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Climate Risks and Predictability of Financial Risks in the US Banking Sector 
Petre Caraiani*, Onur Polat**, Rangan Gupta*** and Elie Bouri**** 

 
Abstract 

In this paper, we relate physical and transition climate risks of the United States (US) to systemic risk of its 
banking sector. We start by estimating the systemic risk of 128 bank stock prices of the US over the period 
26th May 2008 to 30th June 2023, taking the time-varying financial risk meter (FRM) approach, which relies 
on the Lasso quantile regression model. The FRM for the overall system of banks, as well as for large, 
medium, and small banks separately, exhibits notable peaks during COVID-19 in particular, and the global 
financial and European sovereign debt crises. Subsequently, using a nonparametric causality-in-quantiles 
test, which is robust to misspecification due to nonlinearity and structural breaks, we show that news-based 
metrics of physical and transition risks can significantly predict the entire conditional distribution of the 
FRMs over the full-sample and in a time-varying manner, with strongest causal impacts derived from news 
on international summits, compared to those on natural disasters, global warming, and US climate policies. 
Further analysis shows that all four climate risk factors consistently exert a positive impact on the 
conditional quantiles of the FRMs, supporting the premise that climate risks can damage assets and augment 
operating costs in the banking sector. Our findings have important policy implications which concern the 
stability of the banking sector. 
 Keywords: US bank stocks; financial risk meter (FRM); climate risks; nonparametric causality-in-
quantiles test; predictability 
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1. Introduction 
 In line with the burgeoning area of research focusing on the nexus between climate change risks 
and asset markets (see, Giglio et al. (2021), Del Fava et al. (2024) and Gupta et al. (forthcoming) for detailed 
reviews), a few papers analyse the impact of such risks on the banking sector (Battiston et al., 2017; Cortés 
and Strahan, 2017; Roncoroni et al., 2021; Le at el., 2023),1 including bank stocks (Boungou and Urom, 
2023). The growing focus on this sector should not come as a surprise, since banks, which play a financial 
intermediary role, are exposed to both physical climate risks (caused by physical phenomena) and transition 
climate risks (resulting from a shift towards “green” energy) through changes in credit risks, market risks, 
and lending standards (Battiston et al., 2021; Acharya et al., 2023; de Bandt et al., 2024), which can lead to 
a change in the value of bank assets, including bank portfolios, and an increase in bank operating costs 
(Cahen-Fourot et al., 2021).  
 As far as the literature on climate risks and banking sector performance is concerned, Battiston et 
al. (2017) conduct a climate stress test on the 50 largest European Union banks, revealing that second-round 
effects can be of comparable magnitude to first-round effects. The first-round effects originate from climate-
policy-relevant sectors, such as investment and pension funds. Cortés and Strahan (2017) trace out how 
multi-market banks in the United States (US) adjust their credit supply decisions in response to local, 
exogenous shocks to credit demand triggered by natural disasters. Using property damage as an instrument 
for lending growth, these authors find that credit in unaffected but connected markets declines, but by a 
little less than 50 cents per dollar of additional lending in shocked areas.2 Roncoroni et al. (2021) explore 
the effects on financial stability, both analytically and empirically, in the context of Mexico's banking sector, 
considering its interplay with market conditions. They show that, in the wake of mild climate policy shocks, 
a disorderly transition from business as usual to a 2°C temperature rise (i.e., the international climate change 
target to limit global warming) produces important losses for the financial system, especially if market 
conditions are weak. Le at el. (2023), using an international sample of 6433 commercial banks in 109 
countries between 2005 and 2019, illustrate that increased physical climate risks lead to decreased bank 
stability in terms of profitability, asset quality and liquidity risks. Erhemjamts et al. (2024) consider US 
commercial banks and show that negative sentiment arisen from the exposure to climate risk is associated 
with deteriorated financial performance, whereas a stronger ESG engagement can lessens such a harmful 

                                                           
1 The reader is referred to de Bandt et al. (2024) for a comprehensive review of studies related to this area, which also 
includes a discussion of unpublished working papers. 
2 This finding is in line with that of Blickle et al. (2022), who show that natural disasters over the last twenty-five 
years have had small effects on the performance of US banks. 
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impact. Interestingly, Boungou and Urom (2023) find that physical and transition risks related to climate 
change in the US have a negative impact on the stock performance, i.e., returns, of global and G20 banks3. 
 We aim to add to this embryonic literature on the impact of climate risks on bank stock 
performance, particularly in the US, by, firstly, developing a time-varying systemic risk measure (i.e., the 
financial risk meter (FRM)) for 128 US banks over the period 26th May 2008 to 30th June 2023, then 
analysing the causal effect of various physical and transition climate risks on the FRMs of aggregate, small, 
medium, and large banks. For the first, we construct the FRM, following Mihoci et al. (2020), based on the 
least absolute shrinkage and selection operator (Lasso) quantile regression designed to capture tail event 
co-movements, thus allowing us to understand characteristics of the stock returns of 128 US banks in the 
context of interdependencies in a network topology. We not only develop a FRM for all 128 banks, but do 
the same for small, medium, and large banks to detect possible heterogeneity in the behaviour of systemic 
risk contingent on the size of market capitalization. For the second, we use the nonparametric causality-in-
quantiles test of Jeong et al. (2012) to analyse the predictive impact of measures of physical and transition 
climate risks of the US on the FRMs of the aggregate, small, medium, and large banks. The advantage of 
this purely data-driven, (i.e., nonparametric) quantiles-based test is its ability to provide robust inferences 
of predictability over the entire conditional distribution (beyond the conditional mean) of the FRMs. Hence, 
this test is able to capture the causal effect of climate risks on low, normal and high levels of systemic risks 
in the banking sector, by accommodating any misspecification that standard linear quantile regression 
models, as used by Boungou and Urom (2023), might suffer due well-established evidence of nonlinearity 
and structural breaks in high-frequency (daily) data.  
 To the best of our knowledge, this is the first paper to analyse the predictive role of climate risk 
factors associated with natural disasters, global warming, international summits, and US climate policy, as 
developed by Faccini et al. (2023), on measures of tail risks of disaggregated stock prices of a large number 
of US banks using a robust non-parametric test of causality at quantiles. In this context, our paper is closest 
to the work of Curcio et al. (2023), who show that physical risks in the form of billion-dollar climate 
disasters in the US can increase the systemic risk (measured by delta conditional value at risk and the 
marginal expected shortfall) of the S&P 500 Banks Industry Group GICS Level 2.4 Understandably, our 
work can be considered an extension of Curico et al. (2023), considering both physical and transition 

