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Abstract

Climate-related risks have become a growing source of market disruption, with po-
tential behavioral implications for investor decision-making. This study investigates
whether and how climate risks influence risk aversion among market participants. Us-
ing a quantilogram approach, we examine the predictive power of different climate risk
measures, covering both physical and transition risks, for a behavioral proxy of investor
risk aversion. The analysis yields three key findings. First, climate risks significantly
increase risk aversion, particularly in the lower and median quantiles of climate risk and
the upper quantiles of risk aversion. Second, physical risks exert a stronger influence
than transition risks, with global warming and U.S. climate-related policy uncertainty
emerging as the most impactful within their respective categories. Third, the observed
effects remain robust after controlling for other sources of macroeconomic and finan-
cial uncertainty. These findings suggest that climate risks can dampen investor risk
appetite, a result with important implications for financial market stability and the
design of disaster-related financial policy interventions.

Keywords: Climate-related risks, Quantilogram frameworks, Quantiles, Predictability,
Risk aversion.
JEL codes: C21, C22, G32, G41, Q54.



1 Introduction

Risk-taking behavior is fundamental to the decision-making processes of various economic

agents, including individuals and firms, who engage in such behavior with the expectation

of earning returns greater than their initial stakes. In other words, the propensity to

take financial risks is critical, as it is often a prerequisite for achieving higher returns

(Fama and MacBeth, 1973; Campbell, 1996; Wang and Yang, 2013). Ideally, a range of

factors is known to shape these risk preferences, including wealth (Cameron and Shah,

2015; Chao et al., 2017; Pool et al., 2019), background (Poletti-Hughes and Williams, 2019;

Llanos-Contreras et al., 2021), experience (Shupp et al., 2017; Arslan et al., 2020; Guo

et al., 2023), compensation mechanisms in the event of loss (Carpenter, 2000; Ross, 2004;

Chaigneau, 2015), and governance (Llanos-Contreras et al., 2021).

Nevertheless, climate risk, among other sources of uncertainty, has increasingly been

linked to the intensification of natural disasters, and consequently amplifying market fears

in recent times (Johnson, 2010; Anderson and Robinson, 2019; Xiao and Liu, 2023). These

fears often stem from various mitigation strategies, which include not only policy interven-

tions but also regulatory requirements compelling firms to adopt safer and more environ-

mentally sustainable business practices. As a result, climate-related concerns may influence

investor commitment and confidence as well as alter the consumer consumption behavior

(Daumas, 2021; Horn and Oehler, 2025; Liu and Yan, 2025), thereby exposing these agents

to additional risks and shifting their risk preferences toward greater aversion.

Understanding how climate change influences risk appetite is crucial for assessing whether

climate-related risks lead economic agents to shift away from risky assets toward safer alter-

natives. Examining the extent to which various climate risk measures affect this behavior

provides insights into changing investor preferences. The implications of such shifts are

significant for financial markets and the broader economy, as established in prior research.

Elevated risk aversion, for example, may deter investors from seizing new opportunities or

supporting innovative technologies. This behavioral shift can, in turn, reduce the effective-
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ness of financial assistance packages following climate disasters, impede economic recovery,

and suppress long-term growth (Bourdeau-Brien and Kryzanowski, 2020).

A deeper understanding of shifts in risk preferences requires a theoretical foundation that

explains how natural disasters, particularly climate shocks, influence economic behavior.

These events are increasingly viewed as rare disaster risks because of their potential to

severely disrupt consumption, investment, production, and policy dynamics (Demirer et al.,

2018). Such disruptions can alter the core drivers of investment behavior and heighten

uncertainty, thereby diminishing the willingness of investors and managers to take risks

(Bate, 2022).

This mechanism is well outlined in the real options theory advanced by Bernanke (1983),

which posits that uncertainty (i.e., about climate-related risks) can heavily influence invest-

ment and consumption behavior, especially due to the substantial and often irreversible

costs associated with sub-optimal decisions (see also, Salisu et al., 2023). Similarly, it is

suggested that expectations about natural disasters influence individual behavior by al-

tering perceptions of baseline risk. In essence, the occurrence of such events can serve as

informational shocks that prompt individuals to revise their risk assessments, as those di-

rectly affected often find it difficult not to be impacted psychologically and are compelled

to reassess their strategies (Cameron and Shah, 2015). Moreover, theoretical insights into

utility maximization under background risk show that individuals tend to become more

risk-averse when exposed to additional sources of uncertainty. As established by Gollier

and Pratt (1996), the presence of background risk leads a utility-maximizing agent to pre-

fer safer choices, a property known as risk vulnerability. This implies a greater demand

for insurance or safer assets when individuals are confronted with external uncertainties.

Thus, the channels identified by Bernanke (1983) and Gollier and Pratt (1996) provide a

compelling theoretical rationale for why climate-related risks may increase risk aversion.

Based on this premise, we hypothesize a positive relationship between climate-related risk

and individual or investor risk aversion.
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While several studies have sought to examine the relationship between natural disasters

and risk preferences, their findings are often mixed, perhaps due to the use of survey-based

measures of risk preferences, which tend to be subjective (see, Cameron and Shah, 2015;

Shupp et al., 2017; Bourdeau-Brien and Kryzanowski, 2020; Hoang and Le, 2021; Ingwersen

et al., 2023; Guo et al., 2023). To address this drawback, we contribute to the literature

on disasters and shifting risk preferences by employing standard market-based measures of

time-varying Risk Aversion index as developed by Bekaert et al. (2022), along with climate

risk indicators from Faccini et al. (2023). Particularly, our contributions are in threefold

as follows: (i) we go beyond the physical risks associated with natural disasters, commonly

emphasized in the existing literature, by also considering transition risks stemming from

policy strategies to address climate concerns, (ii) we further account for additional sources

of risks, as outlined in the succeeding section, and conduct our empirical analysis within

a quantilogram framework, and (iii) we utilize the cross-quantilogram, which allows us

to study causal effects across different quantiles of Risk Aversion in response to varying

sizes (and signs) of climate risks. Given the hypothesis that both physical and transition

climate risks increase Risk Aversion, it is essential to test not only the causal direction

but also the sign and magnitude of these effects. This frameworks is preferable over the

causality-in-quantiles technique (see, for example, Jeong et al., 2012, in this regard), as it

facilitates sign analysis and accommodates additional sources of risks as controls, via the

partial cross-quantilogram (see, Han et al., 2016), and hence, can go beyond a bivariate

analysis.

