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Abstract

We analyze whether changes in temperature anomalies, and its second, third, and fourth
moments carry valuable information in forecasting historical stock returns volatility of
Canada, France, Germany, Italy, Japan, the United Kingdom (UK), and the United States
(US), i.e., the G7 countries, after controlling for leverage, skewness and (excess) kurtosis of
stock price fluctuations. Using centuries of monthly data, covering the period 1915−2024
for Canada and Italy, 1898−2024 for France, 1870−2024 for Germany, 1914−2024 for
Japan, 1693−2024 for the UK, and 1791−2024 for the US, the results show that stock
market moments matter more than climate risks for accurately forecasting stock returns
volatility. Extended analyses confirm that climate risks are already captured by the mo-
ments of stock returns. We discuss the implications of our findings for investment deci-
sions and economic policy.
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1 Introduction

Climate change-related extreme weather conditions constitute a large aggregate risk (Del

Fava et al., 2024). Climate risks also have been shown theoretically to reduce produc-

tivity and/or increase the stochastic depreciation rate of capital in Dynamic Stochastic

General Equilibrium (DSGE) models and, thus, can be expected to give rise to adverse

impacts on equity valuations (Donadelli et al., 2017, 2021a, 2021b, 2022; Giglio et al.,

2021a). In other words, climate risks tend to impact negatively future (aggregate and

sectoral) stock returns, as has been shown empirically by Balvers et al. (2017), Choi et

al. (2020), Bolton and Kacperczyk (2021), Balcilar et al. (2023), Faccini et al. (2023),

Salisu et al. (2023a, 2024), among others.1

Building on the first-moment impact of climate risks on stock markets, two recent

studies by Bonato et al. (2023) and Wu et al. (2024) have highlighted its role in fore-

casting stock returns volatility.2 In the former study, the authors provide evidence of

forecastability of US state-level realized stock-market volatility (derived from intraday

data) at medium- to long forecasting horizons, while they provide in the latter study re-

sults for an emerging market, namely South Africa, and show that climate risks carry

out-of-sample predictive information for conditional volatility, especially at longer fore-

casting horizons.3

In this research, we extend this literature by analyzing the role of climate risks

in forecasting the second moment of monthly stock returns of the G7 countries, i.e.,

Canada, France, Germany, Italy, Japan, the UK, and the US, from a historical perspec-

1In this regard, a related strand of literature has highlighted comparatively better portfolio performance
of green stocks rather than brown stocks in hedging climate risks (see, for example, Engle et al. (2020),
Cepni et al. (2022, 2023), Ardia et al. (2023)).

2From an in-sample perspective, Penzin et al. (2024) has related climate risks with stock market volatil-
ity, conditional on levels of technological changes.

3In this context, it is important to mention the works of Chen et al. (2023), Lv and Li (2023), and Lasisi
et al. (2024), who show that uncertainty surrounding climate policies can produce forecasting gains in
Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type models for aggregate and sectoral
stock returns volatility of China, the United Kingdom (UK) and the US.
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tive. Specifically, we collected data starting at March, 1915 for Canada and Italy, Febru-

ary, 1898 for France, February, 1870 for Germany, September, 1914 for Japan, March,

1693 for the UK, and October, 1791 for the US, with all the time series of stock returns

ending in January, 2024. Besides the availability of the longest possible samples of stock

market data to avoid a potential sample-selection-bias, our choice of the aforementioned

stock markets was primarily motivated by their importance to the global economy, be-

cause they represent nearly two-thirds of global net wealth and nearly half of the world

output (Das et al., 2019; Salisu et al., 2023b). Hence, analyzing the link between climate

risks and stock market volatility for the G7 countries is of pivotal importance from the

perspective of the stability to the world financial system, and its associated investment

and policy implications. Furthermore, by studying such long spans of data, we were

able to capture the fact that climate change is a slow-moving process and its effects

have tended to aggravate over time as economies have become more industrialized.

In order to achieve our objective, we proceeded in two steps. In the first step, we used

the Autoregressive Conditional Density (ACD) model (Hansen, 1994) to estimate the con-

ditional volatility of the G7 stock returns, which we aim to forecast. The advantage of the

ACD model is that it also estimates the skewness (depicting asymmetry) and the (excess)

kurtosis (capturing outliers) series. This is important because skewness and kurtosis,

along with leverage (i.e., a time series of negative stock returns), have been shown to play

important roles in forecasting stock market volatility (Mei et al., 2017; Zhang et al., 2021;

Bonato et al., 2023). Hence, we use in our predictive framework leverage, skewness, and

(excess) kurtosis as controls to avoid a potential omitted-variables-bias, along with the

measures of climate risks. As far as measures of climate risks are concerned, besides

the year-on-year changes in country-specific temperature anomalies, we used the ACD

model again to derive the associated measures of conditional volatility, skewness, and

(excess) kurtosis. In the process, unlike the above-mentioned literature that models cli-

mate risks with the first and second moments of changes in temperature anomalies, we
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were able to capture asymmetric and extreme climate-related risks as well through the

third and fourth moments of the deviation of temperature from its long-term trend.

Once we had obtained the moments of both stock returns and changes in temper-

ature anomalies, in the second step, we utilized a (conditional mean-based) predictive

regression model to check for the forecasting ability of the four climate risks predictors

for the stock market volatility of the G7 countries, over and above the role of leverage,

skewness, and (excess) kurtosis of the corresponding stock returns. In addition, we uti-

lized a quantile regression model (originally developed by Koenker and Bassett (1978))

for our forecasting exercise, which renders it possible to investigate the predictive abil-

ity of the predictors in forecasting the entire conditional distribution of stock market

volatility. Studying the entire conditional distribution is important because the condi-

tional mean may “hide” interesting characteristics of the predictand (Meligkotsidou et

al., 2014), and can lead to poor predictive performance, with the predictors possibly be-

ing valuable for forecasting certain parts of the conditional distribution of stock market

volatility. Furthermore, the quantile regression model retains the simple structure of

a linear framework for any given quantile of volatility but, simultaneously, renders it

possible to consider an element of nonlinearity because the coefficients of the predictive

model are allowed to vary across the different quantiles of the conditional distribution of

stock market volatility. This is important especially in our context because we analyzed

centuries of data, wherein the relationship between the predictand and the predictors

may have been disrupted by regime changes (see,, for example, the discussions in Bal-

cilar et al. (2023), and Salisu et al. (2023a, b)).

A forecasting experiment involving the role of climate-related physical risks, which

have become more prevalent in terms of magnitude, severity, and frequency, with this

trend expected to continue in the future (Mendelsohn et al., 2012; Stott, 2016), on the

volatility of the G7 stock markets is indeed a pertinent issue. Accurate forecasts of stock

market volatility carry widespread investment implications, being an input in portfolio
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models, derivative pricing, and risk management (Poon and Granger, 2003; Rapach et

al., 2008). In addition, stock market volatility, as was evident during the Global Financial

Crisis of 2007−2009 and the recent COVID-19 pandemic, can impinge back on the

economy as a whole via its effect on real economic activity and public confidence (Jurado

et al., 2015; Ludvigson et al., 2021). Naturally, forecasts of stock market volatility can

serve as a measure of the vulnerability of the overall financial system and the whole

economy and, thereby, help policymakers design appropriate preventive policies. Finally,

our research also carries academic value in that we are postulate the hypothesis that

climate risks can predict stock market volatility and, in turn, check for its validity in the

context of an out-of-sample forecasting exercise, which is well-established as a stronger

test of predictability than in-sample analyses (Campbell, 2008).

