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Abstract

Recent global economic and political events have made clear that shortages are
a key factor driving macroeconomic and financial market developments. Against
this backdrop, we studied the forecasting value of shortages for monthly U.S. stock
market realized variance (RV) at the aggregate and sectoral level using data span-
ning the period 1900−2024 and 1926−2023 (for most sectors), respectively. To
this end, we considered linear and non-linear statistical learning estimators. When
we used linear estimators (OLS and shrinkage estimators), we did not find evidence
that aggregate and disaggregate shortage indexes have predictive value for subse-
quent market or sectoral RVs. In contrast, when we used random forests, a nonlin-
ear nonparametric estimator, we detected that aggregate and disaggregate shortage
indexes improve forecast accuracy of market and sectoral RVs after controlling for
realized moments (realized leverage, realized skewness, realized kurtosis, realized
tail risks). We then decomposed RV into a high, medium, and low frequency compo-
nent and found that the shortages indexes are correlated mainly with the medium
and low frequencies of RV.
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1 Introduction

Following the COVID-19 pandemic, which resulted in severe supply chain con-

straints and an associated adverse impact on international trade, recent studies,

in line with the earlier work of Lamont (1997), have attempted derive metrics

aiming to capture and quantify such disruptions (Benigno et al., 2022; Kliesen

and Werner, 2022; Pitschner, 2022; Smirnyagin and Tsyvinski, 2022; Chen and

Houle, 2023; Soto, 2023; Bai et al., 2024; Burriel et al., 2024; Caldara et al.,

2024; Bernanke and Blanchard, forthcoming), and then utilized them to shed

light on the associated impact on the macroeconomy (see, for example, the above-

mentioned studies and, Finck and Tillmann (2022), Diaz et al. (2023), Asadollah

et al. (2024), Ascari et al. (2024), Tillmann (2024)). In general, this rapidly grow-

ing strand of research highlights that global supply shortages are associated with

lower output and that they also play an important part in driving inflation.

At the same time, building on the works of Hendricks and Singhal (2003,

2005a, b), and Baghersad and Zobel (2021) based on pre-COVID-19 data associ-

ated with supply chain disruptions and diminished financial performance (such

as shareholder value, equity risk and value, revenue, operating income, and re-

turns on sales), recent research by Smirnyagin and Tsyvinski (2022), Burriel

et al. (2024) and Ginn (2024) indicates that, besides the adverse outcomes on

the macroeconomy, supply chain disruptions are also likely to have a negative

effect on equity market returns. We build on this line of research dealing with

the link between supply chain disruptions and stock markets by analyzing the

role of newspapers artcles-based indexes of shortages, developed by Caldara et

al. (2024), in forecasting the monthly variances of aggregate and sectoral stock
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market returns of the United States (U.S.) using data covering 1900 to 2024 and

1926 to 2023. Given that the variance of stock market returns is a key input

for portfolio and hedging decisions, and that accurate forecasts are critical for

the effectiveness of portfolio and risk management strategies as well as the pric-

ing of derivative securities (Poon and Granger, 2003; Rapach et al., 2008), such

an exercise should be of pertinent importance to investors, beyond its academic

value. Moreover, by studying the longest possible sample of data available for

shortages, we are able to avoid any sample-selection-bias, and track, in a robust

manner, the historical effects on variance predictability due to events such as

major coal mines strikes during the turn of the 20th century, two World Wars,

the Suez Crisis in 1956, the oil shocks during 1970s, the Iraqi invasion of Kuwait

in 1990, besides the recent COVID-19 pandemic.

From an econometric perspective, rather than relying on model-based esti-

mates of conditional variance (such as, generalized autoregressive conditional

heteroskedasticity (GARCH) and stochastic volatility (SV) models), we utilize a

model-free approach by computing monthly realized variances as the sum of

daily squared returns over a month (Andersen and Bollerslev, 1998), which,

in turn, serves as our dependent variable at the aggregate and sectoral level.

Furthermore, though the focus is on shortages originating in labor, materials,

goods, and energy, and an overall index of these markets, we control for the

role of realized moments (i.e., realized leverage, realized skewness, realized kur-

tosis, realized lower and upper tail risks) in our predictive regression models,

given widespread evidence of their importance (Mei et al., 2017; Zhang et al.,

2021; Bonato et al., 2023). As this results in inflating the number of predictors
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in our model, besides using the standard ordinary least squares (OLS) estima-

tor, we rely on linear and nonlinear machine-learning approaches (allowing us

to accommodate likely regime changes over our long data span), to conduct our

forecasting experiment in a parsimonious setup.

