm and optimal model selection criterion

Model RV -M RV -MM RV -MM-E RV -MM-EM RV -M RV -MM RV -MM-E RV -MM-EM
MAFE RMSFE
h = 1 h = 1

AICtrace 7 5 3 5 6 3 4 2
AICactset 5 5 3 6 1 3 5 7
gMDLtrace 18 18 21 16 24 24 13 13
gMDLactset 20 22 23 23 19 20 28 28

MAFE RMSFE
h = 3 h = 3

AICtrace 7 7 5 4 2 2 2 2
AICactset 7 8 4 3 4 4 2 2
gMDLtrace 16 9 13 11 20 11 6 7
gMDLactset 20 26 28 32 24 33 40 39

MAFE RMSFE
h = 6 h = 6

AICtrace 6 6 4 2 3 2 1 2
AICactset 5 7 4 3 1 1 2 0
gMDLtrace 10 10 6 10 10 10 7 9
gMDLactset 29 27 36 35 36 37 40 39

MAFE RMSFE
h = 6 h = 6

AICtrace 8 11 9 6 4 3 5 2
AICactset 9 5 4 2 4 3 1 1
gMDLtrace 16 13 13 12 13 11 7 8
gMDLactset 21 22 24 30 34 34 37 39

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. Using data for every state, the boosting algorithm
is implemented for every forecasting model by using the four different model-selection criteria.
For every state, every forecasting model, and every forecast horizon, h, the out-of-sample MAFE
(RMSFE) statistic is computed and the best model-selection criterion is identified as the one that
minimizes the MAFE (RMSFE) statistic. The numbers summarized in the table represent the
number of states for which a model-selection criteria yields the best model in terms of the MAFE
(RMSFE) statistic. The numbers in the columns of the table, for a given forecast horizon, can
exceed the total number of states (50) in case two or more model-selection criteria minimize the
MAFE (RMSFE) statistic.
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Table 2: Boosting and cross-state regressions of forecasting gains

Panel A: MAFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
gMDLtrace

RV vs. RV -M 0.0518 0.0000 0.0000 0.0001
RV -M vs. RV -MM 0.0003 0.0000 0.0121 0.5100
RV -MM vs. RV -MM-E 0.1262 0.9081 1.0000 0.9911
RV -MM-E vs. RV -MM-EM 0.4593 1.0000 1.0000 1.0000

gMDLactset

RV vs. RV -M 0.1058 0.0001 0.0000 0.0001
RV -M vs. RV -MM 0.0153 0.0000 0.1060 0.6049
RV -MM vs. RV -MM-E 0.0373 0.9247 0.6889 0.9427
RV -MM-E vs. RV -MM-EM 0.0244 0.9993 1.0000 1.0000

Panel B: RMSFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
gMDLtrace

RV vs. RV -M 0.3401 0.0000 0.0000 0.0000
RV -M vs. RV -MM 0.0002 0.0000 0.0030 0.0277
RV -MM vs. RV -MM-E 0.0080 0.2937 0.9675 0.9308
RV -MM-E vs. RV -MM-EM 0.0051 0.9991 1.0000 1.0000

gMDLactset

RV vs. RV -M 0.4937 0.0001 0.0000 0.0000
RV -M vs. RV -MM 0.0029 0.0000 0.0009 0.0160
RV -MM vs. RV -MM-E 0.0126 0.2942 0.2978 0.7514
RV -MM-E vs. RV -MM-EM 0.0222 0.8991 1.0000 1.0000

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. The MAFE-FG and RMSFE-FG statistics are
computed for the 50 states, and then a regression model of the statistics on an intercept term is
estimated. The null hypothesis is that the intercept term is zero, while the one-sided alternative
hypothesis is that the intercept term is positive. The p-value for the intercept term is obtained
using heteroscedasticity and autocorrelation consistent standard errors.
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Table 3: Boosting, a rolling-estimation window, and cross-state regressions of
forecasting gains

