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Abstract  

 
This paper analyzes the predictive effect of climate risks on inflation and inflation uncertainty 
in an inflation targeting emerging economy through a multivariate nonparametric higher-order 
causality-in-quantiles test. In this regard, we obtain a monthly Google Trends search-based 
Climate Attention Index for South Africa (CAI-SA), which incorporates both local and global 
terms dealing with physical and transition risks between January 2004 and September 2024. 
Using the CAI-SA, we find that linear Granger causality tests fail to show any evidence of 
prediction of overall and food and non-alcoholic beverages inflation rates, due to model 
misspecifications from nonlinearity and structural breaks. However, the robust multivariate 
nonparametric framework depicts statistically significant predictability over the entire 
conditional distribution of not only the two inflation rates, but also their respective volatilities, 
i.e., squared values. The strongest predictive impact is observed at the tails of the conditional 
distributions of the first- and second-moment of the two inflation rates. Our findings, in general, 
are robust to alternative definitions of inflation volatility, exclusion of the control variables, 
different methods of construction of the CAI, and a bootstrapped version of the test to account 
for size distortion and low power. Analyses involving signs of the causal impact reveal 
significant positive association between the CAI-SA and the inflation rates and their 
volatilities, thus having serious implications for monetary policy decisions in South Africa in 
the wake of heightened climate risks. 
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1. Introduction  
Climate change remains one of the most complex challenges facing humanity in the 21st 
century. The emergence of physical climate risks in particular are a cause for concern, with 
hazardous weather events such as heatwaves and floods increasing in their frequency and 
magnitude (AghaKouchak et al., 2020; Grab and Nash, 2024). Extensive climate econometric 
research modelling the effects of physical climate risks on economic growth often suggest 
negative impacts, where developing countries are especially prone to adverse economic 
outcomes (Alessandri and Mumtaz, 2022; Huber et al., 2023). While the influence of both acute 
and chronic natural hazards on output is well-established, their effects on inflation have 
received limited attention. Theoretically, extreme weather events influence aggregate demand 
and aggregate supply dynamics, which subsequently affect inflation (Batten, 2018; Ciccarelli 
and Marotta, 2024). On the supply side, negative shocks emanating from natural disasters 
decrease agricultural production, which in turn increases food prices, dampens economic 
activity, and reduces labor productivity. Damaged transportation infrastructure further disrupts 
supply chains and increases distribution costs, altogether culminating in inflationary impacts. 
On the demand side, disaster events may lead to a reduction in inflation through Keynesian 
supply shocks. These shocks increase the risk aversion of economic agents, thus reducing their 
consumption and investments, even in the presence of fiscal support. Consequently, assessing 
the inflationary impact of climate risks remains an empirical issue. Attempts to empirically 
ascertain the climate-inflation nexus often  report contradictory findings, especially in 
international panels of heterogeneous developed and emerging countries (Cashin et al., 2017; 
Parker, 2018; Faccia et al., 2021; Mukherjee and Ouattara, 2021; Kabundi et al., 2022; Cevik 
and Jalles, 2023; Liao et al., 2024; Qi et al., 2025). In this regard, one may arrive at more 
definitive answers through country-specific studies, such as those conducted for European 
nations and the United States (US) (Ciccarelli et al., 2023; Sheng et al., 2024;  Kim et al., 2025). 
 
Given this context, this paper analyzes the causal effect of climate risks on the movements of 
inflation in an emerging state, namely South Africa.  As a major exporter of commodities such 
as coal, gold, iron ore, and platinum, South Africa’s mining sector and broader economy has 
historically been powered by fossil fuels, primarily coal. The country subsequently ranks 
among the leading emitters of carbon dioxide globally, resulting in heightened exposure to 
climate transition risks (Wu et al., 2024). Additionally, the semi-arid climatic conditions in 
South Africa remain a major proponent for magnified exposure to physical risk. For instance, 
a projected 1.5°C increase in global average temperature equates to a 3 °C increase in South 
Africa’s average temperature. Such climate anomalies may result in more frequent extreme 
weather events in the country1, as witnessed in recent years. At the same time, South Africa is 
an inflation targeting economy since February 2000 (with an original target band of 3%-6%), 
hence, the effect of climate risks on inflation has paramount importance from the perspective 
of monetary policy decisions, as recently acknowledged by the South African Reserve Bank 
(SARB) in its Annual Report of 2023/2024.2 Furthermore, the SARB, while discussing the 
importance of climate change in South Africa, has stressed not only on physical, but also 
transition risks associated with a move towards a “greener economy” (SARB, 2025) through 
greater reliance on renewables for energy generation, and carbon tax.  
 
                                                        
1 See: https://www.bcg.com/publications/2022/how-south-african-mining-can-address-climate-change-
challenges. 
2 See the discussions in: https://resbank.onlinereport.co.za/2024/downloads/Addressing-climate-change-risks.pdf, 
and https://www.resbank.co.za/en/home/about-us/climate-change. 
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Though less researched than the effects of physical risks on inflation, transition risks can also 
have inflationary or deflationary impacts. Global transition efforts towards lower carbon 
emitting production processes require metal and mineral-intensive green technologies. A 
subsequent supply squeeze occurs, where rising demand for metals such as copper, lithium and 
cobalt for green technologies is met by supply bottlenecks, resulting in what is often referred 
to as “greenflation” (Schnabel, 2022). Conversely, in their textbook New Keynesian model 
Ferrari and Nispi Landi (2024) found that increases in carbon taxes today raise inflation, but 
expected future carbon tax increases decrease current demand, resulting in downward pressure 
on prices. Through numerical simulations, they further find stronger demand-suppressing 
effects, thus causing green transitions to be deflationary under conditions of climate policy 
certainty. However, where there is uncertainty surrounding climate policies, inflationary 
impacts are expected (Huang and Tereza Punzi, 2024). Within the South African climate 
transition risk context, an inflationary outcome is also highly likely owing to a high degree of 
uncertainty surrounding climate-related policymaking in the country ( Ji et al., 2024; Kutu et 
al., forthcoming).3  
 
In line with the existing literature on devising metrics for physical and transition climate risks 
via textual analysis (see, for example, Engle et al. (2020), Faccini et al. (2023), Bua et al. 
(2024)), we create a climate attention index for South Africa (CAI-SA) based on Google Trends 
(GT) searches of large number of terms relating to physical and transition risks, thus making it 
an appropriate measure to capture overall climate risks (Ben Ameur et al., 2024). In this regard, 
our search involved both country-specific and global terms, given that South Africa is a small 
open economy impacted by international shocks in a highly interconnected supply-chain 
system (Burriel et al., 2024), and is also motivated by Bilal and Känzig (forthcoming), who 
stresses that global rather than local climate factors drive extreme climatic events.    
In theory, with climate risks serving as proxies for rare disasters, the possible positive effect 
on inflation volatility could originate from a model of inattention put forth by Sundaresan 
(2024). Here, agents gather information to decide how to prepare for possible scenarios, while 
ignoring unlikely events. Hence, the occurrence of rare disasters does not resolve, but instead 
increases general uncertainty (Sheng et al., 2022; Ma et al., 2024; Zhang et al., 2024). Inflation 
uncertainty in South Africa has played an important role in inflationary outcomes, especially 
in the post inflation-targeting era (Ben Nasr et al., 2015; van der Westhuizen, 2023). The effects 
of climate risks on inflation volatility is an equally important consideration in monetary policy 
decisions as it can enhance inflation persistence following physical and transition risks shocks. 
If these shocks are inflationary, they may result in prolonged intervention by the SARB. In this 
context, our methodology also allows us to investigate the predictive impact of climate risks 
on the second-moment of inflation, i.e., inflation uncertainty, due to climate risks. 
This paper presents a novel approach to analyzing the effects of climate risks on the conditional 
distribution of inflation and inflation volatility in South Africa, primarily through a higher-
order nonparametric causality-in-quantiles model. The significant contribution of the food and 
non-alcoholic beverages sector (19.88%) to the country-wide Consumer Price Index (CPI) 
computation4, in tandem with the well-established physical risks exposure of South Africa’s 
                                                        
