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Abstract 
The objective of this paper is to forecast volatilities of the stock returns of China, France, 
Germany, Italy, Spain, the United Kingdom (UK), and the United States (US) over the daily 
period of January 2010 to February 2025 by utilizing the information content of newspapers 
articles-based indexes of supply bottlenecks. We measure volatility by employing the 
interquantile range, estimated via an asymmetric slope autoregressive quantile regression fitted 
on stock returns to derive the conditional quantiles. In the process, we are also able to obtain 
estimates of skewness, kurtosis, lower- and upper-tail risks, and incorporate them into our 
linear predictive model, alongside leverage. Based on the shrinkage estimation using the Lasso 
estimator to control for overparameterization, we find that the model with moments outperform 
the benchmark model that includes both own- and cross-country volatilities, but the 
performance of the former, is improved further when we incorporate the role of the metrics of 
supply constraints for all the 7 countries simultaneously. These findings carry significant 
implications for investors. 
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1. Introduction 
In the wake of the COVID-19 pandemic, which resulted in severe supply disruptions, a recent 
line of research has depicted that the effect of supply chain bottlenecks goes beyond the 
macroeconomic impacts of higher inflation and lower output (Diaz et al., 2023; Asadollah et 
al., 2024; Ascari et al., 2024; Tillmann, 2024, Ginn and Saadaoui, 2025a), and adversely 
impacts financial market performance in terms of decline in equity prices and leverage (see, 
for example, Hupka (2022), Smirnyagin and Tsyvinski (2022), Burriel et al. (2024), Ginn 
(2024) and Ginn and Saadaoui (2025b)).1  
We aim to add to this strand of research on financial markets, by analysing the ability of the 
recently developed, by Burriel et al. (2024),  daily newspaper articles-based supply bottlenecks 
indexes (SBIs) in forecasting stock market volatilities of China, France, Germany, Italy, Spain, 
the United Kingdom (UK), and the United States (US), over the period of January 2010 to 
February 2025.  
In this regard, we analyze the role of own, as well as, cross-country or SBIs, while accounting 
for spillover of not only volatility across these equity markets, but also their associated 
moments, i.e., leverage, skewness, kurtosis, lower and upper tail risks, as highlighted by Foglia 
et al. (2025a, b). Note that, recent studies (see, for example, Mei et al. (2017), Zhang et al. 
(2021), Bonato et al. (2022, 2023)) have highlighted the importance of moments in predicting 
stock returns volatility equally well or even better than traditional predictors, since these price-
based factors inherently incorporate information about extreme movements of macroeconomic 
and financial variables, reflecting investor sentiment and uncertainties.  
To econometrically conduct our analysis, we firstly employ the asymmetric slope 
autoregressive quantile regression model of Engle and Manganelli (2004) on the stock returns 
to obtain a robust estimate of the corresponding volatility as an inter-quantile range from the 
conditional quantiles of the univariate framework. A further advantage of this approach is that 
we are also able to compute, from the estimated conditional quantiles, the abovementioned 
additional stock market moments such as, skewness, kurtosis, lower- and upper-tail risks, 
which, along with leverage (i.e., negative only stock returns), serve as our control variables.  
Then secondly, we utilized a linear predictive regression for volatility, but estimated using the 
popular least absolute shrinkage and selection operator (Lasso) estimator  of Tibshirani (1996), 
given that our forecasting models, over rolling-windows of 250 days (i.e., 1 year), can contain 
between 22 to 64 predictors, associated with own- and cross-country lags of volatility, 
moments, and SBIs. 
At this stage, it is important to discuss the theoretical channel that can be used to hypothesize 
the causal relationship from supply bottlenecks to stock market volatility of our analysis by 
realizing that the SBI resulting from not only strikes and price controls but also geopolitical 
risks, natural (climate-related) disasters, pandemics, and even trade wars, tend to act as a 
“catch-all” empirical proxy for rare disasters (Caldara et al., 2025; Polat et al., 2025). Given 
this, we derive our empirical predictive link from SBI to stock returns volatility based on the 
studies of Wachter (2013) and Tsai and Wachter (2015). These two papers develop theoretical 
models in which aggregate consumption in general follows a low-volatility normal distribution, 
but there exists a positive probability of events that cause, so-called, far-out-in-the-left-tail 
realizations of consumption and output. To put differently, these models capture the risk 
associated with rare disaster events. The possibility of such an extreme outcome not only 
                                                             