At this stage, it is important to discuss the theoretical basis of our analy-

sis by realizing that metrics of supply-side constraints tend to act as “catch-all”

empirical proxies for rare disasters (Smirnyagin and Tsyvinski, 2022) associated

with not only strikes and price controls but also, generally, capturing geopolit-

ical risks, natural (climate-related) disasters, pandemics, and even trade wars

(Burriel et al., 2024; Caldara et al., 2024). Given this, we derive our empir-

ical predictive link from shortages to between realized stock market variances

from the studies of Wachter (2013) and Tsai and Wachter (2015). These pa-

pers develop theoretical models in which aggregate consumption in general fol-

lows a low-volatility normal distribution, but there exists a positive probability

of events that cause, so-called, far-out-in-the-left-tail realizations of consump-

tion and output. To put differently, these models capture the risk associated

with rare disaster events. The possibility of such an extreme outcome not only

substantially reduces stock returns and raises the equity premium (Barro, 2006;

2009), but also produces high stock-market volatility due to the time-variation in

the probability of such a disaster. We expect this channel to work in our context

of shortages via the so-called “leverage effect” (Black, 1976),1 given the above

mentioned evidence of the negative effects of supply-side constraints on stock

returns.
1Increases in debt-to-asset ratios, i.e., leverage, due to extreme supply chain pressures during

the coronavirus outbreak has been empirically confirmed by Hupka (2022).
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To the best of our knowledge, we are the first to analyze the forecasting ability

of shortages for overall and sectoral stock returns variance of the U.S., spanning

(nearly) a century of data using linear and nonlinear predictive models. The only

other related study in this regard is the (working) paper of Bouri et al. (2024),

who provide evidence of in-sample predictability for volatility of the agggregate

U.S. stock market due to shortages indexes in a nonparametric set-up, but as

is quite well-discussed (Rapach and Zhou, 2022; Goyal et al., 2024), in-sample

predictability of stock price movements does not necessarily translate into out-

of-sample forecasting gains, with the latter being a relatively more robust test of

predictability. In the process, we add to the enormous strand of literature that

offers a wide-array of linear and nonlinear models in univariate and multivariate

settings to model and forecast aggregate and sectoral U.S. stock market volatility

(see, Salisu et al. (2022, 2024a, b), and Segnon et al. (2024) for detailed reviews).

In order to get to our empirical findings, we organize the rest of the paper as

follows. In Section 2, we provide a description of the data we use in our study,

while we outline in Section 3 our methods. In Section 4, we present our empirical

results. In Section 5, we conclude.

2 The Data

In order to obtain our monthly realized moments, involving realized variance,

RV , as well as our predictors (which we discuss in detail below), of the aggregate

U.S. stock market, we utilize the log-returns of the Dow Jones Industrial Aver-

age (DJIA) derived from Global Financial Data.2 The DJIA returns are computed

2See the following internet page: https://globalfinancialdata.com/.
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from 2nd January, 1900, so as to correspond to the starting date of the shortages

indexes. In order to derive the realized metrics for the 49 sectors considered, we

rely on the Data Library of Professor Kenneth R. French.3 In general, barring the

Fabricated Products, Precious Metals (Gold), Defense (Guns), Healthcare, Busi-

ness Supplies (Paper), Personal Services, Rubber and Plastic Products, Candy

and Soda (Soda), Computer Software, the daily sectoral-level data starts from 1

July, 1926.

As far as our dependent variable is concerned, we use the classical estimator

of RV , i.e., the sum of squared daily returns (Andersen and Bollerslev, 1998),

given as

RVt =
M∑
i=1

r2
t , (1)

where rt,i denotes the daily M × 1 return vector, and i = 1, ...,M is the number of

daily returns over month t. We report summary statistics of the aggregate and

sectoral RV data in Table A1 at the end of the paper (Appendix).

Turning now to our main predictors, i.e., the shortage indexes, which, in

turn, are monthly newspapers-based indicator that measures the intensity of

shortages of materials, goods, labor, and energy in the U.S., with the individual

indexes (for energy, food, industry, and labor shortages) adding up to the overall

index.4 Caldara et al. (2024) describe how they construct these indexes from a

sample of approximately 20,000 news articles per month, staring in 1900 (until

recent months) encompassing about 25 million articles over the entire sample,

3The data is available for download from the following internet page: https://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html.

4The data can be downloaded from the following internet page: https://www.
matteoiacoviello.com/shortages.html.
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published in six major U.S. newspapers: The Boston Globe, The Chicago Tri-

bune, The Los Angeles Times, The New York Times, The Wall Street Journal, and

The Washington Post. For every month in the sample period, the shortage in-

dexes count the number of articles that discuss energy, food, industry, or labor

shortages. Given the long sample period and the broad text corpus that Caldara

et al. (2024) consider in their research, their shortage indexes cover a very long

historical epoch involving many domestic as well as global events.

We plot the shortages indexes in Figure A1 at the end of the paper (Appendix).

The figure makes clear that the shortage indexes are generally much higher dur-

ing periods of increased economic turmoil, such as the World Wars and the 1970s

oil crises (energy), with it also spiking during the COVID-19 pandemic, when the

overall shortage index reached its highest level in the last 40 years. However,

there are some other past peaks, especially associated with the World Wars I and

II, and the oil crises, which are of comparable or larger size. Finally, there is

also considerable variation across the shortages subindexes, implying that it is

interesting to use not only the overall shortage index, but also the sub-indexes

in our forecasting experiment.

Another group of predictors, at the aggregate- and industry-level, consists

of the daily-data-based realized moments that have been widely studied in the

literature on the modeling of realized volatility: realized upside and downside tail

risks, TRu and TRd, and realized skewness, RSK, as well as realized kurtosis,

RKU .

