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Abstract

Previous studies examine spillover effects across the volatility of several cryptocur-
rencies in the mean or across quantiles without addressing the issue of high dimension-
ality. Using a large dataset of 50 cryptocurrencies, we employ a LASSO-regularized
Quantile VAR framework and show that spillover effects differ across low, medium, and
high volatility regimes, especially when evaluated dynamically over time, with sharp
increases around tail events such as the war in Ukraine. Importantly, we demonstrate
that the LASSO-QVAR model delivers statistically significant forecasting improve-
ments over its univariate counterpart, underscoring the role of interconnectedness in
enhancing volatility prediction across cryptocurrencies.
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1 Introduction

The increasing interdependence of financial markets has accentuated the importance of un-

derstanding connectedness and spillover effects across assets. Cryptocurrencies, as a distinct

and rapidly evolving asset class, exhibit unique dynamics driven by high volatility and inter-

connected behaviors.1 Bitcoin, the first cryptocurrency, is based on blockchain technology

and the genuine concept of mass collaboration. Launched in 2009, it has gradually inspired

the construction of other cryptocurrencies, which vary in market size and significance, but

they are generally built around blockchain systems. The large and diverse universe of cryp-

tocurrencies stands as a new (digital) asset class, with a market value exceeding 3.5 trillion

USD around the end of 2024. It offers diversification opportunities for stock and bond

investors (Bouri et al., 2017; Shahzad et al., 2019), especially during stressful periods, pow-

ered by the decentralization feature of most cryptocurrencies and their detachment from the

expansion of balance sheets of US and European central banks (Kumar et al., 2022). Inter-

estingly, the phenomenon of digitalization, accelerated by the pandemic’s aftermath during

lockdowns and the shift to remote work, has led to increased attractiveness and demand for

cryptoassets. Although the dominance of Bitcoin has been persistent over the past years, the

importance of other cryptocurrencies such as Ethereum, Litecoin, XRP, Dogecoin, cannot

be overstated by many practitioners and market participants.

Given the speculative nature of cryptocurrency and the lack of theoretical valuation model

for cryptocurrency, the young and under-regulated cryptocurrency market exhibits a large

price variability. The rapid development of cryptocurrencies continues to thrive on media

attention (Philippas et al., 2019), sentiments and emotions (Ahn and Kim, 2021; Mokni

et al., 2022; Anamika et al., 2023), and fear of missing out (FOMO) effect (Baur and Dimpfl,

2018).2 Interestingly, the main commonalities that characterise the players in this new

1In this paper, we use the terms connectedness and spillover in close relation. While connectedness
typically refers to the overall degree of interdependence within the system, spillover emphasizes the directional
transmission of shocks across assets. We study both aspects: the overall degree of connectedness in the
cryptocurrency market and the directional contributions of each cryptocurrency to and from others.

2Aharon et al. (2022) highlight evidence of a causal spillover effect between Twitter-based uncertainty
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digital asset class are blockchain technology and the resulting decentralization from sovereign

authorities, as well as exponential price appreciation and tremendous volatility, hype and

fear-of-missing-out phenomena, and speculative activities, which all contribute to a different

degree to heightened levels of market integration (Ji et al., 2019). Notably, cryptocurrencies

are interconnected and one (large) cryptocurrency can affect other cryptocurrencies (Ji et al.,

2019; Fasanya et al., 2021; Özdemir, 2022), especially under extreme events.

Traditional approaches to measuring connectedness, such as the Forecast Error Variance

Decomposition (Pesaran and Shin, 1998; Diebold and Yilmaz, 2008, 2012, 2014), based on

Vector AutoRegressive models (Lütkepohl, 2005), have proven effective in analyzing financial

networks. However, these methods often fail to capture the nonlinearities and heterogeneities

inherent in financial systems, as they only focus on relationships involving conditional ex-

pectations. Recent advancements, including the Quantile Forecast Error Variance Decom-

position (Ando et al., 2022), offer a more granular perspective by examining spillover effects

across different quantiles of the variables’ conditional distributions. This approach provides

valuable insights into tail dependencies and extreme market conditions, which are particu-

larly relevant in volatile markets like cryptocurrencies.

The volatility dynamics and cross-correlations of cryptocurrencies exhibit strong nonlin-

ear feature (Chowdhury et al., 2023), which suggests the suitability of applying a spillover

analysis across the various quantiles of the distribution of cryptocurrency volatility to reveal

how various levels of volatility shocks are transmitted in the cryptocurrency markets.3 While

the Quantile Forecast Error Variance Decomposition approach of Ando et al. (2022) has been

used in the related literature to estimate tail dependencies and extreme market conditions,

it is subject to the issue of high-dimensional quantile VARs when applied to a large set of

cryptocurrencies. Interestingly, Yi et al. (2018) use a LASSO-VAR to estimate the spillover

index in the mean; however, they overlook the spillover effects across high, medium and low

and the cryptocurrency markets.
3Liu et al. (2025) argue that the fast expansion of the cryptocurrency market has induced substantial

price volatility, causing asymmetry and extreme tail-dependency.
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volatility regimes.