Panel A: MAFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
gMDLtrace

RV vs. RV -M 0.0575 0.0000 0.0000 0.0393
RV -M vs. RV -MM 0.0011 0.0000 0.2591 0.8251
RV -MM vs. RV -MM-E 0.0754 0.9773 1.0000 1.0000
RV -MM-E vs. RV -MM-EM 0.6059 1.0000 1.0000 1.0000

gMDLactset

RV vs. RV -M 0.3685 0.0000 0.0000 0.2751
RV -M vs. RV -MM 0.0000 0.0000 0.3188 0.6785
RV -MM vs. RV -MM-E 0.1450 0.7989 0.9874 0.9652
RV -MM-E vs. RV -MM-EM 0.6983 1.0000 1.0000 0.9997

Panel B: RMSFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
gMDLtrace

RV vs. RV -M 0.4253 0.000 0.0000 0.0000
RV -M vs. RV -MM 0.0000 0.000 0.1954 0.3045
RV -MM vs. RV -MM-E 0.0180 0.706 0.9951 1.0000
RV -MM-E vs. RV -MM-EM 0.0522 1.000 1.0000 1.0000

gMDLactset

RV vs. RV -M 0.7151 0.0000 0.0000 0.0000
RV -M vs. RV -MM 0.0000 0.0000 0.3410 0.0621
RV -MM vs. RV -MM-E 0.0677 0.1594 0.7426 0.7978
RV -MM-E vs. RV -MM-EM 0.2046 0.9985 1.0000 0.9576

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. The MAFE-FG and RMSFE-FG statistics are
computed for the 50 states, and then a regression model of the statistics on an intercept term is
estimated. The null hypothesis is that the intercept term is zero, while the one-sided alternative
hypothesis is that the intercept term is positive. The p-value for the intercept term is obtained
using heteroscedasticity and autocorrelation consistent standard errors.
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Table 4: Forward best predictor selection algorithm and cross-state regressions
of forecasting gains

Panel A: MAFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
BIC

RV vs. RV -M 0.9882 0.4280 0.5471 0.4756
RV -M vs. RV -MM 0.0005 0.0039 0.4992 0.6099
RV -MM vs. RV -MM-E 0.4176 0.9408 1.0000 0.9944
RV -MM-E vs. RV -MM-EM 0.9920 1.0000 1.0000 1.0000

Panel B: RMSFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
BIC

RV vs. RV -M 0.9944 0.9630 0.9671 0.8434
RV -M vs. RV -MM 0.0000 0.0525 0.9220 0.1095
RV -MM vs. RV -MM-E 0.4260 0.9760 1.0000 0.9865
RV -MM-E vs. RV -MM-EM 0.9653 1.0000 1.0000 1.0000

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. The MAFE-FG and RMSFE-FG statistics are
computed for the 50 states, and then a regression model of the statistics on an intercept term is
estimated. The null hypothesis is that the intercept term is zero, while the one-sided alternative
hypothesis is that the intercept term is positive. The p-value for the intercept term is obtained
using heteroscedasticity and autocorrelation consistent standard errors.

Table 5: Random forests and cross-state regressions of forecasting gains

Panel A: MAFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0173 0.0064 0.0031 0.4306
RV -M vs. RV -MM 0.8789 0.9530 0.9726 1.0000
RV -MM vs. RV -MM-E 0.0017 0.3618 0.9705 0.8821
RV -MM-E vs. RV -MM-EM 0.0000 0.9999 1.0000 0.6599

Panel B: RMSFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0186 0.0040 0.0002 0.0461
RV -M vs. RV -MM 0.0429 0.4706 0.8021 1.0000
RV -MM vs. RV -MM-E 0.0076 0.3772 0.7460 0.7206
RV -MM-E vs. RV -MM-EM 0.0012 0.1029 1.0000 0.9577

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. The MAFE-FG and RMSFE-FG statistics are
computed for the 50 states, and then a regression model of the statistics on an intercept term is
estimated. The null hypothesis is that the intercept term is zero, while the one-sided alternative
hypothesis is that the intercept term is positive. The p-value for the intercept term is obtained
using heteroscedasticity and autocorrelation consistent standard errors.
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Table 6: Comparing statistical learning algorithms in terms of forecasting gains