1 In this regard, these papers can be considered to be building on the works of Hendricks and Singhal (2003, 
2005a, b) and Baghersad and Zobel (2021), who using pre-COVID-19 data associated supply chain constraints 
with movements in shareholder value, equity risk and value, revenue, operating income, and returns on sales. 
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substantially reduces stock returns and raises the equity premium, but also produces high stock-
market volatility due to the time-variation in the probability of such a disaster. Besides, with 
SBIs known to negatively influence macroeconomic variables in the form of higher inflation 
and lower output, which, in turn, considered to be important state variables for asset prices 
(Schwert, 1989), would convey “bad news” for financial markets, and is likely to increase the 
risk profile of equities and hence, raise its volatility (Engle et al., 2013).2  
Given that the volatility of stock returns serve as a key input for portfolio and hedging 
decisions, and that accurate forecasts are critical for the effectiveness of portfolio and risk 
management strategies as well as the pricing of derivative securities (Rapach et al., 2008), such 
an empirical exercise should be of pertinent importance to investors, beyond its academic 
value. To the best of our knowledge, this is the first to analyze the forecasting ability of SBIs 
for international stock returns volatility using a (linear) machine learning approach. In the 
process, our paper can be considered to be an out-of-sample extension of the work of Bouri et 
al. (2025), who provide evidence of in-sample predictability for the conditional distribution of 
(returns and) volatility of these 7 stock markets, using a bivariate causality-in-quantiles-based 
model. But as is quite well-discussed (see, for example, Rapach and Zhou (2022), Goyal et al. 
(2024)) in-sample predictability of stock price movements does not necessarily translate into 
out-of-sample forecasting gains, with the latter being a relatively more robust test of 
predictability. In light of this, we add to the enormous strand of literature that offers a wide-
array of linear and nonlinear models in univariate and multivariate settings to model and 
forecast international stock market volatility (see, Poon and Granger (2003), Corsi et al. (2012), 
Bhowmik and Wang (2020), Dhingra et al. (2024) for detailed reviews).  
In order to get to our empirical findings, we organize the rest of the paper as follows. In Section 
2, we provide a description of the data that we use in our study, while we outline our 
methodology and empirical results in Section 3, and then conclude in Section 4. 

2. Data 
We use the daily SBI, developed by Burriel et al. (2024), for China, France, Germany, Italy, 
Spain, the UK and the US, as our main predictor variable.3 To develop the SBI index, Burriel 
et al. (2024) rely on counting the relative frequency of the number of newspaper articles 
belonging to two groups. The first one involves the topic of supply chains (such as “supply 
chain, supply chains, supply, supplies”), while the second group includes terms reflecting a 
negative tone or the existence of problems or disruptions (such as “bottleneck, bottlenecks, 
shortage, shortages, woe, woes, disruption, disruptions, problem, problems, scarcity, scarcities, 
lack, delay, delays, backlog, backlogs”). For the article to be identified as reflecting supply 
                                                             
2 Using quantile regressions-based analyses, Ullah et al. (2025) have depicted a negative effect of supply 
constraints (captured by the Global Supply Chain Pressure Index (GSCPI) of Benigno et al. (2022)) on sentiments, 
which, in turn, from a behavioural perspective, is also known to increase stock market volatility (Gupta et al., 
2023). Regressing the first principal component of metrics of sentiments, as created by Ahir et al. (2022), derived 
from monthly data for 71 countries over 2008:01 to 2025:05, and quarterly data for 143 economies covering 
1998:01 to 2025:01, we found a negative and statistically significant relationship from the GSCPI primarily at 
lower and, to some extent upper quantiles of the monthly and quarterly factors. Specifically speaking for the 
former, the t-statistics were -2.19961, -3.2609, -3.1364, and -1.8306 for quantiles 0.10, 0.15, 0.20 and 0.95, 
respectively, and for the latter the same were -3.4174, -3.4426, -1.7874, and -1.8050 at quantiles 0.05, 0.10, 0.15 
and 0.80, respectively. The relationship was, however, negative over the entire conditional distributions of the 
monthly and quarterly factors. Complete details of these results are available upon request from the authors. Note 
that, the GSCPI can be downloaded from: https://www.newyorkfed.org/research/policy/gscpi, while the sentiment 
data is available at: https://worlduncertaintyindex.com/data/.     
3 The SBIs are available for download from: https://www.bde.es/wbe/en/areas-actuacion/analisis-e-
investigacion/recursos/indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html. 
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chain-related concerns, a word from each one of the two groups must be present within a range 
of 10 words.4 In the process, the SBIs offer a unique and timely (real-time) way of measuring 
supply chain disruptions from media sources. 
We also use the corresponding daily stock indexes, i.e., the SHCOMP, the CAC 40, the DAX, 
the FTSEMIB, the IBEX 35, the FTSE 100, and the S&P 500 for China, France, Germany, 
Italy, Spain, the UK and the US, respectively, with these indexes obtained from the Bloomberg 
terminal. After we compute the log-returns of the stock market indexes, they are subsequently 
fitted to the autoregressive quantile regression of Engle and Manganelli (2004), given by: 
ܳ(ݕ௧) = ߚ  + (௧ିଵݕ)ଵߚ + ௧ିଵݕ)௧ିଵΠݕଶߚ > 0) + ௧ିଵݕ)௧ିଵΠݕଷߚ < 0). This asymmetric 
slope model allows for a different, but persistent, impact of past observations on the respective 
quantiles, depending on whether they lie above or below the unconditional mean of the series. 
This permits an asymmetric impact of contractions and expansions in stock returns on the 
different quantiles, such that a bearish (bullish) market can affect downside (upside) risk 
without necessarily affecting upside (downside) risk. Once we obtain the fitted values of stock 
log-returns (ܳ௧ ) for each of the 7 countries at the conditional quantiles, i.e., p = 0.01, 0.05, 
0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99, we, along with leverage (LEV) —  a time series 
involving the days that correspond to only negative raw (i.e., unfitted) stock log-returns, obtain 
our estimates of lower (LTR)- and upper (UTR)-tail risks, skewness (SKEW) and kurtosis 
(KURT), to forecast our metric of oil log-returns volatility, namely the inter-quantile range 
(IQR). In line with Gupta et al. (2023), note that, IQR = ܳ௧.ଽ − ܳ௧.ଵ ; LTR = ܳ௧.ହ ; UTR = 
ܳ௧.ଽହ ; SKEW= (ܳ௧.ଽ + ܳ௧.ଵ − 2ܳ௧.ହ )/(ܳ௧.ଽ − ܳ௧.ଵ ), and; KURT = (ܳ௧.ଽଽ − ܳ௧.ଵ )/
(ܳ௧.ହ − ܳ௧.ଶହ ).  
Given the common starting point of the SBI indexes, our analysis spans the period of 15th 
January 2010 to 28th February 2025, with the untransformed SBIs used as predictors, over and 
above the stock market moments.  