In essence, the cross-quantilogram approach enables us to explore directional relation-

ships and nonlinear dependencies between climate risk and Risk Aversion across different

points in their joint distributions. This is particularly valuable given the asymmetric and

potentially tail-heavy nature of climate shocks, which may exert disproportionate influence

on risk preferences in extreme situations. Unlike traditional mean- or median-based ap-

proaches common in studies that do not rely on survey data (e.g., Bourdeau-Brien and
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Kryzanowski, 2020), the cross-quantilogram captures these heterogeneous effects more pre-

cisely, making it well-suited to our investigation.

Our empirical results reveal that climate risk has a generally positive and statistically

significant effect on Risk Aversion, with these effects being more pronounced in the lower

and median quantiles of climate risk, and in the upper quantiles of Risk Aversion, across

multiple lags. Furthermore, given the number of statistically significant cross-quantilogram

combinations across various lags, the physical risk component appears to have a greater

impact than the transition risk component, with global warming and U.S. climate-related

policy uncertainty contributing more in the respective categories. Importantly, the results

remain robust even after controlling for other sources of risk.

The remainder of the paper is structured as follows. Section 2 introduces and describes

the employed dataset. Section 3 outlines the empirical methodology while Section 4 inter-

prets and discusses the obtained empirical results. Finally, Section 5 concludes the study.

2 Data

The datasets for the examination of the nexus between climate risk and risk aversion in-

clude the time-varying Risk Aversion index by Bekaert et al. (2022)1, as well as the physical

(global warming [GW] and natural disaster [ND]) and transition (climate-related interna-

tional summits [IS] and U.S. climate-related policy uncertainty [USCP]) climate risk mea-

sures developed by Faccini et al. (2023)2. The Risk Aversion index is constructed based on

a utility-derived measure of risk aversion, capturing the representative agent’s time-varying

relative risk aversion. It incorporates six financial indicators: detrended earnings yield,

corporate return spread, term spread (10-year minus 3-month), realized variance of equity

returns, realized variance of corporate bond returns, and equity risk-neutral variance. These

variables are combined using the Generalized Method of Moments (GMM), which estimates
1Retrieved from https://www.nancyxu.net/risk-aversion-index
2Retrieved from https://docs.google.com/spreadsheets/d/14ewbq1JMgz0EJtog76Kti1fB39-P-pjk/

edit?gid=614709312#gid=
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their optimal linear combination under asset moment conditions aligned with a dynamic

no-arbitrage asset pricing framework. The conditional variance linked to macroeconomic

uncertainty is then projected onto these financial variables to generate the Risk Aversion

index. Due to the limited availability of some macroeconomic uncertainty measures, such as

industrial production at daily frequencies (available only monthly), the risk aversion index

is produced at both daily and monthly frequencies. However, this study relies on the daily

version of the index.

On the other hand, the development of physical and transition risk indices utilizes the

Latent Dirichlet Allocation (LDA) method to identify and differentiate climate-related risk

factors. This approach involves extracting textual data related to four climate-focused

themes: natural disasters, global warming, U.S. climate policy, and international climate-

change summits from over thirty-four thousand articles published in Thomson Reuters News

Archive between January 2000 and December 2018. These topics are grouped into two cat-

egories: physical risks (comprising climate-related natural disasters and global warming)

and transition risks (including U.S. climate-related policy and climate-related international

summits). The textual data includes terms like "weather," "drought," "flood," and "storm"

for natural disasters; "temperature," "heat," "greenhouse," "emission," and "Celsius" for

global warming; "Kyoto," "protocol," "summit," and "Copenhagen" for international sum-

mits; and "Clinton," "environmental," "congress," and "campaign" for U.S. climate policy.

In addition, the information content of many other uncertainty indicators, including eq-

uity market volatility index (EMV-ID) (Baker et al., 2020)3, geopolitical risk index (GPR)

(Caldara and Iacoviello, 2022)4, supply bottleneck index (SBI)5 (Burriel et al., 2024), and

trade policy uncertainty (TPU)6, is obtained via the principal component analysis frame-
3Retrieved from https://www.policyuncertainty.com/infectious_EMV.html
4Retrieved from https://www.matteoiacoviello.com/gpr.htm
5https://www.bde.es/wbe/en/areas-actuacion/analisis-e-investigacion/recursos/

indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html. To have the
aggregate from the seven economies available, we calculate the average based on the available data for each
period. For instance, if the index is available for only two countries during a given period, the average is
computed across those two countries rather than the entire seven.

6Retrieved from https://policyuncertainty.com/trade_uncertainty.html
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work, and this is thereafter incorporated as an additional control variable in our formal

analysis. The inclusion of these variables as controls is motivated by their roles in captur-

ing various dimensions of disaster-related risks. Each of these indices reflects different types

of uncertainty or shocks that can significantly influence economic behavior and investor sen-

timent. For instance, the EMV-ID captures broad financial market uncertainty, often linked

to macroeconomic shocks; the GPR index measures geopolitical tensions that may escalate

into global crises; the SBI captures disruptions in supply chains, which can have widespread

economic implications; and the TPU reflects uncertainty surrounding trade policy, which

can affect global trade flows and investment decisions. Given that these variables represent

systemic risks or potential disaster channels, it is important to control for them to isolate

the specific effects of the variables of interest in our analysis.