Like Amaya et al. (2015), we use RSK to capture the asymmetry of the re-
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turns distribution, and RKU accounts for extremes. We compute RSK as

RSKt =

√
M
∑M

i=1 r(i,t)3

RV
3/2
t

, (2)

and RKU as

RKUt =
M
∑M

i=1 r(i,t)4

RV 2
t

, (3)

where the scaling by (M)1/2 and M turns the statistics into the corresponding

monthly skewness and kurtosis values.

Last, we consider the Hill tail risk estimator (Hill, 1975), to derive our realized

upside and downside tail risks. Let Xt,i the set of reordered daily returns on

month t, rt,i in such a way that :

Xt,i ≥ Xt,j for i < j. (4)

We compute the (monthly) Hill positive tail risk estimator (our predictor TRu) as

Hup
t =

1

k

k∑
j=1

ln(Xt,i)− ln(Xt,k) (5)

and the (monthly) negative tail risk estimator (our predictor TRd) as

Hdown
t =

1

k

n∑
j=n−k

ln(Xt,i)− ln(Xt,n−k) (6)

where k is the observation denoting the chosen α tail interval.

Based on data availability of the variables under consideration at the time

of writing of this paper, our aggregate-level analysis covers January, 1900 to
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May, 2024, while the coverage of the sectoral exercise involves July, 1926 to

September, 2023 (see Table A1 for details).

3 Methods

3.1 Forecasting Models

We start with a simple linear forecasting model, which we always estimate by the

ordinary least squaress (OLS) technique, given by the following equation:

RVs,t+h = β0 + β1RVs,t + us,t+h, (7)

where RVs,t+h denotes the average realized variance of sector s over the forecast

horizon, h, computed using data for the periods t + 1, ..., t + h, and us,t+h denotes

the sectoral disturbance term. The coefficients to be estimated are given by β0

and β1. As for the forecast horizon, h, we consider in our forecasting experiment

one, three, and six months (that is, we set h = 1, 3, 6).

In order to inspect the robustness of our OLS results, and to bring the data

closer to normality, we also consider in some specifications the realized volatil-

ity (that is, the square-root of the realized variance) and the natural log of the

realized volatility.

We next expand Equation (7) to include a vector of sectoral realized moments,

MOs,t as control variables as well as the overall shortage index, SALLt, and a

vector, SSUBt, of the four different shortage subindexes (that is, energy, food,

industry, and labor; see Section 2 for details). In this way, we obtain the following
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forecasting models:

RVs,t+h = β0 + β1RVs,t + β2MOs,t + us,t+h, (8)

RVs,t+h = β0 + β1RVs,t + β2MOs,t + β3SALLt + us,t+h, (9)

RVs,t+h = β0 + β1RVs,t + β2MOs,t + β3SSUBt + us,t+h, (10)

where β2 and β3 now denote appropriately dimensioned vectors of coefficients to

be estimated. The moments vector, MOs,t, contains the sectoral realized leverage,

the sectoral realized kurtosis, the sectoral realized skewness, and the sectoral

realized lower and upper tail risks.

As a further extension, we include a vector of realized market moments, MMt,

in our sectoral forecasting models. The resulting forecasting models are given by

RVs,t+h = β0 + β1RVs,t + β2MOs,t + β3MMt + us,t+h, (11)

RVs,t+h = β0 + β1RVs,t + β2MOs,t + β3MMt + β4SALLt + us,t+h, (12)

RVs,t+h = β0 + β1RVs,t + β2MOs,t + β3MMt + β4SSUBt + us,t+h, (13)

where the vector of market moments contains the same moments as the vector

of sectoral moments, MOt, but now measured for the aggregate market.

We also estimate our forecasting models for the aggregate marke,t RVm,t. In
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this case, we consider the following forecasting models:

RVm,t+h = β0 + β1RVm,t + um,t+h, (14)

RVm,t+h = β0 + β1RVm,t + β2MMm,t + um,t+h, (15)

RVm,t+h = β0 + β1RVm,t + β2MMm,t + β3SALLt + um,t+h, (16)

RVm,t+h = β0 + β1RVms,t + β2MMm,t + β3SSUBt + um,t+h, (17)

In order to estimate our various forecasting models, and to set up our out-of-

sample forecasting experiment, we split up the sample period into various train-

ing and test windows. The shortest training window that we consider comprises

the first 50% of the data, while the longest training window comprises 75% of

the data. We vary the length of the training window between these two extreme

cases in steps of 5 percentage points, so that we study in total six different

training windows. The remaining data are the test data that we use to compute

out-of-sample forecasts of RV .

