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Abstract

Climate-related risks have become a growing source of market disruption, with po-
tential behavioral implications for investor decision-making. This study investigates
whether and how climate risks influence risk aversion among market participants. Us-
ing a quantilogram approach, we examine the predictive power of different climate risk
measures, covering both physical and transition risks, for a behavioral proxy of investor
risk aversion. The analysis yields three key findings. First, climate risks significantly
increase risk aversion, particularly in the lower and median quantiles of climate risk and
the upper quantiles of risk aversion. Second, physical risks exert a stronger influence
than transition risks, with global warming and U.S. climate-related policy uncertainty
emerging as the most impactful within their respective categories. Third, the observed
effects remain robust after controlling for other sources of macroeconomic and finan-
cial uncertainty. These findings suggest that climate risks can dampen investor risk
appetite, a result with important implications for financial market stability and the
design of disaster-related financial policy interventions.

Keywords: Climate-related risks, Quantilogram frameworks, Quantiles, Predictability,
Risk aversion.

JEL codes: C21, C22, G32, G41, Q54.



1 Introduction

Risk-taking behavior is fundamental to the decision-making processes of various economic
agents, including individuals and firms, who engage in such behavior with the expectation
of earning returns greater than their initial stakes. In other words, the propensity to
take financial risks is critical, as it is often a prerequisite for achieving higher returns
(Fama and MacBeth, 1973; Campbell, 1996; Wang and Yang, 2013). Ideally, a range of
factors is known to shape these risk preferences, including wealth (Cameron and Shah,
2015; Chao et al., 2017; Pool et al., 2019), background (Poletti-Hughes and Williams, 2019;
Llanos-Contreras et al., 2021), experience (Shupp et al., 2017; Arslan et al., 2020; Guo
et al., 2023), compensation mechanisms in the event of loss (Carpenter, 2000; Ross, 2004;
Chaigneau, 2015), and governance (Llanos-Contreras et al., 2021).

Nevertheless, climate risk, among other sources of uncertainty, has increasingly been
linked to the intensification of natural disasters, and consequently amplifying market fears
in recent times (Johnson, 2010; Anderson and Robinson, 2019; Xiao and Liu, 2023). These
fears often stem from various mitigation strategies, which include not only policy interven-
tions but also regulatory requirements compelling firms to adopt safer and more environ-
mentally sustainable business practices. As a result, climate-related concerns may influence
investor commitment and confidence as well as alter the consumer consumption behavior
(Daumas, 2021; Horn and Oehler, 2025; Liu and Yan, 2025), thereby exposing these agents
to additional risks and shifting their risk preferences toward greater aversion.

Understanding how climate change influences risk appetite is crucial for assessing whether
climate-related risks lead economic agents to shift away from risky assets toward safer alter-
natives. Examining the extent to which various climate risk measures affect this behavior
provides insights into changing investor preferences. The implications of such shifts are
significant for financial markets and the broader economy, as established in prior research.
Elevated risk aversion, for example, may deter investors from seizing new opportunities or

supporting innovative technologies. This behavioral shift can, in turn, reduce the effective-



ness of financial assistance packages following climate disasters, impede economic recovery,
and suppress long-term growth (Bourdeau-Brien and Kryzanowski, 2020).

A deeper understanding of shifts in risk preferences requires a theoretical foundation that
explains how natural disasters, particularly climate shocks, influence economic behavior.
These events are increasingly viewed as rare disaster risks because of their potential to
severely disrupt consumption, investment, production, and policy dynamics (Demirer et al.,
2018). Such disruptions can alter the core drivers of investment behavior and heighten
uncertainty, thereby diminishing the willingness of investors and managers to take risks
(Bate, 2022).

This mechanism is well outlined in the real options theory advanced by Bernanke (1983),
which posits that uncertainty (i.e., about climate-related risks) can heavily influence invest-
ment and consumption behavior, especially due to the substantial and often irreversible
costs associated with sub-optimal decisions (see also, Salisu et al., 2023). Similarly, it is
suggested that expectations about natural disasters influence individual behavior by al-
tering perceptions of baseline risk. In essence, the occurrence of such events can serve as
informational shocks that prompt individuals to revise their risk assessments, as those di-
rectly affected often find it difficult not to be impacted psychologically and are compelled
to reassess their strategies (Cameron and Shah, 2015). Moreover, theoretical insights into
utility maximization under background risk show that individuals tend to become more
risk-averse when exposed to additional sources of uncertainty. As established by Gollier
and Pratt (1996), the presence of background risk leads a utility-maximizing agent to pre-
fer safer choices, a property known as risk vulnerability. This implies a greater demand
for insurance or safer assets when individuals are confronted with external uncertainties.
Thus, the channels identified by Bernanke (1983) and Gollier and Pratt (1996) provide a
compelling theoretical rationale for why climate-related risks may increase risk aversion.
Based on this premise, we hypothesize a positive relationship between climate-related risk

and individual or investor risk aversion.