A comparison of the statistical properties of our risk aversion measures, as presented in

Table 1, shows that the measure proposed by Bekaert et al. (2022) is higher, on average,

than the one derived from the other uncertainty measures via PCA. For the climate risk

measures, the transition risk measures - 0.613 for IS and 0.712 for USCP - are consistently

higher than the physical risk measures, which stand at 0.566 for GW and 0.584 for ND.

[INSERT TABLE 1 AROUND HERE.]

All the series, including the Risk Aversion and climate risk measure, are positively skewed,

while the kurtosis statistics indicate leptokurtic distributions (as the kurtosis values are in

excess of 3), suggesting heavy tails in the data. This departure from normality is further

confirmed by the rejection of the normality assumption, as indicated by the statistical

significance of the Jarque-Bera test results.

In addition to these statistical features, we examine the potential co-movements between

our measure of Risk Aversion and both physical and transition climate risks. We observe

a positive co-movement between each of the climate risk proxies and Risk Aversion, par-

ticularly during the 2008/2009 and 2019/2020 periods, suggesting that climate risks may

increase risk intolerance among investors and other economic agents (see Figures 1 and 2).
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Nonetheless, this observation alone is insufficient for reliable conclusions. Hence, additional

empirical analyses are conducted for validity.

[INSERT FIGURES 1 AND 2 AROUND HERE.]

Given the distributional property of our series and to justify our choice of empirical tech-

nique, we conducted several pre-estimation tests, including the Granger causality test,

stability test, and the BDS test.

The Granger causality test (Granger, 1969), which examines the null hypothesis that

climate risk does not Granger-cause Risk Aversion, is presented in Table 2. The results show

that the null hypothesis of no causality between climate risk and Risk Aversion, particularly

for the physical risk measures, cannot be rejected. This indicates that only the transition

risk Granger-causes Risk Aversion, albeit weakly.

[INSERT TABLE 2 AROUND HERE.]

Furthermore, we test for possible misspecification in the model. This is achieved by re-

covering the residual of the associated risk aversion–climate risk model, and performing

a linearity test using the BDS test. The results, where we find overarching evidence of

non-linearity, given the rejection of the null hypothesis that the model is independently

and identically distributed, are presented in Table 3.

[INSERT TABLE 3 AROUND HERE.]

Similarly, we test whether the non-causality above could be traced to plausible structural

breaks. Therefore, we use Bai and Perron (2003) global test for multiple structural breaks

(UDMax statistic) for this purpose. The results indicate the presence of structural break(s)

or parameter instability at multiple dates (most notably during the global financial crisis of

2008, the oil price crash of 2016, and the declaration of COVID-19 as a global pandemic in

March 2020) as well as across several climate risk variables (see Table 4). This instability

may explain why climate risk does not strongly Granger-cause risk aversion.
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[INSERT TABLE 4 AROUND HERE.]

In addition, we present the quantile causality results (see, Jeong et al., 2012) for both physi-

cal and transition climate-related risks using the time-varying Risk Aversion measure7. The

traditional Granger causality test shows no evidence of causality. Table 5 reveals strong

evidence that climate risk generally causes changes in Risk Aversion across various quan-

tiles, suggesting that rising climate-related risks influence economic agents by increasing

their tendency to become more risk-averse.

[INSERT TABLE 5 AROUND HERE.]

Given these pre-tests, we employ the cross-quantilogram framework to explore the relation-

ship between climate risk and Risk Aversion in the succeeding section. This framework

is suitable as it enables us to examine both the direction and magnitude of climate risk

impacts on Risk Aversion in the short- and long-run, based on multiple lag structures. In

addition, the framework allows us to control for other predictors through the use of the

cross-partial quantilogram.

3 Methodology

To investigate directional predictability and dependence between climate-related risks and

Risk Aversion across various distributional regions, we employ the cross-quantilogram

framework8 introduced by Han et al. (2016). This methodology enables the identification

of quantile-specific and lag-dependent relationships that are not captured by traditional

linear correlation or Granger causality approaches.
7Beyond this measure, we also employ an alternative Risk Aversion measure representing an aggregated

index of global risk-on/risk-off (RoRo) states developed by Chari et al. (2023) (https://anushachari.
weebly.com/roro.html). This index captures variation across four broad categories: advanced economy
credit risk (RoRo CR), equity market volatility (RoRo Equity), funding conditions (RoRo Liquidity), and
currencies and gold (RoRo CurrGold). Using this measure to test for causality yields consistent results as
Risk Aversion (see Table A.1 in the appendix).

8Beyond this bivariate analysis, we account for additional variables that may influence the nexus between
climate risk and Risk Aversion. To this end, the partial cross-quantilogram framework is employed, with
the associated methodological framework and corresponding results provided in the appendix. Essentially,
the results are quantitatively similar to cross-quantilogram.
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Thus, we assume {Yt}Tt=1 and {Xt}Tt=1 (that is, Risk Aversion and of climate risk,

respectively) denote two stationary time series. Also, for a specific quantile levels τ1, τ2 ∈

(0, 1), we take qY (τ1) and qX(τ2) to denote the marginal τ1- and τ2-quantiles of Yt and Xt,

respectively. we then define the quantile-hit process as:

ψY
t (τ1) = 1{Yt ≤ qY (τ1)} − τ1, (1)

ψX
t (τ2) = 1{Xt ≤ qX(τ2)} − τ2, (2)

where 1{·} is the indicator function. These quantile-hit processes are mean-zero and capture

deviations from the unconditional quantile expectations.