3.2 Estimation Methods

We estimate our forecasting models by means of standard linear and non-linear

estimators. As for a straightforward linear estimator, we already mentioned the

OLS technique. The OLS technique, however, may not be the best choice given

that (leaving the simple AR benchmark model aside) our forecasting models fea-

ture various predictors. Hence, in order to obtain parsimonious forecasting mod-

els, we estimate our forecasting models by means of standard shrinkage estima-

tors. Specifically, we consider the Lasso estimator (Tibshirani, 1996), an elastic
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net, and a Ridge regression estimator.5 The shrinkage estimators obtain as spe-

cial cases of the following penalized forecasting model:

T∑
t=1

(RVz,t+h − β0 − β1RVz,t − β2Xz,t)
2 + λ

(
α||β||1 + (1− α)||β||22/2

)
, (18)

where z = {s,m}, and T denotes the number of observations available for es-

timating the forecasting model, and Xs,t denotes a vector of control variables.

Depending on the forecasting model that we study (and on whether we study

a sector or the aggregate market), this vector includes some or all elements of

(MOs,t,MMt, SALLt, SSUBt). It follows from Equation (18) that we do not penalize

the intercept and the AR coefficient. The parameter, α, governs the choice of

the shrinkage estimator. For the Lasso, we set α = 1 so that the vector of coef-

ficients, β, is penalized under the L1-norm. For the Ridge regression estimator,

we set α = 0 so that the vector of coefficients, β, is penalized under the L2-norm.

Finally, an elastic net estimator obtains for α ∈ (0, 1). We set α = 0.5.

As a popular off-the-shelf non-linear estimator, we use random forests (see

Breiman, 2001). Random forests have the advantages that they account in a

fully data-driven way for nonlinear patterns in the data, potential interaction

effects between the predictors, and the non-negative domain of RV . A random

forest consists of many individual regression trees, T . A regression tree, in turn,

consists of a root and several nodes and branches, which partition the space of

the predictors into in a binary way into non-overlapping regions (see, Breiman et

al. (1984)). The regions are computed in a recursive top-down way by applying

5Our description of the shrinkage estimators and random forests is rather compact. For a
more detailed exposition as well as a comprehensive list of further references, an interested
reader is referred to the textbook by Hastie et al. (2009).
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a search-and-split algorithm that helps to find the regions-specific means, R̄V of

RV so as to minimize the sum of squared errors. Formally, in the simple case

of only two regions, the algorithm searches over all combinations of a predictor

and a corresponding splitting point, (s, p), and the resulting regions, R1(s, p) =

{xs|xs ≤ p} and R2(s, p) = {xs|xs > p}, to obtain an optimal combination, {s∗, p∗},

that solves the following minimization problem (deleting for notational simplicity

the time index, the index for the forecast horizon, and the sector/market index):

min
s,p

min
R̄V r,1

∑
Ps∈R1(s,p)

(RVr −RV r,1)2 + min
R̄V r,2

∑
Ps∈R2(s,p)

(RVr −RV r,2)2

 → {s∗, p∗}, (19)

where Ps ∈ Ri(s, p), i = 1, 2 expresses that predictor P belongs to region Ri, given

(s, p), the index, r, denotes that a realization of RV belongs to the region being

studied, and {s∗, p∗} denotes the optimal combination

While the two regions, R1 and R2, already form a rudimentary regression

tree, we next can apply the search-and-split algorithm to both regions so as

to get a slightly larger regression tree. Upon recursively applying the search-

and-split algorithm to the ensuing branches of the regression tree, we obtain a

finer and finer partitioning of the predictor space and, thereby, increasingly finer

forecasts of RV once we trickle down the tree new data on the predictors. Tree

growing stops once a preset maximum number of terminal nodes is reached or

the terminal regions have a minimum number of observations. A forecast of RV

can then be computed by applying the following formula:

T
(
xi, {Rl}L1

)
=

L∑
l=1

RV l1(xi ∈ Rl), (20)
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where L denotes the number of regions, 1 denotes the indicator function, and xi

denotes the data on the predictors used for forecasting.

While a large regression tree renders it possible to compute granular forecasts

of RV , it is clear that its complex hierarchical tree structure easily gives rise to

an overfitting and data-sensitivity problem, ultimately deteriorating forecasting

performance. One technique to overcome the overfitting problem is to grow a

random forest. A random forest consists of an ensemble of many regression

trees which is built in three steps:

1. Compute a large number of bootstrap samples by resampling from the data.

2. Grow a random regression tree on every bootstrap sample. A random re-

gression tree is grown using a random subset of the predictors for splitting,

which dampens the effect of influential predictors on tree building.

3. Combine the large number of random regression trees to form a random

forest and compute a forecast of RV by averaging across the individual

random regression trees. Averaging stabilizes the resulting forecasts.

3.3 Computational Issues

We use the R language and environment for statistical computing (R Core Team,

2023) to set up our forecasting experiment.

For implementation of the shrinkage estimators, we rely on the R add-on

package “glmnet” (Friedman et al. 2010, Tay et al., 2023). We choose the penalty

parameter, λ, by 10-fold cross-validation, where we use the value of the shrink-

age parameter that minimizes the average cross-validated error.
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As for random forests, we use the R add-on package “randomForestSRC”

(Ishwaran and Kogalur, 2023) to estimate our forecasting models. Our random

forests consist of 1,000 individual regression trees. We bootstrap the data by

sampling with replacement.6

4 Empirical Results

4.1 Linear Models

Figure 1 depicts the market-level results for three forecast horizons, h = 1, 3, 6,

of estimating our forecasting models by OLS. The horizontal axis shows the pro-

portion of the data we use to estimate our models (that is, the training window).