Panel A: MAFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
Boosting vs. random forests

RV -M 0.7962 0.1680 0.1374 -0.9627
RV -MM -0.2833 -1.2815∗∗∗ -0.6399 -2.6738∗∗∗

RV -MM-E 0.0690 -0.9753∗∗ -1.3523∗∗ -3.1344∗∗∗

RV -MM-EM 0.5758 -1.1846∗∗ -1.3319∗∗ -1.8898∗∗

Best predictor selection vs. boosting
RV -M 1.9361∗∗∗ 1.3637∗∗∗ 1.7013∗∗∗ 1.1425∗∗∗

RV -MM 1.7669∗∗∗ 2.0603∗∗∗ 1.9160∗∗∗ 1.1240∗∗∗

RV -MM-E 1.9593∗∗∗ 2.1693∗∗∗ 2.9487∗∗∗ 1.7222∗∗∗

RV -MM-EM 2.2421∗∗∗ 3.1372∗∗∗ 5.6231∗∗∗ 3.5816∗∗∗

Best predictor selection vs. random forests
RV -M 2.7634∗∗∗ 1.5125∗∗∗ 1.8160∗∗∗ 0.1019
RV -MM 1.4842∗∗ 0.7356 1.2245∗∗∗ -1.6284∗∗∗

RV -MM-E 2.0421∗∗∗ 1.1506∗∗ 1.4701∗∗∗ -1.5302∗∗

RV -MM-EM 2.8469∗∗∗ 1.8945∗∗∗ 4.1343∗∗∗ 1.5272∗∗

Panel B: RMSFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
Boosting vs. random forests

RV -M 1.1503 0.3746 -0.3993 -1.3846∗

RV -MM 0.0295 -1.3372∗∗∗ -1.2024∗∗∗ -3.0056∗∗∗

RV -MM-E 0.0884 -1.2798∗∗∗ -1.5642∗∗∗ -3.1846∗∗∗

RV -MM-EM 0.0838 -1.0077∗∗ -1.3793∗∗ -2.7236∗∗∗

Best predictor selection vs. boosting
RV -M 2.8981∗∗∗ 2.4888∗∗∗ 4.0039∗∗∗ 3.2037∗∗∗

RV -MM 3.0664∗∗∗ 3.9543∗∗∗ 4.7356∗∗∗ 3.4184∗∗∗

RV -MM-E 3.3058∗∗∗ 4.2110∗∗∗ 5.8312∗∗∗ 4.1619∗∗∗

RV -MM-EM 3.6256∗∗∗ 4.7595∗∗∗ 8.3882∗∗∗ 6.2256∗∗∗

Best predictor selection vs. random forests
RV -M 4.3299∗∗ 2.8839∗∗∗ 3.5769∗∗∗ 1.7193∗∗

RV -MM 3.3003∗∗ 2.5895∗∗∗ 3.4610∗∗∗ 0.2535
RV -MM-E 3.5941∗∗ 2.9058∗∗∗ 4.1534∗∗∗ 0.7688
RV -MM-EM 3.9139∗∗ 3.7261∗∗∗ 6.8823∗∗∗ 3.2376∗∗∗

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. The MAFE-FG and RMSFE-FG statistics are
computed for the 50 states, and then a regression model of the statistics on an intercept term is
estimated. The null hypothesis is that the intercept term is zero, while the two-sided alternative
hypothesis is that the intercept term is different from zero. The gMDLactset is used to implement
the boosting algorithm. The BIC model-selection criterion is used to implement the forward best
predictor selection algorithm. *** (**, *) denotes statistical significance at the 1% (5%, 10%) level,
where inference is based on heteroscedasticity and autocorrelation consistent standard errors.