3 In fact, using a newspapers based index of Climate Policy Uncertainty (CPU), created by Ji et al. (2024) for 
South Africa (besides 11 other G20 economies), available at: http://www.cnefn.com/data/download/climate-risk-
database/, we found a significant (at the 1% level) positive association (given a coefficient of 0.7776) with the 
year-on-year overall inflation rate (details of which is provided in Section 2) using an Ordinary Least Squares 
(OLS) regression over the monthly period of July 2018 to December 2023. 
4  The reader is referred to: https://www.statssa.gov.za/publications/P01415/P014152023.pdf. 
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agriculture sector motivate the approach to investigate the impacts of climate risks on aggregate 
and food and non-alcoholic beverages sector associated inflation. Additionally, as climate risks 
have an immediate effect on agriculture productivity, the focus on the food and non-alcoholic 
beverages sector enables the evaluation of its likely contribution on the overall inflation in the 
wake of extreme climate events. Moreover, with expenditure on food and beverages accounting 
for nearly 30% of the total expenditure of poorer households (2022/2023 Income and 
Expenditure Survey5), understanding inflation variability in this sector is a major concern from 
the distributional dimension of climate shocks perspective. 
The preview of our results show that indeed there is robust evidence that physical and transition 
climate risks, which are captured by the attention index, not only predict the level of both the 
overall and the food and beverages inflation rates, but also their associated volatilities 
throughout their respective conditional distributions. The remainder of the paper is organized 
as follows: Section 2 outlines the data used in our analysis;  Section 3 is devoted to the 
elucidation of the methodology used; Section 4 presents the empirical findings; and finally in 
Section 5 we present our concluding comments of the work presented in this paper. 
 

2. Data   
In this study, the two dependent variables of interest are the overall inflation rate (INFL), and 
the food and non-alcoholic beverages inflation rate (INFLF). Both INFL and INFLF are in 
percentages, and we utilize the year-on-year changes of the natural logarithm of the 
corresponding seasonally-adjusted CPIs, multiplied by 100. The two macroeconomic control 
variables used are in line with a standard small-scale monetary model, for which we use the 
year-on-year changes in the natural logarithmic values of the seasonally-adjusted 
manufacturing production index (MPG) to reflect monthly economic growth, and the level of 
the seasonally-unadjusted 3-month Treasury bill rate in percentage (STR) that reflects the 
status of short-term interest rate, and hence, are a reflection of monetary policy decisions.  The 
required underlying raw data are obtained from the online data segment of the SARB6, and the 
four variables of interest, namely INFL, INFLF, MPG and STR are presented in Figure 1. 
 

[INSERT FIGURE 1] 
 The main predictor variable in our econometric analyses is a GT-based attention index, namely 
the CAI-SA, constructed to measure physical and transition climate risks in South Africa. 
Recognizing the ability for GT — a freely accessible, open source, providing real-time data on 
public attention or interest on a plethora of topics, we construct our CAI-SA using the relative 
search volume index (SVI) from GT. Our GT-based CAI-SA considers both local and global 
climate related search terms. As such, we select thirty globally relevant climate-related terms 
present in the Climate Change Vocabulary (CCV) compiled by Lin and Zhao (2023). And, to 
identify locally relevant climate-related terms, the South African government web repository7 
was accessed to identify key documents (namely, the Climate Change Act 22 of 2024, and the 
Climate Change Bill B9-2022) and localized glossaries, to build a comprehensive CCV list for 
the CAI-SA. Subsequently, 21 additional terms which were not explicitly listed by Lin and 
Zhao (2023) were identified and included in the CCV list for development of the CAI-SA. 
                                                        
5 See: https://www.statssa.gov.za/publications/P0100/P01002022.pdf. 
6 Accessible via: https://www.resbank.co.za/en/home/what-we-do/statistics/releases/economic-and-financial-
data-for-south-africa. 
7 See: https://www.gov.za/documents. 
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Finally, considering South Africa’s reliance on coal and other fossil fuels, and the subsequent 
efforts to ensure a renewable energy transition, the terms “just transition” and “just energy 
transition” were included in the final CCV list. In Table 1, we categorize all 53 CCV terms 
included in the construction of the CAI-SA in accordance with their relation to either physical 
or transition risks. 
 

[INSERT TABLE 1] 
 After the compilation of the final CCV list, we collected GT data for the 53 search terms, which 

were confined to searches emanating from South Africa, from January 2004 to September 
2024. Using average GT SVI values associated with each search term, we plotted a word cloud 
in Figure 2, where terms with higher mean values (which can be associated with higher relative 
search volumes) are plotted larger than words with lower mean values.8  

 
[INSERT FIGURE 2] 

 To ensure comparability between the search terms used in the construction of the CAI-SA, we 
standardize the raw SVI series for each CCV term by demeaning and scaling each series by its 
standard deviation, before applying Principal Component Analysis (PCA) to obtain our CAI-
SA, which is plotted in Figure 3.  

 
[INSERT FIGURE 3]  

As is customary in the development of indexes, we visually analyse the ability for the CAI-SA 
to capture climate-related events through observed peaks. To ensure rigour in our analysis, we 
preselect 11 local and international climate-related events (listed in Table 3), with the 
expectation that  peaks in the CAI-SA will occur around the date of key climate-related news 
events, implying the ability of the index to track attention on real-world events. The 
categorization of climate-related policy events by Chen et al. (2024) lay the foundation for the 
selection of international climate-related news events. The selection of key local events 
primarily considers risks, reflected through some major climate policy shifts in South Africa 
occurring within the sample period. Figure 3 depicts the CAI-SA, annotated in relation to key 
climate-related events occurring locally and internationally. We find that the index was able to 
capture all the preselected major climate-related events through its peaks. Further, there is 
consistent emergence of pronounced negative peaks, which occur in the third quarter of each 
year in the series, generally coinciding with Conference of Parties (COP) meetings, dealing 
with issues of international climate change policy negotiations. Conversely, during the period 
of COP17, which was hosted in Durban, South Africa, the CAI-SA index displayed a positive 
peak. More interestingly, upon enforcement of the Paris Agreement in November 2016, the 
CAI-SA displayed a positive peak. 
 

[INSERT TABLE 2]  
As can be seen from Figure 3, some of the search terms could have added seasonality to the 
CPI-SA index, hence, we use the Seasonal and Trend decomposition using LOESS (STL) 

                                                        
8 Where mean SVI for a search term for our sample period is less than 1, the term was excluded from the word 
cloud.  
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approach of Cleveland et al. (1990) to filter out the seasonal pattern in this series, and utilize 
this deseasonalized version in our econometric analyses to ensure robust empirical findings.9 
 
Table 3 summarizes the variables of interest, i.e., the dependent variables: INFL and INFLF, 
and the predictor: CAI-SA, as well as the two control variables of MPG and STR. As can be 
seen from the table, all the variables are non-normal based on the rejection of the null 
hypothesis of normality as per the Jarque-Bera test, and provides an initial motivation to look 
at a quantiles-based approach given, in particular, the heavy tails of the dependent variables: 
INFL and INFLF. Furthermore, the Augmented Dickey-Fuller (ADF; Dickey and Fuller, 1979) 
unit root test ensures that all the variables under consideration are stationary and, hence, are fit 
to be utilized in the nonparametric causality-in-quantiles test. 
 

