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Abstract

This paper analyzes the predictive effect of climate risks on inflation and inflation uncertainty
in an inflation targeting emerging economy through a multivariate nonparametric higher-order
causality-in-quantiles test. In this regard, we obtain a monthly Google Trends search-based
Climate Attention Index for South Africa (CAI-SA), which incorporates both local and global
terms dealing with physical and transition risks between January 2004 and September 2024.
Using the CAI-SA, we find that linear Granger causality tests fail to show any evidence of
prediction of overall and food and non-alcoholic beverages inflation rates, due to model
misspecifications from nonlinearity and structural breaks. However, the robust multivariate
nonparametric framework depicts statistically significant predictability over the entire
conditional distribution of not only the two inflation rates, but also their respective volatilities,
i.e., squared values. The strongest predictive impact is observed at the tails of the conditional
distributions of the first- and second-moment of the two inflation rates. Our findings, in general,
are robust to alternative definitions of inflation volatility, exclusion of the control variables,
different methods of construction of the CAl, and a bootstrapped version of the test to account
for size distortion and low power. Analyses involving signs of the causal impact reveal
significant positive association between the CAI-SA and the inflation rates and their
volatilities, thus having serious implications for monetary policy decisions in South Africa in
the wake of heightened climate risks.
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1. Introduction

Climate change remains one of the most complex challenges facing humanity in the 21st
century. The emergence of physical climate risks in particular are a cause for concern, with
hazardous weather events such as heatwaves and floods increasing in their frequency and
magnitude (AghaKouchak et al., 2020; Grab and Nash, 2024). Extensive climate econometric
research modelling the effects of physical climate risks on economic growth often suggest
negative impacts, where developing countries are especially prone to adverse economic
outcomes (Alessandri and Mumtaz, 2022; Huber et al., 2023). While the influence of both acute
and chronic natural hazards on output is well-established, their effects on inflation have
received limited attention. Theoretically, extreme weather events influence aggregate demand
and aggregate supply dynamics, which subsequently affect inflation (Batten, 2018; Ciccarelli
and Marotta, 2024). On the supply side, negative shocks emanating from natural disasters
decrease agricultural production, which in turn increases food prices, dampens economic
activity, and reduces labor productivity. Damaged transportation infrastructure further disrupts
supply chains and increases distribution costs, altogether culminating in inflationary impacts.
On the demand side, disaster events may lead to a reduction in inflation through Keynesian
supply shocks. These shocks increase the risk aversion of economic agents, thus reducing their
consumption and investments, even in the presence of fiscal support. Consequently, assessing
the inflationary impact of climate risks remains an empirical issue. Attempts to empirically
ascertain the climate-inflation nexus often report contradictory findings, especially in
international panels of heterogeneous developed and emerging countries (Cashin et al., 2017;
Parker, 2018; Faccia et al., 2021; Mukherjee and Ouattara, 2021; Kabundi et al., 2022; Cevik
and Jalles, 2023; Liao et al., 2024; Qi et al., 2025). In this regard, one may arrive at more
definitive answers through country-specific studies, such as those conducted for European
nations and the United States (US) (Ciccarelli et al., 2023; Sheng et al., 2024; Kim et al., 2025).

Given this context, this paper analyzes the causal effect of climate risks on the movements of
inflation in an emerging state, namely South Africa. As a major exporter of commodities such
as coal, gold, iron ore, and platinum, South Africa’s mining sector and broader economy has
historically been powered by fossil fuels, primarily coal. The country subsequently ranks
among the leading emitters of carbon dioxide globally, resulting in heightened exposure to
climate transition risks (Wu et al., 2024). Additionally, the semi-arid climatic conditions in
South Africa remain a major proponent for magnified exposure to physical risk. For instance,
a projected 1.5°C increase in global average temperature equates to a 3 °C increase in South
Africa’s average temperature. Such climate anomalies may result in more frequent extreme
weather events in the country!, as witnessed in recent years. At the same time, South Africa is
an inflation targeting economy since February 2000 (with an original target band of 3%-6%),
hence, the effect of climate risks on inflation has paramount importance from the perspective
of monetary policy decisions, as recently acknowledged by the South African Reserve Bank
(SARB) in its Annual Report of 2023/2024.2 Furthermore, the SARB, while discussing the
importance of climate change in South Africa, has stressed not only on physical, but also
transition risks associated with a move towards a “greener economy” (SARB, 2025) through
greater reliance on renewables for energy generation, and carbon tax.

! See: https://www.bcg.com/publications/2022/how-south-african-mining-can-address-climate-change-

challenges.
2 See the discussions in: https://resbank.onlinereport.co.za/2024/downloads/Addressing-climate-change-risks.pdf,
and https://www.resbank.co.za/en/home/about-us/climate-change.




Though less researched than the effects of physical risks on inflation, transition risks can also
have inflationary or deflationary impacts. Global transition efforts towards lower carbon
emitting production processes require metal and mineral-intensive green technologies. A
subsequent supply squeeze occurs, where rising demand for metals such as copper, lithium and
cobalt for green technologies is met by supply bottlenecks, resulting in what is often referred
to as “greenflation” (Schnabel, 2022). Conversely, in their textbook New Keynesian model
Ferrari and Nispi Landi (2024) found that increases in carbon taxes today raise inflation, but
expected future carbon tax increases decrease current demand, resulting in downward pressure
on prices. Through numerical simulations, they further find stronger demand-suppressing
effects, thus causing green transitions to be deflationary under conditions of climate policy
certainty. However, where there is uncertainty surrounding climate policies, inflationary
impacts are expected (Huang and Tereza Punzi, 2024). Within the South African climate
transition risk context, an inflationary outcome is also highly likely owing to a high degree of
uncertainty surrounding climate-related policymaking in the country ( Ji et al., 2024; Kutu et
al., forthcoming).3

In line with the existing literature on devising metrics for physical and transition climate risks
via textual analysis (see, for example, Engle et al. (2020), Faccini et al. (2023), Bua et al.
(2024)), we create a climate attention index for South Africa (CAI-SA) based on Google Trends
(GT) searches of large number of terms relating to physical and transition risks, thus making it
an appropriate measure to capture overall climate risks (Ben Ameur et al., 2024). In this regard,
our search involved both country-specific and global terms, given that South Africa is a small
open economy impacted by international shocks in a highly interconnected supply-chain
system (Burriel et al., 2024), and is also motivated by Bilal and Kénzig (forthcoming), who
stresses that global rather than local climate factors drive extreme climatic events.