The vertical axis shows either the root-mean-squared forecast error (RMSFE) or

the mean-absolute forecast error (MAFE) ratio, where a ratio that exceeds unity

indicates that the rival model performs better than the benchmark model. The

panels in the first row depict the the RMSFE ratio for RV , while the panels in

the second row depict the corresponding MAFE ratios. The panels in the third

and fourth row depict the MAFE ratio for
√
RV and ln

√
RV . Three results can be

taken home from the figure. First, the results for RV ,
√
RV , and ln

√
RV do not

differ much, while the differences between the benchmark and extended models

tends to be somewhat more pronounced when we use the MAFE rather than the

RMSFE ratio. Second, the AR model extended to include the market moments

(AR-MM model) clearly outperforms the AR benchmark model, especially at the

6For the other “hyperparameters”, we use the default values recommended by the authors
of the package. We refer an interested reader for details to the extensive documentation of the
package.

14



short and intermediate forecast horizons. Third, the AR-MM model extended to

include the overall shortage index (AR-MM-SALL model) and the AR-MM model

that features the shortage subindexes (AR-MM-SSUB model) produce forecasts

whose accuracy is close or slightly better than the accuracy of the benchmark

(AR or AR-MM) forecasts, or the extended models perform worse than the respec-

tive benchmark model.

− Figure 1 about here. −

We summarize the sectoral OLS results in Figure 2. In order to summarize

graphically the sectoral results in a condensed but informative way, we plot

in Figure 2 the cross-sectoral median of the MAFE ratio (solid line), the cross-

sectional inter-quartile range (shaded areas), and we plot, on the horizontal axis,

not only information on the training window (numbers in the upper row) but also

the proportion of sectors for which the MAFE ratio is larger than unity (numbers

in the lower row).

The sectoral results corroborate the results we obtain at the market level.

The AR model extended to include the sectoral moments (“own” moments, OM)

tends to outperform the AR benchmark model for the majority of sectors. When

we compare the AR-OM model with an AR-OM-MM model that features, in ad-

dition to the sectoral moments, the corresponding market moments, than the

AR-OM model performs better for many sectors than the AR-OM-MM model. Fi-

nally, adding either the overall shortage index or the corresponding shortage

subindexes to the AR-OM model or the AR-OM-MM model improves forecasting

performance only for a few sectors but, when evaluated in the cross-section of

sectors, deteriorates forecasting performance relative to the more parsimonious
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AR-OM and AR-OM-MM models.

The latter result perhaps is not too surprising as one would expect that a

parsimonious model exhibits a better and more robust forecasting performance

than a complex model that features several predictors. We, therefore, present

in Figure 3 results at the market level for the Lasso estimator, while we doc-

ument in Figure 4 the corresponding sectoral results for the Lasso estimator.7

Figure 3 makes clear that the Lasso results at the market level closely resem-

ble the corresponding OLS results. At the sectoral level, the performance of the

relatively complex AR-OM-MM and AR-OR-MM-SSUB models tends to improve

somewhat, mainly at the short and intermediate forecast horizons, as the shaded

areas shift upward a bit and the proportion of sectors for which the MAFE ratio

exceeds unity increases. In the cross-section, however, only the AR-OM model

(and perhaps the AR-OM-MM model) tend to perform better than their respective

(AR and AR-OM) benchmark models.

− Figures 3 and 4 about here. −

4.2 Random Forests

We next turn to random forests. Figure 5 depicts the results at the market level.

When we study the RMSFE ratio, the AR-MM model clearly outperforms the AR

model. Moreover, the performance of the AR-MM-SALL and AR-MM-SSUB rela-

tive to the AR-MM model tends to improve as the forecast horizon increases. For

7Results for the elastic net and the Ridge regression estimators, two popular variants of the
Lasso estimator, are qualitatively similar. We report results for an elastic net at the end of the
paper in Figures A2 and A3. The complete set of results for the shrinkage estimators is not
reported to save journal space, but is available from the authors upon reasonable request.
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the MAFE ratio, the results for the models that feature the shortage predictors

are even stronger than for the RMSFE ratio. Both the AR-MM-SALL model and

the AR-MM-SSUB model outperform the AR-MM benchmark model at all three

forecast horizons, and for almost all training windows, where the performance

advantage of the shortage models tends to strengthen in the length of the forecast

horizon, especially as far as the AR-MM-SSUB model is concerned.

− Figures 5 and 6 about here. −

The sectoral random-forest (MAFE) results that we summarize in Figure 6 corrob-

orate the results for market RV . The AR-OM model outperforms the AR bench-

mark model for approximately one-third of the sectors, while the AR-OM-SALL

and AR-OM-SSUB models dominate the AR-OM model for several sectors, in case

of the AR-OM-SALL model in about 60% of the sectors. The dominance of the

AR-OM-SALL and AR-OM-SSUB models tends to strengthen at the sectoral level

when the forecast horizon increases. The results are similar when we control

for market moments and compare the AR-OM-MM-SALL and AR-OM-MM-SSUB

models with the AR-OM-MM benchmark model.