While several studies have sought to examine the relationship between natural disasters
and risk preferences, their findings are often mixed, perhaps due to the use of survey-based
measures of risk preferences, which tend to be subjective (see, Cameron and Shah, 2015;
Shupp et al., 2017; Bourdeau-Brien and Kryzanowski, 2020; Hoang and Le, 2021; Ingwersen
et al., 2023; Guo et al., 2023). To address this drawback, we contribute to the literature
on disasters and shifting risk preferences by employing standard market-based measures of
time-varying Risk Aversion index as developed by Bekaert et al. (2022), along with climate
risk indicators from Faccini et al. (2023). Particularly, our contributions are in threefold
as follows: (i) we go beyond the physical risks associated with natural disasters, commonly
emphasized in the existing literature, by also considering transition risks stemming from
policy strategies to address climate concerns, (ii) we further account for additional sources
of risks, as outlined in the succeeding section, and conduct our empirical analysis within
a quantilogram framework, and (iii) we utilize the cross-quantilogram, which allows us
to study causal effects across different quantiles of Risk Aversion in response to varying
sizes (and signs) of climate risks. Given the hypothesis that both physical and transition
climate risks increase Risk Awversion, it is essential to test not only the causal direction
but also the sign and magnitude of these effects. This frameworks is preferable over the
causality-in-quantiles technique (see, for example, Jeong et al., 2012, in this regard), as it
facilitates sign analysis and accommodates additional sources of risks as controls, via the
partial cross-quantilogram (see, Han et al., 2016), and hence, can go beyond a bivariate
analysis.

In essence, the cross-quantilogram approach enables us to explore directional relation-
ships and nonlinear dependencies between climate risk and Risk Aversion across different
points in their joint distributions. This is particularly valuable given the asymmetric and
potentially tail-heavy nature of climate shocks, which may exert disproportionate influence
on risk preferences in extreme situations. Unlike traditional mean- or median-based ap-

proaches common in studies that do not rely on survey data (e.g., Bourdeau-Brien and



Kryzanowski, 2020), the cross-quantilogram captures these heterogeneous effects more pre-
cisely, making it well-suited to our investigation.

Our empirical results reveal that climate risk has a generally positive and statistically
significant effect on Risk Aversion, with these effects being more pronounced in the lower
and median quantiles of climate risk, and in the upper quantiles of Risk Aversion, across
multiple lags. Furthermore, given the number of statistically significant cross-quantilogram
combinations across various lags, the physical risk component appears to have a greater
impact than the transition risk component, with global warming and U.S. climate-related
policy uncertainty contributing more in the respective categories. Importantly, the results
remain robust even after controlling for other sources of risk.

The remainder of the paper is structured as follows. Section 2 introduces and describes
the employed dataset. Section 3 outlines the empirical methodology while Section 4 inter-

prets and discusses the obtained empirical results. Finally, Section 5 concludes the study.

2 Data

The datasets for the examination of the nexus between climate risk and risk aversion in-
clude the time-varying Risk Aversion index by Bekaert et al. (2022)!, as well as the physical
(global warming [GW| and natural disaster [ND|) and transition (climate-related interna-
tional summits [IS] and U.S. climate-related policy uncertainty [USCP]) climate risk mea-
sures developed by Faccini et al. (2023)%. The Risk Aversion index is constructed based on
a utility-derived measure of risk aversion, capturing the representative agent’s time-varying
relative risk aversion. It incorporates six financial indicators: detrended earnings yield,
corporate return spread, term spread (10-year minus 3-month), realized variance of equity
returns, realized variance of corporate bond returns, and equity risk-neutral variance. These

variables are combined using the Generalized Method of Moments (GMM), which estimates

'Retrieved from https://www.nancyxu.net/risk-aversion-index
2Retrieved from https://docs.google.com/spreadsheets/d/14ewbqlIMgz0EJtog76Kti1fB39-P-pik/
edit?gid=614709312#gid=


https://www.nancyxu.net/risk-aversion-index
https://docs.google.com/spreadsheets/d/14ewbq1JMgz0EJtog76Kti1fB39-P-pjk/edit?gid=614709312##gid=
https://docs.google.com/spreadsheets/d/14ewbq1JMgz0EJtog76Kti1fB39-P-pjk/edit?gid=614709312##gid=

their optimal linear combination under asset moment conditions aligned with a dynamic
no-arbitrage asset pricing framework. The conditional variance linked to macroeconomic
uncertainty is then projected onto these financial variables to generate the Risk Aversion
index. Due to the limited availability of some macroeconomic uncertainty measures, such as
industrial production at daily frequencies (available only monthly), the risk aversion index
is produced at both daily and monthly frequencies. However, this study relies on the daily
version of the index.

On the other hand, the development of physical and transition risk indices utilizes the
Latent Dirichlet Allocation (LDA) method to identify and differentiate climate-related risk
factors. This approach involves extracting textual data related to four climate-focused
themes: natural disasters, global warming, U.S. climate policy, and international climate-
change summits from over thirty-four thousand articles published in Thomson Reuters News
Archive between January 2000 and December 2018. These topics are grouped into two cat-
egories: physical risks (comprising climate-related natural disasters and global warming)
and transition risks (including U.S. climate-related policy and climate-related international
summits). The textual data includes terms like "weather," "drought," "flood," and "storm"

nn

for natural disasters; "temperature," "heat," "greenhouse," "emission," and "Celsius" for

nmn

global warming; "Kyoto," "protocol," "summit," and "Copenhagen" for international sum-

nmn !

mits; and "Clinton," "environmental," "congress," and "campaign" for U.S. climate policy.

