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Abstract 
The US and China maintain deep economic ties, yet geopolitical tensions—especially during 
events such as the trade war—exert significant influence on their financial markets. This study 
examines how US-China tensions, as captured by the US-China Tension Index (UCT), affect the 
correlation between US and Chinese stock markets and stock market volatility using a DCC-
DAGARCH-MIDAS model. Unlike prior studies that consider geopolitical risk and trade war 
shocks separately or give the same weight to positive and negative shocks of UCT, our approach 
jointly models asymmetric short-term volatility, macro-driven long-term variance, dynamic inter-
market correlations, and assigns different weights to positive and negative shocks of UCT. The 
findings show that heightened tensions lead to stronger co-movements in return volatility, with 
effects becoming more immediate during the trade war. Beyond aggregate indices, we analyze the 
multi-tiered structure of the Chinese stock market, covering small and medium-sized enterprises 
(SMEs), blue-chip stocks, and technology-focused stocks. The results show that sensitivities vary 
across China’s stock market indices, where SME index displays the most sensitive to UCT. These 
results provide practical insights for investors and policymakers aiming to manage risks in an 
increasingly geopolitically sensitive environment.  
Keywords: US-China Tensions; Geopolitical Tensions; US and Chinese Stock Returns and 
Volatility; DCC-DA-GARCH-MIDAS 
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1. Introduction 
The economies and stock markets of the United States and China hold the positions of the world’s 
largest and the second largest respectively, attracting a considerable number of global investors. 
Spreading investments across the stock markets of various countries generally induces portfolio 
diversification, enabling investors to reduce portfolio volatility and achieve better risk-adjusted 
returns (Markowitz, 1952). Nevertheless, global risk shocks disturb and intensify the degree of 
stock market return co-movement among countries, challenging the diversification benefits. 
Notably, the recent geopolitical situation, exemplified by the Russia-Ukraine conflict and the 
Israel-Palestine conflict, has been increasingly tense and has exerted a significant influence on 
market co-movement (Bossman & Gubareva, 2023). In this regard, the US-China tension (UCT) 
has been an eminent risk factor, accentuated by the full-on trade clash under the first and second 
terms of the US President Donald Trump.  
Existing literature has illustrated from various angles that geopolitical conflicts can enhance 
market co-movement, including suffering common economic shocks (Forbes & Rigobon, 2002), 
the influence of policy uncertainty on investors’ risk preferences (Baele et al., 2010; Pastor & 
Veronesi, 2012), the disruption of trade and supply chain interdependence (Ramelli et al., 2021), 
and the significant fluctuations in exchange rates (Bruno & Shin, 2015). As for the relationship 
between China and the United States, the most high-profile geopolitical event in recent years has 
been the trade war. Due to the trade war, the linkage between the Chinese and American markets 
was intensified, which in turn gave rise to greater downside risks (Huynh & Burggraf, 2020; Shi 
et al., 2021; Song et al., 2023). Under such circumstances, the efficacy of diversifying investments 
in the stock markets of these two countries in terms of reducing the volatility of portfolios 
deteriorated. 
Having said that, the trade conflict is only one manifestation of US-China tensions. The sources 
of US China tensions are multifaceted, including technology blockade, information security, South 
China Sea issue, and Taiwan issue. Therefore, merely focusing on the impact of the trade war is 
insufficient to comprehensively understand the impact of US-China conflicts on the market co-
movement of these two main economies. To our best knowledge, there has been little research that 
analyzes the impact of US-China conflicts on the market co-movement between the two countries 
by depicting the changing degree of US-China tensions in the long term.  



To address this research gap, we analyze the impact of the US-China Tensions on the dynamic 
correlations between the returns of the US and Chinese stock market indices. To this end, we use 
the US-China Tension (UCT) index of Rogers et al. (2024), which depicts the degree of 
geopolitical tensions between two rival countries, and apply the DCC-DAGARCH-MIDAS(Skew-
t) model to capture the nuanced effects of US-China tensions on the correlation between US and 
Chinese stock markets. This model is ideal for this study as it innovatively integrates Dynamic 
Conditional Correlation (DCC), Double Asymmetric GARCH (DAGARCH), and Mixed Data 
Sampling (MIDAS)1 . Importantly, given that in the real market, the impacts of positive and 
negative shocks of UCT are different, the DAGARCH model is more suitable than the GARCH 
model, allowing us to assign different weights to positive and negative shocks to understand the 
impact of shocks in different directions on stock market co-movement (Amendola et al., 2019). 
Interestingly, the DCC-DAGARCH-MIDAS(Skew-t) model provides a refined econometric 
structure that jointly models asymmetric short-term volatility, macroeconomically-driven long-
term variance components, and dynamic cross-market correlations. This integrative structure is 
particularly well-suited for analyzing the transmission of geopolitical shocks, which often exhibit 
multi-frequency effects and nonlinear impacts on global financial markets. The DAGARCH 
component, equipped with skewed-t innovations, effectively models volatility clustering, heavy 
tails, and asymmetric market responses—features that are especially relevant during periods of 
geopolitical uncertainty when negative shocks tend to exert disproportionate influence. The 
MIDAS component incorporates low-frequency macroeconomic variables—such as economic 
policy uncertainty or geopolitical risk indices—into the conditional variance process, enabling the 
model to capture persistent shifts in risk dynamics that unfold over longer horizons but influence 
high-frequency financial data. Meanwhile, the DCC mechanism dynamically tracks changes in 
conditional correlations between the US and Chinese stock markets, allowing for a nuanced 
understanding of how cross-market dependencies evolve in response to external shocks. 
Collectively, these features not only enhance the model’s statistical performance but also 
contribute substantively to the empirical investigation of geopolitical risk spillovers. By bridging 
high-frequency financial volatility with low-frequency macro-political developments, the DA 

                                                           
1 Compared with the GARCH-MIDAS model that can only explores the impact of UCT on a single stock index, 
incorporating the DCC model enables us to study the influence of UCT on the correlations between the stock indices 
of the two countries (Engle, 2002). 



model provides a novel and robust analytical lens—thereby constituting a key marginal 
contribution of this paper to the literature on geopolitical finance and market interconnectedness. 
Embedding UCT as a low-frequency exogenous factor in the DCC-DAGARCH-MIDAS(Skew-t) 
model, we demonstrate that geopolitical tensions increase both individual stock market volatility 
and enhance the interdependence between US and Chinese stock market indices. The results 
underscore that US-China tensions have significant influence on long-term correlations between 
US and Chinese stock markets, especially during periods of heightened geopolitical tension and 
US-China trade war. Our analysis also shows a noticeable shift toward short-term market 
responses during heightened tensions, underlining the growing sensitivity of stock markets to 
geopolitical events. Beyond aggregate indices, we analyze the multi-tiered structure of China’s 
stock market, including blue-chip stocks, high-growth small and medium-sized enterprises 
(SMEs), and the technology-focused STAR (formally known as the Shanghai Stock Exchange 
Science and Technology Innovation Board) Market. By including indices such as SSE 180 (blue 
chips), SME Index (growth-oriented SMEs), and STAR50 (technology-focused), our analysis 
offers a detailed view of UCT’s impact on market segments, unlike the current research literature 
under the background of the trade war that mainly focuses on the market co-movement among 
different industries (Chen & Pantelous, 2022). Our findings indicate that UCT impacts differ 
across tiers: larger, institutionalized markets exhibit stable responses and somewhat resiliency, 
whereas SMEs and technology-focused segments are more sensitive and prone to geopolitical 
shifts. 
Our study makes several notable contributions. Firstly, unlike existing literature that mostly relies 
on the trade war to study the US-China conflict’s impact on financial markets, with trade conflict 
being only one type of geopolitical conflicts, we adopt the UCT index to more comprehensively 
depict the long-term changes in the US-China tense relationship. Secondly, we apply the DCC-
DAGARCH-MIDAS(Skew-t) model which combines DCC, DAGARCH and MIDAS. Taking 
into account dynamic correlation clustering, asymmetric volatility, fat-tailed distribution, and 
long-term effects, this model empowers us to directly assess the impact of the US-China tense 
relationship on the co-movement of the stock markets of the two countries. Moreover, our paper 
analyzes the impact of the US-China tensions before and after the intensification of the trade war. 
After the escalation of the trade war, the co-movement between the two countries’ markets 