At this stage, given our testable empirical hypothesis, it makes perfect sense to out-

line a theoretical link through which climate risks, serving as a proxy for rare disaster

events (Bansal et al., 2021, forthcoming; Giglio et al., 2021b), are expected to drive stock

market volatility. Rietz (1988), and later Barro (2006, 2009), have proposed models of

rare disasters to explain the equity premium puzzle, which was initially identified by

Mehra and Prescott (1985). More recently, Wachter (2013) and Tsai and Wachter (2015)

have extended this line of research by developing theoretical frameworks in which ag-

gregate consumption follows a normal distribution with low volatility most of the time,

but a far out-in-the-left-tail realization of consumption can occur with some probability,

creating disaster risk. Disaster risk not only substantially raises the equity premium,

but the time-variation in its probability is reflected in stock market volatility. In other

words, a well-established theoretical channel exists that warrants a detailed empirical

analysis of the link between extreme-climate events-produced disaster risks and stock

market volatility of the G7 countries. In light of this, we lay out in our research em-

pirical results that shed light on the climate-risks-stock-market-volatility nexus from a

forecasting perspective for the first time covering multiple centuries of data.
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We organize the rest of this research as follows. In Section 2, we provide a description

of the data we use in our study, while we outline in Section 3 the ACD model used to

derive the moments of our data, and the linear and quantiles-based forecasting models.

In Section 4, we present our empirical results. In Section 5, we conclude.

2 Data

Our dataset consists of the monthly aggregate stock market indexes of the G7 countries,

namely the S&P TSX 300 Composite Index for Canada, the CAC All-Tradable Index for

France, the CDAX Composite Index for Germany, the Banca Commerciale Italiana Index

for Italy, the Nikkei 225 Index for Japan, the FTSE All Share Index for the UK and the

S&P500 Index for the US. For each stock index, we compute log-returns (in percentages)

as the first-difference of the logs of the index, multiplied by 100. We obtained the data

on the stock indexes Global Financial Data.4

As far as the corresponding monthly temperature anomalies (relative to a historical

mean over the period 1991−2020) data are concerned, barring the UK and the US, we

obtained the data from the website of the National Oceanic and Atmospheric Admin-

istration (NOAA).5 Because the NOAA data on temperature anomalies only start from

1850:01, we rely on data from the Met Office Hadley Centre for relevant data for the

UK,6 and Berkeley Earth7 for the US until 2016:12, 8, and then updated up to and

including 2024:01using comparable values of temperature anomalies from the NOAA.9

Once we obtained the temperature anomalies, we computed year-on-year changes of the

4https://globalfinancialdata.com/.
5See: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/

time-series, wherein we need to specify the respective coordinates, i.e., latitude and longitude.
6https://www.metoffice.gov.uk/hadobs/hadcet/data/download.html.
7https://berkeleyearth.org/data/.
8https://berkeley-earth-temperature.s3.us-west-1.amazonaws.com/Regional/TAVG/

united-states-TAVG-Trend.txt.
9https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/national/

time-series.
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monthly variables to ensure that we removed any seasonal patterns.

Based on the availability of stock market data, the coverage is heterogenous with

Canada and Italy starting in 1915:03, France in 1898:02, Germany in 1870:02, Japan

in 1914:09, the UK in 1693:03, and the US in 1791:10, but all the data end in 2024:01,

corresponding to the availability of the latest data at the time of conducting the estima-

tions.

3 Methods

We first lay out the ACD model that we used to extract the higher-order moments for

both the stock returns and changes in temperature anomalies. We then present the fore-

casting models that we used to for forecasting the conditional volatility (V OL) of the G7

stock returns, based on the information contained in leverage (LEV ), skewness (SKEW )

and (excess) kurtosis (KURT ) of stock returns, and year-on-year changes in temperature

anomalies (CR1), its conditional volatility (CR2), skewness (CR3), and (excess) kurtosis

(CR4), with the climate risks considered both individually and together.

3.1 Measuring Moments

We used the ACD model to derive the conditional higher-order moments (conditional

volatility, skewness, and (excess) kurtosis) of G7 stock market log-returns, as well as

for the year-on-year changes in temperature anomalies.10 Denoting the log-returns of

a particular stock market index or the year-on-year changes in temperature anomalies

by yt, the mean and variance equations of the Autoregressive Moving Average (ARMA)-

GARCH model are given by:

10We used the R language and environment for statistical computing (R Core Team, 2023) for all our
empirical analyses. For the estimation of the ACD model, we rely on the R add-on package “racd” (Ghalanos,
2014).
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yt = c+

p∑
i=1

γirt−i +

q∑
j=1

ηjεt−j , εt = σtzt (1)

σ2t = ω +

p∑
i=1

aiε
2
t−1 +

q∑
j=1

βjσ
2
t−j (2)

where zt ∼ D(0, 1, θt, τt); εt and zt denote the residuals and white noise disturbances

(with unit variance), σ2t denotes the conditional variance, and ε2t−i denotes the past inno-

vation to the variance. Three conditions are required to ensure positivity (ω > 0, α1 ≤ 0

and β1 ≤ 0).

The ARMA-GARCH model is enhanced with complementary parameters relating dy-

namic conditional skewness and conditional (excess) kurtosis of a distribution D as

follows:

θt = Φ(θt) (3)

τt = Φ(τt) (4)

Modelling skewness and kurtosis requires the application of the distributional pa-

rameters θt and τt. These parameters are restricted within the lower (L) and upper (U)

bounds as follows:

Φ(θt) = Lθt +
(Uθt − Lθt)

1 + e−θt
(5)

Φ(τt) = Lτt +
(Uτt − Lτt)

1 + e−τt
(6)

The skew parameter, θt, reflects the asymmetry of the distribution of stock market

returns or year-on-year changes in temperature anomalies. The shape parameter, τt,
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reflects the kurtosis of the tails of each of these two variables, and L and U represent

the lower and upper bounds of the two distributional parameters, θt and τt. As for Φ(.),

it signifies a transformation function.

Like Hansen (1994), we allow the parameters of skew and shape to evolve over time.

Accordingly, the first-order quadratic-type evolution of these parameters is given by:

θt = α0 + α1zt−1 + α2z
2
t−1 + c1θt−1 (7)

τt = b0 + b1zt−1 + b2z2t−1 + d1τt−1 (8)

In this regard, the conditional volatility, conditional skewness, and conditional (ex-

cess) kurtosis are estimated under the assumption of normal inverse Gaussian innova-

tions, which is suitable for achieving a reasonable modellng (see, among others, He and

Hamori (2021), Ahmed et al. (2024)).