52



Table 7: Model averaging and cross-state regressions of forecasting gains

Panel A: MAFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0003 0.0000 0.0000 0.0000
RV -M vs. RV -MM 0.0376 0.0002 0.7803 1.0000
RV -MM vs. RV -MM-E 0.0001 0.6410 0.9982 0.9549
RV -MM-E vs. RV -MM-EM 0.0000 1.0000 1.0000 1.0000

Panel B: RMSFE-FG regression model

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0206 0.0000 0.0000 0.0000
RV -M vs. RV -MM 0.0000 0.0000 0.2849 0.8534
RV -MM vs. RV -MM-E 0.0000 0.2948 0.9255 0.8891
RV -MM-E vs. RV -MM-EM 0.0006 0.9552 1.0000 1.0000

The forecasting models are estimated on a recursively expanding estimation window by means
of the boosting algorithm (gMDLactset), the forward best predictor selection algorithm (BIC), and
random forests, and the forecasts are then averaged across the three algorithms. The initial
training period covers the first 50% of the data. The MAFE-FG and RMSFE-FG statistics are
computed for the 50 states, and then a regression model of the statistics on an intercept term is
estimated. The null hypothesis is that the intercept term is zero, while the one-sided alternative
hypothesis is that the intercept term is positive. The p-value for the intercept term is obtained
using heteroscedasticity and autocorrelation consistent standard errors.
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Table 8: Cross-state regressions of utility gains

Panel A: Boosting (gMDLtrace)

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0000 0.0000 0.0000 0.0000
RV -M vs. RV -MM 0.0000 0.0000 0.0000 0.0636
RV -MM vs. RV -MM-E 0.9721 0.0299 0.0154 0.9965
RV -MM-E vs. RV -MM-EM 0.2017 0.0001 0.0062 0.9969

Panel B: Boosting (gMDLactset)

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0000 0.0000 0.0000 0.0000
RV -M vs. RV-MM 0.0000 0.0000 0.0038 0.2341
RV -MM vs. RV-MM-E 0.9894 0.0496 0.0424 0.9759
RV -MM-E vs. RV -MM-EM 0.9431 0.0274 0.7103 0.9994

Panel C: Best forward predictor selection (BIC)

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0000 0.0527 0.8314 0.9493
RV -M vs. RV -MM 0.0024 0.0012 0.0857 0.9982
RV -MM vs. RV -MM-E 0.9999 0.2633 0.9803 1.0000
RV -MM-E vs. RV -MM-EM 1.0000 0.0047 0.9976 0.9996

Panel D: Random forests

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0918 0.0012 0.0012 0.9990
RV -M vs. RV -MM 0.0269 0.0012 0.0000 0.9311
RV -MM vs. RV -MM-E 0.0865 0.9843 0.9590 0.8053
RV -MM-E vs. RV -MM-EM 0.0893 0.0017 0.2243 0.0235

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. The U-FG statistic is computed for the 50
states, and then a regression model of the statistics on an intercept term is estimated. The null
hypothesis is that the intercept term is zero, while the one-sided alternative hypothesis is that
the intercept term is positive.
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Table 9: Cross-state regressions of utility gains (model averaging)

Models h = 1 h = 3 h = 6 h = 12
RV vs. RV -M 0.0000 0.0000 0.0000 0.0000
RV -M vs. RV -MM 0.0005 0.0000 0.0000 0.7532
RV -MM vs. RV -MM-E 0.2749 0.9581 0.5781 0.9434
RV -MM-E vs. RV -MM-EM 0.5675 0.0000 0.7881 0.6925

The forecasting models are estimated on a recursively expanding estimation window by means
of the boosting algorithm (gMDLactset), the forward best predictor selection algorithm (BIC), and
random forests, and the forecasts are then averaged across the three algorithms. The initial
training period covers the first 50% of the data. The U-FG statistic is computed for the 50
states, and then a regression model of the statistics on an intercept term is estimated. The null
hypothesis is that the intercept term is zero, while the one-sided alternative hypothesis is that
the intercept term is positive.