responds more rapidly to the US-China tense relationship, extending the scarcity of discussions of 
this aspect in the existing literature. Thirdly, considering China’s special national conditions, this 
paper also examines the impact of the US-China tense relationship on the co-movement between 
China’s multi-tiered capital markets and the US market, offering more granulated and 
heterogeneous evidence in the context of newly introduced segments of the Chinese stock market.  
Overall, this study enhances our understanding of how international political risks shape financial 
inter-linkages and offers a framework for analyzing geopolitical shocks in multi-tiered markets. 
Practically, within the contemporary global landscape characterized by the increasingly frequent 
occurrence of geopolitical conflicts, the insights offered in our analysis are valuable for investors 
and policymakers who are tasked with the challenging role of monitoring and managing 
interconnected markets in the midst of geopolitical uncertainty. 
The rest of the paper proceeds as follows: Section 2 describes the methodology; Section 3 provides 
the data diagnostics; Section 4 presents the empirical results; and Section 5 concludes. 
 
2. Methodology 
We model the returns for the S&P500 COMPOSITE (S&P500), SHANGHAI SE A SHARE (SSE 
A Share) and SHANGHAI SHENZHEN (CSI300) stock market indices using two GARCH-type 
models, standard GARCH and Double Asymmetric GARCH (DAGARCH). As indicated in the 
introduction section, for the exogenous shocks from bilateral relationships in the interconnected 
global economy, we use the US-China Tension (UCT) index of Rogers et al. (2024). 

Specifically, the impact of US-China tensions as exogenous shocks on the long-run volatility 
and dynamic correlation of S&P500 and SSE A-hares stock index returns, S&P500 and CSI300 
stock index returns is examined in a multi-step approach. In the first step, we insert UCT into the 
long-run component of GARCH-MIDAS specification on the volatility of S&P500, SSE A Share 
and CSI300 stock index returns. We extend the conditional distribution to include nonzero 
skewness, excess kurtosis of innovation, and standard normal distribution. The results of this step 
show the impact of UCT on the long-run volatilities of stock index returns by assuming the index 
returns follow univariate time-varying processes. In the second step, we insert UCT into the long-



run component of the DCC-MIDAS specification of the correlation of S&P500 and SSE A Share 
(CSI300) stock index returns. 

We extend the asymmetric DCC-MIDAS to include the non-zero skewness, excess kurtosis of 
the innovation distribution, standard normal distribution, and asymmetric effect of innovation on 
short- and long-run correlations. The results of this step show the impact of UCT on the long-run 
correlations of different stock index returns by assuming the indices’ returns follow bivariate time-
varying processes. 
2.1 GARCH-MIDAS with UCT 
The standard univariate GARCH and its generalized specifications are used for modelling the 
conditional volatilities of the stock index returns. We follow the approach of Engle et al. (2013) to 
decompose the volatilities in GARCH specification into long- and short-run components and then 
link UCT to the long-run component. In practice, the short-run volatility component of the 
GARCH-MIDAS model is assumed to be temporarily shocked by innovations (in high frequency), 
while the long-run component is more likely to be related to fundamental/microeconomic factors 
that are usually low frequency, such as UCT in the present work. The specification for standard 
GARCH-MIDAS is, 
௧ݎ  − ௧ߤ =  ௧ (1)ߝ
௧ߝ  =  ௧  (2)ݖ௧,ఛߪ
௧,ఛଶߪ  = ݉ఛ × ݃௧,ఛ  (3) 
 ݃௧,ఛ = (1 − ߙ  − − 2/ߛ (ߚ  + ߙ) + ߛ · (௥೟షభ,ഓಬబܫ ఌ೟షభ,ഓమ

௠ഓ +  ௧ିଵ,ఛ (4)݃ߚ
where ݎ୲ is the natural logarithmic rate of returns from stock index; the conditional mean is ߤ୲ =
E୲ିଵ(ݎ௧ )  = ߤ  − ρr୲ିଵ as the common specification; ε୲ is the innovation standardized to be z୲ by 
σ୲,த, the conditional standard deviation. In Eq. (2) and (3), we add subscript τ to σ୲,த, indicating ε୲ 
as the innovation on week t of period τ, and σ୲,தଶ = mத × g୲,த for its conditional volatility, where 
mத is thus the long-run component extracted from σ୲,தଶ . α and β are the estimated coefficients. α ≥ 
0, β ≥ 0 and α + β < 1 are used to ensure the nonnegativity and stationarity of the variance process. 



When the conditional distribution is sstandard t-distribution or standard normal distribution, 
parameter γ disappears, and ܫ୰౪షభ,ಜಬబ is an indicator function. 

To introduce the effect of UCT (ܺఛି௞) on ݉ఛ, we follow Engle et al. (2013) and specify ݉ఛ 
by smoothing the realized volatility or macroeconomic (exogenous) variable in the spirit of 
MIDAS regression: 
 ln ݉ఛ = ݉ + ∑ ߠ  ߮௞(௄௞ୀଵ ,ଵݓ  ଶ)ܺఛି௞ (5)ݓ

Notably, ܺఛି௞ is the innovation of UCT from the AR(1) regression as Engle et al. (2020) 
suggests, where K is the maximum lag. ߮௞(ݓଵ,   :ଶ) is a weight equation asݓ

 ߮௞(ݓଵ, (ଶݓ = ቀೖ
಼ቁೢభషభቀଵିೖ

಼ቁೢమషభ

∑ ቀ ೕ
಼ቁೢభషభቀଵି ೕ

಼ቁೢమషభ
ೕ಼సభ

 (6) 

The Double Asymmetric GARCH-MIDAS (DAGM) model (Amendola et al. ,2019) is an 
extension of the GARCH-MIDAS family, which considers data at two different frequencies, 
combining the short-term dynamics and long-term trends of volatility. It introduces asymmetric 
effects to better describe the behaviour of volatility. The long-run component of the DAGM 
models is:  
݈݊ ݉ఛ = ݉ + ାߠ   ∑ ߮௞(ݓଵ, ଶ)ା௄௞ୀଵݓ ܺఛି௞ܫ௑ഓషೖಱబ + ିߠ  ∑ ߮௞(ݓଵ, ଶ)ି௄௞ୀଵݓ ܺఛି௞ܫ௑ഓషೖಬబ (7) 

To estimate the parameters in the various GARCH-MIDAS models given by Eq. (1) to (7), 
we use maximum likelihood estimation (MLE) as the literature (e.g., Engle et al., 2013; Amendola 
et al., 2021) does in common. However, different from the literature, we introduce Hansen’s (1994) 
skew-t distribution as the conditional distribution of the standardized innovations to capture 
possible negative skewness as discussed by Hong and Stein (2003), 

Skew-t(ݖ௧|ߣ, (ߟ = ܥܤ ൮1 + 1
ߟ − 2 ቌ ௧ݖܤ + ܣ

1 + sgn( ݖ௧ + ቍߣ(ܤܣ
ଶ

൲
ି(ఎାଵ)/ଶ

 

where ߣ and ߟ are the coefficient of skewness and degree of freedom, sgn(ݔ) is the sign function 
of x; and the constants ܤ ,ܣ, and ܥ are given by: 

ܣ = ܥߣ4 ఎିଶ
ఎିଵ,  ܤ = √1 + ଶߣ3 − ܥ  ,ଶܣ = ௰((ആశభ)

మ )
ඥగ(ఎିଶ)௰(ആ

మ) 



where ߣ > 0  and ߣ < 0  indicate that the distribution is positively and negatively skewed, 
respectively. The larger |ߣ|, the larger the skewness. The degree of freedom, ߟ, captures the excess 
kurtosis, which is consistent with the tail heaviness. 