The cross-quantilogram at lag k ∈ Z+ is defined as the correlation between the lagged

quantile-hit process ofXt (i.e., climate risk measures) and the contemporaneous quantile-hit

process of Yt (i.e, the dependent variable - Risk Aversion):

ρτ1,τ2(k) =
E[ψY

t (τ1) · ψX
t−k(τ2)]√

E[ψY
t (τ1)

2] · E[ψX
t−k(τ2)

2]
. (3)

This measure captures the directional quantile dependence from Xt−k to Yt. A signifi-

cant nonzero value of ρτ1,τ2(k) indicates that realizations ofX at lag k within the τ2-quantile

region are predictive of the occurrence of values in the τ1-quantile region of Y .

In practice, the cross-quantilogram is estimated as:

ρ̂τ1,τ2(k) =

∑T
t=k+1 ψ̂

Y
t (τ1) · ψ̂X

t−k(τ2)√∑T
t=k+1 ψ̂

Y
t (τ1)

2 ·
√∑T

t=k+1 ψ̂
X
t−k(τ2)

2
, (4)

where the quantiles qY (τ1) and qX(τ2) are estimated using the empirical distribution func-

tions of Yt and Xt, respectively.

To test for the absence of directional predictability across multiple lags, we use a Box-

Ljung-type statistic defined as:

Q̂(p)
τ1,τ2 = T

p∑
k=1

ρ̂τ1,τ2(k)
2, (5)
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where p denotes the maximum lag under consideration. Under the null hypothesis of no

directional predictability from climate risk (X) to Risk Aversion (Y ) at the specified quan-

tiles and lags, the test statistic Q̂(p)
τ1,τ2 follows a nonstandard distribution. Consequently,

critical values are obtained via stationary bootstrap procedures or self-normalized inference

to ensure valid size control.

This approach allows for the detection of asymmetric and nonlinear dependence struc-

tures, including tail dependence and regime-specific spillovers, which are particularly rele-

vant in financial and macroeconomic contexts.

4 Empirical Results

The cross-quantilogram, unlike the quantilogram developed by Linton and Whang (2007)9,

is employed to assess the dependence between climate risks and Risk Aversion, as well as to

evaluate the direction of predictability between these two key variables. This method is par-

ticularly appealing given its ability to capture co-movements in the tails of distributions,

making it well-suited for analyzing extreme events. Particularly, the cross-quantilogram

facilitates the examination of quantile-to-quantile associations between two distinct time

series. Another attraction to this approach lies in its capacity to accommodate a more

extensive lag structure, which contrasts with the limitations of conventional quantile re-

gression methods that typically restrict the number of lags.

This section is partitioned into two parts: Section 4.1 presents the results of the cross-

quantilogram analysis between climate risks and Risk Aversion, while Section 4.2 focuses

on the portmanteau test (Q-statistics) for evaluating their joint dynamics or significance.

To have a broader view on how uncertainty influences Risk Aversion, we also extend the

analysis by incorporating economic-wide risk indicators (as outlined in Section 2) using a

partial cross-quantilogram framework. Nonetheless, in order not to deviate from the main

focus of the impact of climate risks on Risk Aversion, these supplementary results are
9This is the univariate form of the quantilogram method, which assesses predictability across various

segments of a stationary distribution (of a variable) by analyzing the correlogram of quantile hits
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reported in the appendix.

4.1 Cross-quantilogram between climate risk and Risk Aversion

As previously mentioned, this subsection presents the results on the predictability of climate

risks, specifically, physical risks (GW and ND) and transition risks (IS and USCP), for Risk

Aversion. We show the cross-quantilogram plots across quantiles that capture the predictive

relationship from climate risks to Risk Aversion over various lags (1–60), along with the

associated 95% bootstrapped confidence intervals. Specifically, we partition the distribution

of Risk Aversion into deciles ranging from 0.1 to 0.9, while climate risk is represented by

three key quantiles: 0.1, 0.5, and 0.9. These quantiles correspond to the lower tail (0.1–0.4

for Risk Aversion and 0.1 for climate risk), the median (0.5 for both), and the upper

tail (0.6–0.9 for Risk Aversion and 0.9 for climate risk) of their respective distributions.

These results are illustrated in Figures 3 to 6, corresponding to GW, ND, IS, and USCP,

respectively.

In Figure 3, the cross-quantilograms at the lower quantiles of Risk Aversion are generally

positive but statistically insignificant across most lags, except for a few instances at quantiles

0.3 and 0.4, particularly at the later lag (of 60) corresponding to the lower and middle tails

of GW. In contrast, we observe significantly positive relationships across multiple (or nearly

all) lags for the higher quantiles of Risk Aversion (0.6 to 0.9) and for the 0.1 and 0.5 quantiles

of GW. Notwithstanding the positive relationship at the upper quantile of GW (0.9), the

observed association is mostly not statistically significant. These findings suggest that GW

exerts a predictive influence on Risk Aversion primarily when it is at its lower and median

levels (i.e., the lower and middle quantiles). However, this predictive relationship becomes

more evident only at the upper quantiles of Risk Aversion, indicating heightened sensitivity

among investors and economic agents during periods of elevated market fear orchestrated

by climate risk. By implication, when global warming indicators are relatively low or stable,

they may still serve as early signals for rising risk aversion, particularly among those already

positioned at the higher end of the risk-averse spectrum.
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[INSERT FIGURE 3 AROUND HERE.]