[INSERT TABLE 3]     
3. Methodology  

In this section, we present the multivariate k-th order nonparametric causality-in-quantile test 
of Balcilar et al. (2022), which augments the original bivariate test developed by Balcilar et al. 
(2018). 
  
We denote the dependent variable (INFL or INFLF) as  ݑ௧, the predictor variable (CAI-SA) as 
௧, and  ݊ possible predictors as ௧ܹݒ ≡ ൫ݓଵ,௧, ଶ,௧ݓ … ,  ௡,௧൯ᇱ, (which are the control variablesݓ
MPG and STR in our case). Therefore, the multivariate quantile causality is defined using: 

௧ܷିଵ ≡ ,௧ିଵݑ) … , ௧ି௣)′,  ௧ܸିଵݑ ≡ ,௧ିଵݒ) … , ௧ି௣)′ and ௧ܹିଵݒ ≡
,ଵ,௧ିଵݓ) … , ,ଵ,௧ି௣ݓ … , ,௡,௧ିଵݓ … , ௡,௧ି௣ )′. Following the notation ܼ௧ݓ = ( ௧ܷᇱ, ௧ܸᇱ, ௧ܹᇱ)′, ܺ௧ =
( ௧ܷ′, ௧ܹ′)′, the conditional distribution of ݑ௧ given ܼ௧ିଵ and ݑ௧ given ܼ௧ିଵ\ ௧ܸିଵ ≡ ܺ௧ିଵ ≡( ௧ܷିଵᇱ , ௧ܹିଵᇱ )ᇱ can be denoted by ܨ௨೟|௓೟షభ(ݑ௧|ܼ௧ିଵ) and ܨ௨೟|௓೟షభ\௏೟షభ(ݑ௧|ܼ௧ିଵ\ ௧ܸିଵ), 
respectively, where ܼ௧ିଵ\ ௧ܸିଵ implies the information set which does not include ௧ܸିଵ. Let 
also the ߠ-th conditional quantile of ݑ௧, given the information set ∙, be denoted by ܳఏ(∙). 
Following Nishiyama et al. (2011) and Jeong et al. (2012), Granger non-causality-in-quantile 
is defined as: ݒ௧ does not cause ݑ௧ in the ߠ-th quantile, if: 
 
     ܳఏ(ݑ௧|ܼ௧ିଵ) = ܳఏ(ݑ௧|ܼ௧ିଵ\ ௧ܸିଵ)                 (1)  
 
while Granger causality-in-quantile is defined as: ݒ௧ is a prima facie cause of ݑ௧ in the ߠ-th 
quantile, if:  
 ܳఏ(ݑ௧|ܼ௧ିଵ) ≠ ܳఏ(ݑ௧|ܼ௧ିଵ\ ௧ܸିଵ),                  (2) 
 
 Eq. (1) and Eq. (2) can be equivalently expressed as:  

 
\௨೟|௓೟షభ{ܳఏ(ܼ௧ିଵܨ଴:   ܲ൛ܪ         ௧ܸିଵ)|ܼ௧ିଵ} = ൟߠ = 1                                  (3) 
\௨|௓೟షభ{ܳఏ(ܼ௧ିଵܨଵ:   ܲ൛ܪ           ௧ܸିଵ)|ܼ௧ିଵ} = ൟߠ < 1                                   (4) 
 

                                                        
9 The raw CAI-SA and the seasonally-adjusted CAI-SA has a statistically significant (at the 1% level, given a p-
value of 0.0000) correlation coefficient of 0.8224. 
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where the θ-th quantiles are denoted as ܳఏ(ܼ௧ିଵ) ≡ ܳఏ(ݑ௧|ܼ௧ିଵ)and ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ) ≡ܳఏ(ܺ௧ିଵ) ≡ ܳఏ(ݑ௧|ܼ௧ିଵ\ ௧ܸିଵ), which satisfy ܨ௨೟|௓೟షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} =  with probability ߠ
one.  
In order to construct the test, we consider metric: ܬ = {߳௧ܧ(߳௧|ܼ௧ିଵ) ௓݂(ܼ௧ିଵ)},  where  

௓݂(ܼ௧ିଵ) is the marginal density. The regression error ߳௧ emerges based on the null in Eq. (3), 
which can be true if and only if ܧ[૚{ݑ௧ ≤ ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ)|ܼ௧ିଵ}] = ௧ݑ}or equivalently ૚  ,ߠ ≤ ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ)} = ߠ + ߳௧, where 1{∙} is the indicator function. Thus, the metric ܬ can 
be specified as: 
 
ܬ     = \௨೟|௓೟షభ{ܳఏ(ܼ௧ିଵܨ}]ܧ ௧ܸିଵ)|ܼ௧ିଵ} – ߠ}ଶ ௓݂(ܼ௧ିଵ)]                                                         (5) 
 
The empirical counterpart of Eq. (5), based on Jeong et al. (2012), is constructed as follows:  

መ்ܬ  = 1
ܶ(ܶ − 1)ℎ௠ ෍ ෍ ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰ ߳௧̂߳௦̂ 
்

௦ୀ௣ାଵ,௦ஷ௧

்

௧ୀ௣ାଵ
(6) 

 
where ܭ(∙) is the kernel function with bandwidth ℎ; ܶ is the sample size; ݉ is the dimension 
of ܼ௧ , and ߳௧̂ is the unknown regression estimate, which is constructed as: 
              ߳௧̂ = ૚{ݑ௧ ≤ ෠ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ)} −  (7)                    ߠ

 
where ෠ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ) is an estimate of the θ-th conditional quantile. Following arguments 
similar Jeong et al. (2012), ܶℎ௠ ଶ⁄  ଔ்̂ ௗ→ ܰ(0,  ଴ଶ). In general, causality in conditional meanߪ
(first-moment) implies causality in higher order moments, but not vice versa. Thus, a sequential 
testing approach for causality in ݇-th moment is adopted as follows: 
ܲ   :଴ܪ ቄܨ௨೟ೖ|௓೟షభ{ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ)|ܼ௧ିଵ} = ቅߠ = 1             ݇ = 1,2, … ,  (8)                               ܭ
ܲ   :ଵܪ  ቄܨ௨೟ೖ|௓೟షభ{ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ)|ܼ௧ିଵ} = ቅߠ < 1             ݇ = 1,2, … ,  (9)                              ܭ
 
The test statistic is formulated as in Eq. (6) by replacing ݑ௧ with ݑ௧௞. It is important to note that ܬ ≥ 0, i.e. the equality holds if and only if ܪ଴ in Eq. (3) or Eq. (8) is true; while ܬ > 0 holds 
under the alternative ܪଵ in Eq. (4) or Eq. (9). We, therefore, consider a re-scaled version using: 
 

ො଴ߪ = 1)ߠ2√ − ඨ(ߠ 1
ܶ(ܶ − 1)ℎ௠ ඩ ෍ ଶܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰
்

௧ୀ௣ାଵ,௧ஷ௦
                            

and establish that: ்̂ݐ = ௃መ೅
்షభ௛ష೘/మఙబ  ௗ→ ܰ(0,1).                                                                         

The -th quantile of ݑ௧, is estimated as ෠ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ) = \௧|ܼ௧ିଵݑ)෠௨೟|௓೟షభ\௏೟షభܨ :௧ݑ} ݂݊݅
௧ܸିଵ) ≥  :෠௨೟|௓೟షభ\௏೟షభ(⋅)is given byܨ where the Nadaraya–Watson kernel estimator ,{ߠ

\௧|ܼ௧ିଵݑ)෠௨೟|௓೟షభ\௏೟షభܨ ௧ܸିଵ) = ∑ ܮ ቀܺ௧ିଵ − ܺ௦ିଵܾ ቁ ૚{ݑ௦ ≤ ௧}௦்ୀ௣ାଵ,௧ஷ௦ݑ
∑ ܮ ቀܺ௧ିଵ − ܺ௦ିଵܾ ቁ௦்ୀ௣ାଵ,௧ஷ௦

                              
 

with ܮ(∙) denoting the kernel function and ܾ the bandwidth. 
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In implementing this test, on the basis of our model specifications, we have: (ݑ௧)(௟) =݉(ܼ௧ିଵ) + ߳௧,  where ݑ௧ represents the INF or INFLF. Causality-in-mean is defined as ݉ = 1, 
while causality-in-variance involves ݈ = 2.  
 