                                                           
3 On a related front, Cao (2025) examines the influence of climate change on the interconnectedness across the tail-
risk of stock markets, showing that physical risk intensifies the total and directional connectedness, unlike transition 
risk. 
4 See Wu et al. (2024) for a corresponding study at the global-level dealing with the positive relationship between 
vulnerability and weak adaptability (readiness) to physical climate risks on systemic risk, captured by delta conditional 
value at risk of 1,570 listed banks from 120 countries.  
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climate risks over various levels (quantiles) of systemic risk associated with the overall banking sector, as 
well as for these banks characterized by size market capitalization.   
 The performance of the banking industry is a useful indicator for financial markets of credit quality, 
consistency in flow of liquidity, and degree of fear surrounding banking insolvencies that exist in the wider 
financial system (Ampudia and Van den Heuvel, 2022; O’Donnell et al., 2024). Understandably, appropriate 
modelling and prediction of systemic risk involved in the banking sector, with the latter capturing financial 
stability in the industry, is indeed of paramount concern for investors, bankers, and policymakers in the 
wake of ever increasing climate risks and the transition towards a greener economy. 
 The remainder of the paper is organized as follows: Section 2 outlines the basics of the 
methodologies involving the FRM and the nonparametric causality-in-quantiles test. Section 3 presents the 
data, while Section 4 discusses our empirical findings and Section 5 concludes the paper.  

 
2. Methodology 
 In this section, we present the basics of the FRM and the nonparametric causality-in-quantiles test. 
2.1. The Financial Risk Meter (FRM) 
 The FRM is constructed as the mean value over the series of penalization terms computed based 
on the log-returns of the stock prices of the 128 US banks in our sample, following Mihoci et al. (2020). 
We firstly introduce the linear quantile Lasso regression approach as discussed in Härdle et al. (2016). 
 Considering a large number (128) of banks denoted by k, and indexed by ݆ ∈ {1, … , ݇},  the total 
number of covariates is ݇ + ݉ − 1, where m is the number of macroeconomic and financial control 
variables, discussed in the next section (Section 3). There are T total observations, with time indexed by t. 
We use a sliding window s given by ݏ ∈ {1, … , (ܶ − (݊ − 1)) having a size of n = 500 observations to 
compute the time-varying FRM. Having introduced this notation, the quantile Lasso regression can be 
written as: 

ܺ,௧௦ = ௦ߙ + ௦ߚ்,,௧௦ܣ + ߳,௧௦                    (1) 

where ܣ,௧௦,் = ௧ିଵ௦ܯ]
ܺି,௧௦ ], while ܯ௧ିଵ௦  is the vector of our macro-finance variables of dimension m and ܺି,௧௦ the 

vector of log-returns of the stock prices for the other banks except bank j at time t and for the windows s 
(with this latter vector having a  dimension of p-m). 
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 The estimation for this regression uses a L1-norm quantile regression (Li and Zhu, 2008), which is 
formally written as: 
minఈೕೞ,ఉೕೞ

{݊ିଵ ∑ )௧ߩ ܺ,௧௦ − ௦ߙ −௦ା(ିଵ)௧ୀ௦ (௦ߚ்,,௧௦ܣ +  ௦ฮଵ}                 (2)ߚ௦ฮߣ

where, ߣ௦ is a penalization parameter, while we define the function ߩఛ(ݑ) as: 
(ݑ)ఛߩ  = ݑ)ܫ||ݑ| ≤ 0) − ߬|                                                  (3) 
where, for c having a value of 1, we get the quantile regression. 
 For equation (2), the crucial choice is of the penalization parameter ߣ௦. One can use the Bayesian 
information criterion (BIC) or, following Yuan (2006), the generalized approximate cross-validation 
criterion (GACV), which is shown by Yuan and Lin (2006) to have a better performance from a statistical 
point of view. Hence, we determine ߣ௦ using the GACV criterion, such that ߣ௦is the solution to this 
minimization problem: 

min ௦൯ߣ൫ܸܥܣܩ = min ∑ ఘ(ೕ,ೞ ିఈೕೞିೞశసೞ ೕ,ೞ,ఉೕೞ)
ିௗ                              (4) 

where df measures the actual dimensionality of the fitted model.  
Following this approach, we get a ߣ௦ for each bank. The final ߣ௦, i.e., the FRM, is computed as a 

mean of the set of k banks: 
FRM = ଵ

 ∑ ∗ୀଵߣ                       (5) 
 We construct the FRM not only for all banks in our sample, irrespective of market capitalization, 
but also for three categories of bank  (small, medium, and large) classified based on the market capitalization 
of each bank, with details presented in the next section. 
2.2. Nonparametric Causality-in-Quantiles Test 
 In this sub-section, we briefly present the methodology for testing nonparametric causality based 
on the framework of Jeong et al. (2012). 