Building on this foundation, the present study employs a LASSO-regularized Quantile

Vector AutoRegressive framework (Caporin et al., 2023) to estimate connectedness and

spillovers across a network of 50 cryptocurrencies. The LASSO regularization technique

(Tibshirani, 1996) enhances the model’s predictive accuracy and sparsity, addressing the

curse of dimensionality.

Accordingly, our analysis takes a deeper and more comprehensive view on the volatility

interdependence in the cryptocurrency markets by applying a novel approach that addresses

the shortcomings of quantile-VAR spillover literature faced when dealing with a large set of

cryptocurrencies. By employing a LASSO-Quantile VAR for estimating a high-dimensional

quantile VAR, it advances the related literature that uses the LASSO-VAR (Yi et al., 2018)

and the one that applies quantile-based approaches of connectedness (Bouri et al., 2021;

Karim et al., 2022; Mensi et al., 2023). This allows us to capture the dynamics and network

of volatility connectedness across a large number of cryptocurrencies in a granulated way,

revealing a profounder understanding of how volatility shocks propagates among various

volatility regimes. Typically, large volatility shocks tend to be transmitted more easily that

small volatility shocks, leading to more intensification in the spillover index at the high

volatility regime compared to the low volatility regime.

We further enrich our analysis by analysing the network following the Factor-Adjusted

Network Estimation and Forecasting for High-Dimensional Time Series (FNETS) method re-

cently proposed by Barigozzi et al. (2023), which accounts for the effects of potential common

factors. Furthermore, The FNETS method estimates the network of high-dimensional cryp-

tocurrencies although cryptocurrencies are subject to serial correlation and cross-sectional

dependencies.

Taken together, our analysis is particularly new in the literature that focuses on the highly

volatile and speculative market of cryptocurrencies. It should help various participants in the

cryptocurrency market in making more refined and granulated decisions, possibly guiding
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enhanced investment and risk inferences in a new digital asset class that continues to draw

attention and regulatory oversight from policymakers and central banks.

The rest of the paper goes as follows. Section 2 reviews the related literature in the

area of cryptocurrencies, especially the volatility spillover analysis. Section 3 presents the

LASSO-regularized Quantile VAR framework of spillover and the FNETS method. Section 4

describes the dataset and empirical setup. Section 5 presents the empirical findings. Section

6 concludes the paper.

2 Related literature

Following the emergence of cryptocurrencies as a separate asset class, attractive to investment

and trading strategies given its somewhat independence from sovereign authorities despite

its large volatility, a growing literature considers the interactions across major cryptocurren-

cies for the sake of understanding the complexity of such interactions and making insightful

inferences regarding portfolio and risk management. Previous studies on the interconnection

and dependence among various cryptocurrencies demonstrate that Bitcoin is typically the

most influential one for the dynamics of co-jumps (Zhang et al., 2023), co-bubbling (Bouri

et al., 2019b), and market contagion (Antonakakis et al., 2019). Furthermore, herding be-

haviour is found to be significant among participants in the cryptocurrency markets (Bouri

et al., 2019a; Gurdgiev and O’Loughlin, 2020; Yousaf and Yarovaya, 2022).

Notably, evidence of significant transmission of volatility across various cryptocurrencies

is often found, underling the influential role of large cryptocurrencies such as Bitcoin and

Ethereum (Yi et al., 2018; Ji et al., 2019; Fasanya et al., 2021), and evidence of instability

around crisis periods and event shocks such as the COVID-19 outbreak; see, among others,

Maghyereh and Ziadat (2024).

Yi et al. (2018) estimate the spillover index across several cryptocurrencies in the mean,

although they integrate the LASSO technique in the spillover analysis to address the issue
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of a high-dimensional VAR. Their results highlights the significant role played large-cap

cryptocurrencies in the system of volatility spillovers. Ji et al. (2019) study the VAR-based

spillover effects in volatility in the system of six major cryptocurrencies over the period

August 2015—February 2018, revealing the key role played by Bitcoin without ignoring the

importance of other large cryptocurrencies such as Litecoin. Xu et al. (2021) examine the

tail-risk dependencies across 23 cryptocurrencies by employing a TENET approach. They

underline evidence of significant risk spillover effect that has been on the rise.

The relevance of extreme shocks and events such as the pandemic and the war in Ukraine

on the dynamics of cryptocurrencies has been the subject of previous studies. Accordingly,

the interactions among large cryptocurrencies are noticed, indicating a spike in the level of

spillover effects around these crisis periods, and showing evidence that large cryptocurrencies

such as Bitcoin and Ethereum are key to the system of spillovers. In this regard, Karim et al.

(2022) find significant risk spillovers across conventional and non-conventional cryptocurren-

cies (e.g., DeFi and NFTs) during crisis periods using a quantile approach of spillovers.

Using a spillover index within a VAR framework, Kumar et al. (2023) show a heightened

level of spillovers just before the war in Ukraine. Chowdhury et al. (2023) consider the ef-

ficiency of various cryptocurrencies using an asymmetric multifractal approach. They show

the significant effect of the pandemic on the efficiency of the cryptocurrency markets and

find that the volatility dynamics of cryptocurrencies exhibit strong nonlinear feature in their

cross-correlations. Koutmos (2018) applies the spillover approach of Diebold and Yilmaz

(2008, 2012, 2014) and shows that the transmission of return and volatility shocks across 18

major cryptocurrencies is on the rise, reflecting a contagion risk. Bitcoin is a major contrib-

utor to this contagion risk, which intensifies under news shocks related to cryptocurrencies.