The empirical implementation of the tests above involve the specification of three main 
parameters: the bandwidths (ℎ and ܾ), the lag order (݌), and the kernel types for ܭ(⋅) and ܮ(⋅). 
The lag order (݌) is selected based on the Schwarz Information Criterion (SIC), with ℎ and ܾ 
determined by the leave-one-out least-squares cross-validation, and we use Gaussian kernels 
for ܭ(⋅) and ܮ(⋅).  
 
Tests for Granger causality-in-quantiles are based on an asymptotic normal approximation to 
the test statistic ܬመ்  under the null. However, several studies have found this approximation to 
be untrustworthy in finite samples. Indeed, Li and Wang (1998) report that the convergence of 
such nonparametric test statistics to their limiting normal distribution can be very slow (to the 
order of ܶିଵ/ଵ଴ even in a bivariate case with one lag and bandwidth of ℎ = ܶିଵ ହ⁄ ). 
Consequently, the use of nominal normal critical values frequently results in severe size 
distortions in realistic sample sizes. Hsiao et al. (2007) also report that the asymptotic ܰ(0,1) 
approximation has a tendency to underestimate the actual rejection probability of the test for 
moderate ܶ, even when ܶ is quite large. These results motivate the application of bootstrap 
methods as a way of obtaining a better approximation to the finite-sample null distribution of 
the test statistic. By resampling from the data to obtain an empirical distribution for ܬመ்  under ܪ଴, the bootstrap can rectify the distortion and yield more accurate critical values. The technical 
details of a residual-based bootstrap procedure for the quantile causality test, which will replace 
the asymptotic normal approximation with a simulated distribution, is presented in Appendix 
B of this paper.  
 

4. Empirical Findings  
To ensure the completeness and comparability of results from our initial utilising of the 
multivariate k-th order nonparametric causality-in-quantiles framework, we conducted the 
linear Granger causality test running from climate risks to overall and food and non-alcoholic 
beverages inflation rates. We found that, the null of no-Granger causality from CAI-SA to 
INFL and INFLF, with MPG and STR as control variables, cannot be rejected even at the 10% 
level of significance, given the corresponding values of the χ2(1) test statistics (p-value), given 
p =1 as per the SIC, to be equal to 0.0586 (0.8087), and 0.6689 (0.4134).  
 
The standard Granger causality test, shows a lack of predictability from our measure of climate 
risks onto the two inflation rates under consideration.  The finding of non-causality may allude 
to model misspecifications stemming from the assumption of linearity in the predictive 
relationships. This necessitated a test for the presence of nonlinearity in the relationship 
between INFL and INFLF with CAI-SA, controlling for MPG and STR in the model. A BDS 
test on the residuals from the two initial linear models assessed whether the null hypothesis of 
i.i.d. residuals at various dimensions (m) could be rejected or not (Brock et al., 1996). Results 
of the BDS test presented in Table 4, provide strong evidence of nonlinearity for both INFL 
and INFLF, such that we reject the null hypothesis of linearity (i.i.d. residuals) at the 1% level 
of significance. The BDS test ultimately confirms that the linear model utilized for tests of 
Granger causality is indeed a misspecification, owing to uncaptured nonlinearity. 
Consequently, further causal inference must implore a nonlinear model, whereby the 
nonparametric causality-in-quantiles approach is followed. Intuitively, the nonlinearity 
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between inflation and climate risks should not be surprising in light of prices being known to 
be downward rigid, and increases and decreases in climate shocks have been shown 
asymmetric inflationary effects (Sheng et al., 2024; Kim et al., 2025). 

 
[INSERT TABLE 4] 

 Next, issues of instability in the linear models were addressed, where additional layers of 
misspecification could have materialized. Through the UDmax and WDmax tests, we examined 
the relationship between INFL and INFLF with CAI-SA, given MPG and STR in the equations 
of the linear Granger causality test for the presence of possible structural breaks (Bai and 
Perron,  2003). We found that there are one (January 2010) and four (August 2008, January 
2012, February 2017, and August 2021) breaks respectively, in the relationships between INFL 
and CAI-SA, and between INFLF and CAI-SA. The dates of regime-change in 2017 and 2021 
for INFLF can be associated with a redefinition of the South African inflation target to 4.5% 
from the target band of 3%-6%, and the delayed outcome of the COVID-19 pandemic, 
respectively. In the case of INFL, the break in 2010, and that for INFLF in 2008 is likely to 
have originated from the worldwide rise in commodity prices in the wake of the Global 
Financial Crisis in 2007-2009. The 2012 structural break in INFLF can be associated with 
severe weather conditions, and increases in production costs thereof, by which year the 
commodity price boom had tapered down. We infer that our linear Granger causality results 
are unreliable as instability exists within the parameter estimates over the full sample period 
 
We relied on an inherently time varying econometric model to ensure robust inference of the 
causal analyses. This informed our statistical argument to utilize the nonparametric k-th order 
causality-in-quantiles testing method, which accommodates such misspecifications, while 
simultaneously providing results for the second-moment, i.e., inflation volatility (uncertainty). 
We present the standard normal test statistics, derived from this method, over the quantile range 
of 0.10 to 0.90 in Table 5 in which CAI-SA predicts the entire conditional distributions in a 
statistically significant manner not only for INFL and INFLF, but also for their corresponding 
squared-values capturing overall and, food and non-alcoholic beverages inflation volatility (or 
uncertainty). In the process, we highlight the superiority of a nonparametric approach, when 
misspecifications are present in a linear predictive framework in the form of nonlinearity and 
structural breaks. Interestingly, even though the entire conditional distribution of the first- and 
second-moment of both the INFL and INFLF rates are causally impacted by the CAI-SA, the 
effect (in terms of the magnitude of the test statistic) is strongest at the lower (θ = 0.10)- and 
upper-tail(θ = 0.90) of the conditional distribution, and weakest at the conditional median (θ = 
0.50), corresponding to the normal state of inflation. Put alternatively, climate risks carry strong 
predictive content for the extreme behavior of the inflation rates, which should not come as a 
surprise given that CAI-SA serves as a proxy for infrequent (rare) disasters or climate policy-
related events. Such events are likely to mimic tail risks, as recently noted for the US by 
Chavleishvili and Moench (2025), using a Quantile Vector Autoregression (QVAR) model of 
natural disasters. On a technical front, this u-shaped nature of the standard normal test statistics 
depicts the importance of using a quantiles-reliant approach relative to a conditional mean-
based model, allowing us to capture the unique asymmetry in the strength of predictability due 
to physical and transition climate risks on the movements of the inflation rates.   
  