3.2 Forecasting Models

In order to conduct our forecasting experiment, we used variants of the following fore-

casting model:

V OLt+h = β0 + β1V OLt + β2LEVt + β3SKEWt + β4KURTt + β5CRt + ut+h, (9)

which we estimated by the ordinary-least-squares (OLS) technique, βj , j = 0, .., 5 are

coefficients to be estimated, ut+h denotes a disturbance term, and V OLt+h is the average

stock market volatility over the forecast horizon, h. We analyzed five short, intermediate,

and long forecasting horizons by setting h = 1, 3, 6, 9, 12. The stock-market predictors

were the period-t stock market volatility (V OLt), LEVt, SKEWt, and KURTt. In addition,

we included, in an extended forecasting model, one or more of the climate risks, CRt
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(where β5 is an appropriately dimensioned vector of coefficients in case we include more

than one climate risk in the forecasting model).11

In order to inspect whether the climate risks contribute to forecast accuracy, we

set up our forecasting experiment using a recursive and a rolling estimation window.

When we studied a recursive estimation window, we used the first 25% of a dataset to

initialize the estimations, and then expanded the estimation window step by step until

we reached the end of the sample period. Similarly, when using a rolling estimation

window, we used the first 25% of a dataset for initialization, then added one observation

at the end of the estimation window and dropped one observation at the beginning of the

estimation window, and continued in this way until we reached the end of the sample

period. For every recursive and rolling estimation window, we computed out-of-sample

forecasts of stock market volatility for the five different forecast horizons under study.

We evaluated the resulting sequences of out-of-sample forecasts resulting from the

recursive and the rolling estimations in three different ways. First, we computed the

root-mean-squared forecast error (RMSFE) for all forecasting models, where we ex-

pressed the RMSFE in terms of a ratio by comparing the RMSFE of a benchmark and

a rival model. A RMSFE ratio larger than unity, thereby, signals that the rival model

produced a lower RMSFE than the benchmark model. The rival model included one

or more climate risks as predictors, while the benchmark model included only stock-

market-related predictors. Second, we took analogous steps to compute the ratio of the

mean absolute forecast error (MAFE) of a benchmark and a rival model.

As an extension, we estimated the forecasting model given in Equation (9) as a

quantile-regression model. Such an extension is useful to answer the question whether

climate risks have differential effects across different quantiles of the conditional distri-

bution of conditional stock market volatility. The quantile-regression model is given by

11Moreover, we used, as an extension, an optimal predictor selection algorithm (which we shall describe
in more detail in Section 4.3) to let the data decide on which of the climate predictors to include in the
optimal forecasting model.
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the following equation:

bq = arg min
T∑
t

ρq (V OLt+h − β0 − β1V OLt − β2LEVt − β3SKEWt − β4KURTt − β5CRt) ,

(10)

where q denotes the quantile being studied, bq denotes the quantile-dependent vector of

coefficients, and the function ρq, denotes the usual check function, defined as ρq = qut+h

for ut+h > 0, and ρq = (q − 1)ut+h for ut+h < 0. We studied the following quantiles:

q = {0.1, 0.25, 0.5, 0.75, 0.9}, using the same recursive and rolling estimation windows that

we used to estimate the OLS model given in Equation (9). Hence, the time index in

Equation (10) covers the relevant estimation window.12

We evaluated the resulting out-of-sample forecasts for the different quantiles using

the check function. Hence, we assumed that the check function represents the loss

function a forecaster uses to estimate a forecasting model as well as to evaluate, given

a quantile, the resulting forecast errors. We computed in this way the average forecast

error for every forecasting model and quantile, and scaled the resulting numbers by

forming their ratio for a benchmark and a rival model.

4 Empirical Results

4.1 Baseline Results

We report in Table 1 RMSFE ratios as computed by estimating Equation 9 by means

of a recursive estimation window. We observe that the forecasts that we obtained from

estimating the AR-MOM model are more accurate in terms of the RMSFE criterion than

the forecasts that we computed by means of the corresponding AR model for all seven

countries and all five forecast horizons, where the RMSFE ratios decrease as the forecast

horizon gets longer (with the results for Germany being an exception). In sharp contrast,

12We use the R add-on package “quantreg” (Koenker, 2023) to estimate the quantile-regression models.
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when we compare the AR-MOM model with the variants of the AR-MOM-CR model, we

observe that the latter performs worse than the AR-MOM model in terms of the RMSFE

criterion in most cases, and performs better than the AR-MOM model by a tiny margin

only in a few cases. Hence, the punchline is that stock market moments rather than the

climate risks matter for out-of-sample predictive accuracy.

− Table 1 about here. −

The MAFE results that we report in Table 2, again for a recursive estimation window,

corroborate that the result that stock market moments matter while climate risks do

not. As in the case of the RMSFE ratios, we found that the MAFE ratios tend to exceed

unity when we compare the AR benchmark model with the AER-MOM rival model. An

exception in this regard are the results for Italy. For Canada, we found that CR2 and

CR3 contribute some moderate predictive value at the intermediate forecast horizons.

The general result, however, is that climate risks do not contribute much, if anything, to

out-of-sample forecasting performance in terms of the MAFE criterion relative to stock

market moments.

− Table 2 about here. −

Next, we turn to the RMSFE ratios we obtained for a rolling estimation window, as re-

ported in in Table 3. The results demonstrate that the AR-MOM model performs better

than the AR benchmark model for Canada, France, Germany, Italy, and Japan. Stock

market moments did not improve out-of-sample forecasting performance when we stud-

ied data for the United Kingdom and the United States. Importantly, there is hardly

any evidence that the climate risks go beyond stock market moments in terms of out-of-

sample forecasting accuracy.

− Table 3 about here. −
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4.2 Quantile-Regression Results

We summarize the results of the quantile-regression-based analyses in Figure 1 for a

recursive estimation window and in Figure 2 for a rolling estimation window. In these

figures, we plot the check-function ratios, which we calculated using out-of-sample fore-

casts, as a function of the quantiles, where we focus on a comparison of the AR vs.

AR-MOM models and the AR-MOM vs. AR-MOM-CR models (the model that features all

four climate risks) for better readability of the figures.

− Figures 1 and 2 about here. −

The general message of the quantile-regression-based analyses is in line with the main

result of the OLS analyses. The AR-MOM model performs better than the AR model for

the overwhelming majority of combinations of countries, forecast horizons, and quan-

tiles. As compared to the AR-MOM model, the AR-MOM-CR model either produces rather

small forecasting gains or even performs worse. Hence, we conclude that stock mar-

ket moments, on balance, matter much more for forecasting accuracy of stock returns

volatility than climate risks.

4.3 Extensions

A natural question is whether the contribution of the climate risks to out-of-sample

forecasting accuracy became more substantial in the second half of the sample period

given that the awareness for climate-related risks can be expected to have increased

in general towards the end of the sample period. The RMSFE ratios are reported in

Table 4 (recursive estimation window) and in Table 5 (rolling estimation window). As

compared to the results reported in Tables 1 and 3, we deleted the first 50% of the

out-of-sample forecasts. Again, we found that, on balance, the stock market moments

are more important for out-of-sample forecasting accuracy of volatility of the G7 equity

market returns than the climate risks. Stock market moments lost in importance relative
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to our baseline results in the cases of Germany and Italy (the latter mainly in case of

a recursive estimation window), but gained in importance in the cases of the United

Kingdom and the United States (rolling estimation window).

