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Abstract 
This study adopts a multilayer network approach to investigate the connectedness among clean, 
brown, and technology ETFs across four moments: returns, volatility, skewness, and kurtosis. 
Motivated by the non-normality of return distributions and energy transition under intensified 
climate risk, we demonstrate the importance of incorporating both lower- and higher-order 
moments to fully capture risk transmission dynamics. Within-layer, cross-layer, and total 
connectedness analysis reveals generally high interdependence, with notable exceptions during 
late 2024 (across all layers) and the 2008–2009 period (particularly for skewness and kurtosis). 
These episodes suggest that investor responses to extreme events differ across statistical moments, 
stressing the need for a multilayer framework in assessing market behaviour. While the return and 
volatility layers effectively capture major market shocks, skewness and kurtosis exhibit weaker 
spillovers, especially prior to the 2008 global financial crisis. Technology ETF plays a central role, 
exhibiting the highest overlap in both inflows and outflows during crisis periods, particularly 
between 2008 and 2014, and during COVID-19. Conversely, clean ETF shows limited 
vulnerability to systemic shocks, suggesting resiliency. Climate risks impact the spillovers across 
the within- and cross-layers. These findings are particularly relevant to investors, portfolio 
managers, and policymakers tasked with risk mitigation amid climate change concerns. 
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1. Introduction 
This study firstly examines multilayer spillovers and risk propagation across clean, brown, and 
technology exchange-traded funds (ETFs), considering returns and higher-order moments, 
particularly volatility, kurtosis, and skewness. It highlights the influence of climate risks on 
spillovers across the within- and cross-layer connectedness measures. The main motivations are 
threefold. Firstly, the ETF returns examined are not normally distributed, making the analysis of 
risk propagation based on volatility only somewhat unrealistic and limited as it fails to capture a 
comprehensive analysis of risk spillovers in the various layers of higher-order moments. Secondly, 
the energy transition toward a lower carbon economy contributes to significant interlinkages 
between clean energy sources and technological advancement which are found to be significant 
under the transition from brown to cleaner energies (Bouri et al., 2025), potentially making the 
markets of clean, brown, and technology investments interact at higher-order moments of returns 
affected by climate risk. Thirdly, unlike conventional stock indices which are not directly 
investable or tradable, ETFs represent an investable vehicle highly accessible to investors and 
market participants across the globe.  
 
The existing literature is inundated with studies that measure return and volatility spillovers across 
global markets – spanning emerging and developed stock markets during turbulent periods, often 
reporting significant uni- and bi-directional effects (Diebold and Yilmaz, 2009; Li and Giles, 2015; 
Mensi et al., 2016; Jebran et al., 2017; Baumöhl et al., 2018; Gamba-Santamaria et al., 2019). 
Similar studies have been conducted in credit markets (Diebold and Yilmaz, 2012; Tiwari et al., 
2018; McMillan, 2020) and commodity markets, including crude oil and precious metals (Kang et 
al., 2017; Kang and Yoon, 2019; Mishra et al., 2025), highlighting the interlinkages across various 
asset classes. These studies mostly cover stock market indices although they are not investable or 
tradable. Furthermore, issues of global concern such as climate change and geopolitical tension 
can affect the risk spillovers across these markets (Smales, 2021; Elsayed and Helmi, 2021; Gupta 
and Pierdzioch, 2022; Balcilar et al., 2023; Bouri et al., 2023; Jin et al., 2023; Sarker et al., 2023; 
Hao et al., 2024; Oad Rajput et al., 2024; Pham et al., 2024; Cui and Maghyerah, 2025; Xie et al., 
2025). The growing concern over these risks, particularly climate change – as witnessed recently 
in various parts of the world1– has undoubtedly influenced risk and volatility transmission between 
                                                           
1 See: https://www.nifc.gov/fire-information/nfn. 
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carbon-intensive (brown) and clean (green) markets. Instances abound of how these risks, 
particularly climate-related policy uncertainties, could be propagated across these markets. Carbon 
pricing or taxation of emission-generating firms such as the EU’s Carbon Border Adjustment 
Mechanism (CBAM) (see Feng et al., 2024; Salisu and Adediran, 2025), aim to reduce global 
warming to 1.5 degrees Celsius by 20302 in consonance with the UN’s Intergovernmental Panel 
on Climate Change goals, and have the potential to suppress trading in the brown market. This 
occurs through increased production and consumption costs, leading to lower returns on brown 
assets, while simultaneously amplifying trading and, by extension, volatility in the green market 
as these assets become more attractive. Similarly, increased investment in eco-friendly assets, as 
businesses adhere to various climate change agreements, and the adoption of green technologies, 
could drive a substantial shift in trading activity from brown to green markets3. Bouri (2023) 
attributes this to the substitution effect between products in both markets, as well as 
financialization and portfolio decarbonization channels. Conversely, brown energy sources, such 
as crude oil, remain essential inputs in production (Safa, 2017; Salisu et al., 2023) and are often 
priced lower than green energy alternatives, which command higher costs due to evolving 
investments in the sector (see also Bouri, 2023). This pricing disparity could reduce the 
attractiveness of green assets, prompting portfolio diversification from green to brown assets (see 
also Foglia and Angelini, 2020). 
 
One key reason for examining volatility spillovers is to identify effective hedging strategies to 
mitigate the risks associated with some markets. However, traditional assets often fall short of 
providing adequate risk protection (see Wu et al., 2011; Salisu et al., 2025). This limitation 
contributes to a gradual shift toward financial innovation, particularly ETF-related assets, which 
have gained prominence as alternative investment vehicles (see Salisu et al. (2025) for a detailed 
review of the classification of ETFs as financial innovations). In the context of brown and green 
markets, ETFs could play a pivotal role in managing risk transmission and portfolio adjustment, 
especially as investors navigate the shifting dynamics driven by climate policies and/or carbon 
pricing. Furthermore, the role of technology in the transition from brown to green business and 

                                                           
2 See: https://unfccc.int/process-and-meetings/the-paris-agreement. 
3 Shang et al. (2022) show that climate policy uncertainty reduces non-renewable energy demand in the U.S., but 
positively impacts renewable energy demand in the long-term. 
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investment models is evident in various developments, such as alternative energy installations and 
electric vehicles. Overall, the rapid growth of ETFs has significantly transformed financial 
markets, with their market share exceeding 10 percent of the total US securities market as of the 
end of 2016. They also represent over 30 percent of daily transactions and nearly 20 percent of 
aggregate short interest, reshaping the structure of asset management by drawing market share 
away from conventional investment options such as mutual funds and index futures. Their 
increasing appeal to both retail and institutional investors is largely attributed to their low 
transaction costs and intraday tradability. ETF providers issue securities listed on major stock 
exchanges, with most ETFs designed to track the performance of a specific index (see Ben-Davis 
et al., 2017). Furthermore, ETFs operate through arbitrage mechanisms that ensure their prices 
remain aligned with the underlying assets, meaning ETF transactions directly influence the trading 
of these assets. While ETFs facilitate discovery of price, they are also linked to non-fundamental 
price volatility and shifts in return correlations. Additionally, ETFs influence the liquidity of the 
underlying assets, particularly in periods of market distress, further influencing market stability 
(Ben-Davis et al., 2017; Lettau and Madhavan, 2018). 
 