In theory, with climate risks serving as proxies for rare disasters, the possible positive effect
on inflation volatility could originate from a model of inattention put forth by Sundaresan
(2024). Here, agents gather information to decide how to prepare for possible scenarios, while
ignoring unlikely events. Hence, the occurrence of rare disasters does not resolve, but instead
increases general uncertainty (Sheng et al., 2022; Ma et al., 2024; Zhang et al., 2024). Inflation
uncertainty in South Africa has played an important role in inflationary outcomes, especially
in the post inflation-targeting era (Ben Nasr et al., 2015; van der Westhuizen, 2023). The effects
of climate risks on inflation volatility is an equally important consideration in monetary policy
decisions as it can enhance inflation persistence following physical and transition risks shocks.
If these shocks are inflationary, they may result in prolonged intervention by the SARB. In this
context, our methodology also allows us to investigate the predictive impact of climate risks
on the second-moment of inflation, i.e., inflation uncertainty, due to climate risks.

This paper presents a novel approach to analyzing the effects of climate risks on the conditional
distribution of inflation and inflation volatility in South Africa, primarily through a higher-
order nonparametric causality-in-quantiles model. The significant contribution of the food and
non-alcoholic beverages sector (19.88%) to the country-wide Consumer Price Index (CPI)
computation®, in tandem with the well-established physical risks exposure of South Africa’s

3 In fact, using a newspapers based index of Climate Policy Uncertainty (CPU), created by Ji et al. (2024) for
South Africa (besides 11 other G20 economies), available at: http://www.cnefn.com/data/download/climate-risk-
database/, we found a significant (at the 1% level) positive association (given a coefficient of 0.7776) with the
year-on-year overall inflation rate (details of which is provided in Section 2) using an Ordinary Least Squares
(OLS) regression over the monthly period of July 2018 to December 2023.

4 The reader is referred to: https:/www.statssa.gov.za/publications/P01415/P014152023.pdf.




agriculture sector motivate the approach to investigate the impacts of climate risks on aggregate
and food and non-alcoholic beverages sector associated inflation. Additionally, as climate risks
have an immediate effect on agriculture productivity, the focus on the food and non-alcoholic
beverages sector enables the evaluation of its likely contribution on the overall inflation in the
wake of extreme climate events. Moreover, with expenditure on food and beverages accounting
for nearly 30% of the total expenditure of poorer households (2022/2023 Income and
Expenditure Survey?), understanding inflation variability in this sector is a major concern from
the distributional dimension of climate shocks perspective.

The preview of our results show that indeed there is robust evidence that physical and transition
climate risks, which are captured by the attention index, not only predict the level of both the
overall and the food and beverages inflation rates, but also their associated volatilities
throughout their respective conditional distributions. The remainder of the paper is organized
as follows: Section 2 outlines the data used in our analysis; Section 3 is devoted to the
elucidation of the methodology used; Section 4 presents the empirical findings; and finally in
Section 5 we present our concluding comments of the work presented in this paper.

2. Data

In this study, the two dependent variables of interest are the overall inflation rate (INFL), and
the food and non-alcoholic beverages inflation rate (INFLF). Both INFL and INFLF are in
percentages, and we utilize the year-on-year changes of the natural logarithm of the
corresponding seasonally-adjusted CPIs, multiplied by 100. The two macroeconomic control
variables used are in line with a standard small-scale monetary model, for which we use the
year-on-year changes in the natural logarithmic values of the seasonally-adjusted
manufacturing production index (MPQG) to reflect monthly economic growth, and the level of
the seasonally-unadjusted 3-month Treasury bill rate in percentage (STR) that reflects the
status of short-term interest rate, and hence, are a reflection of monetary policy decisions. The
required underlying raw data are obtained from the online data segment of the SARB®, and the
four variables of interest, namely INFL, INFLF, MPG and STR are presented in Figure 1.

[INSERT FIGURE 1]

The main predictor variable in our econometric analyses is a GT-based attention index, namely
the CAI-SA, constructed to measure physical and transition climate risks in South Africa.
Recognizing the ability for GT — a freely accessible, open source, providing real-time data on
public attention or interest on a plethora of topics, we construct our CAI-SA using the relative
search volume index (SVI) from GT. Our GT-based CAI-SA considers both local and global
climate related search terms. As such, we select thirty globally relevant climate-related terms
present in the Climate Change Vocabulary (CCV) compiled by Lin and Zhao (2023). And, to
identify locally relevant climate-related terms, the South African government web repository’
was accessed to identify key documents (namely, the Climate Change Act 22 of 2024, and the
Climate Change Bill B9-2022) and localized glossaries, to build a comprehensive CCV list for
the CAI-SA. Subsequently, 21 additional terms which were not explicitly listed by Lin and
Zhao (2023) were identified and included in the CCV list for development of the CAI-SA.

5 See: https://www.statssa.gov.za/publications/P0100/P01002022.pdf.

6 Accessible via: https://www.resbank.co.za/en/home/what-we-do/statistics/releases/economic-and-financial-
data-for-south-africa.

7 See: https://www.gov.za/documents.




Finally, considering South Africa’s reliance on coal and other fossil fuels, and the subsequent
efforts to ensure a renewable energy transition, the terms “just transition” and “just energy
transition” were included in the final CCV list. In Table 1, we categorize all 53 CCV terms
included in the construction of the CAI-SA in accordance with their relation to either physical
or transition risks.

[INSERT TABLE 1]

After the compilation of the final CCV list, we collected GT data for the 53 search terms, which
were confined to searches emanating from South Africa, from January 2004 to September
2024. Using average GT SVI values associated with each search term, we plotted a word cloud
in Figure 2, where terms with higher mean values (which can be associated with higher relative
search volumes) are plotted larger than words with lower mean values.®

[INSERT FIGURE 2]

To ensure comparability between the search terms used in the construction of the CAI-SA, we
standardize the raw SVI series for each CCV term by demeaning and scaling each series by its
standard deviation, before applying Principal Component Analysis (PCA) to obtain our CAI-
SA, which is plotted in Figure 3.

[INSERT FIGURE 3]

As is customary in the development of indexes, we visually analyse the ability for the CAI-SA
to capture climate-related events through observed peaks. To ensure rigour in our analysis, we
preselect 11 local and international climate-related events (listed in Table 3), with the
expectation that peaks in the CAI-SA will occur around the date of key climate-related news
events, implying the ability of the index to track attention on real-world events. The
categorization of climate-related policy events by Chen et al. (2024) lay the foundation for the
selection of international climate-related news events. The selection of key local events
primarily considers risks, reflected through some major climate policy shifts in South Africa
occurring within the sample period. Figure 3 depicts the CAI-SA, annotated in relation to key
climate-related events occurring locally and internationally. We find that the index was able to
capture all the preselected major climate-related events through its peaks. Further, there is
consistent emergence of pronounced negative peaks, which occur in the third quarter of each
year in the series, generally coinciding with Conference of Parties (COP) meetings, dealing
with issues of international climate change policy negotiations. Conversely, during the period
of COP17, which was hosted in Durban, South Africa, the CAI-SA index displayed a positive
peak. More interestingly, upon enforcement of the Paris Agreement in November 2016, the
CAI-SA displayed a positive peak.