Katsiampa et al. (2019) apply a multivariate GARCH model and show that the largest cryp-

tocurrency, Bitcoin, is bidirectionally related with Ethereum and Litecoin in terms of both

return and volatility shocks. Kumar and Anandarao (2019) study the interlinkages of volatil-

ity in the cryptocurrency markets using GARCH and wavelet techniques, and reveal evidence
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of a moderate volatility spillover effect, which is shaped by the market of Bitcoin and various

exogenous shocks. Liu and Serletis (2019) show, based on a multivariate GARCH-in-mean

model, that the volatility of Bitcoin, Ethereum, and Litecoin are somewhat interrelated.

Notably, the volatility shocks in Litecoin can heighten the volatility of Ethereum, but they

exert no influence on Bitcoin volatility. Fasanya et al. (2021) apply the spillover approach

of Diebold and Yilmaz (2008, 2012, 2014) on various cryptocurrencies and report evidence

of significant return and volatility spillovers, with Bitcoin and Ethereum playing the roles of

transmitters of shocks, suggesting an increasing integration and contagion risk across major

cryptocurrencies, which ultimately investment decisions and portfolio management. Özdemir

(2022) studies the volatility spillovers eight large cryptocurrencies (Bitcoin, Ethereum, Stel-

lar, Ripple, Tether, Cardano, Litecoin, and Eos) over the period November 2019—January

2021, covering the pandemic. Applying GARCH and wavelet based methods, the author

finds that large cryptocurrencies, namely Bitcoin, Ethereum, and Litecoin, are very volatile

and interrelated. Furthermore, their downside risk is much larger than that of Chinese and

US equity indices. Liu and Serletis (2024) employ a GARCH-copula model and find evidence

of tail-dependence between financial and cryptocurrency markets. Furthermore, they find a

lower tail-dependence across Bitcoin, Ethereum, and Litecoin.

On a related front, Maghyereh and Ziadat (2024) report evidence of significant tail risk

spillovers across six leading cryptocurrencies, which seem to spike around crisis periods.

They also show the important role played by investor sentiment, macroeconomic conditions,

and economic uncertainty in affecting the spillovers. Liu et al. (2025) propose a Mean-ES risk

optimization framework and capture asymmetry and tail-dependence in the cryptocurrency

markets, while providing implications for the optimized portfolio and risk management.

The above-mentioned literature has been useful to understand the volatility linkages

among major cryptocurrencies. It relies on standard approaches that built on GARCH-based

modelling and wavelet coherence, and many of the related studies either employ VAR-based

measures of connectedness that capture the evolution of the degree of volatility connect-
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edness during normal and crisis periods or the quantile-VAR measures without addressing

high-dimensionality issues. Our current paper seeks to address these issues and accordingly

contributes to the related literature on cryptocurrency volatility connectedness by applying

the LASSO-regularized Quantile VAR framework (Caporin et al., 2023) to estimate connect-

edness and spillovers across a network of 50 cryptocurrencies. The LASSO regularization

technique (Tibshirani, 1996) enhances the model’s predictive accuracy and sparsity, address-

ing the curse of dimensionality.

3 Connectedness in high-dimensional settings

Let phighj,t and plowj,t be, respectively, the maximum and the minimum log-prices of cryptocur-

rency j on day t. Following Barigozzi et al. (2023) and Brownlees and Gallo (2009), we

estimate the log-volatility of cryptocurrency j on day t as follows:

yj,t = log

[
0.361

(
phighj,t − plowj,t

)2]
. (1)

We then define the N×1 vector yt = [y1,t · · · yN,t]
′, for t = 1, . . . , T . We study the propa-

gation of the spillovers within the network of the y1,t · · · yN,t variables using a generalization

of the Quantile Forecast Error Variance Decomposition (QFEVD) introduced by Ando et al.

(2022), that we describe below.

We start from the reference methodology: the Forecast Error Variance Decomposition

(FEVD), that is based on the following Vector AutoRegressive (VAR) model:

yt = α+

p∑
k=1

Φkyt−k + ut, (2)

where Φk is an N ×N parameter matrix, α = [α1 · · ·αN ]
′ is the N × 1 vector of intercepts,

and ut ∼ N (0,Σ) is the error term (Pesaran and Shin, 1998; Lütkepohl, 2005; Diebold and

Yilmaz, 2008, 2012, 2014).
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Given the parameters of the VAR model in Equation (2), we obtain the N × N FEVD

matrix for a given forecast horizon h. Following Pesaran and Shin (1998), we focus on the

generalized impulse response function, as it provides estimates that do not depend on the

ordering of the y1,t · · · yN,t variables in yt. We then define entry (i, j) of the FEVD matrix

as:

θi,j(h) =
σ−1jj

∑h
l=0 (e

′
iΓlΣej)

2∑h
l=0 (e

′
iΓlΣΓ′lei)

, (3)

where diag(Σ) = [σ11 · · · σNN ], Γl is a functionΦk derived through an infinite moving average

representation of the VAR model in Equation (2), and ei is an N × 1 selection vector with

zero elements, except the i-th one, which is equal to one.