− Tables 4 and 5 about here. −

It is an arbitrary choice, of course, simply to delete the first 50% of the out-of-sample

forecasts. As an alternative specification, we discounted “old” forecast errors using the

formula FEs × γT−s, for s = T, T − 1, T − 2, ..., where FE denotes the forecast error and T

denotes the last observation of the sequence of out-of-sample forecasts. We set γ = 0.98.

Hence, more recent forecast errors receive a larger weight as compared to more distant

forecast errors. We summarize the results in Table 6 (recursive estimation window) and

Table 7 (rolling estimation window). As for the results we obtained based on a recursive

estimation window, we found that stock market moments add to forecast accuracy in

all countries except Germany. In addition, we found that one of the climate risks, CR4,

yielded a noticeable forecasting gains at the longer forecast horizons when we studied

the data for Germany, Italy, and Japan. Turning next to the results for the rolling

estimation window, we again found strong evidence, for all countries in our sample, that

stock market moments add to forecast accuracy beyond the AR benchmark model, while

the effect of CR4 on forecasting accuracy was visible only for the Japanese data.

− Tables 6 and 7 about here. −

As a further extension, we used an optimal stepwise predictor selection approach to let

the data decide which climate risks to include in the forecasting models (for a textbook

exposition, see Chapter 3 of Hastie et al. (2009)). We implemented a forward variant

of this algorithm. To this end, we started with the AR-MOM model and estimated by

the OLS technique the forecasting models that incorporate only one of the climate risks

as an additional predictor. We stored the model for which we obtained the minimum
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residual sum of squares. Then we started the next round of the algorithm with this

model and estimated all models that include two climate risk predictors (the one selected

in the first step plus one additional climate risk). Among these models, we chose the

model that minimized the residual sum of squares. We continued this process until we

reached the forecasting model that features simultaneously all climate risks. Applying

the optimal forward stepwise predictor selection algorithm in this way gave us a sequence

of forecasting models with increasing complexity. From these sequences of models, we

selected the forecasting model that (i) maximized the adjusted R2 statistic, (ii) minimized

the Bayesian Information Criterion (BIC), or (iii) minimized Mallow’s CP criterion.13

− Tables 8 and 9 about here. −

We summarize the results for the optimal stepwise predictor selection approach in Table

8 (RMSFE ratios) and Table 9 (MAFE ratios). We found that the climate risks either do

not or do not contribute much beyond the stock market moments to forecast accuracy.

This finding was in line with the results of our other analyses.

4.4 Explaining the Findings

At this stage, it is important to provide a possible explanation for our finding that climate

risks relative to the moments of stock returns of the G7 countries do not necessarily add

much in terms of forecasting gains associated with corresponding volatilities of these

seven advanced economies. We believe that this is likely due to the fact that the climate

risks are already reflected in the leverage, skewness, and (excess) kurtosis of the stock

returns, as the moments themselves encapuslate the impact of the broader concept of

rare disaster events, a part of which is captured by climate risks, on asset market volatil-

ity (Gkillas et al., 2019; Bonato et al., 2022; Gupta et al., 2023). This line of reasoning

13We utilize the R add-on package “leaps” by Lumley (2020), which is based on Fortran code by Alan
Miller, to implement the optimal stepwise predictor selection algorithm.
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is, in fact, vindicated by the results from the nonparametric causality-in-quantiles test

of Jeong et al. (2012), which being a data-driven nonparametric test, controls for any

misspecification due to nonlinearity and structural breaks, while producing predictive

information about the entire conditional distribution of the dependent variables.

− Table 10 about here. −

As can be seen from Table 10, after applying the nonparametric causality-in-quantiles

test, in general, there is strong evidence of predictability emanating from all the four

climate risks-related variables for the entire conditional distributions of leverage, skew-

ness, and (excess) kurtosis of the G7 stock markets. Understandably, it is impossible to

draw an one-to-one correspondence to the findings of Bonato et al. (2023) and Wu et al.

(2024), due to differences in the underlying econometric methods and sample periods.

But, we are inclined to believe that not accounting for moments could tilt the scale in

favor of the climate risks variables in forecasting stock market volatility, as reported by

Wu et al. (2024) for South Africa, who, in turn, did not incorporate the role of lever-

age, skewness, and (excess) kurtosis in modeling the process of volatility. At the same

time, the favorable results reported by Bonato et al. (2023) for forecasting of US state-

level stock market volatility originating from extreme weather impacts, over and above

the moments, could be highlighting the fact that regional climate variables tend to have

heterogeneous data-generating processes (Gil-Alana et al., 2022), which can get washed

out in defining the underlying state of the economy at the aggregate-level (Cepni et al.,

2024). Moreover, with the state-level stock prices being a capitalization-weighted index

of equities domiciled in a state, the findings could also be depicting industry-specific

impacts, as sectors indeed can differ in their sensitivity to climate-change-related risks.
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5 Concluding Remarks

In light of the burgeoning literature on “climate finance”, our objective in this research

was to analyze whether changes in temperature anomalies, and its second, third, and

fourth moments carry predictive content for forecasting historical stock returns volatility

of the G7 countries spanning centuries of data, once we control for leverage, skewness,

and (excess) kurtosis of stock returns. The general message to take home from the main

results is that stock market moments matter more thank climate risks for accurately

forecasting stock returns volatility, with climate risks being already captured by the mo-

ments, as shown by the results of a causality-in-quantiles test. While our results do not

rule out that climate risks may have contributed to forecasting accuracy during some

time-periods and for some countries and model configurations, our results have shown

that, on balance, the role of stock market moments to forecasting accuracy relative to an

autoregressive benchmark model is more robust across countries and model configura-

tions and, in the majority of cases, they are also quantitatively relatively important than

the incremental contribution of climate risks. A quantiles-based analysis and several

variations of the forecasting model does not changed the main empirical observation.

Based on our findings, we conclude that, in spite of theoretical predictions, on the prac-

tical front, investors and policymakers in the G7 countries should closely track moments

rather than physical climate risks when they need to produce forecasts of stock market

volatility, when such forecasts perhaps are being utilized as inputs in portfolio allocation

and policy decisions.

As part of future analysis, it is interesting to extend our analysis to sector-level data.

In this regard, the US would be an obvious choice with such data available back to 1926

at a monthly frequency. More importantly, climate-change risks are typically divided

into two main components, namely physical and transition risks. While the former stems

from the detrimental impacts of climate-related events, which is what we have studied

16



in our research, the latter arises from the gradual shift toward a low-carbon economy

(as reflected, for example, in climate and environmental policies, the strengthening com-

petitiveness of eco-friendly technologies, and an adaptation in consumer preferences),

which we have completely ignored. Understandably, both physical and transition risks

are an integral part of every conceivable future scenario, albeit with varying degrees or

forms of uncertainty. While dealing with transition risks would substantially shorten

our sample periods to the turn of this century due to data availability (see, Bua et al.

