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Abstract 
We forecast quarterly growth rate of real gross fixed capital formation of the United 
States using the information content of a monthly metric of extreme weather conditions, 
while controlling for a set of principal components derived from a large data set of 
economic and financial indicators. In this regard, we utilize a Mixed Frequency 
Machine Learning framework over the period of 1974:Q1 to 2022:Q1. Our results show 
that incorporating monthly data on severe climatic conditions, especially information 
contained in relatively higher (above the mean) extreme weather values, significantly 
outperforms not only the benchmark autoregressive model, but also the econometric 
framework that includes the macro-finance factors when forecasting the growth rate 
of quarterly real gross fixed capital formation.  
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1. Introduction 
Gross fixed capital formation (GFCF) is both the most cyclically sensitive and the most 
forward-looking component of private domestic investment in the United States (US): 
its expansions finance new structures, equipment and intellectual property, while its 
contractions often presage broader slowdowns. A fast-growing strand of 
macro-climate research shows that extreme temperatures, storms and precipitation 
shocks already depress firm-level capital spending by tightening credit constraints, 
raising replacement costs and increasing the option value of waiting when climatic and 
regulatory conditions are uncertain (Giglio et al., 2021; Kahn et al., 2021). Long-run 
simulations further suggest that a 4 °C rise in global temperatures could reduce 
average global income by roughly 40 percent, mainly through delayed or foregone 
investment (World Bank, 2012). Despite this evidence, short-horizon 
macro-forecasting models have remained largely climate-agnostic. Policymakers and 
investors therefore lack a real-time, data-driven lens through which to gauge how the 
growing incidence of climate extremes will feed through the investment channel into 
near-term output and potential growth. 
 
Existing literature has increasingly focused on quantifying the economic 
consequences of climate change. Early studies highlighted the immediate negative 
impacts of natural disasters on economic growth (Barro, 2006; Noy, 2009), while later 
research broadened to explore longer-term effects on productivity, labor supply, and 
innovation (Dell et al., 2012; Dasgupta et al., 2021; Matos et al., 2022). Within the 
realm of investment, studies have shown that heightened climate risk can lead to lower 
investment levels and increased cost of capital for exposed firms (Cepni et al., 2024; 
Lai et al., 2025) via deterioration of the quality of capital (Donadelli et al., 2021), with 
investors also beginning to price in climate-related risks in asset markets (Faccini et 
al., 2023, Bua et al., 2024). This growing body of evidence underscores the potential 
for climate information to significantly influence GFCF dynamics. 
 
This paper investigates the importance of climate variables in forecasting the quarterly 
growth of real GFCF in the US. Recognizing the complex and dynamic relationship 
between climate and economic activity, we employ a sophisticated methodological 
framework that leverages the strengths of both mixed-frequency data analysis and 
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machine learning techniques. Specifically, we adopt the Mixed Frequency Machine 
Learning (MFML) approach proposed by Borup et al. (2023). This innovative 
methodology allows us to incorporate high-frequency monthly data on climate 
conditions, as captured by the Actuaries Climate Index (ACI), alongside additional 
monthly macroeconomic and financial indicators to generate more accurate and timely 
forecasts of GFCF. Furthermore, the integration of machine learning, specifically the 
Least Absolute Shrinkage and Selection Operator (LASSO), enables us to effectively 
handle a potentially high-dimensional set of predictors, including lagged values of 
GFCF and 8 factors (principal components) extracted from a large dataset (FRED-MD) 
of 134 macroeconomic and financial indicators, and to identify the most relevant 
variables for prediction. The control variables, over and above the indicator of extreme 
weather condition, is important, as they allow us to accommodate for the various 
theories (such as, accelerator, neoclassical, Tobin’s Q, cash-flow, stock price models, 
among others) via which macroeconomic and financial variables impact investment 
decisions (Rapach and Wohar, 2007; Aye et al., 2016). Our findings demonstrate that 
incorporating ACI data improves forecasting performance in a statistically significant 
manner compared to benchmark autoregressive models and MFML models without 
climate variables. This highlights the critical role of climate risks in shaping investment 
behavior and provides a novel framework for climate-informed economic forecasting, 
for the first time. 
 
The remainder of the paper is organized as follows: Section 2 outlines the data, while 
Section 3 presents the methodology, with Section 4 devoted to the empirical findings, 
and Section 5 concluding the paper. 
 