3. Forecasting Model and Results 
Our predictive regression model is specified as follows: 
௧ାܴܳܫ = ܿ + ܼ௧ᇱߛ + ϵ௧ା          (1) 
where h denotes the forecast horizon (in months); IQRt+h denotes the average of volatility 
between periods of time t and t + h, with volatility being captured by the inter-quantile range 
(IQR) obtained from the estimated quantiles of the asymmetric slope autoregressive quantile 
regression; Zt is the vector of our predictors, which vary according to the models under 
consideration, and are described below; ϵ௧ା denotes the usual disturbance term, and; c denote 
the constant, i.e., the conditional mean of IQRt+h, and; γ is a vector of coefficients in Rn, 
corresponding to Zt involving n predictors, that needs to be estimated. 
As far as our benchmark model (M1) is concerned, Xt includes 3 lags of IQRt of each of the 7 
stock markets, chosen based on the Akaike Information Criterion (AIC), to account for 
volatility interconnectedness. Model 2 (M2) builds on M1 by including LEV, SKEW, KURT, 
LTR and UTR of not only the particular stock market volatility that we are forecasting, but also 

                                                             
4 In the case of the European countries, Burriel et al. (2024) relied on native speakers to translate the words to 
national languages, while the index for China is based on news from international and domestic sources that are 
in English.  
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those of the remaining 6. Model 3 (M3) add own-country SBI to the predictors in M2, while 
M4 extends the covariate set of M3 by including the other-country SBIs. 
Given the above set-up, M1, M2, M3, and M4 contain 22, 57, 58 and 64 predictors, and with 
us using a rolling-window prediction structure involving 250 daily observation each time, we 
use the popular Lasso shrinkage estimator to accommodate for the possibility of 
overparameterization and associated poor out-of-sample forecasting performance. The idea 
underlying this shrinkage estimator is to reduce the dimension of a regression model in a data-
driven manner to improve the accuracy of predictions derived from the penalized model as 
follows: 
௦௦ෟߛ = argmin ൫∑ ௧ାܴܳܫ) − ܿ − ܼ௧ᇱߛ)ଶ  + ߣ  ∑ หߛหୀଵ௧்ୀଵ ൯                 (2) 
where T denotes the number of observations used to estimate the forecasting model; λ is a 
shrinkage parameter, and; n corresponds to the number of coefficients that are subject to the 
shrinkage process. Hence, the Lasso estimator adds to the standard quadratic loss function in 
ordinary least squares (OLS) estimator a penalty term that increases in the absolute value of 
the coefficients. The Lasso estimator, thereby, shrinks a few co-ordinates towards zero, where 
the effect of this shrinking must be balanced against the resulting effect on the quadratic loss 
function. The final non-zero coefficients indicate the corresponding predictors are significant. 
As far as our forecasting set-up is concerned, we use the first 1 year as our in-sample, and then 
roll this window of 250 days forward by leaving out one initial observation till 28/02/2025-h 
to produce h =1-, 5-, 22-, 44-, and 66-day-ahead forecasts. Note that, to prevent any possibility 
of a look-ahead-bias in the derived values of SKEW, KURT, LTR and UTR, the asymmetric 
slope autoregressive quantile regression was re-estimated across the various quantiles using a 
rolling-window of 250 days as well. 
As a matter of completeness, Table A1 in the Appendix of the paper presents the Root Mean 
Square Errors (RMSEs) of model M1, as well as the RMSEs of M2, M3 and M4 relative to 
M1; M3 and M4 relative to M2, and; M4 relative to M3. However, to get a clear inference from 
our forecasting results, given the similar-sized RMSEs of M2, M3 and M4, we focus on the 
Clark and West (2007; CW) test of statistical significance of forecasts involving two nested 
competing models, as is the case with our model specifications. Recall that the number of 
predictors (specified in brackets) are increasing as we move from M1 (22) to M2 (57), M2 (57) 
to M3 (58), and M3 (58) to M4 (64). The null hypothesis posits that both models exhibit equal 
predictive performance, whereas the alternative hypothesis suggests that the competing 
(unrestricted larger) model outperforms the restricted smaller model. Hence, the CW test is a 
one-sided test, with the p-values reported in Table 1 for M2, M3 and M4 versus M1; M3 and 
M4 versus M2, and; M4 versus M3. 