(2024) for a detailed discussion), their importance in driving financial-market moments

in both developed and developing economies warrants a detailed investigation in future

research.
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Donadelli, M., Jüppner, M., Paradiso, A., and Schlag, C. (2021b). Computing macro

effects and welfare costs of temperature volatility: A structural approach. Compu-

tational Economics, 58(2), 347–394.
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Table 1: RMSFE ratios for a recursive estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 1.7928 1.3114 1.1443 1.0810 1.0538
Canada / AR-MOM vs. AR-MOM-CR1 0.9988 0.9982 0.9990 0.9994 0.9996
Canada / AR-MOM vs. AR-MOM-CR2 0.9987 0.9988 0.9981 0.9890 0.9725
Canada / AR-MOM vs. AR-MOM-CR3 0.9992 0.9988 0.9976 0.9960 0.9953
Canada / AR-MOM vs. AR-MOM-CR4 0.9979 0.9968 0.9980 0.9992 1.0000
Canada / AR-MOM vs. AR-MOM-CR 0.9934 0.9912 0.9929 0.9786 0.9596
France / AR vs. AR-MOM 1.7072 1.2598 1.1271 1.0791 1.0615
France / AR-MOM vs. AR-MOM-CR1 1.0003 0.9996 0.9995 0.9995 0.9995
France / AR-MOM vs. AR-MOM-CR2 0.9983 0.9986 0.9980 0.9987 0.9982
France / AR-MOM vs. AR-MOM-CR3 0.9983 0.9983 0.9974 0.9978 0.9974
France / AR-MOM vs. AR-MOM-CR4 0.9984 0.9986 0.9977 0.9981 0.9976
France / AR-MOM vs. AR-MOM-CR 0.9996 0.9981 0.9954 0.9972 0.9960
Germany / AR vs. AR-MOM 1.0186 1.0481 1.0478 1.0546 1.0743
Germany / AR-MOM vs. AR-MOM-CR1 0.9987 0.9994 0.9998 0.9997 0.9995
Germany / AR-MOM vs. AR-MOM-CR2 1.0000 1.0004 1.0020 1.0035 1.0045
Germany / AR-MOM vs. AR-MOM-CR3 1.0001 1.0006 1.0023 1.0037 1.0046
Germany / AR-MOM vs. AR-MOM-CR4 0.9999 0.9998 1.0007 1.0020 1.0034
Germany / AR-MOM vs. AR-MOM-CR 0.9990 0.9998 1.0012 1.0020 1.0030
Italy / AR vs. AR-MOM 1.0619 1.0391 1.0208 1.0144 1.0050
Italy / AR-MOM vs. AR-MOM-CR1 1.0000 0.9996 0.9991 0.9989 0.9981
Italy / AR-MOM vs. AR-MOM-CR2 0.9998 0.9999 0.9997 0.9997 0.9994
Italy / AR-MOM vs. AR-MOM-CR3 0.9997 0.9995 0.9992 0.9992 0.9988
Italy / AR-MOM vs. AR-MOM-CR4 1.0000 0.9969 0.9943 0.9949 0.9917
Italy / AR-MOM vs. AR-MOM-CR 0.9992 0.9938 0.9916 0.9911 0.9867
Japan / AR vs. AR-MOM 1.1088 1.0520 1.0684 1.0668 1.0366
Japan / AR-MOM vs. AR-MOM-CR1 0.9978 0.9945 0.9920 0.9918 0.9942
Japan / AR-MOM vs. AR-MOM-CR2 0.9997 0.9910 0.9907 0.9958 0.9972
Japan / AR-MOM vs. AR-MOM-CR3 0.9989 0.9892 0.9891 0.9938 0.9954
Japan / AR-MOM vs. AR-MOM-CR4 0.9999 1.0032 1.0076 1.0031 1.0002
Japan / AR-MOM vs. AR-MOM-CR 0.9965 0.9904 0.9921 0.9906 0.9911
UK / AR vs. AR-MOM 1.0715 1.0440 1.0347 1.0252 1.0196
UK / AR-MOM vs. AR-MOM-CR1 0.9998 0.9996 0.9995 0.9995 0.9996
UK / AR-MOM vs. AR-MOM-CR2 0.9999 0.9997 0.9986 0.9982 0.9972
UK / AR-MOM vs. AR-MOM-CR3 0.9998 0.9997 0.9981 0.9972 0.9951
UK / AR-MOM vs. AR-MOM-CR4 0.9999 0.9997 0.9990 0.9983 0.9956
UK / AR-MOM vs. AR-MOM-CR 0.9996 0.9990 0.9980 0.9969 0.9938
US / AR vs. AR-MOM 1.3608 1.1537 1.0960 1.0660 1.0471
US / AR-MOM vs. AR-MOM-CR1 0.9998 1.0000 0.9999 1.0001 0.9998
US / AR-MOM vs. AR-MOM-CR2 0.9998 0.9997 0.9996 0.9996 0.9997
US / AR-MOM vs. AR-MOM-CR3 0.9999 0.9998 0.9999 0.9999 0.9995
US / AR-MOM vs. AR-MOM-CR4 0.9995 0.9992 1.0004 1.0017 1.0007
US / AR-MOM vs. AR-MOM-CR 0.9991 0.9985 0.9998 1.0020 1.0004
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Table 2: MAFE ratios for a recursive estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 1.6032 1.2679 1.1643 1.0990 1.0607
Canada / AR-MOM vs. AR-MOM-CR1 0.9956 0.9967 0.9967 0.9984 0.9997
Canada / AR-MOM vs. AR-MOM-CR2 1.0078 1.0162 1.0140 0.9826 0.9491
Canada / AR-MOM vs. AR-MOM-CR3 1.0034 1.0131 1.0154 1.0040 1.0000
Canada / AR-MOM vs. AR-MOM-CR4 0.9943 0.9960 0.9976 0.9986 1.0000
Canada / AR-MOM vs. AR-MOM-CR 0.9955 1.0137 1.0050 0.9658 0.9349
France / AR vs. AR-MOM 1.9889 1.2860 1.1200 1.0741 1.0496
France / AR-MOM vs. AR-MOM-CR1 0.9996 0.9993 0.9984 0.9992 0.9992
France / AR-MOM vs. AR-MOM-CR2 0.9978 0.9985 0.9986 0.9977 0.9978
France / AR-MOM vs. AR-MOM-CR3 0.9979 0.9989 0.9983 0.9972 0.9966
France / AR-MOM vs. AR-MOM-CR4 0.9978 0.9987 0.9985 0.9972 0.9972
France / AR-MOM vs. AR-MOM-CR 0.9925 0.9904 0.9889 0.9923 0.9941
Germany / AR vs. AR-MOM 0.7423 0.9193 1.0516 1.1014 1.1220
Germany / AR-MOM vs. AR-MOM-CR1 0.9887 0.9961 0.9976 0.9855 0.9802
Germany / AR-MOM vs. AR-MOM-CR2 0.9952 0.9808 0.9559 0.9472 0.9571
Germany / AR-MOM vs. AR-MOM-CR3 0.9929 0.9750 0.9470 0.9376 0.9480
Germany / AR-MOM vs. AR-MOM-CR4 0.9977 0.9933 0.9896 0.9860 0.9881