2. Data 
Our empirical analysis combines three publicly available data sets: (i) quarterly real 
Gross Fixed Capital Formation (GFCF) for the US, (ii) monthly observations of the ACI, 
and; (iii) 8 monthly macro-finance factors extracted from the FRED-MD database of 
McCracken and Ng (2016).  
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The quarterly series for US real GFCF is obtained from the FRED database, 
maintained by the Federal Reserve Bank of St. Louis. 1  The level data is then 
transformed into quarterly growth rates, calculated as the percentage change from the 
previous quarter, to align with the specification of our forecasting model. 
 
To incorporate climate-related variables, we use monthly data of the ACI.2 The ACI is 
a composite index of the frequency of severe weather (high and low temperatures, 
heavy rainfall, drought (consecutive dry days), and high wind, with all based on gridded 
data at the resolution of 2.5 by 2.5 degrees latitude and longitude), and the extent of 
sea level rise (using tidal gauge station data).   
 
As control variables, we include a set of macroeconomic and financial factors derived 
from the FRED-MD database. 3  The 8 factors are constructed using principal 
component analysis on 134 US macroeconomic and financial time series, and capture 
broad economic conditions relevant for a forecasting exercise. These factors are 
included to account for traditional macroeconomic drivers of GFCF and to isolate the 
marginal impact of the ACI on forecasting accuracy.  
 
Our sample period covers 1974:Q1 to 2022:Q1, with an in-sample involving the first 
100 quarterly observations, i.e., 1974:Q1 to 1998:Q4, and 1999:Q1 to 2022:Q1 as the 
out-of-sample. 
 

3. Methodology  
Following the MFML approach of Borup et al. (2023), we generate simulated out-of-
sample predictions of the US quarterly growth of real GFCF based on monthly data of 
ACI and the macro-financial factors of McCracken and Ng (2016). The method of 
Borup et al. (2023) combines the unrestricted mixed-data sampling (U-MIDAS) model 
of Foroni et al. (2015) with machine learning techniques. The mixed frequency data 
help us to examine how the flow of information on monthly predictors affect the out-of-

                                            
 
1 https://fred.stlouisfed.org/series/NFIRSAXDCUSQ. 
2 https://actuariesclimateindex.org/data/. 
3 https://www.stlouisfed.org/research/economists/mccracken/fred-databases. 
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sample results of quarterly GFCF growth, with the machine learning being useful in 
exploring the simultaneous role of the high-dimensional predictors. 
 
Following the approach of Borup et al. (2023), the prediction model is specified as 
 

௧ܻ = (௝)ߙ  + ஺ோଵ(௝)ߚ ௧ܻିଵ + ௑(௝)ᇱߚ ௧ܺ(௝) + ௑ଵ(௝)ᇱܺ௧ିଵ(௝)ߚ + ௓(௝)ᇱܼ௧(௝)ߚ + ௓(௝)ᇱܼ௧ିଵ(௝)ߚ + ߳௧(௝)   (1) 
 
where ௧ܻ is the quarterly-t target variable (i.e., real GFCF growth), an AR(1) term is 
included in the equation to account for possible serial correlation in ௧ܻ. ܺ௧(௝) is a vector 
of the ACI-based predictors. ܺ௧(௝) = [ܺ௧ା௝/ଷ௠ ′ ܺ௧ା(௝ିଵ)/ଷ௠ ′ ௧ܺା(௝ିଶ)/ଷ௠ ′] , and ܺ௧ା௜/ଷ௠ =
[ܺଵା௜/ଷ௠ … ܺ௄೘ା௜/ଷ௠ ]′ is a vector of predictors for the (݅ + 1)-th month of quarter t for ݅ =
0,1,2 .4  ݆ = 0, 1, 2  aligns with prediction of ௧ܻ  formed at the 1st, 2nd, and 3rd month in 
quarter t.  ߚ௑(௝) and ߚ௑ଵ(௝) is a vector of slope coefficients for monthly ACI in quarter t and 
quarter t-1. The model allows for each of the higher-frequency predictors to have its 
own coefficient, which can be viewed as an unrestricted MIDAS model. We also use 
the macro factors of Ludvigson and Ng (2009) in quarter t and t-1 as control variables 
(represented by ܼ௧(௝)and ܼ௧ିଵ(௝) ).  
 