Given the growing attention paid to clean, brown, and technology ETFs due to their investable 
nature and easy use in investment strategies, including hedging and asset allocation, it is not 
unexpected that spillovers – particularly at higher moments including volatility, skewness and 
kurtosis – may also exist between these ETFs amid the strong deviation of their returns from the 
normal distribution and increasing concerns about climate change and risk. Accordingly, this study 
offers novel empirical insights into the multilayer higher-order moments spillovers and risk 
propagation among clean, brown, and technology ETFs, while considering within-layer, cross-
layer, and total connectedness measures and how climate risks can affect these connectedness 
measures. Such an analysis extends previous studies conducted in this area (Bouri, 2023; Foglia et 
al., 2024; Addi et al., 2025; Cui and Maghreyeh, 2025; Foglia et al., 2025; Salisu and Gupta, 2025; 
Xie et al., 2025), which largely overlook the higher-order moments of ETFs, especially in the 
framework of multilayer connectedness across clean, brown, and technology ETFs, leaving a 
significant gap in the literature.  
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In light of this, our current study incorporates technology ETFs into the volatility transmission 
mechanism between brown and green ETFs (see also Ayinde et al., 2023; Bouri, 2023). To analyse 
these spillover effects, we employ a multilayer network approach, which captures information 
spillover dynamics across returns, volatility, skewness, and kurtosis. By integrating intra-market 
and cross-market spillovers, our framework provides a comprehensive understanding of total and 
cross-market connectedness between these asset classes (see the methodology section for details). 
This approach allows a deep examination of risk transmission mechanisms, offering valuable 
insights into the interdependencies (i.e., connectedness) between clean, brown, and technology 
markets. 
 
Financial contagion theory provides a framework for understanding how risks spread across 
various markets (see Forbes and Rigobon, 2002; Rigobon, 2019). In equity markets, it primarily 
concerns the transmission of shocks in the financial system, often assessed through variations in 
return correlations during crisis periods (Dungey and Martin, 2001). Forbes and Rigobon (2002) 
distinguish between contagion and interdependence/spillovers based on changes in cross-market 
correlations following a shock. In particular, contagion occurs when two markets with moderate 
correlation during stable periods experience a significant surge in co-movement after a shock, 
signalling an abnormal transmission of risk. In contrast, if two markets are already highly 
correlated and continue to be so after a shock, this reflects strong economic and financial linkages, 
characterizing interdependence rather than contagion. However, Rigobon (2019) downplays this 
distinction, showing that spillovers can still occur regardless of market conditions.  
 
Relying on this theoretical foundation, this study contributes to the literature in the following ways. 
Firstly, it extends research on risk contagion/spillovers in financial markets by focusing on clean, 
brown, and technology ETFs, an area which remains largely unexplored. This enhances our 
understanding of spillover dynamics in sustainable investments. Secondly, unlike many studies 
that primarily examine returns and volatility, it incorporates higher-order moments – particularly 
skewness and kurtosis – to provide a comprehensive view of shock transmission across these asset 
classes, given that the return distribution is fat-tailed (see Table A1 in the appendix). Thirdly, 
within a multilayer spillover framework, the study investigates the role of climate risk in 
influencing cross-market connectedness across the ETFs examined.  



6 
 

The main results show generally high levels of interdependence in the within-layer, cross-layer, 
and total connectedness measures across various moments and crisis periods, and underline the 
influence of climate risks on spillovers across the within- and cross-layers, which can be explained 
by climate change under the transition towards a cleaner economy and decarbonized investment 
portfolios.  
 
Following this introduction, the rest of the paper is organized as follows. Section 2 describes the 
datasets. Section 3 outlines the methodological framework guiding our analysis. Section 4 presents 
and discusses the findings, while Section 5 concludes the paper. 
 
2. Data and higher-order moments 
2.1. Datasets 
Two datasets are used in this study. The first consists of three global ETFs, iShares Global Clean 
(ICLN), iShares Global Energy (IXC), and iShares Global Tech (IXN), covering access to green, 
brown, and technology stocks, respectively. ICLN tracks the performance of an index comprised 
of global clean energy firms that produce energy from renewable sources such as sunlight, wind, 
and water. IXC provides exposure to global energy firms operating in the production and 
distribution of oil and gas. IXN tracks the performance of an index comprised of global stocks in 
the technology segment, covering electronics, computer software, computer hardware, and 
informational technology firms. Interestingly, global ETFs reflect a global view of the three 
markets, which is necessary under the global transition towards cleaner production and economy. 
Daily closing prices for each ETF are sourced from DataStream and expressed in USD. Daily 
logarithmic returns are computed for each ETF examined.  
 
The deviation of the ETF returns from the normal distribution (refer to Table A1 in the appendix) 
underscores the adoption of a multilayer network approach. The results show evidence of negative 
skewness across the three ETF returns, while the kurtosis statistics indicate leptokurtic 
distributions (as the kurtosis values largely exceed 3), suggesting heavy tails in the series. This 
departure from normality is confirmed by the outright rejection of the normality assumption, as 
indicated by the statistical significance of the Jarque-Bera test results. The summary statistics in 
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Appendix A1 are followed by plots of the ETF series both at level and return forms (refer to Figure 
A1 and Figure A2, respectively, in the appendix). 
The second dataset covers climate risks, measured by climate policy uncertainty indices. To 
capture this, we favour the climate policy uncertainty (CPU) index constructed by Ma et al. 
(2024)4. The index construction follows the Baker et al. (2016) technique, which uses text mining 
applied to major newspapers from twelve G20 countries across six continents – mostly exposed to 
climate risks – to construct a global CPU measure. The index is based on 11.27 million news 
articles published between January 2000 and December 2023, and is adjusted for macroeconomic 
fundamentals such as GDP (at current prices), purchasing power parity (PPP), and an equally 
weighted average across the twelve countries. While the index is available at daily, weekly, and 
monthly frequencies, our study uses the monthly PPP-adjusted measure which accounts for cross-
country price differences. Thus, our sample period involving the influence of climate risk on the 
connectedness between the three ETFs is accordingly limited to the period covered by the PPP-
adjusted climate risk measure (i.e., August 2008 to December 2023). 
 