Figure 4 illustrates the cross-quantilogram estimates from ND to Risk Aversion. The result

is in sharp contrast to the pattern observed for GW. The dependence is more prevalent at

the lower quantiles of Risk Aversion, particularly when paired with the lower and middle

quantiles of ND, with the positive relationship becoming more significant at longer lags

(save for the combination (0.2 and 0.5)), which shows significance across the entire lag

structure). Moreover, at the median and upper quantiles of Risk Aversion (0.5 to 0.9)

combined with the lower and middle quantiles of ND (0.1 and 0.5), the relationship also

covers the entire lag structure.

Put differently, unlike GW, ND shows significant positive dependence with the lower

and upper quantiles of Risk Aversion. Notably, most quantile combinations between ND

and Risk Aversion are statistically significant at the 5% level, except for combinations

involving the highest ND (0.9).

Overall, climate-related natural disasters appear to play a more important role in pre-

dicting the Risk Aversion tendencies of investors and other economic agents, as evidenced

by the greater number of significant cross-quantilogram combinations observed. Nonethe-

less, it is important not to overlook the mild or moderate GW signals, as these can trigger

amplified risk responses, particularly among more cautious market participants or during

already periods of elevated climate-related uncertainty.

[INSERT FIGURE 4 AROUND HERE.]

Turning to transition risk, Figure 5 reports the cross-quantilogram estimates from IS to

Risk Aversion. The results reveal no clear dependence pattern, though some quantile com-

binations exhibit statistically significant relationships, particularly at longer lags. The

significant associations primarily occur at the median quantile of Risk Aversion, while both

the lower and upper tails show limited or no dependence. This suggests a modest role of

IS in influencing risk perception under normal market conditions.
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[INSERT FIGURE 5 AROUND HERE.]

A contrasting picture emerges for USCP, as shown in Figure 6. Here, statistically significant

dependence is observed across virtually all quantile combinations at several lags. These

results underline the critical importance of USCP in shaping Risk Aversion, reflecting its

pervasive influence across the entire risk spectrum.

The stronger influence of USCP on Risk Aversion, compared to international climate-

related summits (IS), may be attributed to the uncertainty surrounding the U.S. govern-

ment’s decision to withdraw from the Paris Agreement. Investors could interpret this move

as a negative signal, especially in light of the pro-emission-reduction policies pursued by

other developed nations, and may delay investment commitments due to concerns about

potential reciprocal actions from international climate organizations and other environmen-

tally focused entities. Interestingly, IS appears to have a weaker impact on Risk Aversion,

which may reflect investors and other economic agents’ confidence in ongoing global miti-

gation efforts.

[INSERT FIGURE 6 AROUND HERE.]

When comparing the effects of physical and transition climate risks, the findings suggest

that physical risks exert a stronger influence on Risk Aversion, as indicated by a greater

number of significant cross-quantilogram combinations observed10. This again underscores

the trust investors place in mitigation strategies aimed at managing transition-related risks,

which are easier to manage than the physical-related climate events, which tend to be

unpredictable.

Given our hypothesis of a positive relationship between climate-related risk and Risk

Aversion which is grounded in both real options theory and risk vulnerability theory, we

find support for our findings in related studies, including research on the impact of both

natural and man-made disasters on individuals’ risk preferences (e.g., Cameron and Shah,
10These results remain consistent even after accounting for other measures of risk (See Figures A.1 to

A.4 in the Appendix).
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2015; Shupp et al., 2017; Bourdeau-Brien and Kryzanowski, 2020; Hoang and Le, 2021; Guo

et al., 2023; Ingwersen et al., 2023). For instance, Shupp et al. (2017) show that individuals

affected by tornadoes became more risk-averse, with those who lost a friend or neighbor

also exhibiting increased loss aversion. Similarly, Hoang and Le (2021) provide evidence

that asset loss from natural disasters leads households to adopt more risk-averse behaviors.

Conversely, Ingwersen et al. (2023) find that individuals directly exposed to a tsunami

displayed temporarily higher risk tolerance compared to those not directly affected, as

survivors were more willing to take financial risks during the post-disaster recovery period.

This short-term shift in risk-taking behavior aligns with the findings of (Bourdeau-Brien

and Kryzanowski, 2020), who also observe a temporary increase in risk appetite following

disaster events.

4.2 Box-Ljung Q statistics between climate risk and Risk Aversion

We present the corresponding portmanteau tests, which assess the joint dynamics and

overall significance of the cross-quantilogram-based predictability results of climate risks

for Risk Aversion. These tests employ the Box-Ljung Q statistics across various lag orders

and distinct quantile combinations. As shown in Figures 7 to 10, the results confirm the

significant lag structures previously identified in the cross-quantilograms.

Specifically, Figure 7 indicates that the Box-Ljung test statistics are largely significant

for Risk Aversion, especially from the lower quantiles (around 0.4, except when paired with

GW at 0.5) through the median and upper quantiles (0.5 to 0.9), when combined with the

lower and middle quantiles of GW, and consistently across the entire lag structure.

[INSERT FIGURE 7 AROUND HERE.]

Similarly, the portmanteau test for ND and Risk Aversion mirrors what is observed in

Figure 4, with a notable distinction from GW in Figure 7. In the case of ND, there is

evidence of mixed significance across both the short and long lags (see Figure 8). For

example, at the lower quantile of ND (corresponding to the first column of Figure 8), the
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influence of ND on Risk Aversion is significant across all quantiles of ND and throughout

the entire lag structure. In contrast, at the middle quantile of ND (corresponding to the

middle column of Figure 8), the significance is largely mixed along the short and long lags.

Nonetheless, it is only in the quantile combination ((τ1 = 0.1 and (τ2 = 0.9) we have a

significant relationship from lag 10 onwards.

[INSERT FIGURE 8 AROUND HERE.]