Let ݕ௧ denote the FRM for the overall banking system, or for small, medium, and large banks, and 
 ௧ a particular climate risk, i.e., natural disaster, global warming, international summit, and US climateݔ
policy. Further, let ௧ܻିଵ ≡ ,௧ିଵݕ) … , ௧ି), ܺ௧ିଵݕ ≡ ,௧ିଵݔ) … , ௧ି),  ܼ௧ݔ = (ܺ௧ , ௧ܻ), and ܨ௬|∙(ݕ௧| •) denote 
the conditional distribution of ݕ௧ given •.  Defining the θ-th conditional quantile function of the lagged 
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values of the variables (ܼ௧ = (ܺ௧ , ௧ܻ)) in the bivariate system as  ܳఏ(ܼ௧ିଵ) ≡ ܳఏ(ݕ௧|ܼ௧ିଵ) and ܳఏ( ௧ܻିଵ) ≡
ܳఏ(ݕ௧| ௧ܻିଵ), we have ܨ௬|షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} =  with probability one. The rejection of the null ߠ
hypothesis indicates quantiles-based Granger causality, with the following testable hypotheses in the θ-th 
quantile: 
)௬|షభ{ܳఏܨ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ = 1                                                                                                                (6) 
)௬|షభ{ܳఏܨଵ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ < 1                                                                                                                (7) 
 Jeong et al. (2012) show that the feasible kernel-based (standard normal) test statistic has the 
format: 

መ்ܬ                = 1
ܶ(ܶ − 1)ℎଶ   ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰  ௦̂ߝ௧̂ߝ
்

௦ୀାଵ,௦ஷ௧
                      

்

௧ୀାଵ
                                               (8) 

where ܭ(•) is the kernel function with bandwidth ℎ, ܶ is the sample size,  is the lag order, and ߝ௧̂ =
{ݕ௧ ≤ ܳఏ( ௧ܻିଵ)} − )is the regression error, where ܳఏ ߠ ௧ܻିଵ) is an estimate of the ߠ-th conditional 
quantile, and {•} is the indicator function. The Nadarya-Watson kernel estimator of ܳఏ( ௧ܻିଵ) is given by: 

ܳఏ( ௧ܻିଵ) = ∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ  {ݕ௦ ≤ ௧}௦்ୀାଵ,௦ஷ௧ݕ
∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ௦்ୀାଵ,௦ஷ௧

                                                                                              (9) 

with ܮ(•) denoting the kernel function.  
 The empirical implementation of this nonparametric causality-in-quantiles testing involves 
specifying: the bandwidth (h), lag order (p), and kernel types for ܭ(∙) and ܮ(∙). We use p = 1 based on the 
BIC, ℎ is determined by the leave-one-out least-squares cross validation, and we employ Gaussian kernels 
for ܭ(∙) and  ܮ(∙). 
 
3. Data 
 From an initial sample of 149 banks from the US,5 we keep a final sample of 1286, selected for 
having available and common daily price data observations from 23rd June 2006 to 30th June 2023. 
Interestingly, our period of study is comprehensive, encompassing crises of varying nature and scale, 
namely the 2007-2009 global financial crisis, the European sovereign debt crisis, the 2020 COVID-19 
pandemic, and the 2023 turmoil in the US banking industry. The 128 banks included in the final sample 
                                                           
5 The initial sample is banks with a minimum market value of 250 million USD to overcome potential market structure 
issues that are very common with small bank stocks and to ensure that bank stocks have a certain level of liquidity. 
6 Bearing in mind that the starting dates of bank stock price data are not the same across all banks, a common starting 
date is selected to give the maximum number of banks according to data availability, while ensuring that the 2007-
2009 global financial crisis is included in the final sample period. 
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have a combined market capitalization exceeding $1.40 trillion. Details of the selected banks, collected 
from DataStream, are presented in Appendix Table A1, including bank stock symbol, bank name, and bank 
market value, collected at the end of the sample period. We classify banks into three groups: small-, 
medium- and large-sized, having market capitalizations below $2 billion, between $2 billion and $10 
billion, and above $10 billion, respectively. This leads to groupings of 13, 51, and 64, large, medium, and 
small banks, respectively.   
 In line with Mihoci et al. (2020), we use seven macro-finance indicators as controls: the Dow Jones 
Real Estate Investment Trusts (REITs) index, which reflects the market performance of US direct real estate 
investment, including publicly traded REITs and REITs-like securities; S&P 500 composite index, which 
is the most popular barometer of the stock market performance of large US publicly-traded companies from 
various sectors and industries; CBOE VIX, which measures the US stock market's expectation of volatility 
over the next 30 days as implied from S&P 500 index options; Moody’s BAA corporate rate, which reflects 
the yield on corporate bonds that have relatively low risk; 10-year Treasury bill rate; 3-month Treasury 
constant maturity rate; Aruoba-Diebold-Scotti (ADS) Business Conditions index (Aruoba et al., 2009), 
which is a coincident business cycle indicator that reflects US business activity and thus the overall health 
of the US economy; and the shadow short rate (SSR) following Krippner (2013), which is an appropriate 
proxy of conventional and unconventional monetary policies. Data on these control variables are collected 
from Refinitiv Datastream, except SSR data, which is downloaded from: https://www.ljkmfa.com/visitors/, 
and the sample periods match that of the final sample of the daily log-returns for the 28 US bank stocks, 
i.e., 23rd June 2006 to 30th June 2023. 
 For the measures of climate risk used to predict the FRMs, we rely on Faccini et al. (2023), who 
employ the latent Dirichlet allocation (LDA) technique, an unsupervised textual analysis method, to dissect 
climate-change risks and construct climate-risk factors. Faccini et al. (2023) apply LDA to articles that 
contain the words “climate change” and “global warming”, published daily from 3rd January 2000 to 30th 
June 2023 in Thomson Reuters News Archive. LDA deconstructs the news corpus into so-called “topics” 
that can be characterized in terms of the frequency distribution of words. Hence, once the LDA technique 
identifies the topics, Faccini et al. (2023) give every topic an economic interpretation and, in addition, are 
able to compute time series of the topic shares (that is, the proportion of an article’s text associated with a 
given topic) that represent how news coverage has evolved over time for any given topic. Finally, Faccini 
et al. (2023) identify four major climate-related topics of interest: the occurrence of natural disasters (ND), 
the role of emissions in relation to global warming (GW), US climate policy (USCP), and climate change-
related international summits (IS), with the data available for download from: 
https://sites.google.com/site/econrenatofaccini/home/research?authuser=0. We consider news on the first 
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two topics to be directly informative about the physical risks of climate change, and news about the latter 
two topics to be mostly informative about transition risks. ND, GW, USCP and IS are plotted in Appendix 
Figure A1. 
 