2.2. Higher-order moments’ construction 
Following Hansen's (1994) autoregressive conditional density (ACD) model, we estimate the time-
varying conditional higher-order moments, volatility, skewness, and kurtosis, from the logarithmic 
return series for the three ETFs, covering clean (ICLN), brown (IXC), and technology (IXN) 
stocks.  
 
Specifically, the ACD model captures skewness and kurtosis dynamics by incorporating them into 
a conditional distribution, say N, governed by an autoregressive moving average–generalized 
autoregressive conditional heteroscedasticity (ARMA-GARCH) process, specified as: 
 

௧ݐܴ݁ =∝ + ∑ ௧ିୀݐܴ݁ߚ + ∑ ௧ିୀߤߛ ௧ߤ ;  = ඥݎܽݒ௧ߜ௧ and ߜ௧~ܰ(0,1, ௧ݒ ,  ௧)  (1)ߝ
 

                                                           
4 The data is downloadable at: https://figshare.com/articles/dataset/Global_Climate_Policy_Uncertainty_2000-
2023_/24807627?file=49365187. 
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where ܴ݁ݐ௧ represents each ETF logarithmic return, ∝ is the intercept, and ߤ௧ denotes the residual 
term with standardized innovation ߜ௧. The parameters ݒ௧ and ߝ௧ represent the time-varying 
skewness and kurtosis, respectively. 
 
The conditional variance equation is: 

௧ݎܽݒ = ߬ + ∑ ௧ିଶୀଵߛߨ + ∑ ∅ݎܽݒ௧ିௗୀଵ   (2) 
where ߬ is the intercept, and the conditions ߬ > 0, ߨଵ ≥ 0, and ∅ଵ ≥ 0 ensure the positivity of the 
variance.  
 
The skewness and kurtosis dynamics are modelled through the transformation functions: 

(௧ݒ)ߠ = ೡഥା(ೡഥିೡഥ)
ଵାషೡ     (3) 

 
(௧ߝ)ߠ = ఌതܮ + ఌܷത݁ି௧ఌത   (4) 

where ߠ(ݒ௧) and ߠ(ߝ௧) are bounded transformations ensuring the skewness and shape parameters 
remain within plausible limits. The skewness parameter ݒ௧ captures the asymmetry in the return 
distribution, while ߝ௧ indicates tail heaviness (kurtosis). 
 
The time-varying structure of the higher-order moments is specified via first-order quadratic 
autoregressive processes: 

௧ݒ̅ =  + ௧ିଵߤଵ + ௧ିଵଶߤଶ +  ௧ିଵ  (5)ݒଵ̅ݎ
௧̅ߝ = ݍ + ௧ିଵߤଵݍ + ௧ିଵଶߤଶݍ +  ௧̅ିଵ   (6)ߝଵݏ

 
where, ̅ݒ௧ and ߝ௧̅ denote the unconstrained skewness and shape parameters, respectively, with their 
lagged values and lagged residuals (including the lagged squared residuals) ߤ௧ିଵ (ߤ௧ିଵଶ ) as 
regressors. Conditional volatility, conditional skewness, and conditional kurtosis are finally 
obtained by estimating the ACD model under a normal inverse Gaussian (NIG) innovation 
structure (see He and Hamori, 2021; Bouri, 2023). 

3. Methodology 
To empirically establish the interconnectedness between clean, brown, and technology ETFs, in 
terms of their distributions, particularly return, volatility, kurtosis and skewness, we employ the 
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multilayer network model developed by Wang et al. (2021, 2023). This model integrates the 
Diebold-Yilmaz (DY) spillover methodology (Diebold and Yilmaz, 2012, 2014) with the LASSO-
VAR approach. The DY framework facilitates the analysis of volatility spillovers between green, 
brown, and technology ETF markets, offering distinct advantages in quantifying spillover effects 
within (and among) these individual markets. Furthermore, to address the high dimensionality and 
excessive parameterization of vector autoregressive (VAR) models, we employ the LASSO-VAR 
model (Nicholson et al., 2017). The LASSO-VAR model introduces penalty terms to the 
regression parameters, reducing the parameter space and facilitating parameter estimation, albeit 
when large samples are involved. This is in contrast to the traditional VAR estimation methods 
which struggle with high dimensions as the number of parameters rises with the number of 
variables (say, N) and lag order (p). By shrinking the coefficients of less significant variables 
towards zero, LASSO enables variable selection while estimating VAR parameters, as 
demonstrated in previous studies involving large datasets (e.g., Demirer et al., 2018). Our current 
study adopts the VARX-L framework (see Nicholson et al., 2017), a generalized LASSO-VAR 
approach, focusing on the VAR-L model (without external variables) to optimize the parameter 
space and construct informative spillover networks efficiently. Thus, we apply a LASSO-VAR 
model with a lag order of p=1 and a forecast horizon of H=10 to estimate moment-specific 
spillovers and aggregate block-level transmissions across the ETF markets. 
 
Given that the DY (2012, 2014) framework is built on the stationarity of VAR (p) model, which 
can be represented as a moving average process, we present both the stationary VAR (p) and its 
corresponding moving average representation in Equations (7) and (8), respectively, as: 

௧ܩ = ∑ ௧ିଵܩߠ + ௧ୀଵߤ     (7) 
௧ܩ = ∑ ௧ିஶୀߤߴ      (8) 

where ܩ௧ is a vector of endogenous variables at time t, ߠ denotes N x N coefficient matrices for 
each lag structure, p represents the optimal lag order, and ߤ௧ is a vector of random error with zero 
mean and a specified covariance structure (i.e., ߤ௧ ~ (0, Σ)). We define ߴ in Equation (8) as: 

ߴ = ଵߠ ିଵߴ + ଶߠ ିଶߴ + ଷߠ ିଷߴ + ⋯ + ߠ  ି   (9)ߴ
where ߴ is an N x N identity matrix, and ߴ = 0 for ݆ < 0. 
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To assess the contribution of each ETF (i.e., green, brown, or technology) to the forecast error 
variance, the generalized variance decomposition framework is used (see Koop et al., 1996; 
Pesaran and Shin, 1998). This generalized forecast error variance at an H-step-ahead horizon is 
calculated as: 

Φ (ܪ) = ఝೕೕషభ ∑ (ᇲஊೕ)మಹషభసబ
∑ (ᇲஊᇲ )ಹషభసబ

,    (10) 
where: 

 Σ is the N x N covariance matrix of the error vector μ, 
 ߮ denotes the standard deviation of the jth error term, 
 ݁ is an N x 1 selection vector for all i equals 1 and 0 otherwise. 