Furthermore, Figures 9 and 10 for the portmanteau tests of IS and USCP also reinforce the

results of the significant relationships previously obtained in Figures 5 and 6, respectively.

[INSERT FIGURES 9 AND 10 AROUND HERE.]

5 Concluding Remarks

This study examines the predictability of climate risks for Risk Aversion (Bekaert et al.,

2022), with a focus on the distinct roles played by different measures of climate risk. It also

seeks to determine whether physical or transition climate risks have a greater impact on

Risk Aversion. While considerable efforts have been made to examine the predictive power

of natural disasters for risk preferences, the role of the climate-related risks, particularly

transition risk, remains under-researched.

The nexus between climate-related risks and risk aversion is grounded in two theoretical

underpinnings, including Bernanke (1983) and Gollier and Pratt (1996), which suggest that

natural disasters can significantly influence individual and investor risk preferences. While

the main focus is on the link between climate risks and Risk Aversion, the study also

considers additional variables that may affect this relationship. Accordingly, other sources

of risk are incorporated into our quantilogram framework (Han et al., 2016), and as such, we

explore the causal effects across different quantiles of Risk Aversion in response to varying

magnitudes and directions (positive or negative) of climate risk shocks. By comparing the

effects of physical and transition risks, this study addresses a timely and relevant research
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question concerning the predictive power of climate-related events, which have been largely

under-researched. In doing so, it provides valuable insights into the role these events play

in shaping risk-taking behavior.

Our findings indicate that climate risks have a generally positive and statistically sig-

nificant effect on Risk Aversion, particularly at the lower and median quantiles of climate

risk and the upper quantiles of Risk Aversion, across various lags. These results support

the formulated hypothesis of a positive relationship between climate-related risks and Risk

Aversion. Notably, the physical risk component appears to exert a greater influence than

the transition risk component. Within the physical risk category, global warming has a

stronger impact on Risk Aversion, while among transition risks, U.S. climate-related policy

uncertainty exerts a stronger effect than international climate-related summits.

These findings carry important implications for policymakers seeking to design effective

mitigation strategies to address climate risks. Specifically, strategies developed when in-

vestor sentiment is characterized by heightened risk aversion are less likely to achieve their

intended goals. Therefore, policymakers must consider incentive-based and confidence-

building measures – such as consistent and credible policies – to encourage greater risk

tolerance for the broader benefit of the economy.

Given the study’s focus on climate risk measures and general investor behavior, future

research could build on this analysis by incorporating behavioral factors such as investor sen-

timent to better understand how perceptions of climate risk influence risk-taking decisions.

Furthermore, examining the role of regulatory responses and adaptation strategies may

also shed light on how policy moderates these effects. Cross-country analyses, particularly

between developed and emerging economies, could further uncover contextual differences

in climate risk sensitivity that this study does not account for.
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Table 1: Summary statistics

Mean Median Max. Min. Std. Dev. Skew Kurt J-B Obs.

Risk Aversion 3.094 2.804 32.711 2.425 1.393 10.853 169.241 6143769.00∗∗∗ 5246
PC 0.000 -0.660 10.429 -1.192 1.486 2.292 8.724 11753.81∗∗∗ 5246
GW 0.566 0.379 6.170 0.000 0.633 2.420 12.298 24018.61∗∗∗ 5246
ND 0.584 0.278 9.003 0.000 0.869 3.193 17.157 52724.97∗∗∗ 5246
IS 0.613 0.248 17.690 0.000 1.077 4.754 41.776 348415.30∗∗∗ 5246
USCP 0.712 0.431 7.962 0.000 0.856 2.320 10.791 17977.06∗∗∗ 5246

Note: Risk Aversion refers to the time-varying risk aversion index developed by Bekaert et al. (2022). PC represents
the filtered risk aversion index constructed through principal component analysis (PCA) using several uncertainty

indicators, including the Equity Market Volatility Index (EMV-ID), Geopolitical Risk Index (GPR), Supply
Bottleneck Index (SBI), and Trade Policy Uncertainty (TPU). GW, ND, IS, and USCP denote global warming,

natural disasters (physical risk), climate-related international summits, and U.S. climate-related policy uncertainty
(transition risk), respectively. Max., Min., Std. Dev., Skew, Kurt, J-B, and Obs. denote maximum, minimum,

standard deviation, skewness, kurtosis, Jarque-Bera, and number of observations, respectively.

Table 2: Granger causality tests

GW ND IS USCP

Risk Aversion 1.3395 0.3357 1.8261∗ 2.4258∗∗

Note: Both the dependent (Risk Aversion) and independent (climate risk) variables are stationary at level [i.e., I(0)]
and the maximum lag length as suggested by the Schwarz information criterion is 5. ∗∗ and ∗ indicate significance at

the 5% and 10% levels, respectively. Null hypothesis: Climate risk does not cause Risk Aversion.

Table 3: BDS linearity tests

Dimension GW ND IS USCP

2 45.0492∗∗∗ 43.5483∗∗∗ 41.9437∗∗∗ 41.9085∗∗∗

3 51.8936∗∗∗ 50.4534∗∗∗ 48.8041∗∗∗ 48.7658∗∗∗

4 56.6489∗∗∗ 55.1880∗∗∗ 53.6405∗∗∗ 53.4410∗∗∗

5 61.5222∗∗∗ 60.2462∗∗∗ 58.5981∗∗∗ 58.6955∗∗∗

6 67.2139∗∗∗ 66.3064∗∗∗ 64.4678∗∗∗ 64.7163∗∗∗

Included observations 5246 5246 5246 5246
Note: ∗∗∗ indicates significance at the 1% level. Null hypothesis (H0): The variables are independently and

identically distributed.
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Table 4: Stability tests

Physical Risk

Global Warming Natural Disaster
No. of breaks Break dates No. of breaks Break dates

Risk Aversion
3

10/21/2008
11/25/2016
03/17/2020

3
10/21/2008
11/22/2016
03/17/2020

Observations (less the lag): 5241

Transition Risk

International Summits U.S. Climate Policy
No. of breaks Break dates No. of breaks Break dates

Risk Aversion
3

10/21/2008
11/25/2016
03/17/2020

3
10/21/2008
11/10/2016
03/17/2020

Observations (less the lag): 5241
Note: We apply the Bai-Perron multiple breakpoint test with the ‘global L-breaks vs. none’ (using UDMax
determined breaks) option and allow for differing error distributions across regimes (Bai and Perron, 2003).