When ߣ = 0 , the skew-t distribution is symmetric and thus reduced to a standard t 
distribution. Therefore, we can easily compare the MLE results from skew-t with the standard t 
distribution. We implement the MLE procedure by extending the package ‘rumidas’ that is 
available from cran.r-project. It is an open source project maintained by Vincenzo Candila, one of 
the authors of Amendola et al. (2019, 2021).  
2.2 DCC-MIDAS with UCT 

To analyze the dynamic correlation between the S&P500 and SSE A Share, and between the 
S&P500 and CSI300, the DCC-DAGARCH-MIDAS (Skew-t) model is employed to examine the 
influence of UCT. The DCC-MIDAS model, used for mixed data sampling, builds on the DCC 
model by Engle (2002) and the DAGARCH-MIDAS model by Amendola et al. (2019). The DCC-
MIDAS model primarily investigates how long-term components, derived through mixed data 
sampling, affect long-term fluctuations and dynamic correlations in financial time series. The 
DCC-DAGARCH-MIDAS model integrates Dynamic Conditional Correlation (DCC), Double 
Asymmetric GARCH (DAGARCH), and Mixed Data Sampling (MIDAS) to model dynamic 
correlations, asymmetric volatility, and long-term effects in financial time series. Its hierarchical 
structure and flexibility enable precise analysis of UCT's effects on US and Chinese stock markets 
across multiple dimensions. 

Specifically, for each asset ݅, ݆ = 1,2 to denote S&P500 and SSE A Share stock index returns, 
or S&P500 and CSI300 stock index returns. The univariate return series satisfies the DAGARCH-
MIDAS process. The conditional correlation between them is: 
௜,௝,௧ߩ  = ௤೔,ೕ,೟

ඥ௤೔,೔,೟ ඥ௤ೕ,ೕ,೟ (8) 

Following Colacito et al. (2011), the covariates directly affect the long-run component of stock 
index returns' dynamic correlation. That is, ݍ௜,௝,௧ is given by: 
௜,௝,௧ݍ  = ௜,௝,ఛ(1ߩ̅  − ܽ − ܾ) + ௝,௧ିଵߝ௜,௧ିଵߝܽ +  ௜,௝,௧ିଵ (9)ݍܾ
where ̅ߩ௜,௝,ఛ is the long-run component of conditional correlation given by, 



௜,௝,ఛߩ̅  = ∑ ߮௟(௅௟ୀଵ ,ଵݓ  ఛି௟ (10)ܥ(ଶݓ
where ܥఛ is the averaged conditional correlation of ߝ௜,௧ and ߝ௝,௧ in period τ. To capture the effect of 
UCT on the long-run correlation, we also introduce the effect directly into Eq. (10) following the 
spirit of Eq. (6). The difference is that a logistic transformation (ݔ)߉ is needed to make a valid 
definition of correlation: 

௜,௝,ఛߩ̅ =  ,(ఛݔ2)߉
ఛݔ = ݉௖ + +ߠ  ∑ ,1ݓ)݈߮ 1=ܮ݈+(2ݓ 0≤݈−߬ܺܫ݈−߬ܺ + −ߠ  ∑ ,1ݓ)݈߮ 1=ܮ݈−(2ݓ  (11) 0>݈−߬ܺܫ݈−߬ܺ
where ܺఛ is the low-frequency part which is set to be UCT in our present work. The DAGARCH-
MIDAS module integrates UCT into volatility modelling via the MIDAS weighting function, 
separating long-term (low-frequency) from short-term (high-frequency) volatility. As shown in 
Eq.(11), the DAGARCH component enhances GARCH by introducing asymmetry and dual-
weight mechanisms, assigning different weights to positive and negative shocks to reflect the 
asymmetry typical in financial markets. 

To address the fat-tailed and skewed characteristics of stock returns, especially during 
financial shocks, the Skew-t distribution is utilized to model asymmetric risks and extreme values, 
enhancing estimation accuracy. The bivariate skew-t distribution (biskew-t), proposed by Bauwens 
and Laurent (2005), is introduced to account for leptokurtosis and non-zero skewness in 
standardized innovations. The density function is expressed as: 

 biskew-t (ݖ|ν, λଵ, λଶ) = C ൮ෑ 2ܾ
λ௜ + 1λ௜

ଶ

௜ୀଵ
൲ ቆ1 + ∗ݖᇲ∗ݖ

ν − 2ቇ
஝ାଶଶ

 

where λଵ, λଶ are the skewness parameters, ν is the degrees of freedom parameter, ݖ∗ = ൫ݖ௜∗,  ,௝∗൯ᇱݖ
∗௜ݖ = (ܾ௜ݖ௜ + ܽ௜)λ௜ூ೔ , the indicator function ܫ௜ = 1  if ݖ௜ < ܽ௜/ܾ௜ , otherwise, ܫ௜ = −1 ; and the 
constants ܽ௜, ܾ௜ and ܥ are: 

ܽ௜ = ୻ቀೡషభ
మ ቁ√௩ିଶ

√గ୻ቀೡ
మቁ ቀλ௜ − ଵ

஛೔ቁ , ܾ௜ଶ = ቀλ௜ + ଵ
஛೔ − 1ቁ − ܽ௜ଶ , ܥ = ୻ቀೡశమ

మ ቁ
గ(௩ିଶ)୻ቀೡ

మቁ 

With the help of this density function, the log-likelihood function is directly equivalent to that 
of Cappiello et al. (2006), and thus MLE can be used to estimate the parameters. We implement 



the MLE by extending the package ‘dccmidas’ that is available from cran.r-project, an open source 
project maintained by Vincenzo Candila. 

3 Data 
We use weekly closing prices of the S&P500, SSE A Share, and CSI300 stock indices, collected 
from DataStream. The S&P500 tracks the stock market performance of leading firms in the US. 
SSE A Share and CSI300 are two leading benchmarks for the large Chinese stocks. For further 
analysis, we replace the SSE Composite Index and CSI300 index by the STAR 50 Index 
(representing the STAR Market), SSE 180 Index (large-cap blue-chip stocks), and SME Index 
(small and medium-sized enterprises) to assess if the results hold when considering technology 
stock sector, blue-chip Chinese stocks across key sectors such as finance, energy, and consumer 
goods, and small and medium-sized enterprises. The sample period for the S&P500 and SSE A 
Share spans from June 1993 to February 2024, including 1,605 weekly observations, whereas for 
the CSI300 stock index it spans from September 2005 to February 2024, including 962 weekly 
observations. We also employ the monthly UCT index of Rogers et al. (2024), extracted from 
https://www.policyuncertainty.com/US_China_Tension.html, over the period of June 1993 - 
February 2024, yielding 369 monthly observations. Panel A of Table 1 provides summary statistics 
for the logarithmic returns of the US and Chinese stock indices. Panel B of Table 1 provides the 
descriptive statistics for UCT index. 