4. Empirical Results 
 We first investigate the constructed FRMs involving all 128 banks (FRM-All), and for small (FRM-
Small), medium (FRM-Medium), and large (FRM-Large) banks, derived based on a rolling-window of 500 
observations, covering the period 26th May 2008 to 30th June 2023. As can be seen in Figure 1, FRM-All 
shows sharp increases during the COVID-19 pandemic, to the extent that it is even higher than the peak of 
the global financial crisis. The FRM-Small, FRM-Medium, and FRM-Large results, firstly, have a 
heterogeneous pattern, and hence, warrant a disaggregated analysis of the systemic risk in the banking 
sector contingent on levels of bank market capitalization. While FRM-Medium seems to mimic the pattern 
of FRM-All, FRM-Large has evidence of peaks during the global financial crisis and in the wake of the 
European sovereign debt crisis, though it continues to be smaller in magnitude than during the outbreak of 
the coronavirus pandemic. Compared to FRM-All, FRM-Medium, and FRM-Large, the behaviour of FRM-
Small is quite distinct with similar-sized values during the global financial crisis and the COVID-19 
outbreak, and a relatively smaller peak corresponding to the European sovereign debt crisis, besides 
constantly higher values than the other FRMs for the rest of the sample period. Of the three size categories, 
FRM-Large records the highest value during COVID-19, followed by FRM-Small and FRM-Medium.  

[INSERT FIGURE 1 HERE] 
 Next, we turn our attention to the predictability of the conditional distributions of FRM-All, FRM-
Large, FRM-Medium, and FRM-Small, based on the four climate risk factors (ND, GW, USCP, and IS) 
using the nonparametric causality-in-quantiles test, with the results reported in Table 1. We can draw the 
following general conclusions: (a) as observed, the four climate risk factors tend to predict, in a statistically 
significant manner (primarily at the 1% level), the entirety of the respective conditional distributions (over 
the quantile range 0.10 to 0.90) of the FRMs; (b) across the FRMs, the strongest evidence of predictability, 
in terms of the size of the standard normal test statistic, tends to be associated with international summits 
(IS), followed by US climate policy (USCP) for FRM-Large and FRM-Medium, and global warming (GW) 
for FRM-All and FRM-Small; and (c) for each FRM, the causal impact of all four climate risk factors is 
weakest at the extreme ends of the conditional distributions, with the predictive effect being relatively 
stronger at moderate levels of low and high quantiles of FRMs. This latter finding seems to suggest that, as 
systemic risk in the US banking sector tends to increase, the prediction role of climate risk for the FRMs 
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becomes important, then declines when the conditional median, i.e., the normal state, is reached, picking 
up again until systemic risk becomes moderately high, only to fall at the extreme upper quantiles. 

The pattern of causal influence of climate risk on the FRMs seems to be intuitive in the sense that, 
when systemic risk is initially quite low, investors in the banking sector rely relatively less on the 
information content of climate risk for understanding future values of FRMs, with ND, GW, USCP and IS 
playing more of a role for moderately low values and beyond the normal situation, i.e., the median. Again, 
as seen from Figure 1, with extreme values of FRMs associated with crises, especially the COVID-19 
pandemic, the role of climate risk factors in Granger causing systemic risk of the US banking industry tends 
to become comparatively less important, possibly due to (non-fundamental) herding (Kirimhan et al., 2024).          
 In summary, our findings highlight the predictive role of not only physical risk, as in the related 
paper of Curcio et al. (2023), but also of transition risk, notably international summits on climate change, 
which is much stronger than that of physical risk in explaining, especially moderately low and high levels 
of systemic risk, possibly due to the international nature of the US banking system.  

 [INSERT TABLE 1 HERE] 
Although robust predictive inference is derived from the nonparametric causality-in-quantiles test, 

it is interesting to estimate the sign of the effects of ND, GW, USCP and IS on FRM-All, FRM-Large, FRM-
Medium, and FRM-Small over the quantile range 0.10 to 0.90, especially to verify whether climate risk 
factors tend to positively impact systemic risk in the US banking sector. However, in a nonparametric 
framework, this is not straightforward, as we need to employ the first-order partial derivatives, while the 
estimation of the partial derivatives for nonparametric models can give rise to complications, because 
nonparametric methods exhibit slow convergence rates, due to the dimensionality and smoothness of the 
underlying conditional expectation function. Alternatively, one can look at a statistic that summarizes the 
overall effect or global curvature (i.e., the global sign and magnitude), but not the entire derivative curve. 
A natural measure of global curvature is the average derivative (AD) using the conditional pivotal quantile, 
based on approximation or the coupling approach of Belloni et al. (2019), which allows us to estimate the 
partial ADs. Based on the ADs reported in Table 2, the results show that the four climate risk factors 
consistently tend to positively impact the FRMs over their respective conditional quantiles. One must 
realize that, while higher values of ND and GW signal increased physical risks, frequent meetings involving 
changes in climate policies at the domestic and global level, i.e., higher values of USCP and IS, respectively, 
can be indicative of higher transition risks due to climate policy uncertainty. This finding of a positive effect 
of climate risks on the systemic risk of the banking system, generally aligns with the idea that climate risks 
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can lead to asset damage and devaluation7 (Dietz et al., 2016), potentially harming the assets, including the 
portfolios, of banks (Chenet et al., 2015; Cahen-Fourot et al., 2019), bearing in mind that climate risks can 
also increase the operating costs of banks (Cahen-Fourot et al., 2019).   