This computation results in an N x N generalized variance decomposition matrix, denoted as 
 .NxN[(ܪ)ߔ]
 
To adjust for differences in row sums within the variance decomposition matrix, each element of 
the H-step-ahead matrix is normalized as: 
   Φ෩ (ܪ) = ೕ(ு)

∑ ೕ(ு)ೕಿసభ
     (11) 

Using the normalised variance contribution expressed in Equation (10), we compute measures of 
connectedness to examine spillovers among the three ETFs. In essence, we compute the total 
connectedness index (TCI), cross connectedness index (CSI), and net directional connectedness 
index (NSI). The TCI measures the average contribution of spillovers from shocks across the ETF 
markets to the total forecast error variance. CSI is the pairwise directional spillover among the 
three ETFs. NSI represents the net spillover effect for green, brown, or technology ETFs.  
 
Given the foregoing, TCI, CSI and NSI are computed as: 

(ܪ) ܫܥܶ =
∑ ∑ ෩ ೕ(ு)ೕಿసభಿసభಯೕ
∑ ∑ ෩ ೕ(ு)ೕಿసభಿసభ

=
∑ ∑ ෩ ೕ(ு)ೕಿసభಿసభಯೕ

ே ; ܰ = 1,2,3 ܽ݊݀ ݅, ݆ ∈ {1,2,3}   (12) 
The cross-spillovers (or connectedness) among the three ETFs are specified as: 
  

(ܪ)→←ܫܵܥ =
∑ ∑ ෩ ್(ு)యసభయ್ సభ್ಯ
∑ ∑ ෩ ್(ு)యసభయ್సభ

=
∑ ∑ ෩ ್(ு)యసభయ್ సభ್ಯ

ே      (13a) 
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(ܪ)→௧←௧ܫܵܥ =
∑ ∑ ෩ (ு)యసభయసభಯ
∑ ∑ ෩ (ு)యసభయసభ

=
∑ ∑ ෩ (ு)యసభయసభಯ

ே      (13b) 
 

(ܪ)→←ܫܵܥ =
∑ ∑ ෩ ್(ு)య್సభయసభ

ಯ್
∑ ∑ ෩ ್(ு)య್సభయసభ

=
∑ ∑ ෩ ್(ு)య್సభయసభ

ಯ್
ே      (14a) 

(ܪ)→௧←௧ܫܵܥ = ∑ ∑ ෩ ್(ு)య್సభయసభಯ್
∑ ∑ ෩ ್(ு)య್సభయసభ

= ∑ ∑ ෩ ್(ு)య್సభయసభಯ್
ே      (14b) 

 

(ܪ)௧→௧←ܫܵܥ = ∑ ∑ ෩ ್(ு)య್సభయసభಯ್
∑ ∑ ෩ ್(ு)య್సభయసభ

=
∑ ∑ ෩ ್(ு)య್సభసభ

ಯ್
ே      (15a) 

(ܪ)→௧௧←ܫܵܥ =
∑ ∑ ෩ (ு)యసభయసభಯ
∑ ∑ ෩ (ு)యసభయసభ

=
∑ ∑ ෩ (ு)యసభయసభಯ

ே                         (15b) 
where ߔ෩(ܪ) represents the pairwise directional spillover from asset j, say brown ETFs, to asset 
i, say green or technology ETFs, over H horizon. The superscript and subscript indicate the 
direction of spillovers, particularly inflows to and outflows from one ETF to another. 
 
Furthermore, the net directional connectedness spillover index (NSI) is determined by calculating 
the difference between the inflow and outflow strengths of the variables. Inflow strength measures 
the degree to which the green ETF, for instance, is influenced by shocks originating from either 
the brown or technology ETF, while outflow strength measures the extent to which the green ETF 
generates shocks that affect the brown or technology ETF. These measures, computed among the 
three ETFs, are expressed as: 
 

(ܪ) ܫܵܰ = (ܪ)→௨௧௪ܫܵܥ −  (16)     (ܪ)←௪ܫܵܥ 
where i,j denotes the pairwise directional spillover. These connectedness measures offer critical 
insights into how risks transmitted among the ETFs are analysed. Specifically, they help identify 
the nature of risk exposure within the ETF markets, revealing whether an ETF acts predominantly 
as a net recipient or a net contributor to the system of shock spillovers. 
 
Based on the foregoing and as previously espoused, the linkages between green, brown, and 
technology ETFs are evaluated using the block aggregation technique of Greenwood-Nimmo et 
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al. (2021). In addition, we characterize the cross-market connectedness matrix (see Wang et al., 
2023) as: 
 

ۉ
ۇۈ

ℎ݃→݃ߠ ℎܾ→݃ߠ ℎݐ→݃ߠ
ℎ݃→ܾߠ ℎܾ→ܾߠ ℎݐ→ܾߠ
ℎ݃→ݐߠ ℎܾ→ݐߠ ℎݐ→ݐߠ ی

 (17)     ۊۋ

 
In Equation (17), ߠ→ →ߠ , , and ߠ௧→௧  (i.e., the diagonal elements) denote the spillover matrices 
within the green, brown, and technology ETF markets. Whereas, the off-diagonal elements (such 
as ߠ→ →ߠ , →௧ߠ , , etc.) indicate cross-market spillover matrices among the three ETFs. With 
these procedures, we can measure the extent of risk propagated within the same market, the risk 
transmitted to the other market, and the cross-risk dynamics across the green, brown, and 
technology ETFs. 
 
In the final set up, a multilayer network is developed using the DY method and cross-spillover 
matrix to examine connectedness between the three ETFs, with nodes representing stocks from 
each ETF. This network captures risk transmission through intralayer edges (linking stocks within 
the same market) and interlayer edges (connecting stocks across markets), thereby allowing for a 
comprehensive analysis of the risk dynamics in the green and brown ETF markets (see Addi et al., 
2024; Foglia et al., 2024). Consistent with the methodology employed by Wang et al. (2021), the 
daily return series of ETFs is partitioned into rolling windows of length ω, with a step size δ. In 
particular, we implement a window width (ω) of 240 trading days and a step size (δ) of 20 trading 
days, which approximately correspond to one trading year and one trading month, respectively, in 
financial markets. 
 