θi,j(h) is the proportion of the h-step ahead forecast error variance of variable i which is

accounted for by the innovations in variable j. However, the sum of θi,1(h), . . . , θi,N(h) is not

necessarily equal to one, for each i = 1, . . . , N . We then normalize the entries of the FEVD

matrix:

θ̃i,j (h) =
θi,j(h)∑N
j=1 θi,j(h)

· 100 (4)

for i = 1, . . . , N ; see, among others, Gross and Siklos (2019).

We also estimate the contribution from and to others of each node within the overall

network. Specifically, following Diebold and Yilmaz (2008, 2012, 2014), we define the total

directional connectedness to others from variable j:

θ̃•←j(h) =
1

N − 1

N∑
i=1
i̸=j

θ̃i,j (h) (5)

and the total directional connectedness from others to variable i:

θ̃i←•(h) =
1

N − 1

N∑
j=1
j ̸=i

θ̃i,j (h) . (6)

From the difference θ̃•←j(h) − θ̃j←•(h), it is possible to quantify the net contribution of

9



node j. At a global level, we also define the total spillover index:

θ̃(h) =
1

N

N∑
i=1
i̸=j

N∑
j=1

θ̃i,j (h) . (7)

The FEVD methodology depends on the parameters of the VAR model given in Equation

(2), which relate the lagged values of y1,t, . . . , yN,t with their current expectations. However,

such relationships could change along the conditional distributions of the y1,t, . . . , yN,t vari-

ables. Inspired by this idea, Ando et al. (2022) extended the FEVD method to the quantile

framework, introducing the QFEVD model, which builds on the Quantile VAR (QVAR)

model. Given τ ∈ (0, 1), let Qτ (yi,t|It−1) be the τ -th quantile of yi,t conditional on the

information set available at time t− 1 with the following specification:

Qτ (yi,t|Ft−1) = αi,τ +

p∑
k=1

Φ
(i)
k,τyt−k. (8)

Equation (8) is the i-th equation of the QVAR system, with i = 1, . . . , N , and is estimated

by employing the quantile regression model introduced by Koenker and Bassett (1978). We

use Φ
(i)
k,τ as the i-th row of the N × N matrix Φk,τ , with i = 1, . . . , N and k = 1, . . . , p.

Note that, in contrast to Φk, Φk,τ depends on the quantile level τ . By replacing Φk with

Φk,τ , it is possible to obtain the quantile counterpart of Γl, denoted as Γl,τ . Furthermore,

we define the covariance matrix of the QVAR error terms as Στ . As a result, entry (i, j) of

the QFEVD matrix has the following form:

θi,j(h, τ) =
σ−1jj,τ

∑h
l=0 (e

′
iΓl,τΣτej)

2∑h
l=0

(
e′iΓl,τΣτΓ

′
l,τei

) , (9)

where diag(Στ ) = [σ11,τ · · · σNN,τ ].

By replacing θi,j(h) with θi,j(h, τ) in Equations (4)—(7), it is possible to compute the

quantile-specific indicators θ̃•←j(h, τ), θ̃i←•(h, τ), and θ̃(h, τ), respectively.

In a recent study, Caporin et al. (2023) noticed that the QFEVD spillover index is
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affected by distortions that become more relevant at extreme quantile levels (i.e. when τ

approaches to either zero or one). Interestingly, the magnitude of such distortions is quite

symmetric in the left and right tails, and the resulting QFEVD spillover index exhibits a

kind of U shape (Caporin et al., 2023). Building on an extensive simulation analysis, Caporin

et al. (2023) showed that such distortions could be significantly reduced by implementing

regularization techniques, such as the Least Absolute Shrinkage and Selection Operator

(LASSO) introduced by Tibshirani (1996). In particular, Caporin et al. (2023) employed the

ℓ1-penalized quantile regression estimator (Koenker, 2005; Belloni and Chernozhukov, 2011)

to estimate the QVAR parameters, by minimizing, for each equation i (i = 1, . . . , N), the

following loss function:

1

T − p

T∑
t=p+1

ρτ

(
yi,t − αi,τ −

p∑
k=1

Φ
(i)
k,τyt−k

)
+ λ(i)

√
τ(1− τ)

T − p

p∑
k=1

N∑
j=1

σ̂j

∣∣∣ϕ(i)
k,τ,j

∣∣∣ ,
where ϕ

(i)
k,τ,j is the j-th entry of Φ

(i)
k,τ , σ̂j is the sample standard deviation of yj,t, λ

(i) ≥ 0

is a tuning parameter, ρτ (u) = u
(
τ − I{u<0}

)
is the asymmetric loss function of quantile

regression (Koenker and Bassett, 1978), and I{·} is an indicator function which is equal to

one if the condition in {·} is true, and equal to zero otherwise.