Table 1: Descriptive statistics 

 
Panel A: US and Chinese stock indices Panel B: UCT 

S&P500 stock index 
returns 

SSE A Share stock index 
returns 

CSI300 stock index 
returns UCT 

Raw GARCH Raw GARCH Raw GARCH Raw AR1 
mean 0.180% 2.163% 0.173% 3.679% 0.178% 3.312% 100.000 100.150 
std 0.023 0.009 0.044 0.026 0.035 0.012 42.547 36.570 
min -18.341% 1.384% -23.582% 1.440% -14.781% 1.681% 37.983 46.94 

Q(25%) -0.921% 1.671% -1.663% 2.289% -1.513% 2.431% 67.988 67.987 
Median 0.312% 1.913% 0.134% 2.925% 0.253% 2.932% 90.908 92.034 
Q(75%) 1.452% 2.354% 1.772% 4.240% 1.991% 3.893% 120.809 118.508 

max 17.968% 10.908% 70.362% 10.914% 17.283% 8.214% 349.946 314.770 
Skew -0.851 3.976 3.060 4.4539 -0.0444 1.337 1.552 1.547 
Kurt 10.100 24.259 46.443 31.1248 2.263 1.728 4.440 4.357 



JB-stats 7.172E3 4.423E4 1.502E5 7.102E4 3.142E3 4.161E2 4.462E2 4.431E2 
Sample 
Period 

Jun. 1993-Feb. 2024 
(weekly #Obs.: 1605) 

Sep. 2005-Feb. 2024 
(weekly #Obs.: 962) 

Jun. 1993-Feb. 2024 
(monthly #Obs.: 369) 

Note: We report the descriptive statistics of the raw returns of US and China stock index, and their innovations filtered by 
GARCH(1,1). AR1 denotes the first-order autoregression. Raw return is used to clearly distinguish original return series from 
model-filtered innovations. It highlights that the reported statistics refer to unprocessed market data, ensuring clarity when 
comparing with GARCH-filtered results and aiding interpretation of market characteristics before any adjustment. 
 
Figure 1 shows the dynamics of US and China stock indices and the UCT index. To make the data 
comparable, we scale each series to [0,1]. The Pearson correlation coefficient between UCT and 
the S&P500, SSE A Share, and CSI300 indices is 0.7440, 0.6388, and 0.5082, respectively. The 
Pearson correlation coefficients between UCT and the returns of S&P500, SSE A Share, and 
CSI300 are: -0.0018, -0.0410, and -0.0908, respectively. These contrasting correlations reflect the 
difference in variable type: while the UCT index is positively correlated with the levels of stock 
indices—possibly due to shared macro trends over time—it is negatively correlated with stock 
returns, indicating that rising geopolitical tensions are often accompanied by contemporaneous 
market declines. This highlights the importance of distinguishing between price levels and return 
dynamics when evaluating the impact of geopolitical risk on financial markets. 

 
Figure 1: The dynamics of US and China stock indices with UCT 

  



4 The effect of UCT on long-run volatility and correlation 
We first present the long-run volatilities of the US and China stock indices and their relationship 
with the UCT based on the GARCH-MIDAS model with various specifications of structure and 
conditional distribution. We then show the relation of UCT to the long-run correlations between 
US and China stock index returns based on various DCC-MIDAS specifications. 
4.1 The effect of UCT on the long-run volatility of US and China stock indices 
Tables 2, 3 and 4 present the estimated results of the impact of the UCT on the US and China stock 
index long-run volatilities based on the GARCH-MIDAS model, and the DAGARCH-MIDAS 
with the conditional distribution of standard-t , skew-t and standard-n . We see that the estimated 
coefficients of α and β are all significantly positive, and α + β is near to one for both stock returns. 
That is, the short-run volatility component for all specifications is mean-reverting. For the returns 
of all three stock indices, the DAGARCH-MIDAS model (with skew-t distribution) performs the 
best (based on LLF, AIC and BIC), with the main parameters being significant.  
Table 2 shows that when using the DAGARCH model to distinguish the effects in different 
directions (positive and negative), the θ values are significant, which indicates that a positive 
innovation leads to smaller conditional volatility in the next period whereas a negative innovation 
leads to bigger conditional volatility. This result clearly demonstrates that the deterioration of US-
China relations inevitably intensifies the volatility of the S&P 500 index returns, which is a 
phenomenon that can be readily comprehended. Firstly, given that the US and China represent the 
two largest economies globally, an intensification of the tense relations between the two nations 
has the potential to escalate geopolitical risk, which in turn, amplifies market uncertainty and 
subsequently elevates stock market volatility (Caldara & Iacoviello, 2022). Secondly, the tense 
relation exerts a significant influence on investor sentiment and risk aversion. Accordingly, the 
worsening of US-China relations prompts flight-to-safety behavior, leading to an increase in stock 
market volatility (Baker & Wurgler, 2006). Thirdly, a substantial number of S&P 500 firms, 
especially in the technology and industrial sectors, exhibit a large dependence on China in terms 
of supply chains and to a lesser extent revenues. Consequently, their earnings are highly 
susceptible to geopolitical shocks involving the US –China relations (Ramelli & Wagner, 2020). 
Finally, the US China tense relationship tends to exacerbate policy uncertainty. Heightened policy 



uncertainty disrupts monetary and fiscal expectations, thereby contributing to market instability 
(Pastor & Veronesi, 2012). 

Table 2: Conditional volatility of S&P500 with UCT 

Coef GARCH-MIDAS DAGARCH-MIDAS 
Std-t Skew-t Std-n Std-t Skew-t Std-n 

 ***0.117 ߙ
(0.045) 

0.001 
(0.001) 

0.146*** 
(0.057) 

0.112*** 
(0.043) 

0.187*** 
(0.073) 

0.120*** 
(0.047) 

 ***0.846 ߚ
(0.328) 

0.776*** 
(0.301) 

0.784*** 
(0.304) 

0.850*** 
(0.330) 

0.718*** 
(0.279) 

0.804*** 
(0.312) 

 ***0.320  ߛ
(0.124)   0.190*** 

(0.074)  

m -7.646*** 
(2.968) 

-7.459*** 
(2.896) 

-7.586*** 
(2.945) 

-7.820*** 
(3.036) 

-0.859** 
(0.438) 

-8.095*** 
(3.143) 

 0.003 ߠ
(0.002) 

-0.003 
(0.002) 

0.001 
(0.001)    

_ߠ           0.013 
(0.008) 

-0.178*** 
(0.069) 

0.028** 
(0.014) 

 ௡௘௚    -0.010_ߠ
(0.006) 

0.196*** 
(0.076) -0.000432 

 *ଶ 1.036ݓ
(0.611) 

1.002* 
(0.591) 

1.668*** 
(0.648)    

ଶ_௣௢௦ݓ     1.812** 
(0.925) 

1.002*** 
(0.389) 

1.796** 
(0.916) 

 *ଶ_௡௘௚    1.362ݓ
(0.803) 

1.026*** 
(0.398) 

1.110** 
(0.566) 

LLF -4921.41 -3954.073 -4563.482 -4921.142 -3970.631 -4958.582 
AIC 9857.82 7922.15 9138.58 9857.28 7955.88 9933.78 
BIC 9879.38 7942.28 9155.31 9878.84 7976.93 9957.7 

Sample 
Period 1993-06-03/2024-02-29(#Obs.:1605) 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility, while 
 captures the effect of ߠ captures the asymmetric effect; m is constant in the long-run volatility component equation (5) while ߛ
long-run variable (e.g., UCT). Different from equation (5), equation (7) uses ߠ_        and ߠ_௡௘௚ for the effect of positive and negative 
shock from the long-run variable. We follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation (6) and (11). 
Therefore,ݓଶ  reflects the influence of UCT on long-term correlation in equation (6), while ݓଶ_௣௢௦  and ݓଶ_௡௘௚  captures the 
asymmetric effect in the long-run component in equation (11). 
 