Germany / AR-MOM vs. AR-MOM-CR 0.9724 0.9396 0.9130 0.9069 0.9193
Italy / AR vs. AR-MOM 1.0683 1.0058 0.9869 0.9750 0.9613
Italy / AR-MOM vs. AR-MOM-CR1 0.9986 0.9993 0.9990 0.9973 0.9963
Italy / AR-MOM vs. AR-MOM-CR2 1.0010 1.0014 0.9996 0.9992 0.9982
Italy / AR-MOM vs. AR-MOM-CR3 1.0027 1.0016 0.9986 0.9973 0.9960
Italy / AR-MOM vs. AR-MOM-CR4 1.0067 1.0019 0.9975 0.9967 0.9998
Italy / AR-MOM vs. AR-MOM-CR 1.0061 0.9977 0.9933 0.9893 0.9897
Japan / AR vs. AR-MOM 1.2832 1.1449 1.0759 1.0410 1.0241
Japan / AR-MOM vs. AR-MOM-CR1 0.9788 0.9872 0.9890 0.9956 0.9952
Japan / AR-MOM vs. AR-MOM-CR2 1.0000 0.9936 0.9914 0.9936 0.9943
Japan / AR-MOM vs. AR-MOM-CR3 0.9983 0.9952 0.9926 0.9947 0.9960
Japan / AR-MOM vs. AR-MOM-CR4 0.9481 0.9445 0.9494 0.9336 0.9189
Japan / AR-MOM vs. AR-MOM-CR 0.9064 0.9283 0.9347 0.9258 0.9141
UK / AR vs. AR-MOM 0.9124 1.0128 1.0555 1.0488 1.0471
UK / AR-MOM vs. AR-MOM-CR1 0.9980 0.9954 0.9966 0.9979 0.9988
UK / AR-MOM vs. AR-MOM-CR2 0.9992 0.9944 0.9861 0.9850 0.9810
UK / AR-MOM vs. AR-MOM-CR3 0.9992 0.9938 0.9853 0.9821 0.9764
UK / AR-MOM vs. AR-MOM-CR4 0.9967 0.9917 0.9918 0.9898 0.9849
UK / AR-MOM vs. AR-MOM-CR 0.9947 0.9912 1.0030 1.0095 1.0091
US / AR vs. AR-MOM 1.3659 1.1501 1.0856 1.0501 1.0236
US / AR-MOM vs. AR-MOM-CR1 0.9995 1.0002 0.9996 0.9995 0.9993
US / AR-MOM vs. AR-MOM-CR2 1.0004 0.9995 0.9996 0.9991 0.9982
US / AR-MOM vs. AR-MOM-CR3 0.9988 1.0001 1.0005 1.0000 0.9995
US / AR-MOM vs. AR-MOM-CR4 0.9969 0.9968 0.9992 1.0000 0.9995
US / AR-MOM vs. AR-MOM-CR 0.9953 0.9953 0.9939 0.9941 0.9935
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Table 3: RMSFE ratios for a rolling estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 1.7552 1.3109 1.1441 1.0802 1.0524
Canada / AR-MOM vs. AR-MOM-CR1 0.9981 0.9983 0.9984 0.9978 0.9974
Canada / AR-MOM vs. AR-MOM-CR2 1.0020 1.0052 1.0079 0.9951 0.9700
Canada / AR-MOM vs. AR-MOM-CR3 0.9996 0.9985 0.9964 0.9915 0.9902
Canada / AR-MOM vs. AR-MOM-CR4 0.9982 0.9964 0.9936 0.9956 0.9970
Canada / AR-MOM vs. AR-MOM-CR 0.9948 0.9910 0.9722 0.9396 0.9023
France / AR vs. AR-MOM 1.6846 1.2559 1.1196 1.0687 1.0521
France / AR-MOM vs. AR-MOM-CR1 0.9995 0.9980 0.9993 0.9988 0.9981
France / AR-MOM vs. AR-MOM-CR2 0.9945 0.9961 0.9943 0.9933 0.9905
France / AR-MOM vs. AR-MOM-CR3 0.9952 0.9967 0.9948 0.9933 0.9907
France / AR-MOM vs. AR-MOM-CR4 0.9951 0.9964 0.9938 0.9922 0.9894
France / AR-MOM vs. AR-MOM-CR 0.9857 0.9877 0.9866 0.9841 0.9790
Germany / AR vs. AR-MOM 1.0185 1.0456 1.0425 1.0478 1.0678
Germany / AR-MOM vs. AR-MOM-CR1 0.9979 0.9986 0.9992 0.9984 0.9975
Germany / AR-MOM vs. AR-MOM-CR2 1.0001 1.0008 1.0036 1.0058 1.0075
Germany / AR-MOM vs. AR-MOM-CR3 1.0002 1.0013 1.0040 1.0063 1.0080
Germany / AR-MOM vs. AR-MOM-CR4 0.9998 0.9996 1.0013 1.0031 1.0047
Germany / AR-MOM vs. AR-MOM-CR 0.9985 0.9991 1.0005 1.0010 1.0021
Italy / AR vs. AR-MOM 1.0714 1.0456 1.0307 1.0262 1.0184
Italy / AR-MOM vs. AR-MOM-CR1 0.9993 0.9986 0.9981 0.9979 0.9978
Italy / AR-MOM vs. AR-MOM-CR2 0.9992 0.9985 0.9966 0.9963 0.9964
Italy / AR-MOM vs. AR-MOM-CR3 0.9989 0.9984 0.9965 0.9962 0.9964
Italy / AR-MOM vs. AR-MOM-CR4 0.9974 0.9895 0.9853 0.9860 0.9796
Italy / AR-MOM vs. AR-MOM-CR 0.9935 0.9808 0.9760 0.9723 0.9644
Japan / AR vs. AR-MOM 1.1301 1.0792 1.1007 1.0713 1.0317
Japan / AR-MOM vs. AR-MOM-CR1 0.9984 0.9943 0.9895 0.9892 0.9923
Japan / AR-MOM vs. AR-MOM-CR2 0.9996 0.9527 0.9481 0.9755 0.9831
Japan / AR-MOM vs. AR-MOM-CR3 0.9951 0.9691 0.9711 0.9829 0.9895
Japan / AR-MOM vs. AR-MOM-CR4 0.9913 0.9949 1.0056 1.0115 1.0130
Japan / AR-MOM vs. AR-MOM-CR 0.9810 0.9693 0.9680 0.9917 0.9997
UK / AR vs. AR-MOM 0.8046 0.7841 0.9526 0.9683 0.9548
UK / AR-MOM vs. AR-MOM-CR1 1.0000 0.9999 0.9997 0.9996 0.9995
UK / AR-MOM vs. AR-MOM-CR2 1.0000 0.9998 0.9991 0.9988 0.9987
UK / AR-MOM vs. AR-MOM-CR3 0.9999 0.9996 0.9988 0.9985 0.9983
UK / AR-MOM vs. AR-MOM-CR4 0.9994 0.9989 0.9979 0.9976 0.9977
UK / AR-MOM vs. AR-MOM-CR 0.9988 0.9986 0.9981 0.9995 1.0008
US / AR vs. AR-MOM 0.8787 0.9951 0.9578 0.9490 0.9655
US / AR-MOM vs. AR-MOM-CR1 0.9997 1.0003 1.0014 1.0018 1.0002
US / AR-MOM vs. AR-MOM-CR2 1.0004 0.9995 0.9994 0.9994 0.9996
US / AR-MOM vs. AR-MOM-CR3 1.0011 0.9974 0.9943 0.9942 0.9967
US / AR-MOM vs. AR-MOM-CR4 1.0009 0.9968 1.0005 1.0028 1.0003
US / AR-MOM vs. AR-MOM-CR 1.0080 0.9912 0.9928 0.9953 0.9936
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Table 4: RMSFE ratios for a recursive estimation window (50% of the forecasts deleted)