The mixed frequency nature arises because ௧ܻ is quarterly while ܼ௧(௝) and ACI (ܺ௧(௝)) 
are monthly. This formulation essentially treats the monthly data as leading indicators 
within the quarter, useful for nowcasting the quarter’s end outcome. The above 
regression specification yields a potentially large number of coefficients relative to the 
number of quarterly observations. Specifically, with 8 factors plus the ACI, we have 9 
predictors, each with 3 monthly contemporaneous and one lagged values, besides an 
intercept, and one lag of the growth in real GFCF, giving us a total of 56 coefficients. 
Therefore, we use the machine-learning approach of LASSO (Tibshirani, 1996) to 
perform variable selections and improve the out-of-sample performance of high-
dimensional models.5 
                                            
 
4 The vectors of predictors for the month of quarter t are as follows:  the1st month ܺ௧௠, the 2nd month 

௧ܺାଵ/ଷ௠ , and the 3rd month ௧ܺାଶ/ଷ௠ . 
5 We employ the LASSO to estimate the models, enabling simultaneous shrinkage and selection of 
coefficients in a data-driven manner. The LASSO is a popular machine-learning device that improves 
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4. Empirical Results  
We produce the out-of-sample predictions of US quarterly growth of real GFCF for the 
first quarter of 1999 through the first quarter of 2022 using a rolling-window approach 
associated with 100 observations. Our prediction models relate quarterly GFCF with 
its last lag and the last three months of ACI data. We also include the eight macro-
finance factors of McCracken and Ng (2016) as control variables. Table 1 reports the 
Root Mean Square Error (RMSE) ratio for the MFML models without and with including 
ACI versus an AR(1) benchmark model for predictions.6  
 
Table 1 summarizes the out-of-sample forecasting results for one-quarter-ahead 
GFCF growth across various models. Focusing on the two key models: the MFML 
model with ACI (our proposed model) and the MFML model without ACI (macro-
finance factors only).  
 
We find that the RMSE ratios for MFML models (without and with ACI) decrease 
gradually, and are generally (barring the case of the 1st month forecast without ACI) all 
below one, as we move from the predictions formed in the first month of each quarter 
to the ones formed in the second and third month of each quarter, which use more 
recent information contained in monthly frequency data to form the predictions. In the 
second row of Table 1, the RMSE ratios for the MFML model with ACI are all below 
one, suggesting that based on the LASSO-reliant MFML approach,7 incorporating the 
information of monthly ACI data is always able to outperform the AR(1) benchmark in 
terms of the RMSE, ranging from 7% to 21%, depending on when within the quarter 

                                            
 
forecast accuracy in complex models with many predictors by performing automatic variable selection. 
See Borup et al. (2023) for further details on the estimation procedure. 
6 The root mean squared error (RMSE) is defined as ܴܧܵܯ = [ ଵ

்ೀೄ ∑ ( ௧ܻ − ௧ܻ෡ )ଶ்ೀೄ௧ୀଵ ]ଵ/ଶ, where ௧ܻ and ௧ܻ෡  
represent the realized and predicted values of quarterly GFCF growth, respectively, and  ைܶௌ is the number of out-of-sample observations available for analyzing the predictions.  
7 The ACI-included MFML models estimated using Elastic Net and Artificial Neural Network (with one 
hidden layer) produced RMSE ratios greater than one (see, Table A1 in the Appendix), suggesting the 
relative superiority of the LASSO estimator, and hence, justifying our reliance on it. 
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the prediction is generated. 8 , 9  More importantly, the results also show that 
incorporating monthly ACI data to forecast quarterly real GFCF growth can further 
reduce RMSEs and improve accuracy in all cases compared to its counterpart for the 
MFML model without the ACI. From an intuitive perspective, this suggests that extreme 
weather conditions—such as droughts, heatwaves, or severe storms—carry relevant 
information that helps anticipate fluctuations in investment activity. 
 
The reason behind this improved accuracy is straightforward: extreme weather events 
often disrupt economic operations, affecting business confidence, capital allocation, 
and investment decisions. Capturing these disruptions early through the monthly ACI 
data provides an edge in forecasting future investment activity, as firms might delay or 
accelerate investments depending on perceived risks and uncertainties linked to 
climatic conditions. 
 