4. Results and Discussion 
 This section presents and discusses the findings from our empirical analyses. It is organized into 
several sub-sections. The first focuses on the total connectedness between the ETFs across four 
layers: returns, volatility, skewness and kurtosis. Building on the multilayer framework, the 
analysis is extended to examine cross-spillovers (i.e., cross-layer connectedness) between the three 
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ETFs, using both the overlap and participation coefficient measures, enabling a comprehensive 
assessment of the connectedness dynamics in the clean, brown, and technology ETF markets. 
Finally, we investigate the role of climate risk in shaping these connectedness patterns using both 
the traditional Granger causality test and the time-varying parameter causality approach of Rossi 
and Wang (2019). 
 
4.1. Total connectedness analysis 
Examining the degree of connectedness between the three ETFs across the layers of returns, 
volatility, skewness and kurtosis, reveals a high level of connectedness, except during late 2024 
(across all layers) and the 2008–2009 period (particularly for skewness and kurtosis). This pattern 
is evident in the four layers’ higher values, as shown in both Figure 1 and Table 1. The lower level 
of connectedness, particularly observed during 2008–2009, for skewness and kurtosis can be 
attributed to the global financial crisis (GFC) which characterized this turbulent period. Similarly, 
the reduced connectedness observed in 2024 may reflect a growing awareness of climate change 
and its associated risks, which led to intensified calls for the adoption of the green technologies 
required for green transitions across various markets. The lower connectedness during these high-
risk periods, as shown in Figure 1, particularly in the skewness and kurtosis layers, suggests that 
the three ETF markets become less interdependent during times of heightened uncertainty. This 
could be due to investors reacting differently and adjusting their positions in divergent ways based 
on varying risk perceptions and tolerance levels in response to rare or extreme events. Our findings, 
which indicate lower connectedness among certain layers, suggesting that investors respond 
differently to rare events, align with the results in the related literature (e.g., Hoffmann et al., 2013; 
Ameur et al., 2024; García-Monleón et al., 2024). 
 
Before delving into the intricacies of economic and market dynamics shaping ETF connectedness, 
we direct our attention to the average degree of connectedness (captured by the overlap index) 
within the multilayer spillover network. Specifically, we investigate whether connectedness 
among ETFs only occurs within individual layers or spans multiple layers. Evidence of cross-layer 
connectedness would further justify our adoption of a multilayer network approach to examine the 
relationships among clean, brown, and technology ETFs. As illustrated in Figure 2, the overlap 
index hovers between 1.5 and 4, with a mean value of approximately 3. This relatively high index 
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suggests a significant degree of connectivity across the four layers, indicating that all layers contain 
important information necessary for analysing connectivity, rather than such information being 
confined to just one or a few layers (see Foglia et al., 2025). These findings highlight the 
importance of incorporating multilayer structures to gain a comprehensive understanding of the 
interconnectedness among the three ETFs. 
   

[INSERT FIGURES 1 AND 2] 
 

[INSERT TABLE 1] 
 
Given that all layers analysed contain salient information on spillovers across the three ETF 
markets, the four layers (see Figure 1) illustrate how these spillovers evolve over time, particularly 
in the post-GFC period. Various shocks over the past two decades are reflected in the ETF return 
behaviours shown in Figure 1, while the volatility layer highlights market fluctuations during the 
same periods. Notably, periods of heightened risk such as the European sovereign debt crisis 
(2009-2012), the oil price plunge (2014-2016), the COVID-19 pandemic (2020), and the Russia-
Ukraine War (post-2022), coincide with increases in ETF returns, possibly due to their resilience 
during crises (see Salisu et al., 2025). The same periods reveal elevated volatility spillovers, likely 
driven by high trading volumes. 
 
The skewness and kurtosis layers offer deeper insights into the previously highlighted risk 
episodes. In contrast to the return and volatility layers, they exhibit relatively lower spillover 
effects prior to the GFC. This divergence emphasizes the significance of a multilayered approach 
to examining spillovers and interconnectedness within the ETF markets (see Cui and Maghreyeh, 
2025; Foglia et al., 2025). 
 
4.2 Within- and cross-layer spillover analyses 
Following Wang et al. (2023), both within- and cross-layer spillovers are examined. As illustrated 
in Figure 3, there is clear evidence of within-layer spillovers across all four layers. Specifically, 
within-layer spillover estimates hover between 78 percent and 98 percent for returns to returns, 53 
percent to 89 percent for volatility to volatility, 40 percent to 70 percent for skewness to skewness, 
and 43 percent to 67 percent for kurtosis to kurtosis. These results suggest a substantial degree of 
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internal transmission within each layer, with stronger evidence observed for the return and 
volatility layers. 
In addition, the analysis of cross-layer spillovers – covering twelve directional relationships (i.e., 
return to volatility, return to skewness, return to kurtosis; volatility to return, volatility to skewness, 
volatility to kurtosis; skewness to return, skewness to volatility, skewness to kurtosis; kurtosis to 
return, kurtosis to volatility, and kurtosis to skewness) – reveals varying degrees of risk 
transmission across layers. Notably, higher returns do not necessarily imply higher volatility or 
vice versa; instead, they appear to introduce asymmetries into the distribution of both returns and 
volatility within ETF markets, as evident form the trend of both return to skewness and volatility 
to skewness. This finding contrasts with the patterns observed in total connectedness and some 
findings in the existing literature (e.g., Sarker et al., 2023). This asymmetry is plausible, as elevated 
returns in one ETF market may attract increased investment inflows, which in turn dampen market 
activity, and consequently, volatility in other ETF markets. 
 
In contrast to the spillover dynamics between the return and volatility layers, we observe that the 
skewness layer transmits, on average, 30 percent spillovers to the kurtosis layer, while the kurtosis 
layer transmits approximately 28 percent spillovers back to skewness. These findings highlight a 
robust bidirectional relationship between the skewness and kurtosis layers, implying that changes 
in return asymmetry (skewness) can influence the tail behaviour (kurtosis), while variations in 
kurtosis can, in turn, affect the asymmetry of returns. Similar results are reported by Foglia et al. 
(2025). The differing results once again underscore the importance of multilayer connectedness 
analysis, which allows for appreciation of various and diverse dynamics of spillover transmission 
within and across layers of ETF markets. This approach provides valuable and timely insights for 
various market players, particularly investors seeking to capitalize on elevated returns during 
periods of rare and extreme risk events. 
 