In addition, the information content of many other uncertainty indicators, including eq-
uity market volatility index (EMV-ID) (Baker et al., 2020)?, geopolitical risk index (GPR)
(Caldara and Iacoviello, 2022)*, supply bottleneck index (SBI)® (Burriel et al., 2024), and

trade policy uncertainty (TPU)°, is obtained via the principal component analysis frame-

3Retrieved from https://www.policyuncertainty.com/infectious_EMV.html

4Retrieved from https://www.matteoiacoviello.com/gpr.htm

Shttps://www.bde.es/wbe/en/areas-actuacion/analisis-e-investigacion/recursos/
indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html. To have the
aggregate from the seven economies available, we calculate the average based on the available data for each
period. For instance, if the index is available for only two countries during a given period, the average is
computed across those two countries rather than the entire seven.

SRetrieved from https://policyuncertainty.com/trade_uncertainty.html


https://www.policyuncertainty.com/infectious_EMV.html
https://www.matteoiacoviello.com/gpr.htm
https://www.bde.es/wbe/en/areas-actuacion/analisis-e-investigacion/recursos/indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html
https://www.bde.es/wbe/en/areas-actuacion/analisis-e-investigacion/recursos/indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html
https://policyuncertainty.com/trade_uncertainty.html

work, and this is thereafter incorporated as an additional control variable in our formal
analysis. The inclusion of these variables as controls is motivated by their roles in captur-
ing various dimensions of disaster-related risks. Each of these indices reflects different types
of uncertainty or shocks that can significantly influence economic behavior and investor sen-
timent. For instance, the EMV-ID captures broad financial market uncertainty, often linked
to macroeconomic shocks; the GPR index measures geopolitical tensions that may escalate
into global crises; the SBI captures disruptions in supply chains, which can have widespread
economic implications; and the TPU reflects uncertainty surrounding trade policy, which
can affect global trade flows and investment decisions. Given that these variables represent
systemic risks or potential disaster channels, it is important to control for them to isolate
the specific effects of the variables of interest in our analysis.

A comparison of the statistical properties of our risk aversion measures, as presented in
Table 1, shows that the measure proposed by Bekaert et al. (2022) is higher, on average,
than the one derived from the other uncertainty measures via PCA. For the climate risk
measures, the transition risk measures - 0.613 for IS and 0.712 for USCP - are consistently

higher than the physical risk measures, which stand at 0.566 for GW and 0.584 for ND.
[INSERT TABLE 1 AROUND HERE.]

All the series, including the Risk Aversion and climate risk measure, are positively skewed,
while the kurtosis statistics indicate leptokurtic distributions (as the kurtosis values are in
excess of 3), suggesting heavy tails in the data. This departure from normality is further
confirmed by the rejection of the normality assumption, as indicated by the statistical
significance of the Jarque-Bera test results.

In addition to these statistical features, we examine the potential co-movements between
our measure of Risk Aversion and both physical and transition climate risks. We observe
a positive co-movement between each of the climate risk proxies and Risk Aversion, par-
ticularly during the 2008/2009 and 2019/2020 periods, suggesting that climate risks may

increase risk intolerance among investors and other economic agents (see Figures 1 and 2).



Nonetheless, this observation alone is insufficient for reliable conclusions. Hence, additional

empirical analyses are conducted for validity.
[INSERT FIGURES 1 AND 2 AROUND HERE|

Given the distributional property of our series and to justify our choice of empirical tech-
nique, we conducted several pre-estimation tests, including the Granger causality test,
stability test, and the BDS test.

The Granger causality test (Granger, 1969), which examines the null hypothesis that
climate risk does not Granger-cause Risk Aversion, is presented in Table 2. The results show
that the null hypothesis of no causality between climate risk and Risk Aversion, particularly
for the physical risk measures, cannot be rejected. This indicates that only the transition

risk Granger-causes Risk Aversion, albeit weakly.
[INSERT TABLE 2 AROUND HERE.]|

Furthermore, we test for possible misspecification in the model. This is achieved by re-
covering the residual of the associated risk aversion—climate risk model, and performing
a linearity test using the BDS test. The results, where we find overarching evidence of
non-linearity, given the rejection of the null hypothesis that the model is independently

and identically distributed, are presented in Table 3.
[INSERT TABLE 3 AROUND HERE.]

Similarly, we test whether the non-causality above could be traced to plausible structural
breaks. Therefore, we use Bai and Perron (2003) global test for multiple structural breaks
(UDMax statistic) for this purpose. The results indicate the presence of structural break(s)
or parameter instability at multiple dates (most notably during the global financial crisis of
2008, the oil price crash of 2016, and the declaration of COVID-19 as a global pandemic in
March 2020) as well as across several climate risk variables (see Table 4). This instability

may explain why climate risk does not strongly Granger-cause risk aversion.



[INSERT TABLE 4 AROUND HERE.]|

In addition, we present the quantile causality results (see, Jeong et al., 2012) for both physi-
cal and transition climate-related risks using the time-varying Risk Aversion measure’. The
traditional Granger causality test shows no evidence of causality. Table 5 reveals strong
evidence that climate risk generally causes changes in Risk Aversion across various quan-

tiles, suggesting that rising climate-related risks influence economic agents by increasing

their tendency to become more risk-averse.
[INSERT TABLE 5 AROUND HERE.]|

Given these pre-tests, we employ the cross-quantilogram framework to explore the relation-
ship between climate risk and Risk Aversion in the succeeding section. This framework
is suitable as it enables us to examine both the direction and magnitude of climate risk
impacts on Risk Aversion in the short- and long-run, based on multiple lag structures. In
addition, the framework allows us to control for other predictors through the use of the

cross-partial quantilogram.