Given the relatively good performance of the shortage models in case we use

random forests, it is interesting to ask whether the differences in performance

across models are statistically significant. Given the highly complex and nonlin-

ear structure of random forests, which complicates statistical testing, we present

results for two alternative tests: the Clark and West (CW, 2007) test for nested

models and the Diebold and Mariano (DM, 1995), as modified by Harvey et al.

(1997).8

8The modified DM-test is computed as DM-modified = ((n + 1 − 2h + n−1h(h − 1))/n)1/2× DM,
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− Figure 7 about here. −

We summarize in Figure 7 the test results (p-values) for market RV . The test

results are in line with the results for the RMSFE and MAFE ratios that we doc-

ument in Figure 5. The AR-MM model significantly outperforms the AR bench-

mark model for most training windows when we study the CW test, and for the

DM test for h = 1 and occasionally also for h = 6 when we consider a squared-

error loss function. Under an absolute-error loss function, in contrast, the DM

test results for the AR-MM model forecasts are all insignificant, while the test

results for the AR-MM-SALL and the AR-MM-SSUB models are highly significant

for most training windows at all three forecast horizons. Under a squared-error

loss function, the DM test yields significant results for these two models only for

h = 6 and only when we consider some of the short training windows. For the CW

test, in turn, the test results for the AR-MM-SSUB model are statistically signif-

icant for h = 3 for many training windows, and for both the AR-MM-SALL model

and the AR-MM-SSUB model for all training windows at h = 6. In sum, while

the test results are not necessarily uniform across both tests and loss functions,

which is not surprising given the complex structure of random forests, the test

results, together with the results documented in Figure 5, clearly provide signs

that the shortage indexes have predictive value for subsequent market RV .

We plot the corresponding test results at the sectoral level (for the CW test

only) in Figure 8. As in the case of the market RV , the AR-OM model performs

significantly better than the AR benchmark model. The results for the AR-OM-

MM model are less strong in this regard. While we observe considerable cross-

where n = number of forecast errors. See the R add-on package “forecast” (Hyndman et al., 2023;
Hyndman and Khandakar, 2008).
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sectional variation in the p-values, the proportion of sectors for which the AR-

OM-SALL and AR-OM-SSUB models significantly outperform the AR-OM model,

in turn, increases in the forecast horizon, and this effect is stronger for the AR-

OM-SSUB model than for the AR-OM-SALL model. A similar picture emerges

when we compare the AR-OM-MM-SALL and AR-OM-MM-SSUB models with the

AR-OM-MM model.

− Figure 8 about here. −

When we compare the results for random forests with the results for the linear

estimators, it is clear that the evidence that the shortage indexes contribute to

forecasting performance is stronger for random forests than for the linear es-

timators, which, in turn, should not come as a surprise, given the widespread

evidence of a nonlinear relationship between RV and its predictors in the lit-

erature (see, for example, Lyócsa and Stašek (2021) and Gupta et al. (2023)

for detailed discussions). Given the relative superior performance of the ran-

dom forests approach, therefore, it is interesting to study the marginal effects

of a variation in the shortage indexes. We compute the marginal effects, using

the full sample of data, by varying the shortage indexes while holding all other

predictors fixed at their respective mean value. We plot the marginal effects in

Figure 9 for h = 3. The marginal effects clearly show a substantial degree of

variation across sectors, and they also differ for any given sector substantially

across the four shortage subindexes. A close eyeballing of the marginal effects

further shows that they tend to exhibit a U-shaped form. Hence, they first tend

to decrease at low levels of the shortage indexes, attain a minimum, and then

start gradually to increase as the shortage indexes take on larger values. At very
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large values of the shortage indexes, the marginal effects become flat curves. It

is clear that the nonlinear nature of random forests implies that this technique

is better suited to capture the marginal effects of the shortage indexes on the

sectoral RV s than a linear estimator.

− Figures 9 and 10 about here. −

Bouri et al. (2021) argue, in a different context, that the kind of U-shaped pattern

of the marginal effects that we observe in Figures 9 and 10 can be rationalized

in terms of the speculative and hedging purposes of traders in different market

regimes. Accordingly, when shortages are less of a concern and, thus, uncer-

tainty is low (Ludvigson et al., 2021; Baker et al., 2024), it is most likely that the

economy is performing well. In such a regime, trading for speculative purposes

is strong, resulting in high values of RV . When the shortage indexes increase,

attention of market participants is likely to turn on a broad base to the likeli-

hood of supply-chain disruptions, inducing traders to switch to safe assets (or

even “safe haven” investments), and so low trading causes RV decrease.9 When

macroeconomic tensions caused by shortages fully unfold, leading to a very poor

current economic performance, expected future returns, however, may increase

again, and traders may substitute back from safe-haven assets to stock invest-

ments, so that RV starts increasing again.