 [INSERT TABLE 1] 
As can be seen from Table 1, M2, M3 and M4, with the exception of M2 and M3 for the US at 
h = 66, consistently outperforms the benchmark M1 containing lagged volatilities of all the 7 
equity markets at the 1% level of significance for each of the five forecast horizons considered. 
This suggests the importance of not only (own and cross-country) moments in forecasting 
international stock market volatility in line with the existing literature (as in, for example, Mei 
et al. (2017), Zhang et al. (2021), Bonato et al. (2022, 2023)), but also that the added 
information of own and other-country SBIs plays pertinent roles in this context as well. While 
the forecasting models with SBIs tend to outperform the benchmark which contains only lagged 
information of volatility, an important question at this stage is whether M3 outperforms M2 or 
not in a statistically significant manner, i.e., whether own supply bottlenecks contain additional 
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information over the moments of the seven countries considered simultaneously in forecasting 
individual stock returns volatility. The p-values of the CW test statistics, indicate that out of 
the maximum possible 35 cases, in 21 instances (60% of times),5 particularly at medium- to 
long-run, M3 fails to outperform M2. In other words, own- and cross-country moments tend to 
perform better than economy-specific SBIs in forecasting stock market IQR. However, when 
we also consider the role of other country SBIs in the model, i.e., M4, the performance 
improves drastically, with this model outperforming M2 in 27 out of the 35 cases,6 i.e., in 77% 
of the instances. Clearly, other country SBIs, given an interconnected supply chain system of 
the global economy, reflecting global disaster risks, is of significant importance, from a 
statistical sense, in forecasting stock returns volatility of the 7 economies considered.7 Not 
surprisingly, in 30 out of 35 cases (i.e., 86% of times), where M4 outperforms M3.8 
In sum, the information content of supply bottlenecks in forecasting the future path of stock 
market volatilities of China, France, Germany, Italy, Spain, the UK and the US matter over 
lagged volatilities and moments of these 7 markets considered simultaneously, but primarily 
when, we include cross-country SBIs in addition to its own values of the same in the forecasting 
set-up.9 In the process, to obtain reliable predictive inferences, we justify the need for out-of-
sample forecasting, and hence, go beyond the bivariate in-sample analyses conducted by Bouri 
et al. (2025), who depicted consistent statistical importance of own-country SBIs in causing 
stock market volatility of these economies.     
 
 
    