Figure 1: State-level RV s
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The solid line denotes the cross-state mean and the boundaries of the shaded area denote the
maximum and minimum across states in each month.
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Figure 2: State-level realized moments
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The solid line denotes the cross-state mean and the boundaries of the shaded area denote the
maximum and minimum across states in each month.
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Figure 3: State-level growth rates of electricity sales

2000 2010 2020

-1
50

-5
0
0

50
15
0

Commercial sales

Time

P
er
ce
nt

2000 2010 2020

-1
50

-5
0
0

50
15
0

Industrial sales

Time

P
er
ce
nt

2000 2010 2020

-1
50

-5
0
0

50
15
0

Residential sales

Time

P
er
ce
nt

The solid line denotes the cross-state mean and the boundaries of the shaded area denote the
maximum and minimum across states in each month.
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Figure 4: Boosting algorithm and optimal number of iterations (RV -MM-EM)
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, the optimal number
of iterations are recorded for every forecasting model, every model selection criterion, and all 50
states. The box-and-whisker plots visualize the cross-state distribution of the optimal number of
iterations, averaged across the out-of-sample period, where the solid horizontal line represents
the median, the shaded area represents the interquartile range, the two whiskers denote the
boundaries of 1.5 times the interquartile range, and circles represent points beyond the whiskers.
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Figure 5: Boosting algorithm and importance of predictors (RV -MM-EM)

Panel A: gMDLtrace
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Panel B: gMDLactset
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The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For every out-of-sample period,
variable importance (VIMP) is recorded for the gMDLtrace (gMDLactset) model-selection criteria.
The VIMP statistic is defined as the contribution of a base-learner to the reduction of the em-
pirical risk function, accumulated across boosting iterations. The VIMP statistic is expressed
in percent. The resulting VIMP statistic is averaged over the out-of-sample period. The box-
and-whisker plots visualizes the distribution of the VIMP statistic across states, where the solid
horizontal line represents the median, the shaded area represents the interquartile range, the
two whiskers denote the boundaries of 1.5 times the interquartile range, and circles represent
points beyond the whiskers.

59



Figure 6: Boosting algorithm and selection of predictors (RV -MM-EM)

Panel A: gMDLtrace
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Panel B: gMDLactset
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The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For the out-of-sample period, the
inclusion of predictors in the forecasting model is recorded for the gMDLtrace and gMDLactset

model-selection criterion, and every state. The box-and-whisker plots visualize how often (in
percent), across all 50 states, a predictor is included in the forecasting model in the out-of-
sample period, where the solid horizontal line represents the median, the shaded area represents
the interquartile range, the two whiskers denote the boundaries of 1.5 times the interquartile
range, and circles represent points beyond the whiskers.
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Figure 7: Boosting algorithm and time paths of inclusion of the growth rate of
electricity sales (RV -MM-EM)

Panel A: gMDLtrace

2015 2020

0
10

20
30

40
50

h=1

Time

N
um

be
r o

f s
ta

te
s

COMM
INDUS
RESID
COMM-M
INDUS-M
RESID-M

2015 2020

0
10

20
30

40
50

h=3

Time

N
um

be
r o

f s
ta

te
s

COMM
INDUS
RESID
COMM-M
INDUS-M
RESID-M

2015 2020

0
10

20
30

40
50

h=6

Time

N
um

be
r o

f s
ta

te
s

COMM
INDUS
RESID
COMM-M
INDUS-M
RESID-M

2012 2014 2016 2018 2020 2022 2024

0
10

20
30

40
50

h=12

Time

N
um

be
r o

f s
ta

te
s

COMM
INDUS
RESID
COMM-M
INDUS-M
RESID-M

Panel B: gMDLactset
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The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For the out-of-sample period, the
inclusion of the subcategories of the growth rate of electricity sales in the forecasting model is
recorded for the gMDLtrace and gMDLactset model-selection criterion, and every state. It then
is recorded for every state and every subcategory whether this subcategory is included in the
forecasting model. Finally, the number of states for which a subcategory is included in the
forecasting model is recorded and plotted over time.
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Figure 8: Importance of electricity sales in the RV -MM-EM model (gMDLtrace)

Panel A: h = 1 Panel B: h = 3

Panel C: h = 6 Panel D: h = 12

The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For every state, the inclusion of
the different growth rates of electricity sales in the forecasting model during the out-of-sample
period is recorded under the gMDLtrace model-selection criterion. Then the sum across categories
of electricity sales is computed to capture the total frequency of inclusion of electricity sales in
the boosted RV -MM-EM forecasting model for a state. The worldclouds illustrate this frequency.62