3 Methodology

To investigate directional predictability and dependence between climate-related risks and
Risk Awversion across various distributional regions, we employ the cross-quantilogram
framework® introduced by Han et al. (2016). This methodology enables the identification
of quantile-specific and lag-dependent relationships that are not captured by traditional

linear correlation or Granger causality approaches.

"Beyond this measure, we also employ an alternative Risk Aversion measure representing an aggregated
index of global risk-on/risk-off (RoRo) states developed by Chari et al. (2023) (https://anushachari.
weebly.com/roro.html). This index captures variation across four broad categories: advanced economy
credit risk (RoRo CR), equity market volatility (RoRo Equity), funding conditions (RoRo Liquidity), and
currencies and gold (RoRo CurrGold). Using this measure to test for causality yields consistent results as
Risk Aversion (see Table A.1 in the appendix).

8Beyond this bivariate analysis, we account for additional variables that may influence the nexus between
climate risk and Risk Aversion. To this end, the partial cross-quantilogram framework is employed, with
the associated methodological framework and corresponding results provided in the appendix. Essentially,
the results are quantitatively similar to cross-quantilogram.


https://anushachari.weebly.com/roro.html
https://anushachari.weebly.com/roro.html

Thus, we assume {Y;}X, and {X;}L (that is, Risk Aversion and of climate risk,
respectively) denote two stationary time series. Also, for a specific quantile levels 71,75 €
(0,1), we take gy (m1) and gx(72) to denote the marginal 71- and 7e-quantiles of Y; and Xy,

respectively. we then define the quantile-hit process as:

v (1) = 1Yy < av(m)} — 7, (1)

VX (r2) = 1{X; < gx ()} — 72, (2)

where 1{-} is the indicator function. These quantile-hit processes are mean-zero and capture
deviations from the unconditional quantile expectations.

The cross-quantilogram at lag k € Z, is defined as the correlation between the lagged
quantile-hit process of Xy (i.e., climate risk measures) and the contemporaneous quantile-hit

process of Y; (i.e, the dependent variable - Risk Aversion):

O ER () 9 ()]
Pri,m2 (k) = .
VEWRT (1) E[gE (m)?]

This measure captures the directional quantile dependence from X;  to Y;. A signifi-

3)

cant nonzero value of p;, -, (k) indicates that realizations of X at lag k within the 75-quantile
region are predictive of the occurrence of values in the 7 -quantile region of Y.

In practice, the cross-quantilogram is estimated as:

Zt k+1 wt (m1) - 1/;75)(/6(72)
\/Zt k+1 @Z)t 71)? \/Zt k+1 ¢t k(TZ)

where the quantiles gy (71) and gx(72) are estimated using the empirical distribution func-

(4)

Pri ,Tz

tions of Y; and X, respectively.
To test for the absence of directional predictability across multiple lags, we use a Box-

Ljung-type statistic defined as:

p
7(—11)?7—2 = Z 1,7'2 (5)

Ne



where p denotes the maximum lag under consideration. Under the null hypothesis of no
directional predictability from climate risk (X) to Risk Aversion (Y') at the specified quan-
tiles and lags, the test statistic Q(T};?TQ follows a nonstandard distribution. Consequently,
critical values are obtained via stationary bootstrap procedures or self-normalized inference
to ensure valid size control.

This approach allows for the detection of asymmetric and nonlinear dependence struc-
tures, including tail dependence and regime-specific spillovers, which are particularly rele-

vant in financial and macroeconomic contexts.

4 Empirical Results

The cross-quantilogram, unlike the quantilogram developed by Linton and Whang (2007)?,
is employed to assess the dependence between climate risks and Risk Aversion, as well as to
evaluate the direction of predictability between these two key variables. This method is par-
ticularly appealing given its ability to capture co-movements in the tails of distributions,
making it well-suited for analyzing extreme events. Particularly, the cross-quantilogram
facilitates the examination of quantile-to-quantile associations between two distinct time
series. Another attraction to this approach lies in its capacity to accommodate a more
extensive lag structure, which contrasts with the limitations of conventional quantile re-
gression methods that typically restrict the number of lags.

This section is partitioned into two parts: Section 4.1 presents the results of the cross-
quantilogram analysis between climate risks and Risk Aversion, while Section 4.2 focuses
on the portmanteau test (Q-statistics) for evaluating their joint dynamics or significance.
To have a broader view on how uncertainty influences Risk Aversion, we also extend the
analysis by incorporating economic-wide risk indicators (as outlined in Section 2) using a
partial cross-quantilogram framework. Nonetheless, in order not to deviate from the main

focus of the impact of climate risks on Risk Awversion, these supplementary results are

9This is the univariate form of the quantilogram method, which assesses predictability across various
segments of a stationary distribution (of a variable) by analyzing the correlogram of quantile hits

10



reported in the appendix.
4.1 Cross-quantilogram between climate risk and Risk Aversion

As previously mentioned, this subsection presents the results on the predictability of climate
risks, specifically, physical risks (GW and ND) and transition risks (IS and USCP), for Risk
Awversion. We show the cross-quantilogram plots across quantiles that capture the predictive
relationship from climate risks to Risk Aversion over various lags (1-60), along with the
associated 95% bootstrapped confidence intervals. Specifically, we partition the distribution
of Risk Aversion into deciles ranging from 0.1 to 0.9, while climate risk is represented by
three key quantiles: 0.1, 0.5, and 0.9. These quantiles correspond to the lower tail (0.1-0.4
for Risk Aversion and 0.1 for climate risk), the median (0.5 for both), and the upper
tail (0.6-0.9 for Risk Aversion and 0.9 for climate risk) of their respective distributions.
These results are illustrated in Figures 3 to 6, corresponding to GW, ND, IS, and USCP,
respectively.