                                                             
5 Specifically, these cases are: for China at h = 5; for France at h = 22, 44, and 66; for Germany at h = 5, 22, 44, 
and 66; for Italy at h = 1, 5, 22, 44, and 66; for Spain at h = 66; for the UK at h = 22, 44, and 66, and; for the US 
at h = 5, 22, 44, and 66.  
6 The 8 cases where M4 fails to perform better than M2 are: for China at h = 5; for France at h = 66; for Germany 
at h = 5, 44, and 66; for Spain at h = 22, and 44; for the UK at h = 44, and; for the US at h = 44. 
7 In a recent (working) paper Bonato et al. (2024) has highlighted the role of supply constraints (shortages) in 
forecasting equity returns volatility relative to moments for historical monthly data spanning 1900 to 2024. Given 
this, we revisited their findings using the same specifications outlined in M1, M2, M3 and M4 described above, 
with models now including information on the predictors for not only the US, but also Canada, France, Germany, 
Japan, and the UK. Note that, choice of these other countries is driven by the availability of newspapers-based 
indexes of shortages, as developed by Caldara et al. (2025), over January 1900 to December 2024, available for 
download from: https://www.matteoiacoviello.com/shortages.html. The corresponding stock indexes ( namely, 
S&P/TSX-300, CAC-All Tradable, CDAX,, TOPIX, FTSE All Share, S&P 500 for Canada, France, Germany, 
Japan, the UK and the US) are obtained from Global Financial Database of Finaeon As can be seen from the p-
values of the CW test statistics reported in Table A2 in the Appendix, based on a 120-month rolling window for 
h = 1, 3, 6, 12 and 24, we not only confirm the findings of Bonato et al. (2024), but, consistent with our daily 
findings, also depict the statistical importance of cross-country shortages in forecasting the IQR of the US stock 
market. In addition, own shortages only are found to be relevant for Canada and France, while for Japan, results 
are along the lines of the US, but weaker.    
8 The five cases where M4 does not outperform M3 are: for China at h = 66; for Spain at h = 5, 22, and 44, and; 
for the UK at h = 44.  
9 Based on the p-values of the CW test statistics reported in Table A3 in the Appendix again with a 250 days 
rolling-window estimation, a similar story (barring at h = 44 and 66 for China) emerges, when instead of France, 
Germany, Italy and Spain individually, we consider overall Europe. In this regard, our results are based on the 
same variables and models of the IQR considered for the 7 countries now for the 4 economies and/or regions: 
China, Europe, the UK, and the US. We use of the Euro Stoxx 50 stock index for overall Europe and the SBI for 
the European Monetary Union (EMU) in our models, with the data derived from the same sources mentioned in 
the data segment. Note that, the SBI of the EMU is the average value of the same for France, Germany, Italy and 
Spain.  
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4. Conclusion 
We forecast volatilities of the stock returns of China, France, Germany, Italy, Spain, the UK, 
and the US over the daily period of January 2010 to February 2025 by utilizing the information 
content of newspapers articles-based indexes of supply bottlenecks. We measure volatility by 
employing the interquantile range, estimated through an asymmetric slope autoregressive 
quantile regression of stock returns to derive the underlying fitted quantiles. This approach also 
allows us to derive estimates of skewness, kurtosis, lower- and upper-tail risks, and incorporate 
them into our linear predictive model, alongside leverage. Based on the shrinkage estimation 
using the Lasso estimator to control for overparameterization, we find that the model with 
moments outperform the benchmark model that includes both own- and cross-country 
volatilities, but the performance of the former, is improved further when we incorporate the 
role of the metrics of supply constraints for all the 7 countries simultaneously.    
Given that forecasts of volatility are used as inputs for optimal asset-allocation decisions, our 
findings suggest that incorporating the information content of own, and in particular, cross-
country supply bottlenecks, over and above realized moments, in predictive models of volatility 
of 7 stock markets can help an investor to improve the design of portfolios across various 
investment horizons.  
As part of further research, it would be interesting to extend our analysis to a broader set of 
stock markets to generalize our findings. However, as a first step in this direction, such an 
exercise might involve the creation of the corresponding SBIs of these additional economies. 
Moreover, given that, rare disaster risks have been associated with first- and second-moment 
movements in the prices of other asset classes (Gupta et al., 2019a, b), future research can be 
pursued in relating supply constraints with overall financial stress of a set of developed and 
developing countries.10 
 
 
 
 
 
 
 
 
 
       

                                                             
10 Preliminary causality analysis involving a time series obtained from the cross-sectional maximums of Financial 
Stress Indexes (FSIs) for 110 countries, developed by Ahir et al. (2023), over the quarterly period of 1967:01-
2023:04, with the global shortages index of Caldara et al. (2025), indicated that the latter tends to (weakly) cause 
the former with a p-value of 0.0867, corresponding to a χ2(1) test statistic of 2.9350. The FSIs are available at: 
https://policyuncertainty.com/FSI.html.   
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Table 1. Clark and West (2007) forecast comparison test p-values for daily data: 15th January 
2010-28th February 2025 

  h 
 Models 1 5 22 44 66 

China 

M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M2 0.0000 0.2035 0.0000 0.0001 0.0000 
M4 vs M2 0.0000 0.0000 0.0000 0.0003 0.0014 
M4 vs M3 0.0000 0.0000 0.0000 0.0787 0.1638 

  h 
 Models 1 5 22 44 66 

France 

M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M2 0.0013 0.0025 0.5100 0.4234 0.4845 
M4 vs M2 0.0000 0.0085 0.0226 0.0778 0.1152 
M4 vs M3 0.0000 0.0579 0.0154 0.0667 0.0932 

  h 
 Models 1 5 22 44 66 

Germany 

M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M2 0.0107 0.6104 0.5794 0.9094 0.8201 
M4 vs M2 0.0002 0.1274 0.0869 0.1192 0.2378 
M4 vs M3 0.0000 0.0396 0.0093 0.0007 0.0196 