Figure 9: Importance of electricity sales in the RV -MM-EM model (gMDLactset)

Panel A: h = 1 Panel B: h = 3

Panel C: h = 6 Panel D: h = 12

The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For every state, the inclusion of the
different growth rates of electricity sales in the forecasting model during the out-of-sample period
is recorded under the gMDLactset model-selection criterion. Then the sum across categories of
electricity sales is computed to capture the total frequency of inclusion of electricity sales in the
boosted RV -MM-EM forecasting model for a state. The worldclouds illustrate this frequency.63



Figure 10: Boosting algorithm and the MAFE-FG statistic (gMDLactset)
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors
are recorded for every state. The barplots visualize the distribution of the MAFE-FG statistic
across the 50 states. The dashed vertical red line indicates forecasting gains of zero. A ratio that
exceeds zero indicates that the rival (second) model performs better in terms of the MAFE-FG
statistic than the benchmark (first) model.
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Figure 11: Boosting algorithm and the RMSFE-FG statistic (gMDLactset)
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors are
recorded for 50 state. The barplots visualize the distribution of the RMSFE-FG statistic across
the 50 states. The dashed vertical red line indicates forecasting gains of zero. A ratio that exceeds
zero indicates that the rival (second) model performs better in terms of the RMSFE-FG statistic
than the benchmark (first) model.
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Figure 12: Boosting algorithm and the CW statistic (gMDLactset)
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors
are recorded for every state. The barplots visualize the distribution of the p-value (obtained
using heteroscedasticity and autocorrelation consistent standard errors) of the CW test across
the 50 states. The dashed vertical red lines indicate the 10% and 5% level of significance. The
null hypothesis is that the benchmark (first) model and the rival (second) model perform equally
well, while the one-sided alternative hypothesis is that the rival model performs better than the
benchmark model.
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Figure 13: Boosting, a rolling-estimation window, and the CW statistic
(gMDLactset)
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The forecasting models are estimated on a rolling-estimation window that covers 50% of the data.
For the out-of-sample period, forecast errors are recorded for every state. The barplots visualize
the distribution of the p-value (obtained using heteroscedasticity and autocorrelation consistent
standard errors) of the CW test across the 50 states. The dashed vertical red lines indicate the
10% and 5% level of significance. The null hypothesis is that the benchmark (first) model and
the rival (second) model perform equally well, while the one-sided alternative hypothesis is that
the rival model performs better than the benchmark model.
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Figure 14: Forward best predictor selection and selection of predictors
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The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For the out-of-sample period, the
inclusion of predictors in the forecasting model is recorded for the BIC model-selection criterion,
and all states. The box-and-whisker plots visualize how often (in percent), across all states,
a predictor is included in the forecasting model in the out-of-sample period, where the solid
horizontal line represents the median, the shaded area represents the interquartile range, the
two whiskers denote the boundaries of 1.5 times the interquartile range, and circles represent
points beyond the whiskers.
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Figure 15: Random forests and variable importance
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The forecasting models are estimated on the full sample of data. Variable importance is computed
by calculating for every tree in the random forest the difference between the prediction errors that
result when a predictor is perturbed and the original predictor. The result is averaged across all
trees in the random forest, and then expressed in percent. The box-and-whisker plots visualize
the distribution of variable importance across the states. The dashed vertical red line indicates a
ratio of unity. A ratio that exceeds unity indicates that the rival (second) model performs better
in terms of the RMSFE statistic than the benchmark (first) model.
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Appendix

Table A1: Forward best predictor selection algorithm and optimal model selection
criterion