9While shortages are expected to increase leverage and, hence, volatility, recent empirical
evidence obtained for the U.S. indicates that leverage may even decrease in the wake of increased
supply constrains (see, for example, Ginn and Saadaoui (2024)).
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4.3 Frequencies of RV

As an academic exercise, it would be interesting to understand the underlying

empirical reason behind the role of shortages in driving future stock market

volatility of the U.S., over and above its realized moments. For this purpose, in

line with the recent work of Souropanis and Vivian (2023), we use the wavelet

approach to decompose RV into its low-, medium-, and high-frequency com-

ponents. Figure 10 plots the results (p-values) of tests for the statistical signifi-

cance of the correlations between the three frequency-components of RV with the

shortage indexes. We find strong evidence that the shortage indexes are mainly

correlated with the medium- and low-frequency components of RV .10 This find-

ing is in line with our intuition, since shortages proxying for rare disaster events

are now known to lower output and higher inflation (as discussed in the intro-

duction) and, thus, convey “bad news” about the state of the macroeconomy

(on macro predictors of stock market volatility, see Schwert, 1989; Engle et al.,

2013). Hence, shortages are expected to impact the slow-moving components of

RV .11

10We obtain qualitatively similar results (not reported, but available from the authors upon
reasonable request) when we correlated the shortage indexes with the lead frequencies at the
different forecast horizons.

11One would expect that own realized moments exhibit a stronger correlation with the high-
frequency component of RV . Results (not reported, but available from the authors upon reason-
able request), in fact, showed that this is the case especially for the correlation of the contempo-
raneous frequencies of RV with realized kurtosis, realized skewness, and upside tail risk.
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5 Concluding Remarks

Recent global economic and political events have brought to the forefront that

supply-chain disruptions can trigger severe macroeconomic distortions as well

as to financial market jitters. It is, therefore, important to deepen our under-

standing of how exactly shortage-induced economic tensions transmit onto fi-

nancial markets in general and how they affect asset-price and stock market

volatility in particular. Our results for monthly U.S. aggregate and sectoral stock

market RV , which are based on data for the 20th century that cover two World

Wars, the oil shocks during 1970s, the recent COVID-19 pandemic as well as

several other crisis periods, show that shortages tend to improve forecasts of RV

once we switch from linear and a non-linear statistical learning estimator (that

is random forests), where a wavelet-based analysis has shown that shortages are

more strongly correlated with the medium- and low-frequency component of RV

Given that volatility forecasts are used as inputs for optimal asset-allocation

decisions, our findings suggest that, depending on the sector under consider-

ation, incorporating the role of shortages, over and above realized moments,

in forecasting models of realized variance can help an investor to improve the

design of portfolios across various investment horizons. Moreover, given that

stock market volatility has historically adversely impacted the real economy of

the U.S. (Pierdzioch and Gupta, 2020; Bouri et al., 2024), policymakers would

need to monitor supply constraints closely, and design the magnitude and per-

sistence of policies accordingly to ensure that shortages does not lead to volatile

stock markets, and further deepen the direct recessionary impact arising due to

supply-chain disruptions.
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As part of future research, given the availability of supply-chain constraints

data for other countries (as recently developed by Burriel et al., 2024), even

though for the last two decades only, it is interesting to extend our work to

international stock markets, which, in turn, would allow us to generalize our

findings. In addition, one could also look at the role of shortages in forecasting

commodity returns volatility, given the existing first-moment impact reported by

Gozgor et al. (2023).
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Figure 1: OLS Results at the Market Level
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The horizontal axis denotes the length of the estimation (that is, training) window (in percent).
A ratio that exceeds unity indicates that the rival model performs better than the benchmark
model. The panels in the first (second) row depict the RMSFE (MAFE) ratio for RV . The panels in
the third (fourth) depict the MAFE ratio for

√
RV (ln

√
RV ).
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Figure 3: Lasso Results at the Market Level
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The horizontal axis denotes the length of the estimation (that is, training) window (in percent).
A ratio that exceeds unity indicates that the rival model performs better than the benchmark
model. The results are for the Lasso estimator and RV .
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Figure 5: Random-Forest Results at the Market Level
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The horizontal axis denotes the length of the estimation (that is, training) window (in percent).
The panels in the first (second) row depict the results for the MAFE (RMSFE) ratio. A ratio that
exceeds unity indicates that the rival model performs better than the benchmark model. The
results are for RV .
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Figure 7: Test Results for Random Forests at the Market Level
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The horizontal axis denotes the length of the estimation (that is, training) window (in percent).
The panels in the first row depict the results (p-values) of the CW test. The null hypothesis is that
both models perform equally well. The one-sided alternative hypothesis is that the alternative
model performs better than the benchmark model. The panels in the second (third) row depict
the results for the modified DM test for a squared (an absolute) error-loss function. Dashed
horizontal lines indicate the 5% and 10% levels of significance. The results are for RV .
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Figure 10: Tests of the Significance of the Correlation of Shortage Indexes With
the Frequency Decompositions of RV
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For better readability, only p-values smaller than 0.1 are plotted.
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Appendix

Figure A1: Shortages Indexes
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Table A1: Summary Statistics for RV