Note that λ(i) controls the sparsity of the solutions: the greater λ(i), the greater the

number of parameters in the i-th QVAR equation that approach zero. Following Caporin

et al. (2023), we adopt the method proposed by Belloni and Chernozhukov (2011) to select

the optimal value of λ(i).

We adopt the LASSO-regularized QFEVD model (Ando et al., 2022; Caporin et al.,

2023) to estimate the contribution to and from others and the net contribution of each cryp-

tocurrency in our dataset, as well as the overall spillover index for different quantile levels.

Furthermore, we also assess the predictive accuracy of the underlying LASSO-regularized

QVAR model. Let α̂i,τ and Φ̂
(i)

k,τ be the LASSO-regularized estimates of αi,τ and Φ
(i)
k,τ , re-

spectively. We stress the fact that such coefficients are obtained from response variables
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observed at time t and regressors observed at times t− 1, . . . , t− k, consistent to the spec-

ification given in Equation (8). Building on such estimates and on the data available until

time t, we can forecast the τ -th quantile of each variable i (with i = 1, . . . , N) at time t+ 1

as:

Q̂τ (yi,t+1|Ft) = α̂i,τ +

p∑
k=0

Φ̂
(i)

k,τyt−k. (10)

On the basis of the rolling window scheme described in Section 4, we iteratively contrast

the forecast Q̂τ (yi,t+1|Ft) with the out-of-sample realization yi,t+1 and, following Bonaccolto

et al. (2018), compute the following loss function:

Li,t+1,τ =
[
τ − I{yi,t+1−Q̂τ (yi,t+1|Ft)<0}

] [
yi,t+1 − Q̂τ (yi,t+1|Ft)

]
, (11)

where I{·} is an indicator function which takes the value of one if the condition in {·} is true,

and the value of zero otherwise.

In addition to the regularized LASSO-QFEVD model, for comparison purposes, we also

estimate the network of the y1,t · · · yN,t variables using another recent approach: the FNETS

method introduced by Barigozzi et al. (2023). By doing so, we also assess the effects of

potential common factors. The FNETS method allows us to estimate networks of high-

dimensional time series potentially affected by strong serial and cross-sectional dependencies.

It builds on a factor-adjusted VAR model in which it is possible to separate common factor-

driven dynamics from sparse and idiosyncratic dependencies. More precisely, we decompose

yt as:

yt = f t + ξt, (12)

where f t and ξt are, respectively, the latent factor-driven and the idiosyncratic components.

Barigozzi et al. (2023) employed the most general approach to high-dimensional time

series factor modeling: the generalized dynamic factor model introduced by Forni et al.

(2000), in which factors have both contemporaneous and lagged effects on y1,t · · · yN,t, being

then dynamic. The idiosyncratic component ξt is modeled with a sparse VAR process,
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which captures weak residual dependencies after removing the dominant co-movements due

to common factors. In particular, the idiosyncratic VAR parameters are estimated using an

ℓ1-regularized Yule-Walker estimator, and represent the Granger’s (1969) causal links of a

directed network.

Barigozzi et al. (2023) showed that, under mild conditions that also allow for heavy-tailed

distributions, FNETS provides a consistent network estimation in simulations and real-world

applications, even if the number of variables and the sample size diverge.

4 Data and empirical setup

This study employs a large set of cryptocurrency data, which consists of the closing price

of 50 large cryptocurrencies against the USD, collected from CoinMarketCap as of May

2024 according to data availability.4 Selected out of a larger pool of more than 100 large

cryptocurrencies, the 50 cryptocurrencies were filtered to ensure a price data spanning a

minimum sample period from August 8, 2015 to May 5, 2024, which allows to study calm

and turbulent periods, covering the pandemic, the war in Ukraine, the 2017 and March

2020-November 2021 crypto bull runs, the major correction of 2018, and the FTX collapse

of 2022. Table A1 given in Appendix A provides details on the 50 cryptocurrencies examined,

including name, symbol, daily trading volume, and market cap.

Following Caporin et al. (2023), we estimate the LASSO-regularized QFEVD model in

our empirical analysis by setting p = 1 and h = 10. We assess the predictive accuracy of

the underlying LASSO-regularized QVAR model building on a rolling window scheme with

window size of 500 daily observations and step of one day ahead. Specifically, we iteratively

divide our overall dataset in which we have T = 2, 129 daily observations for each time series

into 1, 629 equally sized subsamples, each of which spans a time interval of 500 days. As a

result, the first subsample includes the log-volatility time series from the first to the 500-th

day. The second subsample is obtained by removing the oldest observations and including

4Data are available at https://coinmarketcap.com.
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the ones of the 501-th day. This procedure continues until the 1, 629 subsample, that spans

the time period from the 1, 629-th to the 2, 128 day. For each subsample ending at time t,

we iteratively contrast the in-sample estimates obtained at time t with the out-of-sample

observations available at time t+ 1, ad compute the Li,t+1,τ loss function given in Equation

(11), for i = 1, . . . , N = 50. We denote the average loss for each time series i and each

quantile level τ as:

Li,τ =
1

1629

2128∑
t=500

Li,t+1,τ . (13)

We use as benchmark a simple univariate quantile AutoRegressive (QAR) model with

the following specification:

Qτ (yi,t|Ft−1) = αi,τ + ϕ
(i)
1,τyi,t−1 (14)

where the quantile of yi,t only depends on yi,t−1 and, thus, is not affected by the lagged values

of the other variables in yt, for i = 1, . . . , 50.