Table 1. RMSE ratios (relative to AR(1)) for predictions without and with ACI for the 
US 
without ACI 1st month 2nd month 3rd month 
RMSE 1.028 0.915 0.873 
with ACI 1st month 2nd month 3rd month 
RMSE 0.934 0.866 0.825 

 
Furthermore, we employ the Clark and West (2007) test to examine whether the 
forecast performance of model without and with the ACI is statistically significant 
relative to the nested AR(1), and the same holds for the comparison across the two 
MFML models. The test statistics reported in the first two rows of Table 2 indicate that 

                                            
 
8 We also find evidence that MFML models incorporating information of US regional ACI data, covering 
Alaska, Central East Atlantic (CT, DC, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT, WV), Central West 
Pacific (WA, OR, ID), Midwest (IA, IL, IN, MI, MN, MO, OH, WI), Southeast Atlantic (AL, AR, FL, GA, 
KY, LA, MS, NC, SC, TN, VA), Southern Plains (KS, MT, ND, NE, OK, SD, TX, WY), and Southwest Pacific (AZ, CA, CO, NM, NV, UT), can outperform the AR(1) benchmark (see, Table A2 in the appendix). 
9 We also report RMSE ratios for MFML models (without and with ACI) using Canadian data from the 
1983:Q1 to the 2022:Q1 (see, Table A3 in the Appendix). Using an out-of-sample period of 2008:Q1 to 
2022:Q1, we find that MFML models outperform the AR(1) benchmark, but, we could not find evidence 
that monthly ACI data can be useful for predicting quarterly real GFCF growth in Canada, over and 
above 8 macro-financial predictors, derived from the CAN-MD-QD or LCDMA database of Fortin-Gagnon et al. (2022), available at: https://www.stevanovic.uqam.ca/DS_LCMD.html. This finding could 
be an indication of relatively better adaptation measures to climate change in Canada when compared 
to those in the US, with the latter subject to heightened climate policy related uncertainties (Sheng et 
al., 2024). 
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both the MFML models significantly outperform the AR(1) benchmark model. 
Specifically, the MFML model without ACI yields test statistics of 2.939, 2.232, and 
2.425 for the predictions formed in the first, second and third month of each quarter 
respectively, with corresponding p-values indicating significance at the 1% and 5% 
levels. Similarly, the MFML model incorporating ACI also shows statistically significant 
results at least at the 5% level, with test statistics of 2.739, 2.112, and 2.367. These 
findings suggest that while MFML models add significant predictive value beyond the 
benchmark, but, more importantly, the inclusion of ACI enhances further the statistical 
strength of the forecast improvement derived from the factors, as depicted by the Clark 
and West (2007) test statistics in the last row of Table 2. Specifically speaking, test 
statistics are 1.405, 1.755, and 1.982 for the forecasts in the first, second and third 
month of each quarter respectively, which, in turn, are statistically significant at the 
10%, 5%, and 5% levels.  
 
Table 2. Clark and West (2007) test results for predictions of MFML models with ACI 
for the US  
Models 
 

1st month 
 

2nd month 
 

3rd month 
 

MFML without ACI versus 
AR(1)  

2.939*** 
(0.002) 

2.232** 
(0.014) 

2.425*** 
(0.009) 

MFML with ACI versus 
AR(1) 

2.739*** 
(0.004) 

2.112** 
(0.019) 

2.367*** 
(0.010) 

MFML with ACI versus MFML without 
ACI 

1.405 * 
(0.082) 

1.755** 
(0.041) 

1.982** 
(0.025) 

Note: ***, **, * indicate the 1%, 5%, and 10% significance levels. 
 
Having confirmed the importance of the ACI in forecasting GFCF, an interesting follow-
up question to ask would be whether higher values of the extreme weather conditions 
matter more in this context than its corresponding lower values. In other words, we 
such an exercise would allow us test for possible predictive asymmetry, which we 
believe would be value to policymakers in determining the strength of appropriate 
policy responses. The hypothesis that we make in this regard is that higher ACI values 
reflecting greater disaster risks should carry more information than lower values of the 
same in forecasting GFCF. Given this, we decompose the ACI into ACI_High or 
ACI_Low, by creating a dummy which takes a value of 1 if the ACI is greater or less 
than the average of the previous 100 observations of the ACI, and zero otherwise, and 
then multiplying these two dummies with the ACI series. 
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The forecasting results using the MFML model with ACI_High or ACI_Low along with 
the factors, relative to the AR(1) model and the MFML model without the ACIs are 
presented in Table 3. In line with our hypothesis, ACI_High produces stronger 
forecasting gains compared to ACI_Low compared to both the benchmark and the 
MFML model including on the macro-finance factors. More importantly, the Clark and 
West (2007) test statistics in Table 4 confirm that the forecasting gains, especially 
under ACI_High are consistently statistically significant relative to the AR(1) and the 
MFML with factors.  
 