Sector Start End N Mean Median Max Min

DJIA 1900-01 2024-05 1489 0.00254 0.00128 0.09725 0.00010
Aircraft 1926-07 2023-09 1167 0.00663 0.00291 0.16692 0.00035
Agriculture 1926-07 2023-09 1167 0.00482 0.00275 0.14133 0.00012
Automobiles and Trucks 1926-07 2023-09 1167 0.00582 0.00269 0.10811 0.00033
Banking 1926-07 2023-09 1167 0.00461 0.00165 0.12870 0.00017
Beer and Liquor 1926-07 2023-09 1167 0.00436 0.00188 0.17473 0.00021
Construction Materials 1926-07 2023-09 1166 0.00351 0.00156 0.11839 0.00010
Printing and Publishing 1926-07 2023-09 1167 0.00504 0.00229 0.13146 0.00024
Shipping Containers 1926-07 2023-09 1167 0.00341 0.00187 0.07705 0.00016
Business Services 1926-07 2023-09 1167 0.00748 0.00156 0.94114 0.00012
Chemicals 1926-07 2023-09 1167 0.00354 0.00167 0.09492 0.00009
Electronic Equipment 1926-07 2023-09 1167 0.00651 0.00308 0.28229 0.00035
Apparel 1926-07 2023-09 1167 0.00303 0.00154 0.09017 0.00012
Construction 1926-07 2023-09 1167 0.00821 0.00370 0.19478 0.00037
Coal 1926-07 2023-09 1166 0.01024 0.00449 0.25993 0.00027
Pharmaceutical Products 1926-07 2023-09 1167 0.00278 0.00149 0.08683 0.00017
Electrical Equipment 1926-07 2023-09 1167 0.00523 0.00248 0.10956 0.00037
Fabricated Products 1963-07 2023-09 723 0.00577 0.00321 0.17305 0.00031
Trading 1926-07 2023-09 1167 0.00526 0.00195 0.17834 0.00019
Food Products 1926-07 2023-09 1167 0.00185 0.00092 0.05733 0.00006
Entertainment 1926-07 2023-09 1167 0.00694 0.00321 0.12839 0.00037
Precious Metals 1963-07 2023-09 723 0.01079 0.00740 0.19339 0.00048
Defense 1963-07 2023-09 723 0.00407 0.00269 0.09127 0.00051
Computers 1926-07 2023-09 1167 0.00506 0.00260 0.17395 0.00017
Healthcare 1969-07 2023-09 651 0.00496 0.00278 0.09039 0.00033
Consumer Goods 1926-07 2023-09 1166 0.00286 0.00141 0.11817 0.00011
Insurance 1926-07 2023-09 1167 0.00396 0.00173 0.10911 0.00024
Measuring and Control Equipment 1926-07 2023-09 1166 0.00425 0.00242 0.07946 0.00020
Machinery 1926-07 2023-09 1167 0.00414 0.00174 0.10093 0.00018
Restaurants, Hotels, Motels 1926-07 2023-09 1167 0.00377 0.00208 0.10002 0.00021
Medical Equipment 1926-07 2023-09 1167 0.00532 0.00228 1.54142 0.00039
Non-Metallic and Industrial Metal Mining 1926-07 2023-09 1166 0.00522 0.00248 0.17601 0.00018
Petroleum and Natural Gas 1926-07 2023-09 1167 0.00392 0.00200 0.15460 0.00009
Other 1926-07 2023-09 1167 0.00460 0.00219 0.09621 0.00020
Business Supplies 1929-07 2023-09 1125 0.01874 0.00220 3.03689 0.00011
Personal Services 1927-07 2023-09 1154 0.00787 0.00287 0.32258 0.00030
Real Estate 1926-07 2023-09 1167 0.00876 0.00289 0.21910 0.00020
Retail 1926-07 2023-09 1167 0.00282 0.00138 0.07044 0.00011
Rubber and Plastic Products 1944-07 2023-09 951 0.00276 0.00168 0.06480 0.00032
Shipbuilding, Railroad Equipment 1926-07 2023-09 1167 0.00490 0.00285 0.07726 0.00019
Tobacco Products 1926-07 2023-09 1167 0.00314 0.00178 0.07212 0.00090
Candy and Soda 1963-07 2023-09 723 0.00394 0.00235 0.08919 0.00024
Computer Software 1965-07 2023-09 699 0.01118 0.00491 0.16405 0.00021
Steel Works Etc. 1926-07 2023-09 1167 0.00625 0.00259 0.19126 0.00028
Communication 1926-07 2023-09 1167 0.00230 0.00123 0.07636 0.00002
Recreation 1926-07 2023-09 1167 0.00960 0.00419 0.45992 0.00039
Transportation 1926-07 2023-09 1167 0.00391 0.00200 0.08349 0.00020
Textiles 1926-07 2023-09 1167 0.00416 0.00178 0.15340 0.00014
Utilities 1926-07 2023-09 1165 0.00254 0.00085 0.09140 0.00003
Wholesale 1926-07 2023-09 1166 0.00550 0.00180 0.66531 0.00019
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Figure A2: Elastic Net Results at the Market Level
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The horizontal axis denotes the length of the estimation (that is, training) window (in percent).
A ratio that exceeds unity indicates that the rival model performs better than the benchmark
model. The results are for the Lasso estimator and RV .
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