[INSERT TABLE 5] 
 As part of an additional analysis in (Table A1) in the Appendix, we report the corresponding 

results from the bivariate versions of the k-th order nonparametric causality-in-quantiles test, 
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which involves INFL and CAI-SA. Understandably, the two-variable test statistics can be 
obtained in a similar fashion as described in Section 3, but now with ௧ܹ being a null-vector, 
i.e., without the controls MPG and STR. As observed from this table, the results are 
qualitatively similar to those obtained under the multivariate set-up, thus confirming the 
robustness of our findings when we ignore the two additional control variables defining the 
states of aggregate demand and supply.10 Given the overwhelming focus on economic growth 
in the studies dealing with the climate-economy nexus, in Table A2 in the Appendix, we also 
present the causal impact of CAI-SA on MPG and its volatility, i.e., the squared value: a 
measure of macroeconomic uncertainty, using the multivariate higher-order nonparametric 
causality-in-quantiles test. We find that climate risks indeed predict the entire conditional 
distribution of output growth and its associated uncertainty in a statistically significant manner, 
while depicting a u-shaped pattern to the test statistics, just as in the case of the inflation rates. 
While our CAI-SA index is based on PCA applied to combine the information of the search 
terms, we also created two additional CAI indexes. In the first case, we took a simple average 
of the standardized values of the GT-based search terms for each month, while in the second, 
we considered a weighted average instead, with the weights being the ratio of the search value 
for a particular term relative to the total number of searches associated with all the terms for a 
particular month. We call these two indexes: CAI-SA-Average (CAI-SA-Avg.) and CAI-SA-
Weighted-Average (CAI-SA-Wtd.-Avg.), respectively. Table A3 in the Appendix reports our 
findings from the multivariate k-th order nonparametric causality in quantiles test for INFL, 
based on these two alternative CAIs, and as can be seen, our results are qualitatively similar to 
those presented in Table 3 using the CAI-SA measure, confirming robustness of our findings 
to alternative ways of construction of the CAI metrics. This finding is not surprising, given the 
correlations between CPI-SA-Avg. and CPI-SA-Wtd.-Avg. with CAI-SA are positive and 
statistically significant.11 Finally, given that there exists a twitter-based CAI for South Africa 
over a shorter period of October 2014 to December 2022, as developed by Arteaga-Garavito et 
al. (2023),12 we compared the predictive ability of this index (CAI-SA-Alternate (Alt.)) with 
that of ours in predicting INFL and its volatility. Note that, due to a relatively small sample 
size of 99 observations, for this exercise, we rely on the bivariate version of the k-th-order 
nonparametric causality-in-quantiles test. As can be seen from Table A4, while CA-SA-Alt. is 
unable to depict any evidence of predictability, our measure of climate risks, i.e., CAI-SA, 
shows statistically significant causal impact over the quantile range of 0.30 to 0.80 of the 
conditional distributions of the first- and second-moment of INFL. These findings confirm the 
superiority of our index in terms of predicting movements in inflation for South Africa, though, 
an advantage of the CAI-SA-Alt. is its availability at higher (daily and weekly) frequencies and 
for 24 other countries, which makes it suitable for analysis of international financial market 
data (Steenkamp et al., forthcoming).  It must be emphasized that while these additional 
analyses have been reported only for INFL, they produced qualitatively similar findings with 
INFLF, which in turn are available upon request from the authors.  
 
                                                        
10 As part of the additional analyses, we recovered the conditional estimate of volatility of inflation by applying 
the Generalized Autoregressive Conditional Heteroskedasticity (GARCH(1,1)) on INFL. Then, in the bivariate 
set-up of the nonparametric causality-in-quantiles test involving the GARCH-based volatility of INFL as the 
dependent variable and CAI-SA as the independent variable, the test statistics, under k = 1, for  θ = 0.10, 0.20, 
0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 was found to be, 2.7821, 3.8302, 3.9709, 4.2532, 4.3575, 3.9458, 
3.7350, 3.5259, and 2.4623, respectively. In other words, our metric of climate risks continue to predict the entire 
conditional distribution (at the 1% level of significance, barring the upper-most quantile) of an alternative 
conditional measure of inflation uncertainty, instead of squared rates of inflation.   
11 The respective correlation coefficients (p-value) are: 0.9508 (0.0000) and 0.1254 (0.0482). 
12 The data is available at: https://sites.google.com/view/internationalclimatenews/download?authuser=0. 
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Reverting to our examination of the predictability of the first- and second-moment of INFL 
and INFLF due to CAI-SA through a multivariate k-th order nonparametric causality-in-
quantiles set-up. As highlighted in the earlier Granger causality-in-quantile test, the use of 
asymptotic normal approximations indicate that this set-up can be unreliable in finite samples. 
Li and Wang (1998) and Hsiao et al. (2007) determine that slow convergence and nominal 
critical values produce size distortions, underestimating rejection probabilities even in larger 
samples. Therefore, we compare the results from a bootstrapped version of the implemented 
test with the corresponding non-bootstrapped test, to check for the robustness of our findings. 
The 5% quantile-specific bootstrapped critical values have been presented in Table 6, revealing 
a continuation of a u-shaped pattern observed in the non-bootstrapped version. Given these 
bootstrapped critical values, when we compare the standard normal test statistics reported in 
Table 5 with the entries in Table 6, we observe that CAI-SA continues to predict the entire 
conditional distribution of INFL, but causal influence for INFLF is no longer observed at θ = 
0.40 and 0.50. When we look at INFL2 and INFLF2, predictability due to CAI-SA is again lost 
at θ = 0.40 and 0.50 for the former and at θ = 0.50 for the latter at the 5% level of significance. 
Among the above cases of non-causality, only for θ = 0.40 of INFL2, we were able to obtain 
evidence of prediction at the 10% level, given the corresponding bootstrapped critical value of 
2.3840.13 In general, our findings derived from the non-bootstrapped version of the tests of 
predictability, continue to be robust particularly at the tails, with some exceptions around the 
conditional median.  

[INSERT TABLE 6]  
Although a robust predictive inference is obtained from the non-bootstrapped multivariate k-th 
order nonparametric causality-in-quantiles test, it is also important to estimate the direction of 
the effect of CAI-SA on the first- and second-moment of INFL and INFLF.  In doing so, we 
not only  can ascertain the specific channels through which physical and transition risks impact 
inflation and its volatility, but also the associated increase or decrease in the variables of 
interest. Within the nonparametric framework, first-order partial derivatives are usually 
employed to evaluate the directions of effects. However, this results in complications due to 
slow convergence rates, the dimensionality, and smoothness of the underlying conditional 
expectation function. To address this, we utilize a summary statistic of the overall effect or 
global curvature sign and magnitude, as opposed to the entire derivative curve. The average 
derivative (AD) provides a measure of the global curvature, using the conditional pivotal 
quantile through either approximation or the Belloni et al. (2019) coupling approach, which 
enables the estimation of the partial ADs. In Figure 3, we plot the partial ADs depicting the 
sign of the causal effect from CAI-SA on INFL and INFLF, and their respective volatilities, 
along with 95% confidence bands. The effect of climate risks on the two inflation rates and 
their uncertainties are consistently positive over the corresponding conditional distributions. 
More importantly, the positive effects are all statistically significant, with the exception of the 
median volatility of INFL. This suggests the dominance of the aggregate supply route and 
“greenflation” (possibly coupled with climate policy uncertainties) associated with physical 
and transition risks respectively. Ultimately, the positive association of risk spillovers between 
disaster events and inflation, validates the underlying theory of inattention in this context. 
 