Similar to the procedure described above for the LASSO-regularized QVAR model, we

also compute the loss function in (11) using the coefficients obtained from the estimation of

the QAR model in Equation (14). We denote the average loss provided by the univariate

QAR model as L̃i,τ . We then compare the predictive accuracy of the two competing models

using the Diebold and Mariano’s (2002) test, by specifying the alternative hypothesis that

QAR is less accurate than the regularized-LASSO QVAR model.

5 Empirical findings

We begin by examining the relevance of each variable in yt as implied by the LASSO-

regularized QFEVD model across different quantile levels. We display in Figure 1 the con-

tribution to others (θ̃•←j(10, τ), top panel), the contribution from others (θ̃j←•(10, τ), middle

panel), and the net contribution (θ̃•←j(10, τ) − θ̃j←•(10, τ), bottom panel) of each variable
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Figure (1) Contribution to and from others, and net contribution of each cryptocurrency
resulting from the LASSO-regularized QFEVD estimated at the quantile levels 0.1, 0.5, and
0.9 on the full-sample data.

j along the quantile levels 0.1, 0.5, and 0.9. The values of θ̃•←j(10, τ) are substantially

different for the N = 50 variables in yt. The largest contributions to others are observed

for NEO (average contribution of 2.6 along the three quantile levels), ETH (average con-

tribution of 2.6), and QTUM (average contribution of 2.5). In contrast, USDT, PRO, and

NMR have the lowest contributions of, respectively, 0.5, 0.6, and 0.8 on average. For all

cryptocurrencies, the values of θ̃•←j(10, τ) are substantially stable across the quantile levels

0.1, 0.5, and 0.9. The contributions from others exhibit a more homogeneous distribution

across the N = 50 analysed cryptocurrencies (the average value of θ̃j←•(10, τ) is equal to

1.8). USDT shows a greater distance from the other cryptocurrencies, with a lower contri-

bution from others equal to 1.26, on average. 28 cryptocurrencies have, on average, positive

net contributions. Among them, we mention ETH, NEO, and QTUM, for which we observe
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the largest θ̃•←j(10, τ)− θ̃j←•(10, τ) values of 0.7, 0.7, and 0.6, on average. In contrast, PRO

and NMR have the largest negative net impact (below -0.8). These results suggest that

systemic influence may extend beyond Bitcoin and Ethereum, with certain medium-sized

cryptocurrencies also playing a significant role. Hence, risk monitoring focused solely on the

two dominant cryptocurrencies could overlook relevant contagion channels.

91.9
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92.1

92.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantile Level
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Figure (2) Spillover index as a function of the quantile levels from 0.1 to 0.9 resulting from
the LASSO-regularized QFEVD estimated on the full-sample data.

After analyzing the contributions of the individual variables, we now aggregate the in-

formation into the overall spillover index. Figure 2 reports the values of θ̃(10, τ) for quantile

levels τ ranging from 0.1 to 0.9. Starting from values of around 92.1 at τ equal to 0.1 and 0.2,

the spillover index has an increasing trend up to τ = 0.4, where it takes its maximum value

of 92.2. Subsequently, there is a decreasing trend up to τ = 0.9, where we observe the mini-

mum of θ̃(10, τ), equal to 91.9. Therefore, it takes values in the narrow interval [91.9, 92.2],
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with a range of 0.3, having then a quite stable trend along the quantile levels from 0.1 to

0.9. While at first glance the numerical differences may appear negligible, this stability is

itself an important finding. In contrast to traditional financial markets, where connectedness

often intensifies in the tails, the cryptocurrency market exhibits consistently high integration

across volatility conditions. This suggests that interdependence is a structural feature of the

system rather than a regime-dependent phenomenon. For market participants, this implies

facing a persistently high level of interconnectedness that does not vanish in calmer regimes.

From a risk management perspective, portfolio diversification within the cryptocurrency

space may therefore be less effective than commonly assumed, as shocks propagate widely

and consistently across assets regardless of volatility conditions.

To complement these spillover-based findings, we also employ the FNETS methodology

(Barigozzi et al., 2023), which decomposes the dynamics into common factor-driven and

idiosyncratic components. While the LASSO-QVAR captures directional spillovers at differ-

ent quantile levels, thereby reflecting heterogeneous volatility regimes, FNETS isolates the

network of causal linkages among the idiosyncratic parts once common factors have been

filtered out. Figure 3 reports the resulting Granger’s (1969) causality network based on the

idiosyncratic components of log-volatility. The network reveals a relatively tight-knit struc-

ture, with several non-Bitcoin/Ethereum assets playing an influential role. Albeit derived

from different perspectives, the two approaches, taken together, underscore the persistent

interconnectedness of cryptocurrency volatility.