[INSERT FIGURE 3] 
 

4.3 Net spillover analysis 
Here, we highlight the distinct roles played by each ETF in propagating market shocks. This is 
illustrated through the overlapping and participation coefficient indices, each further broken down 
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into inflow, outflow, and net components (see Figure 4 and the discussion in the Methodology 
section). The scaling, represented by red and blue in Figure 4, reveals whether an ETF is a net 
receiver or transmitter of shocks arising from major events, including the GFC, European 
sovereign debt crisis, oil price plunge, COVID-19 pandemic, and Russia-Ukraine conflict (as 
previously highlighted). ETFs are identified as net receivers when inflows exceed outflows, and 
as net transmitters when outflows surpass inflows. 
 
Given the overlapping dynamics shown in Figure 4, there is a clear increase in overlap between 
clean, brown, and technology ETFs, as indicated by the predominance of red. This suggests that, 
during crisis periods, risk transmission or propagation across the ETF markets tend to be strong 
(see Demirer et al., 2018; Foglia and Angelini, 2020). This highlights the level of connectedness 
in the ETF markets, where shocks affecting one type of ETF can rapidly spill over to others, an 
indication of systemic risk transmission. Notably, technology ETF exhibits the highest degree of 
overlap in both inflows and outflows, particularly between 2008 and 2014, as well as during the 
COVID-19 period. This underscores its central role in mediating between brown and clean ETFs 
given its key role in the energy transition. Meanwhile, clean ETFs appear to be only mildly affected 
by these shocks, indicating a relatively low level of shock propagation over the sample period. 
This contrasts with the findings of Bouri (2023), which suggest that clean energy is a net 
transmitter of shocks – specifically volatility and kurtosis shocks – although their focus is not on 
ETFs but indices.  
 
According to Foglia et al. (2025), the distribution of connections between financial markets across 
various layers can be assessed using the participation coefficient index. Focusing on the three sub-
components, inflow, outflow, and net participation coefficients, a generally balanced concentration 
across all layers is observed during both turbulent and calm periods. An exception is brown ETFs 
during the COVID-19 pandemic and the intensified Russia-Ukraine tensions, as reflected in the 
inflow and outflow components (see Figure 4), buttressing the conclusion previously drawn from 
Figure 2. 
 

[INSERT FIGURE 4] 
 



17 
 

 
4.4 Climate risk and connectedness among clean, brown, and technology ETFs 
In order to examine the effect of climate risk on the connectedness between the three ETFs, we 
rely on both traditional and time-varying Granger causality tests to confirm or refute the null 
hypothesis that climate risk does not Granger-cause connectedness (as well as spillovers) across 
clean, brown, and technology ETFs. It is worth noting that the tendencies for the delayed influence 
of the lagged value of an independent variable on the dependent variable inform the time-varying 
causality by Rossi and Wang (2019). 
 
Thus, we consider the time-varying parameters’ VAR model as: 
 

ܼ௧ = ∑ ߱,௧ୀଵ ܼ௧ି +  ௧   (19)ߤ
 
where ߱ ,௧, ݆ = 1, 2, 3, … , are the time-varying coefficient matrices, ܼ௧ ݍ = (ܼଵ,௧, ܼଶ,௧, ܼଷ,௧ … , ܼ,௧)′ 
is an n x1 vector, and the shocks (ߤ௧) are assumed to be heteroscedastic and serially correlated. 
Relying on this, we test the null hypothesis that climate risk (measured by CPU) does not Granger-
cause connectedness among the three ETFs (i.e., clean, brown, and technology ETFs). This is also 
tested across both the within-layer and cross-layer connectedness. 
 
Given the foregoing, in Tables 2 and 3, respectively, we highlight the results of the traditional 
Granger causality test (Ganger 1969) and time-varying robust Granger causality test of Rossi and 
Wang (2019) which assumes heteroscedastic and serially correlated idiosyncratic shocks. In both 
cases, we use the PPP-adjusted CPU of Ma et al. (2024) for the analysis. 
 
The results for the traditional Granger causality test (see Table 2) show no sufficient evidence 
against the null hypothesis that the PPP-adjusted CPU does not Granger-cause connectedness 
between brown, green, and technology ETFs across the layers, except in a few cases of skewness 
and kurtosis connectedness (see Panel A of Table 2). However, the results for both within- and 
cross-layer spillovers indicate that climate risk does not Granger-cause within- and cross-layer 
spillovers between these assets (see the corresponding Panels B and C). 
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[INSERT TABLE 2] 
Following the above results from the traditional (static) Granger causality test, we examine whether 
the influence of climate risk on asset connectedness is time-varying using the test of Rossi and 
Wang (2019). The results are presented in Table 3. Meanwhile, various test statistics, including 
exponential weighted (ExpW), mean Wald (meanW), Nyblom test (Nyblom) and supremum 
likelihood ration (SupLR), are reported for robustness because they take account of various 
statistical features, including gradual and/or abrupt break detection (ExpW and SubLR), parameter 
instability (Nyblom), and persistence or departure from Granger noncausality (meanW) (see Rossi, 
2005). Preliminary tests using the Bai and Perron (2003) global test for multiple structural breaks 
(UDMax statistic) suggest, for example, the presence of structural break(s)/parameter instability 
(see Table A2 in the appendix), which represent another justification for adopting the time-varying 
test of Rossi and Wang (2019). 
 
As shown in Table 3, we find overarching evidence across all the test statistics that climate risks 
indeed Granger-cause connectedness and spillovers (both within- and cross-layer) between the 
three ETFs (see Panels A, B, C, and D of Table 3). These results, which contrast with the traditional 
Granger-causality analysis (see Table 2), indicate that climate risks can indeed predict or Granger-
cause connectedness/spillover between these ETFs.5 We therefore conclude that climate risks 
influence the behaviour of the three ETFs, leading to both within- and cross-spillovers across 
returns, volatility, skewness, and kurtosis.  The plots showing the array of Wald statistics over 
various time horizons are also presented (Figures 5, 6, and 7), and offer additional details about 
the periods when causality occurs across the layers, including within-layers and cross-layers. 
 