[INSERT FIGURE 4]  
 
 
                                                        
13 The quantile-specific 10% bootstrapped critical values are available upon request from the authors. 
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5. Conclusion  
This paper attempted to analyze the predictive impact of climate risks on inflation and inflation 
uncertainty (volatility) in South Africa, through a multivariate nonparametric k-th-order 
causality-in-quantiles test. In this regard, we first obtained a Google Trends search-based 
Climate Attention Index for South Africa (CAI-SA), involving both local and global terms 
relating with physical and transition risks, from January 2004 to September 2024, at monthly 
frequency. Next, using the CAI-SA, we find that while the linear Granger causality tests failed 
to show evidence of predicting overall or food and non-alcoholic beverages inflation rates, due 
to model misspecifications from nonlinearity and structural breaks. The multivariate 
nonparametric framework displayed statistically significant predictability over the entire 
conditional distribution of both inflation rates, as well as for their respective volatilities (i.e., 
squared values). The strongest predictive impact was observed at the tails of the conditional 
distributions of the first and second-moment of the two inflation rates, confirming the nature 
of the risks from extreme climate-related events. Our findings, in general, are robust to an 
alternative definition of conditional inflation volatility, the exclusion of the control variables, 
additional methods of construction of the CAI, and a bootstrapped version of the test to account 
for size distortion and low power issues of the asymptotic approximation. Furthermore, 
analyses involving signs of the causal impact reveal significant positive association between 
the CAI-SA and the inflation rates and their volatilities, confirming climate risks are 
inflationary in South Africa, and also have spillover impacts on to its uncertainties. 
 
From a policy perspective, our results imply that the SARB, with its primary mandate of price 
stability, must be ready to undertake contractionary monetary policies in the wake of 
heightened climate risks to ensure that inflation remains within its target range. At the same 
time, with inflation uncertainty also increasing, which is known, based on existing studies, to 
fuel inflation further in South Africa, the climate-impact of inflation is likely to be persistent, 
which would also prolong the size and time-length of the monetary policy interventions. With 
climate risks shown to increase the level and fluctuation of inflation associated with food and 
non-alcoholic beverages, the importance of “correct” monetary policy decisions becomes of 
paramount importance to ensure minimal impact on the vulnerable poorer segment of the 
population. But one must realize, the associated likelihood of reduced economic activity (and 
heightened uncertainty): both directly from climate risks14 and tightening of interest rates, 
might require fiscal stimulus from the Treasury to revive output growth in the medium- to long-
run.  
 
Although the results of our analysis proved robust, it remains uncertain whether they provide 
out-of-sample forecasting gains. As such, extending our analysis into a forecasting exercise 
through Bonaccolto et al. (2018) predictive modelling framework provides potential avenues 
for future research.  
 
 
 
 
 
 
 
                                                        
14 The sign analyses revealed a negative effect on MPG and increased volatility from the CAI-SA. Complete 
details of these results are available upon request from the authors.  
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FIGURES and TABLES: 
 
Figure 1: Data Plot of the Macroeconomic Variables 
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month Treasury bill rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

17 
 

Table 1: Climate Change Vocabulary (CCV) List for CAI-SA 
Category Keywords 
Physical Risks 
 
 

1. Climate 
2. Climate change 
3. Climate risk 
4. CO2 5. CO2 emission 
6. Carbon dioxide 
7. Carbon emission 
8. Carbon emissions 
9. Climate Adaptation 
10. Climate Resilience 
11. Climate vulnerability 
12. Ecosystem 
13. Emissions 
14. Environment 
15. Global warming 
16. Greenhouse gas 
17. Warming 

Transition Risks 18. Adaptive Capacity 
19. Biological energy 
20. Biomass energy 
21. Carbon Budget 
22. Carbon capture 
23. Carbon market 
24. Carbon sequestration 
25. Carbon Sink 
26. Carbon tax 
27. Carbon Tax Act 
28. Clean energy 
29. Climate mitigation 
30. COP 
31. Disaster Management Act 
32. Emissions profile 
33. Emissions trajectory 
34. Environmental Management Act 
35. Green energy 
36. Greenhouse gas emissions inventory 
37. Hydropower 
38. IPCC 
39. Just energy transition 
40. Just transition 
41. Kyoto Protocol 
42. National Climate Change Response White Paper 
43. Nationally Determined Contribution 
44. Nuclear power 
45. Paris Agreement 
46. Presidential Climate Commission 
47. Provincial Forum on Climate Change 
48. Renewable energy 
49. Sectoral emissions targets 
50. Solar power 
51. Sustainable development 
52. UNFCCC 
53. Wind energy 

Note: The CCVs in italics correspond to the local SVI terms.  
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Figure 2: Word Cloud of Climate Change Vocabulary (CCV) 

  
 
 
 
Figure 3: Climate Attention Index-South Africa (CAI-SA) 
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Table 2: Geographic Specification of Climate-Related Events 
Geographic specificity of 

event 
Event Date of Event 

Global Paris Agreement adopted at COP 21 December 2015 
Paris Agreement officially enforced November 2016 
US withdraws from Paris Agreement June 2017 
US Rejoins Paris Agreement January 2021 

Local SA releases National Climate Change 
Response Strategy15 

September 2004 
SA introduces National Renewable 
Energy Feed-In Tariff (REFIT)16 

March 2009 
SA releases updates Integrated Resource 
Plan for electricity17 

November 2013 
SA passes Carbon Tax Act18 June, 2019 
SA introduces Climate Change Bill19 February, 2022 

Transnational SA hosts COP17 Conference in Durban December 2011 
SA Just Energy Transition 
Investment Plan concluded at COP26  

November 2021 
 
 
Table 3: Summary Statistics  

Statistic INFL INFLF MPG STR CAI-SA 
Mean 5.0319 6.6585 0.1747 6.7521 -0.0143 

Median 5.1251 5.9500 1.1811 6.9400 0.0108 
Maximum 11.3118 17.6400 69.1066 11.4200 6.0833 
Minimum -1.9993 0.4000 -76.7255 2.9800 -5.8180 
Std. Dev. 2.2524 4.0128 9.0426 1.6914 2.1664 
Skewness -0.3431 0.6951 -1.2526 0.3449 -0.2961 
Kurtosis 4.6848 2.8042 38.0237 3.3248 3.5334 

Jarque-Bera 34.3359*** 20.4480*** 12791.7000*** 6.0300** 6.5895** 
ADF -3.1534** -3.2513** -4.3533*** -3.3154** -3.0055** 

Observations 249 (January 2004-September 2024) 
Note: INFL: Overall CPI-based year-on-year inflation rate; INFLF: Food and non-alcoholic beverages CPI-based 
year-on-year inflation rate; MPG: Year-on-year growth rate of manufacturing production index; STR: 3-month 
Treasury bill rate, and; CAI-SA: Google Trends-based Climate Attention Index of South Africa. Std. Dev. stands 
for standard deviation; the null hypotheses of the Jarque-Bera and the Augmented Dickey-Fuller (ADF) tests 
correspond to normality and unit root, respectively; *** and ** indicate rejection of the null hypothesis at the 1% 
and 5% levels of significance, respectively.  
 