The results discussed so far are based on full-sample estimates. However, it is important

to note that these full-sample estimates aggregate information over a long time interval,

covering both tranquil and turbulent periods. Such aggregation inevitably smooths out

quantile-specific differences and conceals the dynamics that characterize episodes of market

stress. Moreover, given a long full-sample size (T = 2, 129) and a fixed cross-sectional

dimension (N = 50), the role of LASSO regularization is less critical in the full-sample

estimation, as the curse of dimensionality is not particularly severe in this setting. Therefore,
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Figure (3) Granger’s (1969) causality network estimated on the links of the idiosyncratic
components of the log-volatility time series with the FNETS method.

we also perform a rolling-window analysis, which reveals how the spillover index evolves over

time and highlights substantial cross-quantile differences during crises.

We display in Figure 4 the trend of the spillover index θ̃(10, τ) over time, setting τ equal

to 0.1, 0.5, and 0.9. It significantly increases from the beginning of 2022, reaches its maxi-

mum value on September 2022, and continues to remain high until the end of 2023. In most

subsamples determined with the rolling window scheme (57% of the 1,629 subsamples), it
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takes higher values at τ = 0.9, whereas the lowest values are generally observed at τ = 0.1.

Importantly, the distance between quantile-specific indices is not stable over time: while

differences are modest in tranquil periods, they widen significantly during episodes of stress,

such as the COVID-19 pandemic and the war in Ukraine. This temporal pattern under-

scores that the cryptocurrency market becomes particularly vulnerable during episodes of

heightened uncertainty. The increase in spillovers following major stress events suggests that

crises act as amplifiers of systemic risk by strengthening the channels of shock transmission

across assets. For policymakers and market participants alike, this implies that monitor-

ing connectedness dynamics in real time can provide early signals of fragility and potential

contagion, helping to anticipate phases of market-wide instability.
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Figure (4) Spillover index θ̃(10, τ) resulting from the estimation of the LASSO-regularized
QFEVD model, by employing the rolling window scheme with subsamples of 500 daily ob-
servations and step of one days ahead.

Building on the estimates obtained from the rolling window scheme, we now evaluate the
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Figure (5)
(
L̃i,τ − Li,τ

)
values for i = 1, . . . , 50 and τ ∈ {0.1, 0.5, 0.9}. Notes : L̃i,τ and

Li,τ are the average losses provided by the univariate QAR and LASSO-regularized QVAR
models, respectively; a given point is full if the performance of the LASSO-regularized QVAR
model is significantly better at the 1% significance level according to the Diebold and Mari-
ano’s (2002) test, and empty otherwise.

predictive accuracy of the LASSO-regularized QVARmodel, comparing it with the univariate

QAR specification on the basis of the Diebold and Mariano’s (2002) test. We show the results

of this test in Figure 5. Here, we display the
(
L̃i,τ − Li,τ

)
differences, for i = 1, . . . , 50 and τ

equal to 0.1 (top panel), 0.5 (middle panel), and 0.9 (bottom panel). We remind the reader

that positive values of
(
L̃i,τ − Li,τ

)
are due, on average, to larger losses resulting from

the univariate QAR specification and, thus, to a better performance of the QVAR model.

It is interesting to see that the QVAR model almost always outperforms the benchmark

univariate specification, and that this better performance is statistically significant at the

1% level in most cases. These findings highlight the importance of accounting for cross-
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sectional dependencies when modeling volatility in cryptocurrency markets. The superior

predictive performance of the LASSO-regularized QVAR indicates that regularization is

not only useful for addressing high dimensionality, but also crucial for capturing systemic

interactions that drive forecasting accuracy. This has practical implications for both investors

and risk managers, as more accurate forecasts of volatility quantiles can improve portfolio

allocation and stress-testing exercises in an environment where traditional models often fail

to capture tail dynamics.

6 Conclusions

The volatility interdependence of cryptocurrencies has been the subject of various empiri-

cal studies, but generally exhibit shortcoming in addressing the nonlinearities and hetero-

geneities inherent in the system of cryptocurrencies. In this paper, we extend the existing

literature by modelling the spillover effect across a network of 50 major cryptocurrencies.

Building on the quantile-based approach of connectedness (Ando et al., 2022) and following

(Caporin et al., 2023), we employ a LASSO-regularized Quantile VAR framework. Interest-

ingly, the LASSO regularization technique (Tibshirani, 1996) enhances the model’s predictive

accuracy and sparsity, addressing the curse of dimensionality. As for the Quantile VAR ap-

proach of connectedness, it allows to capture the transmission of volatility shocks across

various states, representing low, moderate, and high volatility states.