[INSERT TABLE 2]

As can be seen from Figure 3, some of the search terms could have added seasonality to the
CPI-SA index, hence, we use the Seasonal and Trend decomposition using LOESS (STL)

8 Where mean SVI for a search term for our sample period is less than 1, the term was excluded from the word
cloud.



approach of Cleveland et al. (1990) to filter out the seasonal pattern in this series, and utilize
this deseasonalized version in our econometric analyses to ensure robust empirical findings.’

Table 3 summarizes the variables of interest, i.e., the dependent variables: INFL and INFLF,
and the predictor: CAI-SA, as well as the two control variables of MPG and STR. As can be
seen from the table, all the variables are non-normal based on the rejection of the null
hypothesis of normality as per the Jarque-Bera test, and provides an initial motivation to look
at a quantiles-based approach given, in particular, the heavy tails of the dependent variables:
INFL and INFLF. Furthermore, the Augmented Dickey-Fuller (ADF; Dickey and Fuller, 1979)
unit root test ensures that all the variables under consideration are stationary and, hence, are fit
to be utilized in the nonparametric causality-in-quantiles test.

[INSERT TABLE 3]
3. Methodology

In this section, we present the multivariate k-th order nonparametric causality-in-quantile test
of Balcilar et al. (2022), which augments the original bivariate test developed by Balcilar et al.
(2018).

We denote the dependent variable (INFL or INFLF) as u,, the predictor variable (CAI-SA) as
v, and n possible predictors as W, = (Wllt, Wy ¢ ...,Wn’t),, (which are the control variables
MPG and STR in our case). Therefore, the multivariate quantile causality is defined using:
Urm1 = (Ueoqy o Ue—p) Vict = W1y s Ve—p)' and Wiy =
(Wi -1 s Wi t—ps e Wip—1, o, Wnp—pp ). Following the notation Z, = (U, Vi, Wy)', X, =
(U./,W.")', the conditional distribution of u; given Z,_, and u; given Z;_;\V;_; = X;_1 =
(U{_1,W{_;)" can be denoted by Fuyz,_,(uelZe—1) and Fy,z, v, (UelZe-1\Ve-1),
respectively, where Z;_;\V;_, implies the information set which does not include V;_;. Let
also the 6-th conditional quantile of u,, given the information set -, be denoted by Qg(-).
Following Nishiyama et al. (2011) and Jeong et al. (2012), Granger non-causality-in-quantile
is defined as: v; does not cause u, in the 6-th quantile, if:

Qo(e|Ze—1) = Qo(ue|Zi—1\Vi—1) (D

while Granger causality-in-quantile is defined as: v; is a prima facie cause of u; in the 6-th
quantile, if:

Qo(uelZi—1) # Qo (Ue|Zt-1\Vi-1), (2)

Eq. (1) and Eq. (2) can be equivalently expressed as:

Ho: P{Fy,z7,_{Qe(Z;-1\Ve)IZi1} =0} =1 3)
Hy: P{F,z,_{Q6(Z-\V:-DI|Z,_} =0} < 1 (4)

% The raw CAI-SA and the seasonally-adjusted CAI-SA has a statistically significant (at the 1% level, given a p-
value of 0.0000) correlation coefficient of 0.8224.



where the 6-th quantiles are denoted as Qg(Z;_1) = Qg (ut|Zi—1)and Qg(Zi_1\Vi—1) =
Qo (X¢-1) = Qo (UelZr—1\Vi—1), which satisfy Fy,jz,_ {Qg(Z-1)|Z;-1} = 6 with probability
one.

In order to construct the test, we consider metric: | = {€,E(€:|Z¢—1)f2(Z¢~1)}, where
fz(Z:_4) is the marginal density. The regression error €; emerges based on the null in Eq. (3),
which can be true if and only if E[1{u; < Qg(Z;—1\V;-1)|Z¢—1}] = 6, or equivalently
1{u; < Qg(Z;_1\Vi_1)} = 6 + €, where 1{-} is the indicator function. Thus, the metric J can
be specified as:

E[{Fuz, ,{Q0(Ze-1\Ve-1|Z¢-1} = 03 f2(Z;-1)] )

The empirical counterpart of Eq. (5), based on Jeong et al. (2012), is constructed as follows:

Jr = T(T—1)hm Z Z (Zt e l)étés ©)

t=p+1s=p+1,s#t

where K (*) is the kernel function with bandwidth h; T is the sample size; m is the dimension
of Z;, and €, is the unknown regression estimate, which is constructed as:

€ = u, < Qe(zt—l\Vt—l)} -0 (7N

where Qp(Z;_1\V,_1) is an estimate of the 6-th conditional quantile. Following arguments

d
similar Jeong et al. (2012), Th"™/? j. — N(0,02). In general, causality in conditional mean
(first-moment) implies causality in higher order moments, but not vice versa. Thus, a sequential
testing approach for causality in k-th moment is adopted as follows:

Ho: P{F k. (Qo(Zeea\Vee)|Zen} = 0} = 1 k=12,..,K )
H,: P{Fu;glzt_l{Qg (Zoo\Vei DI Zo1} = e} <1 k=12 ..,K 9)
The test statistic is formulated as in Eq. (6) by replacing u, with u¥. It is important to note that

J = 0, i.e. the equality holds if and only if Hy in Eq. (3) or Eq. (8) is true; while J > 0 holds
under the alternative H; in Eq. (4) or Eq. (9). We, therefore, consider a re-scaled version using:

T
1 Zyq —Zsq
5 = — e — 2| ==  °>—-
6o =201 H)IT(T—l)hm t ;ti K( h )
=p+1,t#s

. r Jr d
and establish that: t; = e ey N(0,1).

1h—m/2

The 6th quantile of u,, is estimated as Qg(Z,_1\V,_1) = inf{u,: F ut|Zt i WelZeq\
V,_1) = 6}, where the Nadaraya—Watson kernel estimator F,, 1Ze—1\Ve_, ()18 given by:

X1 — X
Z§:p+1,t¢sl‘ (%) l{us < ut}

s=prieesL (%)

with L(-) denoting the kernel function and b the bandwidth.

Fut|Zt_1\Vt_1(utlzt—l\Vt—l) =



In implementing this test, on the basis of our model specifications, we have: (u,)® =
m(Z;_,) + €;, where u, represents the INF or INFLF. Causality-in-mean is defined as m = 1,
while causality-in-variance involves [ = 2.