 



Table 3: Conditional volatility of SSE A Share with UCT 
Coef GARCH-MIDAS DAGARCH-MIDAS 

Std-t Skew-t Std-n Std-t Skew-t Std-n 
 ***0.178 ߙ

(0.069) 
0.145*** 
(0.056) 

0.210*** 
(0.082) 

0.149*** 
(0.058) 

0.148*** 
(0.057) 

0.191** 
(0.097) 

 ***0.821 ߚ
(0.319) 

0.838*** 
(0.325) 

0.782*** 
(0.304) 

0.842*** 
(0.327) 

0.834*** 
(0.324) 

0.802*** 
(0.311) 

 0.015  ߛ
(0.009)   0.016 

(0.010)  
m -0.460*** 

(0.179) 
-5.588*** 

(2.169) 
-5.160*** 

(2.003) 
-5.605*** 

(2.176) 
-5.595*** 

(2.172) 
-5.339*** 

(2.073) 
 **0.023 ߠ

(0.012) 
0.003 

(0.002) 
0.002 

(0.001)    
_ߠ           0.005** 

(0.003) 
0.000 

(0.000) 
0.007 

(0.004) 
 ௡௘௚    0.001_ߠ

(0.001) 
0.004 

(0.002) 
-0.012 
(0.007) 

 **ଶ 1.012ݓ
(0.516) 

13.564*** 
(5.266) 

10.145 
(6.168)    

ଶ_௣௢௦ݓ     21.349 
(12.979) 

1.009 
(0.613) 

16.044 
(9.754) 

 ଶ_௡௘௚    8.447ݓ
(5.135) 

6.814 
(4.143) 

1.335* 
(0.787) 

LLF -4101.912 -3203.111 -4188.963 -4193.222 -3197.021 -4196.832 
AIC 8230.588 6438.362 8388.558 8402.449 6415.425 8415.055 
BIC 8262.873 6465.266 8436.986 8445.496 6453.091 8452.721 

Sample 
Period 1993-06-03/2024-02-29(Obs.:1605) 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility, while 
 captures the effect of ߠ captures the asymmetric effect; m is constant in the long-run volatility component equation (5) while ߛ
long-run variable (e.g., UCT). Different from equation (5), equation (7) uses ߠ_        ௡௘௚ for the effect of positive and negative_ߠ     
shock from the long-run variable. We follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation (6) and (11). 
Therefore,ݓଶ  reflects the influence of UCT on long-term correlation in equation (6), while ݓଶ_௣௢௦  and ݓଶ_௡௘௚  captures the 
asymmetric effect in the long-run component in equation (11). 
 
 

Table 4: Conditional volatility of CSI300 with UCT 
Coef GARCH-MIDAS DAGARCH-MIDAS 

Std-t Skew-t Std-n Std-t Skew-t Std-n 
 ***0.098 ߙ

(0.038) 
0.113*** 
(0.044) 

0.102*** 
(0.040) 

0.094*** 
(0.036) 

0.233*** 
(0.090) 

0.095*** 
(0.037) 

 ***0.883 ߚ
(0.343) 

0.889*** 
(0.345) 

0.879*** 
(0.341) 

0.889*** 
(0.345) 

0.697*** 
(0.271) 

0.889*** 
(0.345) 



 *0.135   0.00096-  ߛ
(0.080)  

m -6.902*** 
(2.680) 

-6.982*** 
(2.711) 

-6.891*** 
(2.675) 

-7.073*** 
(2.746) 

-0.739 
(0.449) 

-7.115*** 
(2.762) 

 0.003 ߠ
(0.002) 

0.003 
(0.002) 

0.002 
(0.001)    

_ߠ           0.008** 
(0.004) 

-0.157*** 
(0.061) 

0.008* 
(0.005) 

 ௡௘௚    -0.009_ߠ
(0.005) 

0.132*** 
(0.051) 

-0.011 
(0.007) 

 ***ଶ 7.445ݓ
(2.890) 

9.741 
(5.922) 

11.634*** 
(4.517)    

ଶ_௣௢௦ݓ     17.290 
(10.512) 

1.001*** 
(0.389) 

18.563 
(11.286) 

 **ଶ_௡௘௚    1.474ݓ
(0.752) 

1.006** 
(0.513) 

1.539*** 
(0.597) 

LLF -2542.251 -1986.842 -2542.392 -2542.592 -1987.472 -2541.583 
AIC 5100.51 3989.683 5100.796 5101.191 3990.94 5099.166 
BIC 5129.724 4014.028 5144.618 5135.274 4025.023 5138.118 

Sample 
Period 2005-09-29/2024-02-29(#Obs:962) 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility, while 
 captures the effect of ߠ captures the asymmetric effect; m is constant in the long-run volatility component equation (5) while ߛ
long-run variable (e.g., UCT). Different from equation (5), equation (7) uses ߠ_        ௡௘௚ for the effect of positive and_ߠ     
negative shock from the long-run variable. We follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation 
(6) and (11). Therefore,ݓଶ reflects the influence of UCT on long-term correlation in equation (6), while ݓଶ_௣௢௦  and ݓଶ_௡௘௚  
captures the asymmetric effect in the long-run component in equation (11). 
 
4.2 The effect of UCT on the long-run correlation between US and China stock indices  
In this section, we first analyze the impact of UCT on the long-term correlation between US and 
Chinese stock index returns. Furthermore, the sample period is divided using the US-China trade 
war as a demarcation point to explore UCT’s impact on the correlations between Chinese and US 
stock indices. To account for the multi-tiered structure of China’s capital market, the STAR Market 
Index, the large-cap blue-chip index, and the SME Index are also included in the analysis. 
 