In Figure 3, the cross-quantilograms at the lower quantiles of Risk Aversion are generally
positive but statistically insignificant across most lags, except for a few instances at quantiles
0.3 and 0.4, particularly at the later lag (of 60) corresponding to the lower and middle tails
of GW. In contrast, we observe significantly positive relationships across multiple (or nearly
all) lags for the higher quantiles of Risk Aversion (0.6 to 0.9) and for the 0.1 and 0.5 quantiles
of GW. Notwithstanding the positive relationship at the upper quantile of GW (0.9), the
observed association is mostly not statistically significant. These findings suggest that GW
exerts a predictive influence on Risk Aversion primarily when it is at its lower and median
levels (i.e., the lower and middle quantiles). However, this predictive relationship becomes
more evident only at the upper quantiles of Risk Aversion, indicating heightened sensitivity
among investors and economic agents during periods of elevated market fear orchestrated
by climate risk. By implication, when global warming indicators are relatively low or stable,
they may still serve as early signals for rising risk aversion, particularly among those already

positioned at the higher end of the risk-averse spectrum.

11



[INSERT FIGURE 3 AROUND HERE|

Figure 4 illustrates the cross-quantilogram estimates from ND to Risk Aversion. The result
is in sharp contrast to the pattern observed for GW. The dependence is more prevalent at
the lower quantiles of Risk Aversion, particularly when paired with the lower and middle
quantiles of ND, with the positive relationship becoming more significant at longer lags
(save for the combination (0.2 and 0.5)), which shows significance across the entire lag
structure). Moreover, at the median and upper quantiles of Risk Aversion (0.5 to 0.9)
combined with the lower and middle quantiles of ND (0.1 and 0.5), the relationship also
covers the entire lag structure.

Put differently, unlike GW, ND shows significant positive dependence with the lower
and upper quantiles of Risk Aversion. Notably, most quantile combinations between ND
and Risk Aversion are statistically significant at the 5% level, except for combinations
involving the highest ND (0.9).

Overall, climate-related natural disasters appear to play a more important role in pre-
dicting the Risk Aversion tendencies of investors and other economic agents, as evidenced
by the greater number of significant cross-quantilogram combinations observed. Nonethe-
less, it is important not to overlook the mild or moderate GW signals, as these can trigger
amplified risk responses, particularly among more cautious market participants or during

already periods of elevated climate-related uncertainty.
[INSERT FIGURE 4 AROUND HERE.|

Turning to transition risk, Figure 5 reports the cross-quantilogram estimates from IS to
Risk Aversion. The results reveal no clear dependence pattern, though some quantile com-
binations exhibit statistically significant relationships, particularly at longer lags. The
significant associations primarily occur at the median quantile of Risk Aversion, while both
the lower and upper tails show limited or no dependence. This suggests a modest role of

IS in influencing risk perception under normal market conditions.

12



[INSERT FIGURE 5 AROUND HERE|

A contrasting picture emerges for USCP, as shown in Figure 6. Here, statistically significant
dependence is observed across virtually all quantile combinations at several lags. These
results underline the critical importance of USCP in shaping Risk Aversion, reflecting its
pervasive influence across the entire risk spectrum.

The stronger influence of USCP on Risk Aversion, compared to international climate-
related summits (IS), may be attributed to the uncertainty surrounding the U.S. govern-
ment’s decision to withdraw from the Paris Agreement. Investors could interpret this move
as a negative signal, especially in light of the pro-emission-reduction policies pursued by
other developed nations, and may delay investment commitments due to concerns about
potential reciprocal actions from international climate organizations and other environmen-
tally focused entities. Interestingly, IS appears to have a weaker impact on Risk Aversion,
which may reflect investors and other economic agents’ confidence in ongoing global miti-

gation efforts.
[INSERT FIGURE 6 AROUND HERE.|

When comparing the effects of physical and transition climate risks, the findings suggest
that physical risks exert a stronger influence on Risk Aversion, as indicated by a greater
number of significant cross-quantilogram combinations observed'’. This again underscores
the trust investors place in mitigation strategies aimed at managing transition-related risks,
which are easier to manage than the physical-related climate events, which tend to be
unpredictable.