  h 
 Models 1 5 22 44 66 

Italy 

M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M2 0.8247 0.8731 0.6810 0.6726 0.8955 
M4 vs M2 0.0000 0.0214 0.0815 0.0616 0.0963 
M4 vs M3 0.0001 0.0136 0.0720 0.0546 0.0620 

  h 
 Models 1 5 22 44 66 

Spain 

M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M2 0.0001 0.0011 0.0140 0.0386 0.1085 
M4 vs M2 0.0000 0.0902 0.1212 0.2201 0.0332 
M4 vs M3 0.0000 0.2620 0.3198 0.4320 0.0750 

  h 
 Models 1 5 22 44 66 

UK 
M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
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M3 vs M2 0.0003 0.0485 0.6059 0.3453 0.5693 
M4 vs M2 0.0000 0.0006 0.0400 0.1693 0.0328 
M4 vs M3 0.0000 0.0065 0.0348 0.2181 0.0351 

  h 
 Models 1 5 22 44 66 

US 

M2 vs M1 0.0000 0.0000 0.0000 0.0104 0.1337 
M3 vs M1 0.0000 0.0000 0.0000 0.0139 0.1611 
M4 vs M1 0.0000 0.0000 0.0000 0.0118 0.0898 
M3 vs M2 0.0047 0.8392 0.5101 0.6649 0.7770 
M4 vs M2 0.0000 0.0501 0.0458 0.1057 0.0265 
M4 vs M3 0.0000 0.0047 0.0267 0.0571 0.0060 

Note: The entries in all rows are p-values of the Clark and West (2007) test of forecast comparison across two 
nested models, with the null being forecast equality, and the alternative is that the rival model outperforms the 
benchmark. h is the forecast horizon. M1 is the benchmark model of the inter-quantile range (IQR) of stock returns 
of a particular country which includes a constant and 3 lags each of own- and cross-country IQRs; M2 is M1+own- 
and cross-country moments (leverage, skewness, kurtosis, lower- and upper-tail risks); M3 is M2+own-country 
Supply Bottlenecks Index (SBI); M4 is M3+ SBI of the other countries.   
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APPENDIX 
Table A1. Root Mean Square Errors (RMSEs) for daily data: 15th January 2010-28th February 
2025 

  h 
 Models 1 5 22 44 66 

China 

M1 0.0037 0.0072 0.0114 0.0133 0.0150 
M2 vs M1 0.7727 0.9605 1.0040 0.9888 0.9933 
M3 vs M1 0.7598 0.9652 0.9993 0.9846 0.9894 
M4 vs M1 0.7575 0.9600 0.9947 0.9862 0.9909 
M3 vs M2 0.9834 1.0048 0.9953 0.9958 0.9961 
M4 vs M2 0.9804 0.9995 0.9907 0.9974 0.9976 
M4 vs M3 0.9970 0.9946 0.9954 1.0016 1.0015 

  h 
 Models 1 5 22 44 66 

France 

M1 0.0031 0.0061 0.0122 0.0147 0.0158 
M2 vs M1 0.5713 0.9212 0.9847 0.9921 0.9947 
M3 vs M1 0.5690 0.9171 0.9851 0.9922 0.9950 
M4 vs M1 0.5593 0.9196 0.9825 0.9910 0.9940 
M3 vs M2 0.9959 0.9955 1.0004 1.0001 1.0002 
M4 vs M2 0.9789 0.9983 0.9978 0.9990 0.9992 
M4 vs M3 0.9830 1.0028 0.9974 0.9988 0.9990 

  h 
 Models 1 5 22 44 66 

Germany 

M1 0.0028 0.0056 0.0114 0.0139 0.0150 
M2 vs M1 0.4746 0.9005 0.9808 0.9941 0.9948 
M3 vs M1 0.4721 0.9040 0.9817 0.9964 0.9963 
M4 vs M1 0.4676 0.9020 0.9796 0.9933 0.9946 
M3 vs M2 0.9949 1.0038 1.0009 1.0023 1.0015 
M4 vs M2 0.9852 1.0016 0.9987 0.9992 0.9998 
M4 vs M3 0.9903 0.9978 0.9978 0.9969 0.9983 

  h 
 Models 1 5 22 44 66 

Italy 

M1 0.0043 0.0084 0.0156 0.0179 0.0188 
M2 vs M1 0.5682 0.9183 0.9864 0.9953 0.9937 
M3 vs M1 0.5800 0.9214 0.9871 0.9958 0.9948 
M4 vs M1 0.5513 0.9134 0.9844 0.9928 0.9920 
M3 vs M2 1.0208 1.0034 1.0007 1.0006 1.0011 
M4 vs M2 0.9703 0.9947 0.9980 0.9975 0.9982 
M4 vs M3 0.9506 0.9913 0.9972 0.9969 0.9972 