 



4.2.1 The effect of UCT on the long-run correlation between US and China stock indices 
We analyze the impact of UCT on the long-term correlation between US and Chinese stock indices. 
We include four lagged values of UCT into the MIDAS regression for the long-run correlation, 
i.e., L = 4 in Eq. (11). As shown in Table 5, the parameters β and ݓଶ are significant. The DCC-
DAGARCH-MIDAS (skew-t) model performs best for both S&P500 and SSE A Share, S&P500 
and CSI300. α and β describe the dynamics of short-term correlation between assets, while ݓଶ 
reflects the influence of UCT on long-term correlation. In the DCC model, the sum of α and β 
approaches 1, indicating that the quasi-correlations are mean-reverted. A larger β suggests stronger 
persistence in the correlation between the returns of the two stock indices. It reflects that the 
correlation tends to stabilize over time. ݓଶ  controls the relationship between low-frequency 
variable (UCT) and long-term correlation. Table 5 also shows that the low-frequency variable (i.e. 
monthly UCT) has a significantly positive impact on the long-term correlation between high-
frequency (i.e. daily) stock index returns, which implies that US-China Tension raises the 
correlation of returns between the two stock markets, and this can be attributed to several economic 
mechanisms. 
First, a rising UCT represents heightened geopolitical risk, which amplifies global market 
uncertainty and leads to stronger co-movement across markets during crises, as noted by Forbes 
& Rigobon (2002). Second, UCT-driven policy uncertainty affects both the US and Chinese 
economies through trade disruptions, supply chain risks, and monetary policy adjustments, which 
is consistent with Pastor and Veronesi (2012). Third, global investor sentiment becomes more 
synchronized during periods of geopolitical tension, resulting in correlated capital flows and risk 
repricing, as discussed by Baele et al. (2010). Fourth, UCT-induced shocks to multinational 
corporations, such as US firms reliant on Chinese supply chains and Chinese exporters that are 
dependent on US demand, generate shared economic impacts that increase the market stock 
linkage between the US and China (Ramelli & Wagner, 2020). Finally, the US dollar’s role as a 
global financial intermediary amplifies these dynamics, as its fluctuations affect liquidity and risk 
pricing in both markets, aligning with Bruno &Shin (2015). These factors collectively explain why 
rising UCT strengthens the correlation between US and Chinese equity markets. 
 
 



Table 5: Estimated results of DCC-MIDAS for US and China stock indices with the effect of 
UCT 

Coef. DCC-GARCH-MIDAS DCC-DAGARCH-MIDAS 
Std-t Skew-t Std-n Std-t Skew-t Std-n 

Panel A:S&P500 & SSE A Share 
 0.003 ߙ

(0.002) 
0.004 

(0.002) 
0.004 

(0.002) 
0.003 

(0.002) 
0.006 

(0.004) 
0.006 

(0.004) 
 ***0.993 ߚ

(0.386) 
0.993*** 
(0.386) 

0.993*** 
(0.386) 

0.993*** 
(0.386) 

0.992*** 
(0.385) 

0.992*** 
(0.385) 

 ***ଶ 8.052ݓ
(3.126) 

9.313*** 
(3.616) 

7.873*** 
(3.056) 

7.527 
(4.576) 

7.178*** 
(2.787) 

2.338 
(1.421) 

LLF -3228.251 -3201.862 -3200.333 -3207.801 -3193.981 -3206.472 
AIC 6472.502 6419.720 6416.658 6431.592 6403.958 6428.934 
BIC 6488.645 6453.863 6432.801 6447.735 6420.101 6445.077 

Sample 
Period 1993-06-03/2024-02-29(#Obs.:1605) 

Panel B:S&P500&CSI300 
 0.006 ߙ

(0.004) 
0.142* 
(0.084) 

0.012 
(0.007) 

0.011 
(0.007) 

0.022 
(0.013) 

0.013 
(0.008) 

 ***0.992 ߚ
(0.385) 

0.856*** 
(0.332) 

0.986*** 
(0.383) 

0.988*** 
(0.384) 

0.977*** 
(0.379) 

0.986*** 
(0.383) 

 ***ଶ 2.184ݓ
(0.848) 

2.644 
(1.607) 

2.218 
(1.348) 

3.806** 
(1.942) 

4.800*** 
(1.863) 

2.401 
(1.460) 

LLF -1937.601 -1903.862 -1926.883 -1943.182 -1006.903 -1905.843 
AIC 3891.208 3823.724 3869.762 3902.36 2029.804 3827.682 
BIC 3905.815 3838.331 3884.369 3916.967 2044.411 3824.289 

Sample 
Period 2005-09-29/2024-02-29(#Obs.:962) 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility. We 
follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation (6) and (11). Therefore, ݓଶ reflects the influence 
of UCT on long-term correlation in equation (6). 
4.2.2 Subsample Analysis Based on the Division of the US-China Trade War  
Here, we consider the US-China Trade war instead of the US-China Tension index. The US-China 
trade war can amplify the impact of the US-China Tension (UCT) index on the long-term 
correlation between CSI300 and S&P500 returns based on the following several mechanisms. 
First, the trade war exacerbates shared economic shocks, such as disrupted supply chains and 
reduced trade flows, increasing market co-movement (Forbes & Rigobon, 2002). Second, 



heightened policy uncertainty during the trade war affects risk pricing in both markets, consistent 
with Pastor & Veronesi (2012). Third, multinational corporations, such as US tech firms reliant on 
Chinese supply chains and Chinese exporters dependent on US markets, experience similar 
profitability shocks, aligning with Ramelli & Wagner (2020). Fourth, currency fluctuations act as 
a transmission channel, where trade tensions drive synchronized movements in the US dollar and 
Chinese yuan, amplifying stock market correlations (Bruno & Shin, 2015). Finally, the trade war 
intensifies global systemic risk, leading to tail risk contagion across markets (Longin & Solnik, 
2001). These mechanisms collectively explain why UCT’s influence on long-term stock market 
correlations strengthens during the trade war. 
To investigate the impact of UCT on long-term volatility and dynamic correlations of stock market 
indices in China and the US, the sample is split into two subsamples: pre-trade war (Subsample 1) 
and post-trade war (Subsample 2), using the onset of the US-China trade war on March 22, 2018 
as the dividing point. Subsample regression analysis is then performed. Based on prior model 
comparisons, the DCC-DAGARCH-MIDAS (Skew-t) model, identified as the best performing 
approach, is employed for fitting. We plot the short-term and long-term dynamic correlations 
between the U.S and China stock index returns, as well as the fluctuations of the UCT index, as 
shown in Figures 2(a) and 2(b). The red line represents the long-term dynamic correlation, the 
green line represents the short-term dynamic correlation, and the blue line displays the fluctuations 
of the UCT. Figure 2(b) shows that after the onset of the US-China trade war (marked by the 
dashed line), UCT drove a significant increase in the long-term correlation of returns between 
China (CSI300) and the US stock market indices. 
Table 6 displays the subsample regression results for SP500 & SSE A Share and SP500 &CSI300. 
The fitted parameter ݓଶ for both indices are statistically significant before and after the trade war, 
with notable differences in magnitude. To clarify the implications of this parameter, smoothing 
functions for SSE A Share and CSI300 indices are plotted in Figures 3(a) and 3(b), respectively. 
The figures indicate that before the trade war, UCT influenced the correlation between Chinese 
and US stock indices over a longer lag period (up to three lags), demonstrating the strong 
explanatory power of long-term UCT. After the trade war began, heightened US-China tensions 
induced higher instability in the dynamic correlations, which are primarily influenced by the most 
recent lag of UCT. This suggests that during the trade war period, UCT from distant lags lost its 



explanatory power for current correlations between Chinese and US stock indices. This 
phenomenon reflects a shift in market response towards short-term dynamics under heightened 
tension. In other words, escalating US-China tensions made the correlation between stock indices 
more immediately reactive to UCT shocks. During the trade war—a period of high uncertainty—
UCT, as an indicator of US-China tension, directly shaped investors’ risk perceptions. The trade 
war serves as a significant indication of the escalation of the Sino-US confrontation. Following 
the outbreak of the trade war, a new phase of even more strained Sino-US relations has emerged. 
In an environment of highly uncertain policies, frequent information shocks have occurred, and 
investors have attached more attention to short-term information (Shi et al., 2021; Tang & Wan, 
2022). According to the noise trading theory, under high uncertainty, investors prioritize the most 
recent information for decision-making (Da et al., 2015; Delong et al., 1990).  