Table 3. RMSE ratios for predictions of MFML Models with ACI_High and ACI_Low 
for the US 
Models 
 

1st month 
 

2nd month 
 

3rd month 
 

MFML Models with ACI_High 
(relative to an AR (1) model) 0.911 0.819 0.813 
MFML Models with ACI_Low  
(relative to an AR (1) model) 0.985 0.927 0.859 
MFML Models with ACI_High 
(relative to MFML Models without ACI) 0.886 0.895 0.931 
MFML Models with ACI_Low  
(relative to MFML Models without ACI) 0.958 1.013 0.984 

 
Table 4. Clark and West (2007) test results for predictions of MFML models with 
ACI_High and ACI_Low for the US  
Models 

1st month 
 

2nd month 
 

3rd month 
 

MFML Models with ACI_High 
(relative to an AR (1) model) 

2.854*** 
(0.003) 

2.420*** 
(0.003) 

2.553*** 
(0.006) 

MFML Models with ACI_Low  
(relative to an AR (1) model) 

3.186*** 
(0.001) 

2.710*** 
(0.004) 

2.910*** 
(0.002) 

MFML Models with ACI_High 
(relative to MFML Models without ACI) 

1.503* 
(0.068) 

1.825** 
(0.036) 

1.897** 
(0.031) 

MFML Models with ACI_Low  
(relative to MFML Models without ACI) 

1.839** 
(0.035) 

0.579 
(0.282) 

1.395* 
(0.083) 

 
In sum, we find that the information in the high-dimensional monthly ACI data, 
especially those emanating from its relatively higher values, are useful in a statistically 
significant fashion for predicting quarterly real GFCF growth, over and above one of 
its lag and macroeconomic and financial predictors. 
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5. Conclusion 
This study demonstrates the statistically significant predictive power of the ACI, 
capturing extreme weather conditions, for forecasting quarterly US real GFCF growth. 
Using a MFML framework, we find that incorporating high-frequency monthly ACI data, 
and in particular associated above the mean values, not only outperforms an 
autoregressive benchmark, but also information contained in macroeconomic and 
financial indicators. This highlights the growing influence of climate conditions on 
investment decisions, a dynamic often missed by climate-agnostic forecasting. The 
ACI's ability to enhance accuracy of GFCF forecasts, especially with intra-quarterly 
(monthly) data, underscores climate change as an increasingly relevant near-term 
factor in economic activity through investment. 
 
The implications of these findings for policymakers and investors are manifold. Firstly, 
our results highlight the need for integrating climate-related data into mainstream 
macroeconomic forecasting and risk assessment frameworks, especially information 
on above the historical mean of weather conditions. Central banks and government 
agencies could leverage climate indexes like the ACI to gain a more nuanced 
understanding of the factors driving investment and to potentially improve their 
economic projections. This enhanced foresight can inform more effective policy 
responses to both cyclical fluctuations and climate-related economic disruptions. 
Secondly, investors can utilize climate-augmented forecasting models to better 
anticipate future investment trends and to assess the potential impact of evolving 
climate conditions on asset valuations and portfolio risk.  
 
Incorporating climate intelligence into investment strategies can lead to more informed 
capital allocation decisions and potentially identify both risks and opportunities 
associated with the transition to a more sustainable economy. Finally, the 
demonstrated link between climate variables and real GFCF growth suggests that 
policies aimed at mitigating climate change and enhancing climate resilience are not 
only crucial for environmental sustainability, but also for fostering a stable and 
predictable investment environment, thereby supporting long-term economic growth 
and stability. 
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As part of future research, a similar analysis can be performed for emerging 
economies, contingent on data availability, to allow us to generalize our findings. 
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APPENDIX 
Table A1. RMSE ratios for predictions with ACI for the US using elastic net and 
neural networks 
Elastic net 1st month 2nd month 3rd month 
 1.050 1.120 0.962 
Neural networks 1st month 2nd month 3rd month  1.136 1.120 1.127 

 
Table A2. RMSE ratios for predictions with regional ACI data for the US  
with ACI 1st month 2nd month 3rd month 
RMSE 0.946 0.875 0.950 

 
Table A3. RMSE ratios for predictions with and without ACI for Canada  
without ACI 1st month 2nd month 3rd month 
RMSE 0.927 0.846 0.937 
with ACI 1st month 2nd month 3rd month 
RMSE 0.937 0.867 1.005 

 