[INSERT TABLE 2 HERE] 
  Finally, even though the full-sample (static) quantiles-based predictive model allows us to study 
the effect of climate risks on the various levels of FRM, it would be interesting to see whether the evidence 
of predictability holds at each point in time. Given this, in Figure 2 we present the results of the rolling 
nonparametric causality-in-quantiles test for the climate risks factors on the FRMs, based on a window size 
of 500 observations covering the period 23rd April 2010 to 30th June 2023. As can be seen from the figures, 
the general pattern of the strength of causality reported in Table 1 for the full-sample, i.e., weaker impacts at 
the tails and stronger effects at moderately low and high quantiles, continues to hold at each point in time 
from ND, GW, USCP and IS (in particular) to FRM-All, FRM-Large, FRM-Medium and FRM-Small. 
However, it must be mentioned that, in terms of statistical significance, predictability is often insignificant at 
the extreme quantiles, especially the upper quantile of 0.90, until COVID-19, after which such risks become 
more frequent, particularly ND, GW, and USCP (see Figure A1).    

[INSERT FIGURE 2 HERE] 
5. Conclusion 
 In this paper, we examine the causal impact of various US physical and transition climate risk 
factors on the time-varying systemic risk of the US banking sector, differentiating large, medium, and small 
banks. To achieve this, we firstly estimate tail event co-movements across a large number of US banks over 
the period 26th May 2008 to 30th June 2023, using the financial risk meter (FRM) approach, which relies on 
the Lasso quantile regression model. The FRM for the overall system of 128 bank stock prices, as well as 
disaggregated versions of the same for large-, medium-, and small-sized banks, exhibit peaks during 
COVID-19 in particular, and the global financial and European sovereign debt crises. We apply a 
nonparametric causality-in-quantiles test, which is robust to misspecification due to possible nonlinearity 
and structural breaks in the relationship between FRM and climate risks. The main results show that both 
physical and transition risks can predict, in a statistically significant manner, the entire conditional 
distribution of the FRMs. Interestingly, the strongest causal impacts are derived from news on international 
summits on climate change, compared to natural disasters, global warming and US climate policies, 
especially for moderately low and high levels of FRM, with these effects holding over time. Furthermore, 
                                                           
7 Nguyen et al. (2025) underline the negative impact of climate change risks on credit ratings of firms, which hinder 
firms’ access to debt financing. 
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climate risks consistently have a positive impact on the various conditional quantiles, capturing states of 
systemic risk to the banking system.  
 Overall, our results confirm that climate change and the US banking system are highly connected, 
and that physical and transition risks can jeopardize the stability of the US banking sector, and potentially 
the entire economy, given that banks represent a critical component of the financial system, acting as 
lenders, custodians of deposits for customers, and managers of financial infrastructure, thus being at the 
heart of financial crises. Naturally, the adverse effect of climate risks on the macroeconomy can deepen 
through the indirect effect emanating from rises in the systemic risk of the banking sector. Hence, from a 
policy perspective, in tandem with green fiscal policy, our results call for prudential regulations involving 
simultaneous implementation of low and high capital requirements on banks contingent on loans provided 
by them for clean and high-carbon activities, respectively (Dafermos and Nikolaidi, 2021; Dunz et al., 2021; 
Lamperti et al., 2021), which should assist in reducing the pace of global warming.  
 Given that physical and transition climate risks are shown to have a predictive ability for tail risks 
of the banking sector, it would be interesting for future studies to analyse the in-sample and out-of-sample 
predictability of these risks on the conditional distribution (quantiles) of volatility of bank returns, as in 
Xiao and Koenker (2009), an important input for optimal portfolio decisions of investors, which is highly 
likely to be impacted by the well-established leverage effect (Black, 1976) in financial markets.8  
 
 
 
 
 
 
 
 
                                                           
8 As part of a preliminary analysis, we fit the two-component beta-skew-t-exponential generalized autoregressive 
conditional heteroskedasticity (EGARCH) model developed by Harvey and Sucarrat (2014) to each of the log-returns 
of the 128 bank stock prices to obtain our measure of volatility. It must be pointed out that the beta-skew-t-EGARCH 
model is superior to other GARCH-class models, as it is robust to jumps or outliers, which exists over our sample 
period covering various crises and the COVID-19 pandemic. The model incorporates the characteristics of leverage, 
conditional fat-tails, and conditional skewness, while simultaneously dividing volatility into a short term and a long 
term component, with these being the most common characteristics associated with time-varying volatility. Note that 
we also estimate the one-component case of the beta-skew-t-EGARCH model, but choose the two-component version, 
because the log-likelihood is higher in the latter case, indicating a better fit of the log-returns of the 128 bank stock 
data, with complete details of this result available upon request from the authors. Having derived estimates of volatility 
from the two-component beta-skew-t-EGARCH framework, we run the nonparametric causality-in-quantiles test on 
the first principal component (PC) of the 128 volatility series, due to the four climate risks factors. Based on the results 
reported in Table A2 of the Appendix, there is strong evidence of predictability, at the 1% level of significance, over 
the entire conditional distribution of the PC of volatility emanating from ND, GW, USCP and IS. This finding 
motivates us in the future to delve into the issue of volatility forecasting for each of the bank’s stock prices due to 
physical and transition climate risks.  
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Figures and Tables: 
Figure 1: Financial risk meters (FRMs) 