The empirical implementation of the tests above involve the specification of three main
parameters: the bandwidths (h and b), the lag order (p), and the kernel types for K(+) and L(-).
The lag order (p) is selected based on the Schwarz Information Criterion (SIC), with h and b
determined by the leave-one-out least-squares cross-validation, and we use Gaussian kernels
for K(+) and L().

Tests for Granger causality-in-quantiles are based on an asymptotic normal approximation to
the test statistic /7 under the null. However, several studies have found this approximation to
be untrustworthy in finite samples. Indeed, Li and Wang (1998) report that the convergence of
such nonparametric test statistics to their limiting normal distribution can be very slow (to the
order of T~1/1% even in a bivariate case with one lag and bandwidth of h = T~1/5).
Consequently, the use of nominal normal critical values frequently results in severe size
distortions in realistic sample sizes. Hsiao et al. (2007) also report that the asymptotic N(0,1)
approximation has a tendency to underestimate the actual rejection probability of the test for
moderate T, even when T is quite large. These results motivate the application of bootstrap
methods as a way of obtaining a better approximation to the finite-sample null distribution of
the test statistic. By resampling from the data to obtain an empirical distribution for J; under
Hy, the bootstrap can rectify the distortion and yield more accurate critical values. The technical
details of a residual-based bootstrap procedure for the quantile causality test, which will replace
the asymptotic normal approximation with a simulated distribution, is presented in Appendix
B of this paper.

4. Empirical Findings

To ensure the completeness and comparability of results from our initial utilising of the
multivariate k-th order nonparametric causality-in-quantiles framework, we conducted the
linear Granger causality test running from climate risks to overall and food and non-alcoholic
beverages inflation rates. We found that, the null of no-Granger causality from CAI-SA to
INFL and INFLF, with MPG and STR as control variables, cannot be rejected even at the 10%
level of significance, given the corresponding values of the y?(1) test statistics (p-value), given
p =1 as per the SIC, to be equal to 0.0586 (0.8087), and 0.6689 (0.4134).

The standard Granger causality test, shows a lack of predictability from our measure of climate
risks onto the two inflation rates under consideration. The finding of non-causality may allude
to model misspecifications stemming from the assumption of linearity in the predictive
relationships. This necessitated a test for the presence of nonlinearity in the relationship
between INFL and INFLF with CAI-SA, controlling for MPG and STR in the model. A BDS
test on the residuals from the two initial linear models assessed whether the null hypothesis of
i.i.d. residuals at various dimensions (m2) could be rejected or not (Brock et al., 1996). Results
of the BDS test presented in Table 4, provide strong evidence of nonlinearity for both INFL
and INFLF, such that we reject the null hypothesis of linearity (i.i.d. residuals) at the 1% level
of significance. The BDS test ultimately confirms that the linear model utilized for tests of
Granger causality is indeed a misspecification, owing to uncaptured nonlinearity.
Consequently, further causal inference must implore a nonlinear model, whereby the
nonparametric causality-in-quantiles approach is followed. Intuitively, the nonlinearity

8



between inflation and climate risks should not be surprising in light of prices being known to
be downward rigid, and increases and decreases in climate shocks have been shown
asymmetric inflationary effects (Sheng et al., 2024; Kim et al., 2025).

[INSERT TABLE 4]

Next, issues of instability in the linear models were addressed, where additional layers of
misspecification could have materialized. Through the UDmax and WDmax tests, we examined
the relationship between INFL and INFLF with CAI-SA, given MPG and STR in the equations
of the linear Granger causality test for the presence of possible structural breaks (Bai and
Perron, 2003). We found that there are one (January 2010) and four (August 2008, January
2012, February 2017, and August 2021) breaks respectively, in the relationships between INFL
and CAI-SA, and between INFLF and CAI-SA. The dates of regime-change in 2017 and 2021
for INFLF can be associated with a redefinition of the South African inflation target to 4.5%
from the target band of 3%-6%, and the delayed outcome of the COVID-19 pandemic,
respectively. In the case of INFL, the break in 2010, and that for INFLF in 2008 is likely to
have originated from the worldwide rise in commodity prices in the wake of the Global
Financial Crisis in 2007-2009. The 2012 structural break in INFLF can be associated with
severe weather conditions, and increases in production costs thereof, by which year the
commodity price boom had tapered down. We infer that our linear Granger causality results
are unreliable as instability exists within the parameter estimates over the full sample period

We relied on an inherently time varying econometric model to ensure robust inference of the
causal analyses. This informed our statistical argument to utilize the nonparametric k-th order
causality-in-quantiles testing method, which accommodates such misspecifications, while
simultaneously providing results for the second-moment, i.e., inflation volatility (uncertainty).
We present the standard normal test statistics, derived from this method, over the quantile range
of 0.10 to 0.90 in Table 5 in which CAI-SA predicts the entire conditional distributions in a
statistically significant manner not only for INFL and INFLF, but also for their corresponding
squared-values capturing overall and, food and non-alcoholic beverages inflation volatility (or
uncertainty). In the process, we highlight the superiority of a nonparametric approach, when
misspecifications are present in a linear predictive framework in the form of nonlinearity and
structural breaks. Interestingly, even though the entire conditional distribution of the first- and
second-moment of both the INFL and INFLF rates are causally impacted by the CAI-SA, the
effect (in terms of the magnitude of the test statistic) is strongest at the lower (6 = 0.10)- and
upper-tail(6 = 0.90) of the conditional distribution, and weakest at the conditional median (6 =
0.50), corresponding to the normal state of inflation. Put alternatively, climate risks carry strong
predictive content for the extreme behavior of the inflation rates, which should not come as a
surprise given that CAI-SA serves as a proxy for infrequent (rare) disasters or climate policy-
related events. Such events are likely to mimic tail risks, as recently noted for the US by
Chavleishvili and Moench (2025), using a Quantile Vector Autoregression (QVAR) model of
natural disasters. On a technical front, this u-shaped nature of the standard normal test statistics
depicts the importance of using a quantiles-reliant approach relative to a conditional mean-
based model, allowing us to capture the unique asymmetry in the strength of predictability due
to physical and transition climate risks on the movements of the inflation rates.