Given our hypothesis of a positive relationship between climate-related risk and Risk
Awersion which is grounded in both real options theory and risk vulnerability theory, we
find support for our findings in related studies, including research on the impact of both

natural and man-made disasters on individuals’ risk preferences (e.g., Cameron and Shah,

10These results remain consistent even after accounting for other measures of risk (See Figures A.1 to
A.4 in the Appendix).
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2015; Shupp et al., 2017; Bourdeau-Brien and Kryzanowski, 2020; Hoang and Le, 2021; Guo
et al., 2023; Ingwersen et al., 2023). For instance, Shupp et al. (2017) show that individuals
affected by tornadoes became more risk-averse, with those who lost a friend or neighbor
also exhibiting increased loss aversion. Similarly, Hoang and Le (2021) provide evidence
that asset loss from natural disasters leads households to adopt more risk-averse behaviors.
Conversely, Ingwersen et al. (2023) find that individuals directly exposed to a tsunami
displayed temporarily higher risk tolerance compared to those not directly affected, as
survivors were more willing to take financial risks during the post-disaster recovery period.
This short-term shift in risk-taking behavior aligns with the findings of (Bourdeau-Brien
and Kryzanowski, 2020), who also observe a temporary increase in risk appetite following

disaster events.

4.2 Box-Ljung Q statistics between climate risk and Risk Aversion

We present the corresponding portmanteau tests, which assess the joint dynamics and
overall significance of the cross-quantilogram-based predictability results of climate risks
for Risk Aversion. These tests employ the Box-Ljung @) statistics across various lag orders
and distinct quantile combinations. As shown in Figures 7 to 10, the results confirm the
significant lag structures previously identified in the cross-quantilograms.

Specifically, Figure 7 indicates that the Box-Ljung test statistics are largely significant
for Risk Aversion, especially from the lower quantiles (around 0.4, except when paired with
GW at 0.5) through the median and upper quantiles (0.5 to 0.9), when combined with the

lower and middle quantiles of GW, and consistently across the entire lag structure.
[INSERT FIGURE 7 AROUND HERE,|

Similarly, the portmanteau test for ND and Risk Aversion mirrors what is observed in
Figure 4, with a notable distinction from GW in Figure 7. In the case of ND, there is
evidence of mixed significance across both the short and long lags (see Figure 8). For

example, at the lower quantile of ND (corresponding to the first column of Figure 8), the

14



influence of ND on Risk Aversion is significant across all quantiles of ND and throughout
the entire lag structure. In contrast, at the middle quantile of ND (corresponding to the
middle column of Figure 8), the significance is largely mixed along the short and long lags.
Nonetheless, it is only in the quantile combination ((71 = 0.1 and (72 = 0.9) we have a

significant relationship from lag 10 onwards.
[INSERT FIGURE 8 AROUND HERE.|

Furthermore, Figures 9 and 10 for the portmanteau tests of 1S and USCP also reinforce the

results of the significant relationships previously obtained in Figures 5 and 6, respectively.

[INSERT FIGURES 9 AND 10 AROUND HERE|

5 Concluding Remarks

This study examines the predictability of climate risks for Risk Aversion (Bekaert et al.,
2022), with a focus on the distinct roles played by different measures of climate risk. It also
seeks to determine whether physical or transition climate risks have a greater impact on
Risk Aversion. While considerable efforts have been made to examine the predictive power
of natural disasters for risk preferences, the role of the climate-related risks, particularly
transition risk, remains under-researched.

The nexus between climate-related risks and risk aversion is grounded in two theoretical
underpinnings, including Bernanke (1983) and Gollier and Pratt (1996), which suggest that
natural disasters can significantly influence individual and investor risk preferences. While
the main focus is on the link between climate risks and Risk Aversion, the study also
considers additional variables that may affect this relationship. Accordingly, other sources
of risk are incorporated into our quantilogram framework (Han et al., 2016), and as such, we
explore the causal effects across different quantiles of Risk Aversion in response to varying
magnitudes and directions (positive or negative) of climate risk shocks. By comparing the

effects of physical and transition risks, this study addresses a timely and relevant research

15



question concerning the predictive power of climate-related events, which have been largely
under-researched. In doing so, it provides valuable insights into the role these events play
in shaping risk-taking behavior.

Our findings indicate that climate risks have a generally positive and statistically sig-
nificant effect on Risk Aversion, particularly at the lower and median quantiles of climate
risk and the upper quantiles of Risk Awversion, across various lags. These results support
the formulated hypothesis of a positive relationship between climate-related risks and Risk
Awversion. Notably, the physical risk component appears to exert a greater influence than
the transition risk component. Within the physical risk category, global warming has a
stronger impact on Risk Aversion, while among transition risks, U.S. climate-related policy
uncertainty exerts a stronger effect than international climate-related summits.

These findings carry important implications for policymakers seeking to design effective
mitigation strategies to address climate risks. Specifically, strategies developed when in-
vestor sentiment is characterized by heightened risk aversion are less likely to achieve their
intended goals. Therefore, policymakers must consider incentive-based and confidence-
building measures — such as consistent and credible policies — to encourage greater risk
tolerance for the broader benefit of the economy.