Model RV -M RV -MM RV -MM-E RV -MM-EM RV -M RV -MM RV -MM-E RV -MM-EM
MAFE RMSFE
h = 1 h = 1

Adj. R2 11 5 6 12 13 5 6 5
BIC 19 34 34 29 26 39 39 37
Cp 23 11 10 9 14 6 5 8

MAFE RMSFE
h = 3 h = 3

Adj. R2 13 10 6 3 8 4 3 2
BIC 28 27 38 40 33 40 40 42
Cp 12 13 6 7 12 6 7 6

MAFE RMSFE
h = 6 h = 6

Adj. R2 12 13 7 4 12 8 7 4
BIC 31 24 29 42 33 35 37 44
Cp 8 13 14 4 6 7 6 2

MAFE RMSFE
h = 6 h = 6

Adj. R2 12 10 12 7 11 8 5 6
BIC 28 33 33 36 30 34 37 38
Cp 12 8 5 7 12 9 8 6

The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. Using data for every state, the forward best
prediction selection algorithm is implemented for every forecasting model by using the three
different model-selection criteria. For every state, every forecasting model, and every forecast
horizon, h, the out-of-sample MAFE (RMSFE) statistic is computed and the best model-selection
criterion is identified as the one that minimizes the MAFE (RMSFE) statistic. The numbers
summarized in the table represent the number of states for which a model-selection criteria
yields the best model in terms of the MAFE (RMSFE) statistic. The numbers in the columns of
the table, for a given forecast horizon, can exceed the total number of states in case two or more
model-selection criteria minimize the MAFE (RMSFE) statistic.
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Figure A1: Boosting algorithm and time paths of inclusion of the growth rate of
electricity sales (RV -MM-EM)

Panel A: gMDLtrace

2015 2020

0
10

20
30

40
50

h=1

Time

N
um

be
r o

f s
ta

te
s

2015 2020

0
10

20
30

40
50

h=3

Time

N
um

be
r o

f s
ta

te
s

2015 2020

0
10

20
30

40
50

h=6

Time

N
um

be
r o

f s
ta

te
s

2012 2014 2016 2018 2020 2022 2024

0
10

20
30

40
50

h=12

Time

N
um

be
r o

f s
ta

te
s

Panel B: gMDLactset
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The RV -MM-EM forecasting model is estimated on a recursively expanding estimation window.
The initial training period covers the first 50% of the data. For the out-of-sample period, the
inclusion of the subcategories of the growth rate of electricity sales in the forecasting model is
recorded for the gMDLtrace and gMDLactset model-selection criterion, and every state. It then is
recorded for every state whether at least one of the subcategory is included in the forecasting
model. Finally, the number of states for which at least one of the subcategory is included in the
forecasting model is recorded and plotted over time.
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Figure A2: Best predictor selection algorithm and the MAFE-FG statistic (BIC
criterion)
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors are
recorded for every state. The barplots visualize the distribution of the MAFE-FG statistic across
the states. The dashed vertical red line indicates forecasting gains of zero. A ratio that exceeds
zero indicates that the rival (second) model performs better in terms of the MAFE-FG statistic
than the benchmark (first) model.
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Figure A3: Best predictor selection algorithm and the RMSFE-FG statistic (BIC
criterion)
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors are
recorded for every state. The barplots visualize the distribution of the RMSFE-FG statistic across
the states. The dashed vertical red line indicates forecasting gains of zero. A ratio that exceeds
zero indicates that the rival (second) model performs better in terms of the RMSFE-FG statistic
than the benchmark (first) model.
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Figure A4: Random forests and MAFE-FG statistic
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors are
recorded for every state. The barplots visualize the distribution of the MAFE-FG statistic across
the states. The dashed vertical red line indicates forecasting gains of zero. A ratio that exceeds
zero indicates that the rival (second) model performs better in terms of the MAFE-FG statistic
than the benchmark (first) model.
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Figure A5: Random forests and the RMSFE-FG statistic
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The forecasting models are estimated on a recursively expanding estimation window. The initial
training period covers the first 50% of the data. For the out-of-sample period, forecast errors are
recorded for the states. The barplots visualize the distribution of the RMSFE-FG statistic across
the states. The dashed vertical red line indicates forecasting gains of zero. A ratio that exceeds
zero indicates that the rival (second) model performs better in terms of the RMSFE-FG statistic
than the benchmark (first) model.
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