[INSERT TABLE 5]

As part of an additional analysis in (Table A1) in the Appendix, we report the corresponding
results from the bivariate versions of the k-th order nonparametric causality-in-quantiles test,

9



which involves INFL and CAI-SA. Understandably, the two-variable test statistics can be
obtained in a similar fashion as described in Section 3, but now with W, being a null-vector,
1.e., without the controls MPG and STR. As observed from this table, the results are
qualitatively similar to those obtained under the multivariate set-up, thus confirming the
robustness of our findings when we ignore the two additional control variables defining the
states of aggregate demand and supply.!® Given the overwhelming focus on economic growth
in the studies dealing with the climate-economy nexus, in Table A2 in the Appendix, we also
present the causal impact of CAI-SA on MPG and its volatility, i.e., the squared value: a
measure of macroeconomic uncertainty, using the multivariate higher-order nonparametric
causality-in-quantiles test. We find that climate risks indeed predict the entire conditional
distribution of output growth and its associated uncertainty in a statistically significant manner,
while depicting a u-shaped pattern to the test statistics, just as in the case of the inflation rates.
While our CAI-SA index is based on PCA applied to combine the information of the search
terms, we also created two additional CAI indexes. In the first case, we took a simple average
of the standardized values of the GT-based search terms for each month, while in the second,
we considered a weighted average instead, with the weights being the ratio of the search value
for a particular term relative to the total number of searches associated with all the terms for a
particular month. We call these two indexes: CAI-SA-Average (CAI-SA-Avg.) and CAI-SA-
Weighted-Average (CAI-SA-Wtd.-Avg.), respectively. Table A3 in the Appendix reports our
findings from the multivariate k-th order nonparametric causality in quantiles test for INFL,
based on these two alternative CAls, and as can be seen, our results are qualitatively similar to
those presented in Table 3 using the CAI-SA measure, confirming robustness of our findings
to alternative ways of construction of the CAI metrics. This finding is not surprising, given the
correlations between CPI-SA-Avg. and CPI-SA-Wtd.-Avg. with CAI-SA are positive and
statistically significant.!! Finally, given that there exists a twitter-based CAI for South Africa
over a shorter period of October 2014 to December 2022, as developed by Arteaga-Garavito et
al. (2023),!2 we compared the predictive ability of this index (CAI-SA-Alternate (Alt.)) with
that of ours in predicting INFL and its volatility. Note that, due to a relatively small sample
size of 99 observations, for this exercise, we rely on the bivariate version of the k-th-order
nonparametric causality-in-quantiles test. As can be seen from Table A4, while CA-SA-Alt. is
unable to depict any evidence of predictability, our measure of climate risks, i.e., CAI-SA,
shows statistically significant causal impact over the quantile range of 0.30 to 0.80 of the
conditional distributions of the first- and second-moment of INFL. These findings confirm the
superiority of our index in terms of predicting movements in inflation for South Africa, though,
an advantage of the CAI-SA-Alt. is its availability at higher (daily and weekly) frequencies and
for 24 other countries, which makes it suitable for analysis of international financial market
data (Steenkamp et al., forthcoming). It must be emphasized that while these additional
analyses have been reported only for INFL, they produced qualitatively similar findings with
INFLF, which in turn are available upon request from the authors.

10 As part of the additional analyses, we recovered the conditional estimate of volatility of inflation by applying
the Generalized Autoregressive Conditional Heteroskedasticity (GARCH(1,1)) on INFL. Then, in the bivariate
set-up of the nonparametric causality-in-quantiles test involving the GARCH-based volatility of INFL as the
dependent variable and CAI-SA as the independent variable, the test statistics, under & = 1, for = 0.10, 0.20,
0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 was found to be, 2.7821, 3.8302, 3.9709, 4.2532, 4.3575, 3.9458,
3.7350, 3.5259, and 2.4623, respectively. In other words, our metric of climate risks continue to predict the entire
conditional distribution (at the 1% level of significance, barring the upper-most quantile) of an alternative
conditional measure of inflation uncertainty, instead of squared rates of inflation.

! The respective correlation coefficients (p-value) are: 0.9508 (0.0000) and 0.1254 (0.0482).

12 The data is available at: https://sites.google.com/view/internationalclimatenews/download?authuser=0.
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Reverting to our examination of the predictability of the first- and second-moment of INFL
and INFLF due to CAI-SA through a multivariate k-th order nonparametric causality-in-
quantiles set-up. As highlighted in the earlier Granger causality-in-quantile test, the use of
asymptotic normal approximations indicate that this set-up can be unreliable in finite samples.
Li and Wang (1998) and Hsiao et al. (2007) determine that slow convergence and nominal
critical values produce size distortions, underestimating rejection probabilities even in larger
samples. Therefore, we compare the results from a bootstrapped version of the implemented
test with the corresponding non-bootstrapped test, to check for the robustness of our findings.
The 5% quantile-specific bootstrapped critical values have been presented in Table 6, revealing
a continuation of a u-shaped pattern observed in the non-bootstrapped version. Given these
bootstrapped critical values, when we compare the standard normal test statistics reported in
Table 5 with the entries in Table 6, we observe that CAI-SA continues to predict the entire
conditional distribution of INFL, but causal influence for INFLF is no longer observed at 8 =
0.40 and 0.50. When we look at INFL? and INFLF?, predictability due to CAI-SA is again lost
at = 0.40 and 0.50 for the former and at 8 = 0.50 for the latter at the 5% level of significance.
Among the above cases of non-causality, only for 6 = 0.40 of INFL?, we were able to obtain
evidence of prediction at the 10% level, given the corresponding bootstrapped critical value of
2.3840.3 In general, our findings derived from the non-bootstrapped version of the tests of
predictability, continue to be robust particularly at the tails, with some exceptions around the
conditional median.
[INSERT TABLE 6]

Although a robust predictive inference is obtained from the non-bootstrapped multivariate k-th
order nonparametric causality-in-quantiles test, it is also important to estimate the direction of
the effect of CAI-SA on the first- and second-moment of INFL and INFLF. In doing so, we
not only can ascertain the specific channels through which physical and transition risks impact
inflation and its volatility, but also the associated increase or decrease in the variables of
interest. Within the nonparametric framework, first-order partial derivatives are usually
employed to evaluate the directions of effects. However, this results in complications due to
slow convergence rates, the dimensionality, and smoothness of the underlying conditional
expectation function. To address this, we utilize a summary statistic of the overall effect or
global curvature sign and magnitude, as opposed to the entire derivative curve. The average
derivative (AD) provides a measure of the global curvature, using the conditional pivotal
quantile through either approximation or the Belloni et al. (2019) coupling approach, which
enables the estimation of the partial ADs. In Figure 3, we plot the partial ADs depicting the
sign of the causal effect from CAI-SA on INFL and INFLF, and their respective volatilities,
along with 95% confidence bands. The effect of climate risks on the two inflation rates and
their uncertainties are consistently positive over the corresponding conditional distributions.
More importantly, the positive effects are all statistically significant, with the exception of the
median volatility of INFL. This suggests the dominance of the aggregate supply route and
“greenflation” (possibly coupled with climate policy uncertainties) associated with physical
and transition risks respectively. Ultimately, the positive association of risk spillovers between
disaster events and inflation, validates the underlying theory of inattention in this context.