Given the study’s focus on climate risk measures and general investor behavior, future
research could build on this analysis by incorporating behavioral factors such as investor sen-
timent to better understand how perceptions of climate risk influence risk-taking decisions.
Furthermore, examining the role of regulatory responses and adaptation strategies may
also shed light on how policy moderates these effects. Cross-country analyses, particularly
between developed and emerging economies, could further uncover contextual differences

in climate risk sensitivity that this study does not account for.
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Table 1: Summary statistics

Mean Median  Max. Min. Std. Dev. Skew Kurt J-B Obs.
Risk Aversion 3.094 2.804 32.711 2.425 1.393 10.853 169.241 6143769.00*** 5246
pPC 0.000  -0.660 10.429 -1.192 1.486  2.292 8.724 11753.81*** 5246
GW 0.566 0.379  6.170  0.000 0.633  2.420  12.298 24018.61*** 5246
ND 0.584 0.278  9.003 0.000 0.869  3.193  17.157 52724.97*** 5246
IS 0.613 0.248 17.690  0.000 1.077  4.754  41.776  348415.30*** 5246
USCP 0.712 0.431  7.962 0.000 0.856  2.320 10.791 17977.06™* 5246

Note: Risk Aversion refers to the time-varying risk aversion index developed by Bekaert et al. (2022). PC represents
the filtered risk aversion index constructed through principal component analysis (PCA) using several uncertainty
indicators, including the Equity Market Volatility Index (EMV-ID), Geopolitical Risk Index (GPR), Supply
Bottleneck Index (SBI), and Trade Policy Uncertainty (TPU). GW, ND, IS, and USCP denote global warming,
natural disasters (physical risk), climate-related international summits, and U.S. climate-related policy uncertainty
(transition risk), respectively. Max., Min., Std. Dev., Skew, Kurt, J-B, and Obs. denote maximum, minimum,
standard deviation, skewness, kurtosis, Jarque-Bera, and number of observations, respectively.

Note: Both the dependent (Risk Aversion) and independent (climate risk) variables are stationary at level [i.e., I(0)]
and the maximum lag length as suggested by the Schwarz information criterion is 5. ** and * indicate significance at

Table 2: Granger causality tests

GW

ND

IS

USCP

Risk Aversion 1.3395

0.3357 1.8261*

2.4258**

the 5% and 10% levels, respectively. Null hypothesis: Climate risk does not cause Risk Aversion.

Table 3: BDS linearity tests

Dimension

GW

ND

IS

USCP

O T = W N

45.0492%**
51.8936"**
56.6489***
61.5222%**
67.2139***

43.5483***
50.4534***
55.1880***
60.2462***
66.3064**

41.9437*
48.8041***
53.6405***
58.5981***
64.4678***

41.9085***
48.7658**
53.4410***
58.6955™**
64.7163***

Included observations 5246

5246

5246

5246

Note: *** indicates significance at the 1% level. Null hypothesis (Hp): The variables are independently and
identically distributed.
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Table 4: Stability tests

Physical Risk

Global Warming Natural Disaster
No. of breaks Break dates | No. of breaks Break dates
10/21/2008 10/21/2008
3 11/25,/2016 3 11/22/2016
Risk Aversion 03/17,/2020 03/17/2020

Observations (less the lag): 5241
Transition Risk

International Summits U.S. Climate Policy
No. of breaks Break dates | No. of breaks Break dates
10/21/2008 10/21/2008
3 11/25/2016 3 11/10/2016
Risk Aversion 03/17/2020 03/17/2020

Observations (less the lag): 5241

Note: We apply the Bai-Perron multiple breakpoint test with the ‘global L-breaks vs. none’ (using UDMax
determined breaks) option and allow for differing error distributions across regimes (Bai and Perron, 2003).

Table 5: Quantile causality between climate risks and Risk Aversion

Quantiles 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GW to Risk Aversion 21.296***  21.144™*  21.213*** 17.640*** 13.531"** 10.501*** 8.988***  9.995"**  9.001***
ND to Risk Aversion 25,911 23.588™* = 22.824™* 17.658™* 11.756™*  8.213""*  6.999***  9.266™* 10.515"**
IS to Risk Aversion 30.791***  28.407***  26.983***  19.352"**  12.016"**  7.804™** = 6.621"*"  8.031***  8.765"""
USCP to Risk Aversion 24.115***  24.691***  23.239"**  18.644™"* 13.7564™*  9.250"**  7.845™* 9.067"**  9.529***

Note: *** indicates significance at the 1% level. Null hypothesis (Ho): There is no causality between climate risks and Risk Aversion.
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Figure 1: Co-movement between physical climate risk and Risk Aversion
Note: The measures of physical climate risk (global warming and natural disasters) occupy the left axis, while Risk
Aversion (Bekaert et al., 2022) is on the right axis.
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Figure 2: Co-movement between transition climate risk and Risk Aversion

Note: The measures of transition climate risk (climate-related international summits and U.S. climate-related policy
uncertainty) occupy the left axis, while Risk Aversion (Bekaert et al., 2022) is on the right axis.
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Figure 3: The sample cross-quantilogram for p(k) for 7 = [0.1,0.5,0.9] to detect directional predictability from GW
to Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
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Figure 4: The sample cross-quantilogram for p(k) for 7o = [0.1,0.5,0.9] to detect directional predictability from ND to
Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
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Figure 5: The sample cross-quantilogram for p(k) for 7o = [0.1,0.5,0.9] to detect directional predictability from IS to
are the 95% bootstrap confidence intervals
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Figure 6: The sample cross-quantilogram for p(k) for 72 = [0.1,0.5,0.9] to detect directional predictability from USCP
to Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
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Figure 7: Box—Ljung test statistic QS-p) for each lag p and quantile 7 using p(k) with 7 = [0.1,0.5,0.9] from GW to
Risk Aversion
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Figure 8: Box—Ljung test statistic Q.(rp) for each lag p and quantile 7 using p(k) with 72 = [0.1,0.5,0.9] from ND to
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Figure 9: Box—Ljung test statistic QS-p) for each lag p and quantile 7 using p(k) with 72 = [0.1,0.5,0.9] from IS to Risk
Aversion
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Figure 10: Box—Ljung test statistic QS-p) for each lag p and quantile 7 using p(k) with 75 = [0.1,0.5,0.9] from USCP
to Risk Aversion
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Appendix