 
 
 
 
 
 
 
 
                                                         
15 See: https://cer.org.za/wp-content/uploads/2014/05/sem_sup3_south_africa.pdf 
16 See: https://www.gov.za/documents/notices/national-energy-regulator-south-africa-south-africa-renewable-
energy-feed-tariff 
17 See: https://www.gov.za/news/media-statements/media-statement-draft-irp-report-10-dec-2013 
18 See: https://www.gov.za/documents/acts/carbon-tax-act-15-2019-english-afrikaans-23-may-2019 
19 See: https://www.gov.za/sites/default/files/gcis_document/202203/b9-2022.pdf 
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Table 4: Brock et al. (1996) BDS Test of Non-Linearity  
Dependent Variable m=2 m=3 m=4 m=5 m=6 

INFL 3.1566*** 2.8612*** 2.7668*** 2.4764*** 2.0402** 
INFLF 5.8035*** 6.0633*** 5.9159*** 6.0598*** 6.2894*** 

Note: See Notes to Table 1. Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals 
across various dimensions (m), with the test applied to the residuals recovered from the equation of INFL or 
INFLF with p = 1 lag each of INFL or INFLF and CAI-SA; *** and ** indicate rejection of the null hypothesis at 
the 1% and 5% levels of significance, respectively. 
 
 
Table 5: Multivariate kth-Order Nonparametric Causality-in-Quantiles Test Results  

 Dependent Variable 
Quantile INFL INFLF INFL2 INFLF2 

0.10 34.7424*** 41.6213*** 34.7627*** 36.7164*** 
0.20 14.5719*** 18.2200*** 14.3277*** 15.6247*** 
0.30 6.5798*** 8.7033*** 6.2604*** 7.1454*** 
0.40 2.9987*** 4.0590*** 2.6412*** 3.1882*** 
0.50 2.0926** 2.2330** 1.7003* 1.9266* 
0.60 3.5024*** 2.7046*** 3.0600*** 2.9478*** 
0.70 7.6881*** 5.7702*** 7.1565*** 6.6498*** 
0.80 16.5889*** 13.0384*** 15.8699*** 14.8397*** 
0.90 38.7639*** 31.7822*** 37.5057*** 35.5840*** 

Note: See Notes to Table 1. ***, ** and * indicate rejection of the null hypothesis of no Granger causality at the 
1%, 5% and 10% level of significance respectively (given the corresponding critical values of 2.575, 1.96 and 
1.645 for the standard normal test statistic) from CAI-SA to INFL, INFLF, INFL2, or INFLF2 for a particular 
quantile, with INFL2 or INFLF2 capturing volatility. 
  
Table 6: Multivariate Bootstrapped kth-Order Nonparametric Causality-in-Quantiles 
Test Results  

 Dependent Variable 
Quantile INFL INFLF INFL2 INFLF2 

0.10 19.8296 14.8764 15.7985 19.4243 
0.20 5.8213 10.6425 6.9261 6.3515 
0.30 4.0858 4.1673 3.6036 3.6927 
0.40 2.6850 3.1277 2.9149 2.4769 
0.50 1.9489 2.9296 2.1961 2.3574 
0.60 2.2180 3.6806 3.0111 1.9699 
0.70 3.0858 4.9220 4.8311 3.0279 
0.80 8.3895 6.1597 7.8360 7.9025 
0.90 17.7284 13.1330 17.6184 18.7596 

Note: See Notes to Table 1. The entries correspond to the quantile-specific 5% bootstrapped critical values for 
the null hypothesis of no Granger causality from CAI-SA to INFL, INFLF, INFL2, or INFLF2 for a particular 
quantile, with INFL2 or INFLF2 capturing volatility. 
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Figure 4: Average Derivative Estimates (a). CAI-SA on INFL 

  
(b). CAI-SA on INFLF 

 (c). CAI-SA on INFL2 
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(d). CAI-SA on INFLF2 

 Note: See Notes to Figures 1 and 2. The figures plot the average derivative (AD) estimates of the sign of the effect 
of CAI-SA on INFL, INFLF, INFL2, or INFLF2 in the k-th-order multivariate nonparametric causality-in-quantiles 
models for a particular quantile (horizontal axis), with INFL2 or INFLF2 capturing volatility, and LB and UB 
corresponding to 95% lower and upper bound, respectively. 
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APPENDIXES: 
 
Appendix A. Additional Results  
Table A1: Bivariate k-th-Order Nonparametric Causality-in-Quantiles Test Results  

 Dependent Variable 
Quantile INFL INFL2 

0.10 32.3095*** 34.7921*** 
0.20 13.9959*** 15.0879*** 
0.30 6.7598*** 7.1989*** 
0.40 3.5077*** 3.4875*** 
0.50 2.6459*** 2.2230** 
0.60 3.8347*** 2.9952*** 
0.70 7.4724*** 6.1273*** 
0.80 15.2745*** 13.1795*** 
0.90 34.8405*** 31.1432*** 

Note: See Notes to Table 1. *** and ** indicate rejection of the null hypothesis of no Granger causality at the 1% 
and 5% level of significance respectively (given the corresponding critical values of 2.575 and 1.96 for the 
standard normal test statistic) from CAI-SA to INFL or INFL2 for a particular quantile, with INFL2 capturing 
volatility.  
 
Table A2: Multivariate k-th-Order Nonparametric Causality-in-Quantiles Test Results  

 Dependent Variable 
Quantile MPG MPG2 

0.10 22.6136*** 21.1749*** 
0.20 10.4493*** 9.8701*** 
0.30 5.7339*** 5.5687*** 
0.40 3.7843*** 3.9089*** 
0.50 3.5690*** 3.9483*** 
0.60 4.9155*** 5.5629*** 
0.70 8.2059*** 9.1876*** 
0.80 14.9004*** 16.3882*** 
0.90 31.4347*** 33.9723*** 

Note: See Notes to Table 1. *** indicate rejection of the null hypothesis of no Granger causality at the 1% level of 
significance (given the corresponding critical value of 2.575 for the standard normal test statistic) from CAI-SA 
to MPG or MPG2 for a particular quantile, with MPG2 capturing volatility. 
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Table A3: Multivariate kth-Order Nonparametric Causality-in-Quantiles Test Results  
 Dependent Variable 
 INFL INFL2 INFL INFL2 

Quantile Predictor: CAI-SA-Avg. Predictor: CAI-SA-Wtd.-Avg. 
0.10 21.9636*** 18.0320*** 36.4578*** 37.9382*** 
0.20 10.8677*** 8.6405*** 14.9482*** 15.7107*** 
0.30 6.7081*** 5.1811*** 6.5430*** 6.9302*** 
0.40 4.9626*** 3.8490*** 2.8346*** 2.9448*** 
0.50 4.6574*** 3.8419*** 1.9524* 1.8169* 
0.60 5.6085*** 5.0464*** 3.5072*** 3.1211*** 
0.70 8.1073*** 7.8053*** 7.9815*** 7.3018*** 
0.80 13.3360*** 13.3844*** 17.4168*** 16.3257*** 
0.90 26.5857*** 27.4106*** 40.7949*** 38.8999*** 

Note: See Notes to Table 1. *** and * indicate rejection of the null hypothesis of no Granger causality at the 1% 
and 10% level of significance respectively (given the corresponding critical values of 2.575 and 1.645 for the 
standard normal test statistic) from the simple average-based CAI (CAI-SA-Avg.) or the weighted average-based 
CAI (CAI-SA-Wtd.-Avg.) to INFL or INFL2 for a particular quantile, with INFL2 capturing volatility. 
 