[INSERT FIGURE 4]

13 The quantile-specific 10% bootstrapped critical values are available upon request from the authors.
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5. Conclusion

This paper attempted to analyze the predictive impact of climate risks on inflation and inflation
uncertainty (volatility) in South Africa, through a multivariate nonparametric k-th-order
causality-in-quantiles test. In this regard, we first obtained a Google Trends search-based
Climate Attention Index for South Africa (CAI-SA), involving both local and global terms
relating with physical and transition risks, from January 2004 to September 2024, at monthly
frequency. Next, using the CAI-SA, we find that while the linear Granger causality tests failed
to show evidence of predicting overall or food and non-alcoholic beverages inflation rates, due
to model misspecifications from nonlinearity and structural breaks. The multivariate
nonparametric framework displayed statistically significant predictability over the entire
conditional distribution of both inflation rates, as well as for their respective volatilities (i.e.,
squared values). The strongest predictive impact was observed at the tails of the conditional
distributions of the first and second-moment of the two inflation rates, confirming the nature
of the risks from extreme climate-related events. Our findings, in general, are robust to an
alternative definition of conditional inflation volatility, the exclusion of the control variables,
additional methods of construction of the CAI, and a bootstrapped version of the test to account
for size distortion and low power issues of the asymptotic approximation. Furthermore,
analyses involving signs of the causal impact reveal significant positive association between
the CAI-SA and the inflation rates and their volatilities, confirming climate risks are
inflationary in South Africa, and also have spillover impacts on to its uncertainties.

From a policy perspective, our results imply that the SARB, with its primary mandate of price
stability, must be ready to undertake contractionary monetary policies in the wake of
heightened climate risks to ensure that inflation remains within its target range. At the same
time, with inflation uncertainty also increasing, which is known, based on existing studies, to
fuel inflation further in South Africa, the climate-impact of inflation is likely to be persistent,
which would also prolong the size and time-length of the monetary policy interventions. With
climate risks shown to increase the level and fluctuation of inflation associated with food and
non-alcoholic beverages, the importance of “correct” monetary policy decisions becomes of
paramount importance to ensure minimal impact on the vulnerable poorer segment of the
population. But one must realize, the associated likelihood of reduced economic activity (and
heightened uncertainty): both directly from climate risks'# and tightening of interest rates,
might require fiscal stimulus from the Treasury to revive output growth in the medium- to long-
run.

Although the results of our analysis proved robust, it remains uncertain whether they provide
out-of-sample forecasting gains. As such, extending our analysis into a forecasting exercise
through Bonaccolto et al. (2018) predictive modelling framework provides potential avenues
for future research.

14 The sign analyses revealed a negative effect on MPG and increased volatility from the CAI-SA. Complete
details of these results are available upon request from the authors.
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FIGURES and TABLES:

Figure 1: Data Plot of the Macroeconomic Variables
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Note: INFL: Overall CPI-based year-on-year inflation rate; INFLF: Food and non-alcoholic beverages CPI-based
year-on-year inflation rate; MPG: Year-on-year growth rate of manufacturing production index, and; STR: 3-
month Treasury bill rate.
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Table 1: Climate Change Vocabulary (CCV) List for CAI-SA

Category

Keywords

Physical Risks

WRNAN R WD =

10.
11.
12.
13.
14.
15.
16.
17.

Climate

Climate change
Climate risk

CO,

CO; emission
Carbon dioxide
Carbon emission
Carbon emissions
Climate Adaptation
Climate Resilience
Climate vulnerability
Ecosystem
Emissions
Environment
Global warming
Greenhouse gas
Warming

Transition Risks

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

Adaptive Capacity

Biological energy

Biomass energy

Carbon Budget

Carbon capture

Carbon market

Carbon sequestration

Carbon Sink

Carbon tax

Carbon Tax Act

Clean energy

Climate mitigation

COP

Disaster Management Act
Emissions profile

Emissions trajectory

Environmental Management Act
Green energy

Greenhouse gas emissions inventory
Hydropower

IPCC

Just energy transition

Just transition

Kyoto Protocol

National Climate Change Response White Paper
Nationally Determined Contribution
Nuclear power

Paris Agreement

Presidential Climate Commission
Provincial Forum on Climate Change
Renewable energy

Sectoral emissions targets

Solar power

Sustainable development

UNFCCC

Wind energy

Note: The CCVs in italics correspond to the local SVI terms.
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Figure 2: Word Cloud of Climate Change Vocabulary (CCV)
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Figure 3: Climate Attention Index-South Africa (CAI-SA)
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Table 2: Geographic Specification of Climate-Related Events

Geographic specificity of Event Date of Event
event
Global Paris Agreement adopted at COP 21 December 2015
Paris Agreement officially enforced November 2016
US withdraws from Paris Agreement June 2017
US Rejoins Paris Agreement January 2021
Local SA releases National Climate Change | September 2004
Response Strategy '’
SA introduces National Renewable | March 2009
Energy Feed-In Tariff (REFIT)'¢
SA releases updates Integrated Resource | November 2013
Plan for electricity!’
SA passes Carbon Tax Act'® June, 2019
SA introduces Climate Change Bill'° February, 2022
Transnational SA hosts COP17 Conference in Durban | December 2011
SA  Just Energy  Transition | November 2021
Investment Plan concluded at COP26
Table 3: Summary Statistics
Statistic INFL INFLF MPG STR CAI-SA
Mean 5.0319 6.6585 0.1747 6.7521 -0.0143
Median 5.1251 5.9500 1.1811 6.9400 0.0108
Maximum 11.3118 17.6400 69.1066 11.4200 6.0833
Minimum -1.9993 0.4000 -76.7255 2.9800 -5.8180
Std. Dev. 2.2524 4.0128 9.0426 16914 | 2.1664
Skewness -0.3431 0.6951 -1.2526 0.3449 -0.2961
Kurtosis 4.6848 2.8042 38.0237 3.3248 | 3.5334
Jarque-Bera 34.3359™" | 20.4480™" | 12791.7000"" | 6.0300™ | 6.5895™
ADF -3.1534™ -3.2513* -4.3533* -3.3154™ | -3.0055™
Observations 249 (January 2004-September 2024)

Note: INFL: Overall CPI-based year-on-year inflation rate; INFLF: Food and non-alcoholic beverages CPI-based
year-on-year inflation rate; MPG: Year-on-year growth rate of manufacturing production index; STR: 3-month
Treasury bill rate, and; CAI-SA: Google Trends-based Climate Attention Index of South Africa. Std. Dev. stands
for standard deviation; the null hypotheses of the Jarque-Bera and the Augmented Dickey-Fuller (ADF) tests
correspond to normality and unit root, respectively; “** and ** indicate rejection of the null hypothesis at the 1%
and 5% levels of significance, respectively.