 

  
Note: Own computations based on Equations (1) to (5) outlined in detail in subsection 2.1.  
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Table 1. Nonparametric quantile causality test results of climate risks on systemic risk of US banks 
θ: FRM-All ND GW USCP IS 

0.1 9.9719*** 9.6950*** 9.2523*** 14.4379*** 
0.2 13.8409*** 15.6238*** 13.7943*** 21.5651*** 
0.3 14.1217*** 17.1618*** 14.8546*** 22.0918*** 
0.4 11.1820*** 14.9722*** 11.3856*** 16.8881*** 
0.5 9.6035*** 9.8267*** 9.6608*** 11.6050*** 
0.6 7.2864*** 7.4310*** 9.4580*** 9.9013*** 
0.7 7.6584*** 7.0452*** 9.1268*** 10.5009*** 
0.8 9.6276*** 9.3902*** 9.6944*** 11.5320*** 
0.9 8.6222*** 8.6026*** 8.2784*** 10.4321*** 

θ: FRM-Large ND GW USCP IS 
0.1 7.1741*** 6.6046*** 6.7892*** 8.2807*** 
0.2 10.4271*** 9.2308*** 8.6877*** 11.7798*** 
0.3 10.0178*** 9.0462*** 10.7516*** 8.2464*** 
0.4 7.9630*** 6.9822*** 9.8032*** 4.9070*** 
0.5 9.8156*** 8.8068*** 10.7691*** 7.5620*** 
0.6 11.6937*** 11.9922*** 12.5529*** 14.0821*** 
0.7 12.9238*** 13.6560*** 13.1435*** 19.9755*** 
0.8 12.8843*** 11.6162*** 12.5592*** 19.5211*** 
0.9 6.5826*** 6.4066*** 7.5061*** 8.4562*** 

θ: FRM-Medium ND GW USCP IS 
0.1 5.0470*** 4.5372*** 5.9250*** 3.7867*** 
0.2 7.3200*** 6.5969*** 8.6383*** 6.3264*** 
0.3 7.4758*** 6.9574*** 7.9805*** 6.5779*** 
0.4 6.9921*** 6.4085*** 8.2021*** 3.4357*** 
0.5 8.1661*** 7.4579*** 9.7948*** 5.8231*** 
0.6 10.6696*** 9.1794*** 11.2558*** 13.0072*** 
0.7 12.0422*** 9.3195*** 12.9464*** 13.6138*** 
0.8 8.6646*** 7.7100*** 10.5287*** 9.4888*** 
0.9 4.4333*** 4.1359*** 5.9616*** 3.5097*** 

θ: FRM-Small ND GW USCP IS 
0.1 3.2152*** 3.0713*** 3.5255*** 1.8812* 
0.2 7.3617*** 8.4242*** 7.7586*** 6.8876*** 
0.3 9.6517*** 11.5163*** 11.3076*** 12.3410*** 
0.4 11.1108*** 13.8436*** 12.1241*** 14.2908*** 
0.5 9.5481*** 11.5342*** 10.0385*** 11.2415*** 
0.6 9.2986*** 11.0520*** 10.1592*** 11.8500*** 
0.7 8.4766*** 10.3510*** 10.6899*** 10.7914*** 
0.8 6.8019*** 7.0668*** 8.5317*** 7.1503*** 
0.9 4.4575*** 4.6188*** 5.1160*** 4.0375*** 

Note: *** and * indicate rejection of no Granger causality from a particular climate risks factor (natural disasters (ND), global 
warming (GW), US climate policy (USCP), international summits (IS)) to a bank-group-specific financial risk meter (FRM) at 1% 
(critical value: 2.575) and 10% (critical value: 1.645) levels of significance, respectively, for a particular quantile (θ). 
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Table 2. Average derivative estimates for the effect of climate risks on systemic risk of US banks 
θ: FRM-All ND GW USCP IS 

0.1 0.1480 0.2684 0.1753 0.1476 
0.2 0.2118 0.4510 0.2676 0.2121 
0.3 0.3149 0.6573 0.3891 0.3411 
0.4 0.4499 0.9433 0.5717 0.4924 
0.5 0.6620 1.3809 0.8333 0.6351 
0.6 0.9836 1.9042 1.1629 0.8402 
0.7 1.5451 2.9204 1.7500 1.2048 
0.8 2.4928 4.7870 2.6267 1.8300 
0.9 5.1519 8.3904 4.8607 3.8017 

θ: FRM-Large ND GW USCP IS 
0.1 0.1218 0.2548 0.1636 0.1878 
0.2 0.1923 0.4401 0.2897 0.3491 
0.3 0.3101 0.7137 0.4856 0.4802 
0.4 0.4954 1.3479 0.8149 0.6868 
0.5 0.9123 2.3827 1.3220 1.0041 
0.6 1.6789 3.5578 2.0340 1.3984 
0.7 2.9159 6.1221 3.9314 2.0219 
0.8 6.0765 12.0158 6.5359 3.1324 
0.9 13.6432 21.8775 12.4656 7.1972 

θ: FRM-Medium ND GW USCP IS 
0.1 0.1177 0.2128 0.1388 0.1052 
0.2 0.1710 0.3487 0.2054 0.1597 
0.3 0.2442 0.4770 0.2861 0.2205 
0.4 0.3512 0.6501 0.4065 0.3099 
0.5 0.4873 0.9653 0.5888 0.4046 
0.6 0.6869 1.3292 0.8314 0.5504 
0.7 1.0304 2.0655 1.2382 0.8049 
0.8 1.8359 3.7738 1.9607 1.3226 
0.9 4.1572 7.0025 4.0029 2.7164 