  h 
 Models 1 5 22 44 66 

Spain 
M1 0.0030 0.0060 0.0119 0.0140 0.0147 

M2 vs M1 0.7081 0.9355 0.9795 0.9891 0.9903 
M3 vs M1 0.7087 0.9331 0.9779 0.9880 0.9897 
M4 vs M1 0.7170 0.9460 0.9807 0.9905 0.9893 
M3 vs M2 1.0009 0.9974 0.9984 0.9989 0.9994 
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M4 vs M2 1.0125 1.0112 1.0012 1.0014 0.9990 
M4 vs M3 1.0116 1.0139 1.0028 1.0025 0.9996 

  h 
 Models 1 5 22 44 66 

UK 

M1 0.0026 0.0051 0.0101 0.0121 0.0128 
M2 vs M1 0.6462 0.9398 0.9839 0.9873 0.9902 
M3 vs M1 0.6428 0.9389 0.9853 0.9875 0.9910 
M4 vs M1 0.6111 0.9369 0.9824 0.9875 0.9877 
M3 vs M2 0.9947 0.9990 1.0014 1.0001 1.0008 
M4 vs M2 0.9456 0.9969 0.9984 1.0002 0.9975 
M4 vs M3 0.9506 0.9979 0.9970 1.0001 0.9967 

  h 
 Models 1 5 22 44 66 

US 

M1 0.0034 0.0067 0.0142 0.0171 0.0181 
M2 vs M1 0.5742 0.9357 0.9933 1.0029 1.0081 
M3 vs M1 0.5749 0.9390 0.9936 1.0034 1.0087 
M4 vs M1 0.5642 0.9373 0.9922 1.0024 1.0068 
M3 vs M2 1.0013 1.0034 1.0003 1.0005 1.0006 
M4 vs M2 0.9825 1.0016 0.9989 0.9996 0.9987 
M4 vs M3 0.9813 0.9982 0.9986 0.9991 0.9981 

Note: The entries in the row named M1 is the absolute RMSEs of M1, while for the other rows the entries are 
relative RMSEs of the first named model (i) relative to (vs) the second (j), with a value less than 1 suggesting the 
former outperforms the latter. h is the forecast horizon. M1 is the benchmark model of the inter-quantile range 
(IQR) of stock returns of a particular country which includes a constant and 3 lags each of own- and cross-country 
IQRs; M2 is M1+own- and cross-country moments (leverage, skewness, kurtosis, lower- and upper-tail risks); 
M3 is M2+own-country Supply Bottlenecks Index (SBI); M4 is M3+ SBI of the other countries.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15 
 

Table A2. Clark and West (2007) forecast comparison test p-values for monthly data: January 
1900- December 2024 

  h 
 Models 1 3 6 12 24 

Canada 

M2 vs M1 0.4121 0.4110 0.3298 0.1700 0.2228 
M3 vs M1 0.2017 0.2040 0.1351 0.0433 0.0656 
M4 vs M1 0.4925 0.4887 0.3895 0.2295 0.2740 
M3 vs M2 0.0653 0.0668 0.0678 0.0785 0.0620 
M4 vs M2 0.7737 0.7684 0.7009 0.6591 0.6522 
M4 vs M3 0.8719 0.8689 0.8405 0.8119 0.8287 

  h 
 Models 1 3 6 12 24 

France 

M2 vs M1 0.0402 0.0378 0.0402 0.0405 0.0202 
M3 vs M1 0.0374 0.0356 0.0344 0.0333 0.0131 
M4 vs M1 0.0298 0.0325 0.0376 0.0320 0.0149 
M3 vs M2 0.0989 0.1203 0.0551 0.0439 0.0318 
M4 vs M2 0.1277 0.1515 0.1637 0.1368 0.1387 
M4 vs M3 0.1388 0.1644 0.2063 0.1750 0.1859 

  h 
 Models 1 3 6 12 24 

Germany 

M2 vs M1 0.6895 0.6798 0.6726 0.6651 0.6684 
M3 vs M1 0.7470 0.7417 0.7365 0.7295 0.7327 
M4 vs M1 0.6746 0.6670 0.6595 0.6488 0.6539 
M3 vs M2 0.8559 0.8596 0.8558 0.8506 0.8485 
M4 vs M2 0.1815 0.1916 0.1972 0.1984 0.1989 
M4 vs M3 0.1437 0.1438 0.1438 0.1434 0.1438 

  h 
 Models 1 3 6 12 24 

Japan 

M2 vs M1 0.0004 0.0011 0.0000 0.0001 0.0046 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0001 
M4 vs M1 0.0002 0.0003 0.0004 0.0009 0.0013 
M3 vs M2 0.1160 0.1126 0.0856 0.1056 0.0996 
M4 vs M2 0.0863 0.0984 0.0830 0.0934 0.0670 
M4 vs M3 0.0708 0.0965 0.0969 0.0950 0.0505 