15 See: https://cer.org.za/wp-content/uploads/2014/05/sem _sup3_south africa.pdf

16 See: https://www.gov.za/documents/notices/national-energy-regulator-south-africa-south-africa-renewable-
energy-feed-tariff

17 See: https://www.gov.za/news/media-statements/media-statement-draft-irp-report-10-dec-2013

18 See: https://www.gov.za/documents/acts/carbon-tax-act-15-2019-english-afrikaans-23-may-2019

19 See: https://www.gov.za/sites/default/files/gcis _document/202203/b9-2022.pdf
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Table 4: Brock et al. (1996) BDS Test of Non-Linearity

Dependent Variable m=2 m=3 m=4 m=5 m=6
INFL 3.1566™" | 2.8612™" | 2.7668""" | 2.4764™" | 2.0402"
INFLF 5.8035™" | 6.0633™ | 5.9159"" | 6.0598""" | 6.2894™"

Note: See Notes to Table 1. Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals
across various dimensions (m), with the test applied to the residuals recovered from the equation of INFL or
INFLF with p = 1 lag each of INFL or INFLF and CAI-SA; ** and ™ indicate rejection of the null hypothesis at
the 1% and 5% levels of significance, respectively.

Table 5: Multivariate kth-Order Nonparametric Causality-in-Quantiles Test Results

Dependent Variable

Quantile INFL INFLF INFL? INFLF?
0.10 34.7424™" | 41.6213™" | 34.7627" | 36.7164™"
0.20 14.5719™" | 18.2200™" | 14.3277™" | 15.6247™"
0.30 6.5798"" 8.7033™" 6.2604™" | 7.1454™"
0.40 2.9987" 4.0590"*" 2.6412"° | 3.1882""
0.50 2.0926™ 2.2330" 1.7003" 1.9266"
0.60 3.5024™ 2.7046™" 3.0600"" | 2.9478""
0.70 7.6881"" 5.7702"" 7.1565™" | 6.6498""
0.80 16.5889™" | 13.0384™" | 15.8699™" | 14.8397™"
0.90 38.7639™" | 31.7822™" | 37.5057"" | 35.5840™"

Note: See Notes to Table 1. ™", ™ and " indicate rejection of the null hypothesis of no Granger causality at the
1%, 5% and 10% level of significance respectively (given the corresponding critical values of 2.575, 1.96 and
1.645 for the standard normal test statistic) from CAI-SA to INFL, INFLF, INFL?, or INFLF? for a particular
quantile, with INFL? or INFLF? capturing volatility.

Table 6: Multivariate Bootstrapped kth-Order Nonparametric Causality-in-Quantiles
Test Results

Dependent Variable
Quantile INFL INFLF INFL? INFLF?
0.10 19.8296 14.8764 15.7985 19.4243
0.20 5.8213 10.6425 6.9261 6.3515
0.30 4.0858 4.1673 3.6036 3.6927
0.40 2.6850 3.1277 2.9149 2.4769
0.50 1.9489 2.9296 2.1961 2.3574
0.60 2.2180 3.6806 3.0111 1.9699
0.70 3.0858 4.9220 4.8311 3.0279
0.80 8.3895 6.1597 7.8360 7.9025
0.90 17.7284 13.1330 17.6184 18.7596

Note: See Notes to Table 1. The entries correspond to the quantile-specific 5% bootstrapped critical values for
the null hypothesis of no Granger causality from CAI-SA to INFL, INFLF, INFL?, or INFLF? for a particular
quantile, with INFL? or INFLF? capturing volatility.
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Figure 4: Average Derivative Estimates
(a). CAI-SA on INFL
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(b). CAI-SA on INFLF
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(c). CAI-SA on INFL?
100

80
60

40

LB AD UB

21



(d). CAI-SA on INFLF?
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Note: See Notes to Figures 1 and 2. The figures plot the average derivative (AD) estimates of the sign of the effect
of CAI-SA on INFL, INFLF, INFL?, or INFLF? in the k-th-order multivariate nonparametric causality-in-quantiles
models for a particular quantile (horizontal axis), with INFL? or INFLF? capturing volatility, and LB and UB
corresponding to 95% lower and upper bound, respectively.
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APPENDIXES:

Appendix A. Additional Results

Table Al: Bivariate k-th-Order Nonparametric Causality-in-Quantiles Test Results

Dependent Variable

Quantile INFL INFL?
0.10 32.3095™" | 34.7921™*
0.20 13.9959"" | 15.0879™"
0.30 6.7598"™" 7.1989™"
0.40 3.5077"" 3.4875™"
0.50 2.6459™ 2.2230™
0.60 3.8347™ 2.9952""
0.70 7.4724™ 6.1273™"
0.80 15.2745™" | 13.1795™"
0.90 34.8405™" | 31.1432™"

Note: See Notes to Table 1. "™ and ™ indicate rejection of the null hypothesis of no Granger causality at the 1%
and 5% level of significance respectively (given the corresponding critical values of 2.575 and 1.96 for the
standard normal test statistic) from CAI-SA to INFL or INFL? for a particular quantile, with INFL? capturing

volatility.

Table A2: Multivariate k-th-Order Nonparametric Causality-in-Quantiles Test Results

Dependent Variable

Quantile MPG MPG?
0.10 22.6136™" | 21.1749™
0.20 10.4493"" | 9.8701""
0.30 5.7339"*" 5.5687"""
0.40 3.7843" 3.9089"*"
0.50 3.5690""" 3.9483""
0.60 4.9155™ 5.5629"""
0.70 8.2059""" 9.1876™""
0.80 14.9004™" | 16.3882™"
0.90 31.4347"" | 33.9723™"

Note: See Notes to Table 1. " indicate rejection of the null hypothesis of no Granger causality at the 1% level of
significance (given the corresponding critical value of 2.575 for the standard normal test statistic) from CAI-SA

to MPG or MPG? for a particular quantile, with MPG? capturing volatility.
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Table A3: Multivariate £kth-Order Nonparametric Causality-in-Quantiles Test Results

Dependent Variable
INFL | INFL? INFL | INFL2
Quantile | Predictor: CAI-SA-Avg. | Predictor: CAI-SA-Wtd.-Avg.