 
(a) The short-term and long-term dynamic correlation between S&P 500 and SSE A Share, 

and the fluctuation of the UCT index 



 
(b) The short-term and long-term dynamic correlation between S&P 500 and Shenzhen, and 

the fluctuation of the UCT index 
 
Figure 2: The short-term and long-term dynamic correlation between S&P 500 and SSE A share, 

and the fluctuation of the UCT index 
 
Meanwhile, previous studies have demonstrated that during periods of heightened policy 
uncertainty, the effects of short-term information shocks is also magnified (Baker et al., 2016; 
Bloom, 2009). Therefore, under the combined influence, investors in both countries have become 
more sensitive to the events of the deterioration of Sino-US relations.  

Table 6: Subsample Estimated results of DCC-DAGARCH-MIDAS for US stock index and 
China stock index (SSE A Share or CSI300) with the effect of UCT 

Coef. DCC-DAGARCH-MIDAS(Skew-t) 
Panel A: S&P500&SSE A Share 

Sample  
Period 

Sub-sample1(Before trade war) 
 1993-06-03/2018-03-22 

(#Obs.:1295) 

Sub-sample2(Post trade war) 
2018-03-29/2024-02-29 

(#Obs:310) 

Full-sample 
1993-06-03/2024-02-29 

(#Obs.:1605) 
 0.007 ߙ

(0.004) 
0.001 

(0.001) 
0.006 

(0.004) 



 ***0.992 ߚ
(0.385) 

0.946*** 
(0.367) 

0.992*** 
(0.385) 

 ***ଶ 2.083ݓ
(0.809) 

4.328** 
(2.208) 

7.178*** 
(2.787) 

LLF -2604.382 -628.029 -3193.981 
AIC 5214.764 1262.058 6403.958 
BIC 5230.263 1273.268 6420.101 

Panel B: S&P500&CSI300 

Sample  
Period 

Sub-sample1(Before trade war) 
2005-09-29/2018-03-22 

(#Obs.: 652)  

Sub-sample2(Post trade war) 
2018-03-29/2024-02-29 

(#Obs.:310) 

Full-sample 
2005-09-29/2024-02-29 

(#Obs.:962) 

 0.017 ߙ
(0.010) 

0.001 
(0.001) 

0.022 
(0.013) 

 ***0.982 ߚ
(0.381) 

0.945*** 
(0.367) 

0.977*** 
(0.379) 

 ***ଶ 1.394ݓ
(0.541) 

7.828*** 
(3.039) 

4.800*** 
(1.863) 

LLF -1328.881 -628.825 -1006.903 
AIC 2663.762 1263.65 2029.804 
BIC 2677.202 1274.86 2044.411 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility. We 
follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation (6) and (11). Therefore ݓଶ reflects the influence 
of UCT on long-term correlation. 
4.2.3 The Dynamic Correlations in China’s Multi-Tiered Capital Market 
To extend the analysis of UCT’s impact on dynamic correlations, we consider the multi-tiered 
structure of China’s capital market. Instead of the SSE A Share Index and CSI300 index, we use 
the STAR 50 Index (representing the STAR Market), SSE 180 Index (large-cap blue-chip stocks), 
and SME Index (small and medium-sized enterprises). The STAR 50 Index represents the STAR 
Market on the Shanghai Stock Exchange. It comprises 50 leading tech innovation firms with high 
market capitalization and liquidity, reflecting the performance of China’s technology sector. The 
SSE 180 Index includes 180 large-cap, highly liquid companies listed on the Shanghai Stock 
Exchange, representing mature blue-chip Chinese stocks across sectors like finance, energy, and 



consumer goods. The SME Index primarily consists of SMEs with high growth potential, listed on 
the Shenzhen Stock Exchange. 

(a) SSE A Share Beta Smoothing Function (b) CSI300 Beta Smoothing Function 
Figure 3: Beta Smoothing Function of SSE A & CSI300 

 
In line with the previous analysis, we apply the DCC-DAGARCH-MIDAS (Skew-t) model with a 
lag order of 4, and the results are summarized in Table 7. The correlation model shows that the 
sum of estimated coefficients α and β is close to 1, indicating mean-reversion in the correlation 
between Chinese and US indices. The ݓଶ  for SSE 180 and SME indices are significant, 
demonstrating that UCT substantially affects the dynamic correlation between Chinese and US 
indices, with the strongest influence at a one-period lag.  

Table 7: Estimated results of DCC-DAGARCH-MIDAS for US and China stock indices with 
the effect of UCT 

Coef. DCC-DAGARCH-MIDAS(Skew-t) 
STAR50 SSE180 SME 

Panel A:Univariate Model 
 0.001 ߙ

(0.001) 
0.128*** 
(0.050) 

0.118*** 
(0.046) 

 ***0.906 ߚ
(0.352) 

0.870*** 
(0.338) 

0.864*** 
(0.335) 

 **0.174 ߛ
(0.089) 

-0.004 
(0.002) 

-0.009 
(0.005) 



m 3.215*** 
(1.248) 

4.168*** 
(1.618) 

2.686*** 
(1.043) 

_ߠ        0.013 
(0.008) 

-0.001 
(0.001) 

0.005 
(0.003) 

 ௡௘௚ 0.011_ߠ
(0.007) 

0.001 
(0.001) 

-0.002 
(0.001) 

 ଶ_௣௢௦ 1.002ݓ
(0.609) 

1.107 
(0.673) 

1.111 
(0.675) 

 ଶ_௡௘௚ 1.660ݓ
(1.009) 

11.940 
(7.259) 

1.979** 
(1.010) 

Panel B:Correlation Model 
α 0.001 

(0.001) 
0.017 

(0.010) 
0.007 

(0.004) 
β 0.990*** 

(0.384) 
0.980*** 
(0.380) 

0.992*** 
(0.385) 

 ଶ 1.617ݓ
(0.983) 

2.396*** 
(0.930) 

2.488*** 
(0.966) 

LLF -360.609 -2755.244 -1979.448 
AIC 727.218 5516.488 3964.896 
BIC 736.934 5532.314 3979.553 

Sample 
Period 

2020-07-23/2024-02-29 
(#Obs:189) 

1996-07-04/2024-02-29 
(#Obs:1444) 

2005-06-09/2024-02-29 
(#Obs:978) 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility, while 
 captures the effect of ߠ captures the asymmetric effect; m is constant in the long-run volatility component equation (5) while ߛ
long-run variable (e.g., UCT). Different from equation (5), equation (7) uses ߠ_        ௡௘௚ for the effect of positive and negative_ߠ     
shock from the long-run variable. We follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation (6) and (11). 
Therefore,ݓଶ  reflects the influence of UCT on long-term correlation in equation (6), while ݓଶ_௣௢௦  and ݓଶ_௡௘௚  captures the 
asymmetric effect in the long-run component in equation (11). 
Following the previous regression analysis, subsamples are divided at the onset of the US-China 
trade war (March 22, 2018). The results are presented in Figures 4(a) and 4(b) and Table 8. The 
STAR 50 Index is excluded from the subsample analysis due to its data availability starting only 
in 2020. Figures 4(a) and 4(b) demonstrate that, similar to the CSI300, the US-China trade war 
(marked by the dashed line) significantly increases the long-term correlation in index returns 
between China and the US, driven by UCT. This indicates that the trade war substantially 
strengthened the correlation between the SSE 180 (blue-chip index) and the S&P 500, as well as 
between the SME Index and the S&P 500. 