Table 5: Quantile causality between climate risks and Risk Aversion

Quantiles 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GW to Risk Aversion 21.296∗∗∗ 21.144∗∗∗ 21.213∗∗∗ 17.640∗∗∗ 13.531∗∗∗ 10.501∗∗∗ 8.988∗∗∗ 9.995∗∗∗ 9.001∗∗∗

ND to Risk Aversion 25.911∗∗∗ 23.588∗∗∗ 22.824∗∗∗ 17.658∗∗∗ 11.756∗∗∗ 8.213∗∗∗ 6.999∗∗∗ 9.266∗∗∗ 10.515∗∗∗

IS to Risk Aversion 30.791∗∗∗ 28.407∗∗∗ 26.983∗∗∗ 19.352∗∗∗ 12.016∗∗∗ 7.804∗∗∗ 6.621∗∗∗ 8.031∗∗∗ 8.765∗∗∗

USCP to Risk Aversion 24.115∗∗∗ 24.691∗∗∗ 23.239∗∗∗ 18.644∗∗∗ 13.754∗∗∗ 9.259∗∗∗ 7.845∗∗∗ 9.067∗∗∗ 9.529∗∗∗

Note: ∗∗∗ indicates significance at the 1% level. Null hypothesis (H0): There is no causality between climate risks and Risk Aversion.
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Figure 1: Co-movement between physical climate risk and Risk Aversion
Note: The measures of physical climate risk (global warming and natural disasters) occupy the left axis, while Risk

Aversion (Bekaert et al., 2022) is on the right axis.

Figure 2: Co-movement between transition climate risk and Risk Aversion
Note: The measures of transition climate risk (climate-related international summits and U.S. climate-related policy

uncertainty) occupy the left axis, while Risk Aversion (Bekaert et al., 2022) is on the right axis.
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Figure 3: The sample cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability from GW
to Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
centered at zero. 22
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Figure 4: The sample cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability from ND to
Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
centered at zero. 23
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Figure 5: The sample cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability from IS to
Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
centered at zero. 24
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Figure 6: The sample cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability from USCP
to Risk Aversion. Bar graphs describe sample cross-quantilograms and lines are the 95% bootstrap confidence intervals
centered at zero. 25
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Figure 7: Box–Ljung test statistic Q̂(p)
τ for each lag p and quantile τ using ρ̂(k) with τ2 = [0.1, 0.5, 0.9] from GW to

Risk Aversion
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Figure 8: Box–Ljung test statistic Q̂(p)
τ for each lag p and quantile τ using ρ̂(k) with τ2 = [0.1, 0.5, 0.9] from ND to

Risk Aversion
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Figure 9: Box–Ljung test statistic Q̂(p)
τ for each lag p and quantile τ using ρ̂(k) with τ2 = [0.1, 0.5, 0.9] from IS to Risk

Aversion
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Figure 10: Box–Ljung test statistic Q̂(p)
τ for each lag p and quantile τ using ρ̂(k) with τ2 = [0.1, 0.5, 0.9] from USCP

to Risk Aversion
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Appendix

Table A.1: Quantile causality between climate risks and alternative measures of risk aversion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GW to RoRo 5.795∗∗∗ 7.074∗∗∗ 7.330∗∗∗ 6.009∗∗∗ 4.734∗∗∗ 4.590∗∗∗ 4.250∗∗∗ 4.330∗∗∗ 4.159∗∗∗

ND to RoRo 4.699∗∗∗ 6.128∗∗∗ 5.840∗∗∗ 4.986∗∗∗ 3.214∗∗∗ 2.740∗∗∗ 2.990∗∗∗ 3.711∗∗∗ 2.999∗∗∗

IS to RoRo 4.943∗∗∗ 6.119∗∗∗ 5.148∗∗∗ 3.604∗∗∗ 2.910∗∗∗ 2.393∗∗ 2.386∗∗ 3.318∗∗∗ 2.817∗∗∗

USCP to RoRo 5.267∗∗∗ 7.030∗∗∗ 5.992∗∗∗ 4.889∗∗∗ 4.059∗∗∗ 3.350∗∗∗ 3.819∗∗∗ 4.171∗∗∗ 3.930∗∗∗

GW to RoRo CR 5.710∗∗∗ 5.932∗∗∗ 5.950∗∗∗ 5.407∗∗∗ 4.979∗∗∗ 4.685∗∗∗ 4.765∗∗∗ 5.064∗∗∗ 4.564∗∗∗

ND to RoRo CR 5.060∗∗∗ 5.376∗∗∗ 4.391∗∗∗ 4.877∗∗∗ 5.011∗∗∗ 5.651∗∗∗ 5.396∗∗∗ 4.978∗∗∗ 4.125∗∗∗

IS to RoRo CR 5.800∗∗∗ 6.576∗∗∗ 5.420∗∗∗ 6.513∗∗∗ 5.549∗∗∗ 4.108∗∗∗ 4.724∗∗∗ 4.620∗∗∗ 4.682∗∗∗