Table A.1: Quantile causality between climate risks and alternative measures of risk aversion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GW to RoRo 5.795™** 7.0747 7.330"*" 6.009"** 4.7347 4.590"** 4.250"** 4.330"*" 4.159***
ND to RoRo 4.699*** 6.128™** 5.840"** 4.986™** 3.214™** 2.740"** 2.990"** 3.7 2.999"**
IS to RoRo 4.943*** 6.119"** 5.148*** 3.604"** 2.910"** 2.393"* 2.386™" 3.318™** 2.817*"
USCP to RoRo 5.267" 7.030""" 5.9927** 4.889*** 4.059"** 3.350™*" 3.819"** 41717 3.930"**
GW to RoRo CR 5.710™** 5.932"** 5.950"** 5.407"** 4.979** 4.685™** 4.765™** 5.064™** 4.564™**
ND to RoRo CR 5.060"** 5.376™*" 4.391*** 4877 5.011*** 5.651*** 5.396"*" 4.978"* 4.125"
IS to RoRo CR 5.800"** 6.576™"" 5.420"** 6.513"** 5.549™** 4.108™** 4.724™** 4.620"** 4.682***
USCP to RoRo CR 6.157"** 6.709"** 6.179"** 6.297"** 5.602"** 5.290"** 5.310"** 5.584™** 5.183"**
GW to RoRo CurrGold 1.549 2.492* 2.294™* 2.695"** 2.796™** 2.778™** 2.215** 2.152** 1.629

ND to RoRo CurrGold 1.343 2.029™* 2.518** 2.125"* 2471 2.930"** 2.024™* 1.856* 1.066

IS to RoRo CurrGold 1.098 1.538 2.047* 2.130™" 2.437* 2.652"** 2.074™ 1.777" 1.421

USCP to RoRo CurrGold 1.455 2.439™* 2.457* 2.508** 3.033"** 3.231™** 2.643"** 2171 1.672*

GW to RoRo Equity 4.486™"* 6.320"** 6.529™** 5.984™** 4.995"** 4.109*** 3.636™*" 4.288"* 3.946***
ND to RoRo Equity 3.755™** 5.833"** 5.239*** 4.608™** 4.225™** 2.985™** 2975 3.025"** 2.698™**
IS to RoRo Equity 3.840™** 5.650"** 4.667* 4.511*** 3.550™*" 2.897"** 2.925"** 3.236™** 3.081"**
USCP to RoRo Equity 4.747 6.746""" 5.980"** 4.617"* 4.127 3.127 2.855"** 3.841"** 4.316""*
GW to RoRo Liquidity 13.622***  18.404™**  21.200"™*  22.497***  22.973"**  22.323"**  20.694"** 18.530"**  13.620"*"
ND to RoRo Liquidity 12.622***  17.150"**  19.628"**  20.996™**  21.148™**  20.850™**  19.659"** 17.612"** 12.894™**
IS to RoRo Liquidity 11.573***  15.511***  17.736™**  19.047*** 19.384***  19.505"** 18.757"** 16.682"** 12.076"*"

USCP to RoRo Liquidity  13.519***  18.381***  21.214*** 22.883"** 23.133"** 22.851"** 21.351"*" 18.404"** 13.603"**

Note: ***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively. Null hypothesis: There is no causality between
climate risks and risk aversion.

A.1 Partial Cross-Quantilogram

To account for potential confounding effects of additional variables, we extend the analysis using the partial cross-

quantilogram. This measure isolates the direct quantile dependence between climate risk (X;) and Risk Aversion (Y7)

by controlling for a vector of conditioning variables Z; (see Section 2 for details about these additional variables).
Assuming Z; is an m-dimensional stationary time series with corresponding quantile-hit processes 1'th = ( tZ RPN )T,

where each component is defined analogously to ;X and v} . The partial cross-quantilogram at lag k is based on the

residuals from projecting ¥ (1) and ¥;X , (12) onto 7:

D (1) =) (1) =yl (A.1)

O () = 0 4 (r2) — x4 (A.2)

where vy and vy are the population regression coefficients obtained by regressing the respective hit processes on th .

The partial cross-quantilogram is then defined as the correlation between 1;2/ (11) and @Zt)i i (T2):

o) = () V)] (A3)

VERY (m)7] - B[ 4(72)?]

The partial cross-quantilogram enables the analysis of quantile-specific lead-lag relationships between X and Y
while controlling for other variables that may confound their dependence. Estimation and inference follow similar

procedures as in the unconditional case, including the use of bootstrap methods to obtain critical values.
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Figure A.1: The sample partial cross-quantilogram for p(k) for 7o = [0.1,0.5,0.9] to detect directional predictability
from GW to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
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Figure A.2: The sample partial cross-quantilogram for p(k) for o = [0.1,0.5,0.9] to detect directional predictability
from ND to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
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Figure A.3: The sample partial cross-quantilogram for p(k) for 7o = [0.1,0.5,0.9] to detect directional predictability
from IS to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
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Figure A.4: The sample partial cross-quantilogram for (k) for o = [0.1,0.5,0.9] to detect directional predictability
from USCP to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
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