θ: FRM-Small ND GW USCP IS 
0.1 0.4498 0.7196 0.4920 0.2547 
0.2 0.7924 1.3206 0.9301 0.6104 
0.3 1.1274 2.0566 1.3000 1.0253 
0.4 1.6263 2.9368 1.6844 1.5266 
0.5 2.1637 3.9260 2.3548 2.2122 
0.6 2.8981 5.3191 3.1056 2.9190 
0.7 3.9742 7.1436 4.3057 4.2924 
0.8 6.0491 9.9702 5.7719 7.0026 
0.9 10.1781 16.2119 8.8683 13.5509 

Note: Entries correspond to average derivative (AD) estimates of the sign of the effect of each particular climate risk factor (natural 
disasters (ND), global warming (GW), US climate policy (USCP), international summits (IS)) on a bank-group-specific financial 
risk meter (FRM) at a particular quantile (θ).
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Figure 2. Time-varying nonparametric quantile causality test results of climate risks on systemic risk of US banks 
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Appendix: 
Table A1. Bank ticker, name, market capitalization, and headquarter location details  

Symbol Bank Name Bank Market Value 
Large-sized banks 

JPM.N JPMorgan Chase & Co $426,671,439,782 
BAC.N Bank of America Corp $230,285,853,547 
WFC.N Wells Fargo & Co $152,388,325,986 

C.N Citigroup Inc $80,089,966,310 
USB.N US Bancorp $57,716,709,676 
PNC.N PNC Financial Services Group Inc $48,674,676,479 
TFC.N Truist Financial Corp $41,158,058,987 

FCNCA.OQ First Citizens BancShares Inc (Delaware) $21,121,441,839 
MTB.N M&T Bank Corp $20,869,700,463 

FITB.OQ Fifth Third Bancorp $18,418,040,877 
RF.N Regions Financial Corp $17,416,285,602 

HBAN.OQ Huntington Bancshares Inc $16,245,240,909 
KEY.N KeyCorp $10,819,222,738 

Medium-sized banks 
NYCB.N New York Community Bancorp Inc $8,900,895,597 

EWBC.OQ East West Bancorp Inc $7,924,500,245 
WBS.N Webster Financial Corp $7,546,984,751 
FHN.N First Horizon Corp $7,123,449,008 
CMA.N Comerica Inc $6,417,516,670 

CBSH.OQ Commerce Bancshares Inc $6,228,765,400 
CFR.N Cullen/Frost Bankers Inc $6,139,146,647 

SSB.OQ SouthState Corp $5,686,805,582 
BOKF.OQ BOK Financial Corp $5,668,594,055 

WAL.N Western Alliance Bancorp $5,597,816,722 
PB.N Prosperity Bancshares Inc $5,474,328,538 

ZION.OQ Zions Bancorporation NA $5,398,408,647 
PNFP.OQ Pinnacle Financial Partners Inc $5,290,206,434 
OZK.OQ Bank Ozk $5,287,486,125 
BPOP.OQ Popular Inc $5,043,171,091 
WTFC.OQ Wintrust Financial Corp $4,870,028,073 
VLY.OQ Valley National Bancorp $4,792,071,861 
SNV.N Synovus Financial Corp $4,689,040,215 

HOMB.N Home BancShares Inc $4,620,881,848 
ONB.OQ Old National Bancorp $4,619,980,310 

COLB.OQ Columbia Banking System Inc $4,411,273,012 
CADE.N Cadence Bank $4,346,379,681 
FNB.N FNB Corp $4,223,318,085 

FFIN.OQ First Financial Bankshares Inc $4,192,308,927 
UBSI.OQ United Bankshares Inc $4,147,903,406 
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HWC.OQ Hancock Whitney Corp $3,656,888,730 
GBCI.N Glacier Bancorp Inc $3,473,722,240 

FINN.PK First National of Nebraska Inc $3,364,397,680 
UCBI.OQ United Community Banks Inc $3,279,164,230 
BANF.OQ BancFirst Corp $3,226,974,418 
UMBF.OQ UMB Financial Corp $3,134,356,987 
TCBI.OQ Texas Capital Bancshares Inc $3,052,851,389 
ABCB.OQ Ameris Bancorp $2,887,948,060 
IBOC.OQ International Bancshares Corp $2,874,726,186 

ASB.N Associated Banc-Corp $2,666,775,660 
CATY.OQ Cathay General Bancorp $2,661,617,699 

AX.N Axos Financial Inc $2,647,134,034 
FBP.N First Bancorp $2,569,280,564 
CBU.N Community Bank System Inc $2,540,917,766 

CVBF.OQ CVB Financial Corp $2,531,883,078 
WSFS.OQ WSFS Financial Corp $2,495,993,808 
INDB.OQ Independent Bank Corp (Massachusetts) $2,473,348,993 
SFNC.OQ Simmons First National Corp $2,318,162,737 

AUB.N Atlantic Union Bankshares Corp $2,283,143,251 
PPBI.OQ Pacific Premier Bancorp Inc $2,278,614,033 
FULT.OQ Fulton Financial Corp $2,250,480,734 

BOH.N Bank of Hawaii Corp $2,190,582,731 
SBCF.OQ Seacoast Banking Corporation of Florida $2,063,342,023 
FFBC.OQ First Financial Bancorp $2,054,690,215 
TBBK.OQ Bancorp Inc $2,040,462,523 

HTH.N Hilltop Holdings Inc $2,003,525,850 
Small-sized banks 

FRME.OQ First Merchants Corp $1,832,415,892 
TOWN.OQ TowneBank $1,815,822,395 
WAFD.OQ Washington Federal Inc $1,811,779,489 
UNPA.PK UNB Corp $1,751,888,730 