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 2.0107 1.3590 1.1531 1.0840 1.0568
Canada / AR-MOM vs. AR-MOM-CR1 0.9998 0.9981 0.9995 0.9994 0.9999
Canada / AR-MOM vs. AR-MOM-CR2 0.9987 0.9990 0.9991 0.9975 0.9950
Canada / AR-MOM vs. AR-MOM-CR3 0.9990 0.9983 0.9974 0.9972 0.9976
Canada / AR-MOM vs. AR-MOM-CR4 0.9981 0.9980 0.9989 1.0003 1.0005
Canada / AR-MOM vs. AR-MOM-CR 0.9955 0.9931 0.9962 0.9927 0.9867
France / AR vs. AR-MOM 1.8771 1.3148 1.1553 1.0907 1.0627
France / AR-MOM vs. AR-MOM-CR1 1.0007 0.9998 0.9993 0.9996 1.0001
France / AR-MOM vs. AR-MOM-CR2 0.9983 0.9994 1.0005 1.0006 1.0001
France / AR-MOM vs. AR-MOM-CR3 0.9982 0.9991 0.9998 0.9995 0.9989
France / AR-MOM vs. AR-MOM-CR4 0.9985 0.9994 1.0003 1.0002 0.9996
France / AR-MOM vs. AR-MOM-CR 1.0026 1.0022 0.9996 0.9988 0.9975
Germany / AR vs. AR-MOM 0.4319 0.5108 0.5562 0.5611 0.5536
Germany / AR-MOM vs. AR-MOM-CR1 1.0000 1.0004 1.0015 0.9953 0.9866
Germany / AR-MOM vs. AR-MOM-CR2 0.9998 0.9988 0.9835 0.9697 0.9677
Germany / AR-MOM vs. AR-MOM-CR3 0.9992 0.9968 0.9788 0.9647 0.9626
Germany / AR-MOM vs. AR-MOM-CR4 0.9999 1.0001 1.0007 0.9996 0.9994
Germany / AR-MOM vs. AR-MOM-CR 0.9927 0.9751 0.9449 0.9235 0.9177
Italy / AR vs. AR-MOM 1.1044 0.9937 0.9628 0.9288 0.9130
Italy / AR-MOM vs. AR-MOM-CR1 1.0008 0.9996 0.9970 0.9951 0.9920
Italy / AR-MOM vs. AR-MOM-CR2 1.0001 0.9998 1.0000 0.9997 0.9990
Italy / AR-MOM vs. AR-MOM-CR3 1.0001 0.9997 0.9992 0.9988 0.9976
Italy / AR-MOM vs. AR-MOM-CR4 1.0023 1.0035 1.0042 1.0058 1.0099
Italy / AR-MOM vs. AR-MOM-CR 1.0029 1.0024 1.0004 1.0000 1.0000
Japan / AR vs. AR-MOM 1.4454 1.1434 1.0244 0.9574 0.9545
Japan / AR-MOM vs. AR-MOM-CR1 0.9900 0.9963 0.9993 0.9989 0.9989
Japan / AR-MOM vs. AR-MOM-CR2 0.9999 0.9982 0.9972 0.9976 0.9978
Japan / AR-MOM vs. AR-MOM-CR3 0.9996 0.9935 0.9907 0.9932 0.9945
Japan / AR-MOM vs. AR-MOM-CR4 0.9937 0.9827 0.9708 0.9694 0.9661
Japan / AR-MOM vs. AR-MOM-CR 0.9566 0.9597 0.9621 0.9629 0.9626
UK / AR vs. AR-MOM 1.2122 1.1322 1.0837 1.0613 1.0549
UK / AR-MOM vs. AR-MOM-CR1 0.9999 0.9993 0.9998 0.9999 1.0000
UK / AR-MOM vs. AR-MOM-CR2 0.9997 0.9992 0.9969 0.9958 0.9960
UK / AR-MOM vs. AR-MOM-CR3 0.9994 0.9987 0.9955 0.9936 0.9930
UK / AR-MOM vs. AR-MOM-CR4 0.9997 0.9999 0.9994 1.0002 1.0017
UK / AR-MOM vs. AR-MOM-CR 0.9995 0.9979 0.9945 0.9918 0.9888
US / AR vs. AR-MOM 1.6017 1.1632 1.0516 1.0135 0.9940
US / AR-MOM vs. AR-MOM-CR1 0.9999 1.0001 1.0001 0.9999 0.9999
US / AR-MOM vs. AR-MOM-CR2 1.0001 0.9999 1.0000 0.9996 0.9989
US / AR-MOM vs. AR-MOM-CR3 0.9997 0.9997 0.9997 1.0000 0.9995
US / AR-MOM vs. AR-MOM-CR4 0.9996 0.9996 1.0003 1.0016 1.0005
US / AR-MOM vs. AR-MOM-CR 0.9994 0.9989 0.9982 0.9976 0.9944
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Table 5: RMSFE ratios for a rolling estimation window (50% of the forecasts deleted)