Essentially, there exists sufficient and stable evidence that climate risk causes both total and 
within-layer connectedness, as the Wald statistic trends consistently stretch above the 10 percent 
and 5 percent critical values across the entire period (except for the kurtosis to kurtosis layer from 
2012 to 2014 and 2017 to 2020), indicating a robust causal relationship (see Figures 5 and 6). 
There are mixed results for the causal relationship between climate risk and cross-layer 

                                                           
5 There are three variants of the uncertainty index by Ma et al. (2024), current price GDP-weighted, equal-weighted 
CPU, and PPP-adjusted CPU, and the results – although not reported – are consistent across other variants of the 
climate risk proxies of Ma et al. (2024). 
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connectedness, with notable sensitivity specific to some periods, particularly around 2012 and 
2019 to 2020, with this sensitivity being more pronounced in the kurtosis to volatility layer (see 
Figure 7). Nonetheless, evidence of stable and robust causal relationships abounds for return to 
skewness, skewness to return, kurtosis to skewness and vice versa, return to kurtosis, volatility to 
kurtosis, and volatility to skewness. These results underscore the importance of using a time-
varying Granger causality test, which captures the dynamic behaviour of the Wald statistic vis-à-
vis the critical values, unlike traditional tests that provide only a single p-value. 
 

[INSERT TABLE 3] 
 

[INSERT FIGURES 5, 6 AND 7] 
 
5. Conclusions and Implication of Findings 
The literature on spillovers across global financial markets is growing, with recent attention 
gradually shifting beyond the first and second moments of stock market returns to cover skewness 
and kurtosis given the deviation of returns from the normal distribution. However, much of this 
research overlooks the connectedness among clean, brown, and technology markets under the 
energy transition and how climate risks affect the dynamics of within-layer, cross-layer, and total 
connectedness measures. Using data on exchange-traded funds (ETFs) that represent an appealing 
investable vehicle, unlike non-investable conventional stock indices, we employ a multilayer 
framework of connectedness based on Wang et al. (2021, 2023). The key findings are summarized 
as follows. 
 
Firstly, a high degree of connectedness across all four layers (returns, volatility, skewness, and 
kurtosis) are noted, except during late 2024 and the 2008–2009 period, particularly for skewness 
and kurtosis. The reduced connectedness during these periods is attributed to the GFC and 
increased awareness of climate-related risks, which have spurred a shift towards green technology 
investments. Secondly, a relatively high overlap index (approximately 3) indicates substantial 
connectivity across all layers. This suggests that each layer contributes unique and important 
information, supporting the use of a multilayer network approach. Specifically, risk transmission 
is strongest during crisis periods, with technology ETFs showing the highest degree of overlap. In 
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contrast, clean ETFs appear less affected by shocks from the other ETFs examined, implying 
limited risk exposure during the sample period. Thirdly, major risk events – such as the European 
sovereign debt crisis (2009-2012), oil price plunge (2014-2016), COVID-19 pandemic (2020), and 
Russia-Ukraine War (post-2022) – correspond with increases in ETF returns, underscoring their 
resilience during crises. Nonetheless, these periods also exhibit elevated volatility spillovers, likely 
due to surges in trading activity. Fourthly, within- and cross-layer analyses reveal substantial 
spillovers within each layer, especially for returns and volatility. Importantly, higher ETF returns 
do not necessarily correspond with higher volatility; rather, they introduce asymmetries into the 
distributions of both returns and volatility, as reflected in their relationships with skewness. In 
addition, the skewness layer transmits, on average, 30 percent of spillovers to the kurtosis layer, 
while the kurtosis layer sends back approximately 28 percent to skewness, highlighting the 
bidirectional nature of higher-moment connectedness. Finally, climate risks influence the 
behaviour of all three ETFs across total, within-, and cross-layer connectedness metrics, 
highlighting the important role played by climate risk in affecting the dynamics of clean, brown, 
and technology ETF investments under the transition towards a low carbon economy. 
 
Our findings have important implications for various market players, particularly investors, 
portfolio managers, and policy makers. The multilayer connectedness observed across returns, 
volatility, skewness, and kurtosis emphasizes the need for investors to move beyond traditional 
risk measures when making investment decisions in the area of clean, brown, and technology 
ETFs. The demonstrated resilience of ETFs, especially during systemic crises such as the European 
sovereign debt crisis, oil price plunge, COVID-19 pandemic, and Russia-Ukraine war, underscores 
their appeal as stable investment vehicles in turbulent times. Notably, clean ETFs exhibit lower 
shock propagation, making them attractive for environmentally conscious investors seeking to 
minimize exposure to extreme market movements. Furthermore, the high overlap index confirms 
that diversification strategies relying solely on returns or volatility may be inadequate, suggesting 
the importance of integrating higher-moment metrics to improve asset allocation and hedging 
strategies, particularly as return-volatility asymmetries become more pronounced during crises. 
Similarly, including clean ETFs in portfolios may enhance resilience as it mitigates climate-driven 
shocks and systemic contagion, suggesting that risk and portfolio inferences in the system of clean, 
brown, and technology ETFs should not be made in isolation of climate risk. For policymakers 
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and sustainability advocates, our findings, which relate climate risk to various multilayer 
connectedness measures across various dimensions, reinforce the financial relevance of 
environmental and climate considerations under the global energy transition. Clean ETFs not only 
align with sustainability goals but also exhibit distinctive risk transmission patterns, making them 
valuable instruments for reducing climate-related financial exposure while supporting broader 
environmental transitions. 
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Figure 1: Extent of connectedness for each layer of returns, volatility, skewness, and kurtosis 
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Figure 2: Trend in overlap index 
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Table 1: Descriptive statistics of the connectedness index 
Layer  Return Volatility Skewness Kurtosis 

Mean 42.2221 30.9265 12.0219 11.8274 
Maximum 60.4468 62.6934 27.9558 32.7788 
Minimum 11.8759 0.0000 0.0000 0.0000 
Std. Dev. 12.7769 16.9334 7.4185 7.4319 

Note: Std. Dev. denotes standard deviation.  
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Figure 3: Cross-spillover among layers 
 
Note: The blue line is spillover to return layers, the orange line is spillover to volatility layers, the green 
line is spillover to skewness layers, and the pink line is spillover to kurtosis layers.  
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Figure 4: Multilayer information spillover measures 
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Figure 4: Continued 
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Table 2: Traditional Granger causality test 
Panel A Panel B Panel C 

Connectedness F-Stat. Within F-Stat. Cross      F-Stat.  F-Stat. 
Full 2.83* k-to-k 0.01 k-to-r 1.18 r-to-k 2.34 
Ret 9.16*** r-to-r 2.42 k-to-v 0.26 v-to-k 3.66* 
Vol 4.88** s-to-s 0.07 k-to-s 1.56 s-to-k 0.69 