 
Table A4: Bivariate kth-Order Nonparametric Causality-in-Quantiles Test Results  

 Dependent Variable 
 INFL INFL2 INFL INFL2 

Quantile Predictor: CAI-SA-Alt. Predictor: CAI-SA 
0.10 0.3026 1.1430 0.3026 1.3615 
0.20 0.4775 1.4602 0.5943 1.6105 
0.30 0.9757 0.8763 2.1080** 2.1080** 
0.40 0.7733 0.7180 2.4460** 2.4460** 
0.50 0.4733 0.4733 2.8605*** 2.6559*** 
0.60 0.5340 0.3700 2.2964** 2.2964** 
0.70 0.3626 0.3265 2.0044** 2.0044** 
0.80 0.6600 1.9407* 0.6172 1.9598* 
0.90 0.3984 1.5649 0.2964 1.5649 

Note: See Notes to Table 1. ***, ** and * indicate rejection of the null hypothesis of no Granger causality at the 
1%, 5% and 10% level of significance respectively (given the corresponding critical values of 2.575, 1.96 and 
1.645 for the standard normal test statistic) from the Twitter-based CAI (CAI-SA-Alt.) or the CAI-SA to INFL or 
INFL2 for a particular quantile, with INFL2 capturing volatility. 
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Appendix B. Technical Details of a Residual-Based Bootstrap Procedure for the Quantile 
Causality Test  
We consider a single quantile level ߠ for simplicity, though the procedure may be applied 
separately for any ߠ ∈ (0,1) of interest (e.g. to test for causality at multiple quantiles). 
 
Next, we describe the residual-based bootstrap algorithm for the causality-in-quantiles test 
statistic, following the approach outlined by Hsiao and Li (2001). The objective is to simulate 
the distribution of ܬመ்  under the null hypothesis (ݑ௧ does not affect ݒ௧’s ߠ-quantile) and to use 
the simulated distribution to calibrate the test. The steps involved are as follows: 

1. Estimate the ߠ-quantile model under ܪ଴: Based on the observed data {ݑ௧, ܼ௧ିଵ}௧ୀଵ் , 
estimate the conditional quantile function ܳ ఏ(ݑ௧ ∣ ܼ௧ିଵ\ ௧ܸିଵ) (excluding ݒ௧). This may 
be accomplished by local linear quantile regression. More precisely, let ܺ௧ିଵ ≡ܼ௧ିଵ\ ௧ܸିଵ be the ݌-lag vector excluding the ݒ variables. For every point ݔ in the support 
of ܺ௧ିଵ, the local linear estimator (ݍො଴(ߠ, ,(ݔ ,ߠ)ො௫ᇲݍ  ᇱ is found by solving((ݔ

min௤బ,௤ೣ
෍ ఏߩ

்

௧ୀ௣ାଵ
௧ݑ) − ଴ݍ − ௫ᇲ(ܺ௧ିଵݍ − ܮ((ݒ ൬ܺ௧ିଵ − ݒ

ܾ ൰, 

  where ߩఏ(݁) = ,ߠ] 1{݁ ≥ 0} − (1 − ݁}1(ߠ < 0}]݁ is the check loss function of 
quantile regression. This optimization delivers ݍො଴(ߠ, quantile at ܺ௧ିଵ-ߠ the fitted) (ݔ ,ߠ)ො௫ݍ and (ݔ=  ,Specifically .ݔ for each local neighborhood about (a vector of slopes) (ݔ
for each observation ݐ, the fitted conditional quantile for ݑ௧ is ෠ܳఏ(ܼ௧ିଵ\ ௧ܸିଵ) ,ߠ)ො଴ݍ= ܺ௧ିଵ). Based on this fitted function, calculate the residuals for ݐ = ݌ + 1, … , ܶ 
as 

߳௧̂(ߠ) = ௧ݑ − (ߠ)ො଴,௧ݍ] +  ,[௧ିଵܺ(ߠ)ො௫,௧ᇲݍ
  where we use the notation ݍො଴,௧(ߠ) ≡ ,ߠ)ො଴ݍ ܺ௧ିଵ) and ݍො௫,௧(ߠ) ≡ ,ߠ)ො௫ݍ ܺ௧ିଵ) for 

convenience. 
2. Resample centered residuals: As the ߳௧̂(ߠ) from above may not have zero mean (they 

are quantile residuals, and not ordinary least squares residuals), we first recentre them 
to impose the null condition of zero average effect. Let  ‾߳ = ଵ

்ି௣ ∑ ߳௧̂௧்ୀ௣ାଵ  denote (ߠ)
the sample mean of the residuals. Define the centered residuals ߳௧̃ = ߳௧̂(ߠ) − ‾߳. We 
then take a bootstrap sample {߳௧̂∗(ߠ)}௧ୀ௣ାଵ்  of ܶ −  values by sampling with ݌
replacement from the centered residuals {߳௧̃}. This provides a resampled error series ߳௧̂∗(ߠ) that replicates the distribution of the quantile regression errors under ܪ଴. (We 
keep the same sample size ܶ in each bootstrap replication.) 

3. Recursive generation of a bootstrap series {ݑ௧∗}: Based on the resampled errors from 
Step 2, we generate a synthetic time series {ݑ௧∗}௧ୀଵ்  under the null hypothesis. The 
bootstrap series is generated recursively according to the estimated quantile model. We 
begin by setting the first ݌ values ݑଵ∗ , … , ∗௣ݑ  to the real observed values of ݑ (this fixes 
the simulation at a realistic starting point). Then, for each ݐ = ݌ + 1, ݌ + 2, … , ܶ, we 
calculate 

∗௧ݑ = (ߠ)ො଴,௧ݍ + ∗௧ିଵܺ(ߠ)ො௫,௧ᇲݍ + ߳௧̂∗(ߠ), 
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  where ܺ௧ିଵ∗ ≡ ܼ௧ିଵ∗ \ ௧ܸିଵ∗  is the bootstrap counterpart of ܺ௧ିଵ. Practically, this implies 
that ܺ௧ିଵ∗  contains the lagged values of the new series {ݑ∗}௧ୀଵ்  (and any other control 
variables ݓ௧ if any), but not ݒ as we are simulating under ܪ଴. 

4. Calculate the bootstrap test statistic: Once we have generated a bootstrap sample in 
Step 3, we compute its quantile-causality test statistic ܬመ்∗  in the same manner as the 
original ܬመ் . That is, we calculate equation (6) on the bootstrap sample {߳௧̂∗(ߠ), ܼ௧ିଵ∗ }. 

5. Repeat and invert the bootstrap distribution: We replicate Steps 2–4 a total of ܤ times 
(with independent resampling in each replication) to create ܤ bootstrap statistics 
መ்ܬ} ,௕∗ }௕ୀଵ஻ . These values comprise an empirical approximation to the sampling 
distribution of ܬመ்  under ܪ଴. Finally, we can extract a bootstrap ݌-value or critical values 
from this distribution. For instance, the ߙ‐percent critical value, ܿ̂ଵିఈ, is simply the (1 −  :quantile of the empirically generated bootstrap statistics, which is obtained as‐(ߙ

ܿ̂ଵିఈ = inf{ܽ: 1
ܤ ෍ ૚

஻

௕ୀଵ
መ்ܬ) ,௕∗ ≤ ܽ) ≥ 1 −  .{ߙ
 

As the bootstrap replicates the null, it provides a better reflection of the finite-sample variability 
of ܬመ்  than the large-sample theory. Specifically, studies have shown that the bootstrap test 
achieves empirical size much closer to nominal and has greater power than the asymptotic test 
in finite samples. By not relying on the slow asymptotic approximations, the bootstrap 
approach enhances the reliability of the test across quantiles in finite samples, as first shown 
by Li and Wang (1998) and Hsiao and Li (2001). The aforementioned bootstrap algorithm is 
implemented for a given quantile level ߠ. In practice, one can implement the same algorithm 
for each quantile of interest (e.g. ߠ = 0.1,0.5,0.9, etc.) separately, obtaining potentially 
different ܬመ்  statistics and bootstrap critical values at each ߠ. We fix ܤ = 399 in the empirical 
application, since computational cost is prohibitive for larger values of ܤ. 
 