  h 
 Models 1 3 6 12 24 

UK 

M2 vs M1 0.0172 0.0222 0.0425 0.0312 0.0581 
M3 vs M1 0.0253 0.0405 0.0909 0.0780 0.1597 
M4 vs M1 0.0570 0.0883 0.1639 0.1261 0.2607 
M3 vs M2 0.8073 0.9092 0.9655 0.9885 0.9943 
M4 vs M2 0.7322 0.7759 0.8163 0.8620 0.9010 
M4 vs M3 0.6184 0.5970 0.5742 0.5601 0.6042 

  h 
 Models 1 3 6 12 24 

US 
M2 vs M1 0.0080 0.0118 0.0057 0.0035 0.0044 
M3 vs M1 0.0257 0.0308 0.0209 0.0159 0.0161 
M4 vs M1 0.0129 0.0179 0.0093 0.0070 0.0076 
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M3 vs M2 0.0810 0.0764 0.0718 0.0910 0.0764 
M4 vs M2 0.0493 0.0671 0.0370 0.1046 0.0501 
M4 vs M3 0.7498 0.8470 0.5957 0.7506 0.7998 

Note: The entries in all rows are p-values of the Clark and West (2007) test of forecast comparison across two 
nested models, with the null being forecast equality, and the alternative is that the rival model outperforms the 
benchmark. h is the forecast horizon. M1 is the benchmark model of the inter-quantile range (IQR) of stock returns 
of a particular country which includes a constant and 2 lags each of own- and cross-country IQRs; M2 is M1+own- 
and cross-country moments (leverage, skewness, kurtosis, lower- and upper-tail risks); M3 is M2+own-country 
Shortages Index; M4 is M3+ Shortages Index of the other countries.   
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Table A3. Clark and West (2007) forecast comparison test p-values for daily data: 15th January 
2010-28th February 2025 

  h 
 Models 1 5 22 44 66 

China 

M2 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0000 0.0000 
M4 vs M1 0.0000 0.0000 0.0000 0.0000 0.0001 
M3 vs M2 0.0000 0.0049 0.0075 0.0127 0.1492 
M4 vs M2 0.0000 0.0007 0.0749 0.1784 0.4182 
M4 vs M3 0.0000 0.0069 0.3819 0.6875 0.6148 

  h 
 Models 1 5 22 44 66 

Europe 

M2 vs M1 0.0000 0.0000 0.0000 0.0002 0.0000 
M3 vs M1 0.0000 0.0000 0.0000 0.0073 0.0010 
M4 vs M1 0.0000 0.0000 0.0000 0.0001 0.0000 
M3 vs M2 0.0027 0.1302 0.6006 0.8659 0.8875 
M4 vs M2 0.0001 0.0032 0.0208 0.0123 0.0067 
M4 vs M3 0.0001 0.0009 0.0018 0.0000 0.0000 

  h 
 Models 1 5 22 44 66 

UK 

M2 vs M1 0.0000 0.0000 0.0000 0.0002 0.0000 
M3 vs M1 0.0000 0.0000 0.0001 0.0017 0.0004 
M4 vs M1 0.0000 0.0000 0.0000 0.0004 0.0000 
M3 vs M2 0.0300 0.0428 0.1099 0.1334 0.1113 
M4 vs M2 0.0000 0.0001 0.0214 0.0296 0.0063 
M4 vs M3 0.0000 0.0006 0.1319 0.1388 0.0385 

  h 
 Models 1 5 22 44 66 

US 

M2 vs M1 0.0000 0.0000 0.0000 0.0014 0.0106 
M3 vs M1 0.0000 0.0000 0.0000 0.0017 0.0185 
M4 vs M1 0.0000 0.0000 0.0000 0.0011 0.0065 
M3 vs M2 0.2534 0.9268 0.9365 0.9256 0.9598 
M4 vs M2 0.0000 0.0875 0.1655 0.0987 0.0826 
M4 vs M3 0.0013 0.0354 0.0403 0.0236 0.0125 

Note: The entries in all rows are p-values of the Clark and West (2007) test of forecast comparison across two 
nested models, with the null being forecast equality, and the alternative is that the rival model outperforms the 
benchmark. h is the forecast horizon. M1 is the benchmark model of the inter-quantile range (IQR) of stock returns 
of a particular country which includes a constant and 10 lags each of own- and cross-country IQRs; M2 is 
M1+own- and cross-country moments (leverage, skewness, kurtosis, lower- and upper-tail risks); M3 is M2+own-
country Supply Bottlenecks Index (SBI); M4 is M3+ SBI of the other countries.   
 