Skew 0.42 v-to-v 2.02 r-to-v 0.00 v-to-r 0.00 
Kurt 1.48   r-to-s 1.68 s-to-r 0.91     v-to-s 0.70 s-to-v 0.04 

Note: Within’ and ‘Cross’ in Panels B and C denote within-layer and cross-layer spillovers, respectively. The PPP-adjusted CPU 
of Ma et al. (2024) is used to proxy climate risk. ‘Full’ denotes connectedness across the entire layers (see Panel A), while ‘Kurt’ 
(and k), ‘Ret’ (and r), ‘Skew’ (and s) and ‘Vol’ (and v) indicate connectedness/spillovers along the layers of kurtosis, return, 
skewness, and volatility, respectively. ***, **, and * indicate significance at the 1%, 5% and 10% level, respectively. H0: Climate 
risk does not cause connectedness/spillovers among brown, green, and technology ETFs. 
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Table 3: Time-varying Granger causality from climate risk to connectedness and spillovers across multiple layers 
Panel A: ExpW Panel B: MeanW 

Connectedness Within Cross Connectedness Within Cross 
Full 347.08*** k-to-k 36.19*** k-to-r 44.50*** r-to-k 299.32*** 178.46*** k-to-k 14.00*** k-to-r 28.08*** r-to-k 57.95*** 
Ret 292.70*** r-to-r 189.30*** k-to-v 42.44*** v-to-k 113.31*** 138.07*** r-to-r 70.43*** k-to-v 13.20*** v-to-

k 64.62*** 
Vol 139.79*** s-to-s 121.64*** k-to-s 104.18*** s-to-k 47.36*** 66.35*** s-to-s 47.69*** k-to-s 78.63*** s-to-k 43.33*** 

Skew 409.06*** v-to-v 232.64*** r-to-v 58.19*** v-to-r 39.81*** 150.53*** v-to-v 83.98*** r-to-v 23.93*** v-to-r 22.25*** 
Kurt 376.81***   r-to-s 322.39*** s-to-r 74.80*** 169.63***   r-to-s 56.80*** s-to-r 36.90***     v-to-s 187.71*** s-to-v 79.60***    v-to-s 37.39*** s-to-v 16.63*** 

Panel C: Nyblom Panel D:SupLR 
Connectedness Within Cross Connectedness Within Cross 

Full 24.05*** k-to-k 22.79*** k-to-r 17.73*** r-to-k 13.87*** 703.55*** k-to-k 81.95*** k-to-r 97.01*** r-to-k 608.24*** 
Ret 77.61*** r-to-r 6.77*** k-to-v 2.82*** v-to-k 18.76*** 595.02*** r-to-r 388.22*** k-to-v 93.53*** v-to-

k 236.14*** 
Vol 11.58*** s-to-s 46.88*** k-to-s 75.09*** s-to-k 69.02*** 289.20*** s-to-s 252.36*** k-to-s 217.37*** s-to-k 103.58*** 

Skew 9.05*** v-to-v 18.71*** r-to-v 51.43*** v-to-r 24.65*** 827.71*** v-to-v 474.66*** r-to-v 125.85*** v-to-r 88.16*** 
Kurt 6.77***   r-to-s 18.44*** s-to-r 38.07*** 763.23***   r-to-s 654.17*** s-to-r 159.21***     v-to-s 14.06*** s-to-v 2.14***    v-to-s 385.02*** s-to-v 168.82*** 

Note: The Table reports the results of the various test statistics of the Granger causality robustness test, with *** denoting statistical significance at 1% level.  
‘Within’ and ‘Cross’ denote within-layer and cross-layer spillovers, respectively. The PPP-adjusted CPU of Ma et al. (2024) is used to proxy climate risk. ‘Full’ 
denotes connectedness across the entire layers, while ‘Kurt’ (and k), ‘Ret’ (and r), ‘Skew’ (and s) and ‘Vol’ (and v) indicate connectedness/spillovers along the 
layers of kurtosis, return, skewness, and volatility, respectively. The optimal lag is 1, and heteroscedastic and serially correlated idiosyncratic shocks are assumed 
(see Rossi and Wang, 2019). 
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 Figure 5: Time-varying Wald test for Granger causality between CPU and total connectedness 
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   Return-to-Return      Volatility-to-Volatility 
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 Figure 6: Time-varying Wald test for Granger causality between CPU and within-layer connectedness 
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 Figure 7: Time-varying Wald test for Granger causality between CPU and cross-layer connectedness 
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Appendix 
 
 

Table A1: Summary statistics  BROWN ETF CLEAN ETF TECH ETF Mean -0.0042 -0.0347 0.0496 
Std. Dev. 1.8032 2.0571 1.4428 
Skewness -0.7395 -0.5412 -0.4378 
Kurtosis 18.4974 13.676 11.4991     Jarque-Bera 43169.9*** 20512.03*** 13003.4*** 

Note: The returns of the three ETFs are used. 
 
 
 

 
Table A2: Stability tests 

TC No of breaks break dates Within-layer No of breaks break dates 
Full 2 2017M10, 2020M01 k-to-k 1 2011M10 

Kurtosis 1 2020M01 r-to-r 1 2012M02 
Return 1 2020M12 s-to-s 1 2018M06 

Skewness 2 2017M10, 2020M01 v-to-v 1 2012M02 
Volatility 1 2020M12    

Cross-layer  No of breaks break dates Within-layer No of breaks break dates 
k-to-r - - s-to-k 1 2020M04 
k-to-s 3 2012M12, 2015M11, 2020M04 s-to-r - - 
k-to-v - - s-to-v 2 2012M02, 2014M05 
r-to-k 1 2012M02 v-to-k 1 2012M02 
r-to-s 1 201M09 v-to-r 2 2017M06, 2021M09 
r-to-v 4 2012M05, 2014M09, 2017M06, 2021M09 v-to-s 1 2012M01 

Note: TC means total connectedness. We apply the Bai-Perron multiple breakpoint test with the ‘global L-breaks vs. none’ (using 
UDMax determined breaks) option and allow for differing error distributions across regimes. This is to relax the assumption of no 
homoscedasticity and serial correlation in line with the time-varying causality analysis conducted.  
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Figure A1: Brown, clean, and technology ETF price trends 
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Figure A2: Brown, clean, and technology ETF return trends 