0.10 21.9636™" | 18.0320™" | 36.4578"" 37.9382"
0.20 10.8677" | 8.6405™" | 14.9482™ 15.7107"
0.30 6.7081"" 5.1811"" 6.5430""" 6.9302""
0.40 4.9626™" | 3.8490™" | 2.8346™" 2.9448"
0.50 4.6574" | 3.8419™ 1.9524" 1.8169"
0.60 5.6085""" 5.0464"" 3.5072"*" 3.1211°
0.70 8.1073™" | 7.8053"" | 7.9815™ 7.3018"
0.80 13.3360"" | 13.3844™" | 17.4168™" 16.3257""
0.90 26.5857"" | 27.4106™" | 40.7949™" 38.8999""

Note: See Notes to Table 1. ™ and " indicate rejection of the null hypothesis of no Granger causality at the 1%
and 10% level of significance respectively (given the corresponding critical values of 2.575 and 1.645 for the
standard normal test statistic) from the simple average-based CAI (CAI-SA-Avg.) or the weighted average-based
CAI (CAI-SA-Wtd.-Avg.) to INFL or INFL? for a particular quantile, with INFL? capturing volatility.

Table A4: Bivariate kth-Order Nonparametric Causality-in-Quantiles Test Results

Dependent Variable

INFL | INFL2 INFL | INFL?

Quantile | Predictor: CAI-SA-Alt. Predictor: CAI-SA
0.10 0.3026 1.1430 0.3026 1.3615
0.20 0.4775 1.4602 0.5943 1.6105
0.30 0.9757 0.8763 2.1080™ 2.1080™
0.40 0.7733 0.7180 2.4460™ 2.4460™
0.50 0.4733 0.4733 2.8605™" | 2.6559"*"
0.60 0.5340 0.3700 2.2964™ 2.2964™
0.70 0.3626 0.3265 2.0044™ 2.0044™
0.80 0.6600 1.9407" 0.6172 1.9598"
0.90 0.3984 1.5649 0.2964 1.5649

Note: Sece Notes to Table 1.

EETIET

, ™ and * indicate rejection of the null hypothesis of no Granger causality at the
1%, 5% and 10% level of significance respectively (given the corresponding critical values of 2.575, 1.96 and
1.645 for the standard normal test statistic) from the Twitter-based CAI (CAI-SA-AIlt.) or the CAI-SA to INFL or
INFL? for a particular quantile, with INFL? capturing volatility.
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Appendix B. Technical Details of a Residual-Based Bootstrap Procedure for the Quantile
Causality Test

We consider a single quantile level 8 for simplicity, though the procedure may be applied
separately for any 8 € (0,1) of interest (e.g. to test for causality at multiple quantiles).

Next, we describe the residual-based bootstrap algorithm for the causality-in-quantiles test
statistic, following the approach outlined by Hsiao and Li (2001). The objective is to simulate
the distribution of J under the null hypothesis (u, does not affect v,’s 6-quantile) and to use
the simulated distribution to calibrate the test. The steps involved are as follows:

1.

2.

3.

Estimate the 0-quantile model under Hy: Based on the observed data {u, Z,_1}—,
estimate the conditional quantile function Qg (u; | Z;_1\V;-1) (excluding v;). This may
be accomplished by local linear quantile regression. More precisely, let X; ; =
Z¢_1\V;_1 be the p-lag vector excluding the v variables. For every point x in the support
of X;_1, the local linear estimator (§, (6, x), g, (6,x))" is found by solving

: T Xe-1—v
min " py (i = o = G (Xes =)L (),

do,.9x
t=p+1

where pg(e) =[0,1{e = 0} — (1 — 0)1{e < 0}]e is the check loss function of
quantile regression. This optimization delivers §,(8, x) (the fitted 6-quantile at X;_; =
x) and G, (0, x) (a vector of slopes) for each local neighborhood about x. Specifically,
for each observation t, the fitted conditional quantile for u, is Qg(Z—1\V—1) =
Go(6,X;_1). Based on this fitted function, calculate the residuals fort =p +1, ..., T
as

€:(0) = u, — [Q\O,t(e) + ‘?x,t’(Q)Xt—l]'

where we use the notation §y.(6) = §o(0,X;—1) and §,.(0) = §,(6,X;-,) for
convenience.

Resample centered residuals: As the é,(6) from above may not have zero mean (they
are quantile residuals, and not ordinary least squares residuals), we first recentre them

to impose the null condition of zero average effect. Let € = ﬁZ:?:pH €; () denote

the sample mean of the residuals. Define the centered residuals é; = é,(0) — €. We
then take a bootstrap sample {é; (6)}?=p+1 of T —p values by sampling with
replacement from the centered residuals {€;}. This provides a resampled error series
€;(0) that replicates the distribution of the quantile regression errors under H,. (We
keep the same sample size T in each bootstrap replication.)

Recursive generation of a bootstrap series {u;}: Based on the resampled errors from
Step 2, we generate a synthetic time series {u;}’_; under the null hypothesis. The
bootstrap series is generated recursively according to the estimated quantile model. We
begin by setting the first p values uj, ..., u, to the real observed values of u (this fixes
the simulation at a realistic starting point). Then, for eacht =p + 1,p + 2,...,T, we
calculate

Uur = Go,e(0) + Gy (6)X;_1 + €:(6),
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where X{_; = Z{_,\V{_; is the bootstrap counterpart of X;_;. Practically, this implies
that X;_, contains the lagged values of the new series {u*}7_; (and any other control
variables w; if any), but not v as we are simulating under H,.

4. Calculate the bootstrap test statistic: Once we have generated a bootstrap sample in
Step 3, we compute its quantile-causality test statistic J; in the same manner as the
original f;. That is, we calculate equation (6) on the bootstrap sample {¢;(8), Z;_,}.

5. Repeat and invert the bootstrap distribution: We replicate Steps 2—4 a total of B times
(with independent resampling in each replication) to create B bootstrap statistics
{J5p}8-1. These values comprise an empirical approximation to the sampling
distribution of J under H,. Finally, we can extract a bootstrap p-value or critical values
from this distribution. For instance, the a-percent critical value, ¢;_,, is simply the
(1 — a)-quantile of the empirically generated bootstrap statistics, which is obtained as:

B
1 A
¢, = inf{a: Ez 105, <a)>1-a).
b=1

As the bootstrap replicates the null, it provides a better reflection of the finite-sample variability
of J; than the large-sample theory. Specifically, studies have shown that the bootstrap test
achieves empirical size much closer to nominal and has greater power than the asymptotic test
in finite samples. By not relying on the slow asymptotic approximations, the bootstrap
approach enhances the reliability of the test across quantiles in finite samples, as first shown
by Li and Wang (1998) and Hsiao and Li (2001). The aforementioned bootstrap algorithm is
implemented for a given quantile level 8. In practice, one can implement the same algorithm
for each quantile of interest (e.g. 8 = 0.1,0.5,0.9, etc.) separately, obtaining potentially
different J; statistics and bootstrap critical values at each #. We fix B = 399 in the empirical
application, since computational cost is prohibitive for larger values of B.
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