 
(a) The dynamic correlation between S&P 500 and SSE 180, and the fluctuation of the UCT index 

 
(b) The dynamic correlation S&P 500 and SME, and the fluctuation of the UCT index 

Figure 4: The short term and long term dynamic correlation between S&P 500 and blue chip or 
SME, and the fluctuation of the UCT index 

Table 8 summarizes the subsample regression results. The ݓଶ for the SSE 180 index are significant 
before and after the trade war. In contrast, the ݓଶ values for the SME Index are insignificant before 
the trade war but become significant afterward. This suggests that the US-China trade war induced 
a significant effect of UCT on the dynamic correlation between the SME Index and the S&P 500. 
The differing responses of the SME and SSE 180 indices to the trade war may arise from 



differences in investor composition and scale effects. The blue-chip market, with more institutional 
investors and larger market capitalization, shows a relatively stable response to UCT. In contrast, 
the SME market, dominated by retail investors and smaller in scale, is less resilient to risks and 
more sensitive to policy and international changes. During the post-trade war, short-term UCT 
shocks significantly altered dynamic correlations, highlighting SMEs’ heightened sensitivity to 
policy and international uncertainties. This could be attributed to the fact that numerous SMEs 
primarily concentrate on exports and assume significant positions within the global supply chain. 
Once the trade war broke out, the Sino-US conflict predominantly manifests in the form of a trade 
conflict. Tariff barriers and export restrictions directly undermined the profitability of Chinese 
SMEs and simultaneously impacted American enterprises’ ability to obtain products from China, 
thereby giving rise to a substantial elevation in the sensitivity of the linkage between the SME 
Board market and the US market with respect to the UCT (Ramelli et al., 2021). Moreover, these 
firms frequently encounter more stringent financing constraints. The trade war magnified the role 
of US dollar liquidity as a global transmission channel. Specifically, the fluctuations of the US 
dollar driven by the UCT led to an increase in capital outflows and risk premiums for SMEs (Bruno 
& Shin, 2015). Smoothing coefficients for SSE 180 and SME indices (Figures 5(a) and 5(b)) show 
that before the trade war, the correlation between Chinese and US indices was influenced by UCT 
over three prior periods. After the trade war, UCT primarily influenced correlations during the 
most recent period, reflecting the time-varying impact of UCT under changing US-China relations. 
This result aligns with the findings for SSE A Share and CSI300 indices. This phenomenon reflects 
a shift toward short-term market responses during periods of heightened tension. As US-China 
tensions escalated, stock market correlations showed a stronger reaction to the most recent UCT 
shock, indicating a shift toward more immediate and short-horizon. 

Table 8: Subsample Estimated results of DCC-DAGARCH-MIDAS for US and China stock 
indices (SSE180 and SME) with the effect of UCT 

Coef. DCC-DAGARCH-MIDAS(Skew-t) 
Panel A:S&P500&SSE180 

Sample 
Period 

Sub-sample1(Before trade war) 
1993-07-04/2018-03-22 

Sub-sample2(Post trade war) 
2018-03-29/2024-02-29 

Full-sample 
1996-07-04/2024-02-29 



(Obs.:1134) (Obs.:310) (Obs.: 1444) 

 0.015 ߙ
(0.009) 

0.032 
(0.019) 

0.017 
(0.010) 

 0.984 ߚ
(0.598) 

0.956*** 
(0.371) 

0.980*** 
(0.380) 

 ***ଶ 1.425ݓ
(0.553) 

2.210*** 
(0.858) 

2.396*** 
(0.930) 

LLF -2185.782 -623.962 -2755.244 
AIC 4377.562 1253.921 5516.488 
BIC 4392.661 1265.132 5532.314 

Panel B:S&P500&SME 

Sample 
Period 

Sub-sample1(Before trade war) 
2005-06-09/2018-03-22 

(#Obs.: 668 ) 

Sub-sample2(Post trade war) 
2018-03-29/2024-02-29 

(#Obs.:310) 

Full-sample 
2005-06-09/2024-02-29 

(#Obs.:978) 

 0.001 ߙ
(0.001) 

0.021 
(0.013) 

0.007 
(0.004) 

 ***0.995 ߚ
(0.386) 

0.974*** 
(0.378) 

0.992*** 
(0.385) 

 ଶ 1.004ݓ
(0.610) 

2.860*** 
(1.110) 

2.488*** 
(0.966) 

LLF -1365.905 -635.237 -1979.448 
AIC 2737.810 1276.474 3964.896 
BIC 2751.323 1287.684 3979.553 

Note: ߙ and ߚ are the coefficients of the volatility equation (4) which capture the clustering effect stylized fact in volatility. We 
follow Engle et al. (2008) and Colacito et al. (2011) and set ݓଵ = 1 in equation (6) and (11). Therefore, ݓଶ reflects the influence 
of UCT on long-term correlation in equation (6). 
 



  
(a) SSE180 Beta Smoothing Function (b) SME Beta Smoothing Function 

Figure 5: Beta Smoothing Function of SSE180 and SME 
 

5 Conclusion 
This study analyzes how US-China tensions, represented by the US-China Tension (UCT) index, 
affect long-term correlations and volatilities of stock indices in both countries using the DCC-
DAGARCH-MIDAS (Skew-t) model, which provides a refined econometric structure that jointly 
models asymmetric short-term volatility, macroeconomically-driven long-term variance 
components, and dynamic cross-market correlations. 
The key findings are as follows: Firstly, UCT exerts a significant and positive influence on the 
long-term correlations between US and Chinese stock indices, especially during the trade war, 
leading to stronger and more persistent correlations. Secondly, in periods of heightened 
geopolitical uncertainty, correlations become highly sensitive to short-term UCT shocks, aligning 
with the noise trading theory. Thirdly, in China’s multi-tiered capital market, blue-chip indices 
such as SSE 180 respond relatively in a stable way, while SME and technology indices such as the 
SME Index and STAR50 are more vulnerable to geopolitical risks due to differences in investor 
composition and market scale. Finally, the subsample analysis based on the trade war indicates a 
significant change in the dynamics of correlation, with UCT’s impact being more apparent through 
recent lags after the war, reflecting an increased market sensitivity. 



These findings emphasize geopolitical tensions as key drivers of market behavior in US and China, 
stressing the importance of robust risk management and offer valuable insights for both investors 
and policymakers. Investors are advised to dynamically adjust global portfolios in response to 
rising US-China tensions, as such, tensions significantly increase cross-market correlations and 
reduce diversification benefits. Special attention should be given to short-term UCT shocks, which 
trigger immediate market responses. Within China’s capital market, allocating more to stable blue-
chip indices while cautiously approaching SME and tech sectors can help manage risk. Ultimately, 
incorporating geopolitical risk into investment strategies is essential for maintaining resilience and 
capturing potential rebound opportunities as tensions subside. As for policymakers, they should 
closely monitor the impact of geopolitical tensions on financial markets and formulate appropriate 
policies to maintain market stability, such as providing support and guidance to SMEs to enhance 
their resilience to external shocks. 
In conclusion, integrating an advanced econometric approach with detailed market analysis, this 
study enhances our understanding of how geopolitical risks affect the volatility of financial 
markets and their dynamic correlation.  
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