Using daily data from 50 cryptocurrencies over the period from August 8, 2015 to May

5, 2024, the following results emerge from our analysis. Firstly, based on the full-sample

data, the spillover effect in high, medium, and low volatility regimes differs, although with

a small magnitude. In this case, given the relatively large time dimension compared to the

cross-sectional dimension (T ≫ N), the role of LASSO regularization is less critical. More-

over, the estimated network appears relatively dense, as evidenced by the high values of the

spillover indices over τ , a result that is corroborated by the alternative FNETS (Barigozzi
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et al., 2023) methodology. While FNETS does not allow for an extension of the analy-

sis to different quantiles of the conditional distribution of volatilities, it has the advantage

of filtering out common factors and isolating idiosyncratic connections, thereby providing

a complementary perspective on the structure of volatility spillovers. In contrast, when

moving to the rolling-window analysis, the dynamics across quantiles appear more heteroge-

neous, with larger differences emerging especially during tail events such as the COVID-19

pandemic and the war in Ukraine. In this setting, based on subsamples characterized by a

lower T/N ratio, the role of LASSO regularization becomes more prominent, as dimension-

ality concerns are more binding and penalization proves crucial for stabilizing the estimates

and capturing the evolving structure of volatility spillovers. Secondly, our analysis high-

lights that systemic influence extends beyond the two dominant cryptocurrencies, Bitcoin

and Ethereum. Several medium-sized cryptocurrencies also emerge as relevant transmitters

of volatility, suggesting that contagion channels in the market are more dispersed than often

assumed. Consequently, risk monitoring or regulatory oversight that concentrates exclusively

on the largest cryptocurrencies could underestimate the breadth of systemic vulnerabilities

in the crypto ecosystem. Thirdly, the forecasting exercise shows that the LASSO-regularized

QVAR consistently outperforms its univariate counterpart across quantiles. The forecasting

gains are statistically significant in most cases, underscoring the importance of accounting

for cross-sectional dependencies and systemic interactions when predicting volatility in cryp-

tocurrency markets. This result highlights that interconnectedness is not only a descriptive

feature but also a source of predictive power.

Overall, our analysis provides a reasonable resolution to the high-dimensionality issues

often faced by portfolio managers when dealing with a large set of cryptocurrencies. It

demonstrates the utility of integrating the quantile-spillover approach with the LASSO tech-

nique to refine the spillover analysis across various levels of volatility and to deliver more

accurate volatility forecasts. This has direct implications for investors, portfolio managers,

and risk managers, while also being of interest to regulators and policymakers concerned
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with the development of this digital asset class. In this regard, future research could extend

our approach to include both cryptocurrencies and conventional assets, to better understand

potential instability risk spillovers from cryptocurrencies to the global financial system.
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A Supplementary material

Table (A1) Details on the selected cryptocurrencies

Name Symbol Daily Trading Volume ($) Market Cap ($)

Bitcoin BTC 18,296,164,805 1,261,203,911,122

Litecoin LTC 266,211,647 6,062,317,973

XRP XRP 535,784,827 29,263,355,596

Dogecoin DOGE 1,506,950,274 23,221,033,413

DigiByte DGB 6,553,701 193,552,927

Dash DASH 34,684,888 344,006,424

Monero XMR 68,420,933 2,477,693,604

Stellar XLM 44,733,799 3,210,014,206

Syscoin SYS 2,141,955 158,767,615

Tether USDt USDT 36,224,596,673 110,937,481,132

NEM XEM 5,223,390 353,894,412

Ethereum ETH 8,783,447,639 376,807,893,130

Siacoin SC 11,705,945 417,141,043

Decred DCR 2,879,041 345,822,923

Lisk LSK 26,841,814 246,299,789

Waves WAVES 31,517,294 279,091,701

Ethereum Classic ETC 164,557,962 4,066,499,041

Neo NEO 58,277,745 1,179,172,223

Zcash ZEC 41,886,231 377,079,289

Golem GLM 414,828,534 620,929,941

Maker MKR 55,052,366 2,696,323,822

Nano XNO 2,725,204 166,796,667

Ark ARK 6,514,581 149,457,695

iExec RLC RLC 10,592,925 204,657,881

Gnosis GNO 13,691,713 820,180,845

Aragon ANT 3,608,826 344,076,022

Qtum QTUM 41,448,360 394,440,973

Basic Attention Token BAT 13,206,967 371,484,136
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Table A1 – continued from previous page

Name Symbol Daily Trading Volume ($) Market Cap ($)

IOTA IOTA 11,831,147 740,921,434

Numeraire NMR 9,768,560 167,354,130

Status SNT 3,621,922 159,516,126

EOS EOS 78,353,096 925,749,664

Storj STORJ 9,987,280 225,301,992

Gas GAS 13,921,461 336,891,036

Civic CVC 14,312,549 167,076,684

Bitcoin Cash BCH 231,293,769 9,245,270,871

BNB BNB 531,182,053 87,392,373,029

0x Protocol ZRX 15,806,355 426,904,271

Loopring LRC 10,746,141 356,723,857

TRON TRX 196,753,191 10,599,560,420

Decentraland MANA 35,024,089 854,461,527

Propy PRO 6,129,584 292,154,972

Chainlink LINK 190,221,873 8,439,845,145

Cardano ADA 239,700,527 16,340,709,993

Tezos XTZ 19,767,609 946,265,354

Bitcoin Gold BTG 79,871,514 670,318,809

KuCoin Token KCS 1,268,257 990,310,834

ICON ICX 3,373,217 227,762,038

Enjin Coin ENJ 14,043,906 425,368,437

Powerledger POWR 8,892,225 156,672,625

Notes: This table provides details on the 50 selected cryptocurrencies as of May 5, 2024.
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