PRK.A Park National Corp $1,673,333,296 
NBTB.OQ NBT Bancorp Inc $1,637,695,320 
RNST.OQ Renasant Corp $1,593,164,172 
WSBC.OQ WesBanco Inc $1,566,973,637 
BANR.OQ Banner Corp $1,533,857,079 
EFSC.OQ Enterprise Financial Services Corp $1,490,131,183 

OFG.N OFG Bancorp $1,480,391,180 
TRMK.OQ Trustmark Corp $1,447,361,252 
NWBI.OQ Northwest Bancshares Inc $1,431,096,535 
CHCO.OQ City Holding Co $1,391,266,985 
HTLF.OQ Heartland Financial USA Inc $1,365,663,983 
SYBT.OQ Stock Yards Bancorp Inc $1,364,969,870 

FCF.N First Commonwealth Financial Corp $1,362,002,660 
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LKFN.OQ Lakeland Financial Corp $1,341,602,091 
CASH.OQ Pathward Financial Inc $1,315,998,751 

PFS.N Provident Financial Services Inc $1,278,641,381 
FBNC.OQ First Bancorp (North Carolina) $1,255,501,920 
WABC.OQ Westamerica Bancorp $1,203,982,212 
HOPE.OQ Hope Bancorp Inc $1,185,780,033 
TCBK.OQ Trico Bancshares $1,162,221,274 
BUSE.OQ First Busey Corp $1,149,854,846 
SRCE.OQ 1st Source Corp $1,132,679,980 
STBA.OQ S&T Bancorp Inc $1,107,868,364 
OCFC.OQ OceanFirst Financial Corp $1,029,180,345 
SASR.OQ Sandy Spring Bancorp Inc $1,015,684,034 
PACW.OQ PacWest Bancorp $976,792,482 
BHLB.N Berkshire Hills Bancorp Inc $958,517,065 

FBMS.OQ First Bancshares Inc (Mississippi) $939,310,416 
SBSI.OQ Southside Bancshares Inc $934,578,551 
PEBO.OQ Peoples Bancorp Inc $926,349,807 
PFBC.OQ Preferred Bank $916,006,783 
LBAI.OQ Lakeland Bancorp Inc $896,756,557 
QCRH.OQ QCR Holdings Inc $895,784,449 

RBCAA.OQ Republic Bancorp Inc $877,281,634 
BRKL.OQ Brookline Bancorp Inc $873,351,580 
GABC.OQ German American Bancorp Inc $868,566,147 
DCOM.OQ Dime Community Bancshares Inc $864,675,531 

BFC.OQ Bank First Corp $827,552,269 
CFFN.OQ Capitol Federal Financial Inc $788,522,551 
CNOB.OQ ConnectOne Bancorp Inc $764,744,539 

TMP.A Tompkins Financial Corp $745,882,742 
EGBN.OQ Eagle Bancorp Inc $745,554,960 
FMCB.PK Farmers & Merchants Bancorp $717,143,700 
FMBH.OQ First Mid Bancshares Inc $690,081,469 
WTBFB.PK WTB Financial Corp $689,858,505 

PFC.OQ Premier Financial Corp (OHIO) $689,592,609 
OSBC.OQ Old Second Bancorp Inc $671,912,857 
CTBI.OQ Community Trust Bancorp Inc $653,628,252 

HFWA.OQ Heritage Financial Corp $618,944,148 
GSBC.OQ Great Southern Bancorp Inc $615,353,979 
FBAK.PK First National Bank Alaska $607,250,199 
HBIA.PK Hills Bancorp $600,766,328 
FMBL.PK 

Farmers And Merchants Bank of Long 
Beach $597,655,800 

FCBC.QQ First Community Bankshares $573,602,670 
TRST.OQ TrustCo Bank Corp NY $551,518,313 
UVSP.OQ Univest Financial Corp $541,683,634 
HTBK.OQ Heritage Commerce Corp $541,267,633 
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CCBG.OQ Capital City Bank Group Inc $524,701,658 
GCBC.QQ Greene County Bancorp $489,350,585 
BHRB.OQ Burke & Herbert Bank & Trust Co $376,780,800 

Note: Bank data collected from Refinitiv Datastream. 

 
 
 
 
 
Table A2. Nonparametric quantile causality test results of climate risks on volatility of US bank stock 
returns 

θ: PC-Volatility ND GW USCP IS 
0.1 7.1396*** 8.2772*** 7.1744*** 9.9002*** 
0.2 10.6024*** 12.1156*** 12.4413*** 15.1513*** 
0.3 10.3830*** 10.4441*** 13.1260*** 12.5601*** 
0.4 8.0598*** 7.6124*** 8.9036*** 8.9373*** 
0.5 7.2805*** 6.7835*** 6.7128*** 7.3555*** 
0.6 6.9792*** 4.7858*** 4.1853*** 5.3577*** 
0.7 5.1789*** 4.5615*** 3.1467*** 5.1947*** 
0.8 4.6291*** 5.5846*** 3.6496*** 5.0784*** 
0.9 3.7328*** 4.3438*** 4.8520*** 5.7609*** 

Note: *** indicates rejection of no Granger causality from a particular climate risks factor (natural disasters (ND), global warming 
(GW), US climate policy (USCP), international summits (IS)) to the principal component of volatility (PC-Volatility), derived from 
the two-component beta-skew-t-EGARCH model, estimated for all 128 bank returns, at the 1% (critical value: 2.575) level of 
significance for a particular quantile (θ). 
 
 
 
 
 
 
 
 
 



26 
 

Figure A1. Plot of climate risks 
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Note: Natural disasters: ND; global warming: GW; US climate policy: USCP, and; international summits: IS. 
 
 
 
 
 
 
 