USCP to RoRo CR 6.157∗∗∗ 6.709∗∗∗ 6.179∗∗∗ 6.297∗∗∗ 5.602∗∗∗ 5.290∗∗∗ 5.310∗∗∗ 5.584∗∗∗ 5.183∗∗∗

GW to RoRo CurrGold 1.549 2.492∗∗ 2.294∗∗ 2.695∗∗∗ 2.796∗∗∗ 2.778∗∗∗ 2.215∗∗ 2.152∗∗ 1.629
ND to RoRo CurrGold 1.343 2.029∗∗ 2.518∗∗ 2.125∗∗ 2.471∗∗ 2.930∗∗∗ 2.024∗∗ 1.856∗ 1.066
IS to RoRo CurrGold 1.098 1.538 2.047∗∗ 2.130∗∗ 2.437∗∗ 2.652∗∗∗ 2.074∗∗ 1.777∗ 1.421
USCP to RoRo CurrGold 1.455 2.439∗∗ 2.457∗∗ 2.508∗∗ 3.033∗∗∗ 3.231∗∗∗ 2.643∗∗∗ 2.171∗∗ 1.672∗

GW to RoRo Equity 4.486∗∗∗ 6.320∗∗∗ 6.529∗∗∗ 5.984∗∗∗ 4.995∗∗∗ 4.109∗∗∗ 3.636∗∗∗ 4.288∗∗∗ 3.946∗∗∗

ND to RoRo Equity 3.755∗∗∗ 5.833∗∗∗ 5.239∗∗∗ 4.608∗∗∗ 4.225∗∗∗ 2.985∗∗∗ 2.975∗∗∗ 3.025∗∗∗ 2.698∗∗∗

IS to RoRo Equity 3.840∗∗∗ 5.650∗∗∗ 4.667∗∗∗ 4.511∗∗∗ 3.550∗∗∗ 2.897∗∗∗ 2.925∗∗∗ 3.236∗∗∗ 3.081∗∗∗

USCP to RoRo Equity 4.747∗∗∗ 6.746∗∗∗ 5.980∗∗∗ 4.617∗∗∗ 4.127∗∗∗ 3.127∗∗∗ 2.855∗∗∗ 3.841∗∗∗ 4.316∗∗∗

GW to RoRo Liquidity 13.622∗∗∗ 18.404∗∗∗ 21.200∗∗∗ 22.497∗∗∗ 22.973∗∗∗ 22.323∗∗∗ 20.694∗∗∗ 18.530∗∗∗ 13.620∗∗∗

ND to RoRo Liquidity 12.622∗∗∗ 17.150∗∗∗ 19.628∗∗∗ 20.996∗∗∗ 21.148∗∗∗ 20.850∗∗∗ 19.659∗∗∗ 17.612∗∗∗ 12.894∗∗∗

IS to RoRo Liquidity 11.573∗∗∗ 15.511∗∗∗ 17.736∗∗∗ 19.047∗∗∗ 19.384∗∗∗ 19.505∗∗∗ 18.757∗∗∗ 16.682∗∗∗ 12.076∗∗∗

USCP to RoRo Liquidity 13.519∗∗∗ 18.381∗∗∗ 21.214∗∗∗ 22.883∗∗∗ 23.133∗∗∗ 22.851∗∗∗ 21.351∗∗∗ 18.404∗∗∗ 13.603∗∗∗

Note: ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. Null hypothesis: There is no causality between
climate risks and risk aversion.

A.1 Partial Cross-Quantilogram

To account for potential confounding effects of additional variables, we extend the analysis using the partial cross-

quantilogram. This measure isolates the direct quantile dependence between climate risk (Xt) and Risk Aversion (Yt)

by controlling for a vector of conditioning variables Zt (see Section 2 for details about these additional variables).

Assuming Zt is anm-dimensional stationary time series with corresponding quantile-hit processesψZ
t = (ψZ1

t , . . . , ψZm
t )⊤,

where each component is defined analogously to ψX
t and ψY

t . The partial cross-quantilogram at lag k is based on the

residuals from projecting ψY
t (τ1) and ψX

t−k(τ2) onto ψZ
t :

ψ̃Y
t (τ1) = ψY

t (τ1)− γ⊤
Yψ

Z
t , (A.1)

ψ̃X
t−k(τ2) = ψX

t−k(τ2)− γ⊤
Xψ

Z
t−k, (A.2)

where γY and γX are the population regression coefficients obtained by regressing the respective hit processes on ψZ
t .

The partial cross-quantilogram is then defined as the correlation between ψ̃Y
t (τ1) and ψ̃X

t−k(τ2):

ρτ1,τ2|Z(k) =
E[ψ̃Y

t (τ1) · ψ̃X
t−k(τ2)]√

E[ψ̃Y
t (τ1)

2] · E[ψ̃X
t−k(τ2)

2]
. (A.3)

The partial cross-quantilogram enables the analysis of quantile-specific lead-lag relationships between X and Y

while controlling for other variables that may confound their dependence. Estimation and inference follow similar

procedures as in the unconditional case, including the use of bootstrap methods to obtain critical values.
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Figure A.1: The sample partial cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability
from GW to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
confidence intervals centered at zero. 31
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Figure A.2: The sample partial cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability
from ND to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
confidence intervals centered at zero. 32
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Figure A.3: The sample partial cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability
from IS to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
confidence intervals centered at zero. 33
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Figure A.4: The sample partial cross-quantilogram for ρ̂(k) for τ2 = [0.1, 0.5, 0.9] to detect directional predictability
from USCP to Risk Aversion. Bar graphs describe sample partial cross-quantilograms and lines are the 95% bootstrap
confidence intervals centered at zero. 34
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