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 1.9261 1.3577 1.1533 1.0803 1.0522
Canada / AR-MOM vs. AR-MOM-CR1 0.9988 0.9991 0.9990 0.9974 0.9974
Canada / AR-MOM vs. AR-MOM-CR2 0.9996 0.9960 0.9913 0.9776 0.9575
Canada / AR-MOM vs. AR-MOM-CR3 0.9991 0.9957 0.9880 0.9792 0.9753
Canada / AR-MOM vs. AR-MOM-CR4 1.0010 0.9970 0.9966 0.9982 0.9983
Canada / AR-MOM vs. AR-MOM-CR 0.9974 0.9809 0.9459 0.9101 0.8696
France / AR vs. AR-MOM 1.8184 1.3076 1.1462 1.0796 1.0528
France / AR-MOM vs. AR-MOM-CR1 0.9991 0.9981 0.9996 0.9994 0.9989
France / AR-MOM vs. AR-MOM-CR2 0.9903 0.9940 0.9945 0.9906 0.9852
France / AR-MOM vs. AR-MOM-CR3 0.9918 0.9952 0.9953 0.9909 0.9855
France / AR-MOM vs. AR-MOM-CR4 0.9919 0.9948 0.9939 0.9891 0.9834
France / AR-MOM vs. AR-MOM-CR 0.9804 0.9848 0.9887 0.9809 0.9726
Germany / AR vs. AR-MOM 0.4917 0.5957 0.7039 0.7725 0.7530
Germany / AR-MOM vs. AR-MOM-CR1 1.0005 0.9971 1.0020 0.9743 0.9442
Germany / AR-MOM vs. AR-MOM-CR2 1.0002 1.0007 0.9921 0.9686 0.9699
Germany / AR-MOM vs. AR-MOM-CR3 1.0001 1.0004 0.9850 0.9620 0.9651
Germany / AR-MOM vs. AR-MOM-CR4 1.0001 0.9991 1.0022 1.0027 1.0010
Germany / AR-MOM vs. AR-MOM-CR 0.9992 0.9826 0.9169 0.8416 0.8222
Italy / AR vs. AR-MOM 1.1500 1.0662 1.0228 0.9984 0.9969
Italy / AR-MOM vs. AR-MOM-CR1 0.9992 0.9981 0.9967 0.9947 0.9953
Italy / AR-MOM vs. AR-MOM-CR2 0.9981 0.9943 0.9884 0.9888 0.9905
Italy / AR-MOM vs. AR-MOM-CR3 0.9981 0.9942 0.9898 0.9907 0.9930
Italy / AR-MOM vs. AR-MOM-CR4 0.9973 0.9910 0.9889 0.9901 0.9889
Italy / AR-MOM vs. AR-MOM-CR 0.9916 0.9756 0.9593 0.9452 0.9372
Japan / AR vs. AR-MOM 1.5081 1.1852 1.0887 1.0382 1.0160
Japan / AR-MOM vs. AR-MOM-CR1 1.0005 0.9972 0.9924 0.9916 0.9903
Japan / AR-MOM vs. AR-MOM-CR2 1.0004 0.9983 0.9982 0.9982 0.9990
Japan / AR-MOM vs. AR-MOM-CR3 0.9996 0.9952 0.9958 0.9959 0.9974
Japan / AR-MOM vs. AR-MOM-CR4 0.9982 0.9960 0.9920 0.9882 0.9894
Japan / AR-MOM vs. AR-MOM-CR 0.9944 0.9841 0.9794 0.9757 0.9769
UK / AR vs. AR-MOM 1.1972 1.1129 1.0690 1.0343 1.0049
UK / AR-MOM vs. AR-MOM-CR1 0.9998 0.9995 0.9996 0.9995 0.9995
UK / AR-MOM vs. AR-MOM-CR2 1.0001 0.9997 0.9988 0.9986 0.9991
UK / AR-MOM vs. AR-MOM-CR3 1.0001 0.9996 0.9987 0.9986 0.9994
UK / AR-MOM vs. AR-MOM-CR4 0.9998 0.9993 0.9983 0.9988 1.0002
UK / AR-MOM vs. AR-MOM-CR 1.0005 0.9988 0.9973 0.9980 1.0005
US / AR vs. AR-MOM 1.5284 1.1294 1.0108 0.9593 0.9199
US / AR-MOM vs. AR-MOM-CR1 0.9987 0.9990 0.9996 0.9992 0.9995
US / AR-MOM vs. AR-MOM-CR2 0.9999 0.9996 0.9997 0.9993 0.9989
US / AR-MOM vs. AR-MOM-CR3 0.9990 0.9993 0.9988 0.9994 0.9993
US / AR-MOM vs. AR-MOM-CR4 0.9994 0.9997 1.0002 1.0002 0.9995
US / AR-MOM vs. AR-MOM-CR 0.9960 0.9974 0.9968 0.9934 0.9923
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Table 6: RMSFE ratios for a recursive estimation window (discounting of forecast errors)

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 2.2690 1.3688 1.1537 1.1049 1.0828
Canada / AR-MOM vs. AR-MOM-CR1 1.0034 0.9947 0.9968 0.9996 1.0004
Canada / AR-MOM vs. AR-MOM-CR2 1.0035 1.0034 1.0060 0.9967 0.9859
Canada / AR-MOM vs. AR-MOM-CR3 0.9989 1.0002 1.0004 0.9943 0.9881
Canada / AR-MOM vs. AR-MOM-CR4 0.9996 0.9980 1.0008 1.0022 1.0021
Canada / AR-MOM vs. AR-MOM-CR 1.0038 0.9974 0.9971 0.9902 0.9838
France / AR vs. AR-MOM 2.0836 1.3548 1.1652 1.1173 1.0811
France / AR-MOM vs. AR-MOM-CR1 1.0005 1.0012 0.9998 0.9998 1.0012
France / AR-MOM vs. AR-MOM-CR2 0.9989 0.9983 0.9954 0.9915 0.9959
France / AR-MOM vs. AR-MOM-CR3 0.9989 0.9984 0.9954 0.9911 0.9957
France / AR-MOM vs. AR-MOM-CR4 0.9987 0.9981 0.9942 0.9884 0.9933
France / AR-MOM vs. AR-MOM-CR 1.0018 1.0018 1.0023 0.9971 0.9948
Germany / AR vs. AR-MOM 0.4813 0.6310 0.7057 0.6864 0.6394
Germany / AR-MOM vs. AR-MOM-CR1 1.0000 1.0012 1.0039 0.9961 0.9830
Germany / AR-MOM vs. AR-MOM-CR2 0.9950 0.9957 0.9877 0.9899 0.9958
Germany / AR-MOM vs. AR-MOM-CR3 0.9929 0.9901 0.9771 0.9793 0.9863
Germany / AR-MOM vs. AR-MOM-CR4 0.9997 1.0005 1.0042 1.0092 1.0117
Germany / AR-MOM vs. AR-MOM-CR 0.9829 0.9552 0.9381 0.9360 0.9354
Italy / AR vs. AR-MOM 1.3138 1.0784 1.0150 0.9897 0.9798
Italy / AR-MOM vs. AR-MOM-CR1 1.0011 0.9982 1.0007 0.9977 0.9974
Italy / AR-MOM vs. AR-MOM-CR2 1.0019 1.0034 1.0011 1.0006 1.0011
Italy / AR-MOM vs. AR-MOM-CR3 1.0039 1.0044 1.0005 1.0001 1.0001
Italy / AR-MOM vs. AR-MOM-CR4 1.0076 1.0051 1.0014 1.0057 1.0198
Italy / AR-MOM vs. AR-MOM-CR 1.0101 1.0018 0.9973 1.0010 1.0144
Japan / AR vs. AR-MOM 1.7611 1.4559 1.3563 1.3207 1.2615
Japan / AR-MOM vs. AR-MOM-CR1 1.0051 1.0002 0.9993 0.9998 0.9996
Japan / AR-MOM vs. AR-MOM-CR2 0.9998 1.0084 1.0118 1.0105 1.0079
Japan / AR-MOM vs. AR-MOM-CR3 1.0035 1.0084 1.0096 1.0148 1.0108
Japan / AR-MOM vs. AR-MOM-CR4 0.9334 1.0143 1.0800 1.1646 1.2255
Japan / AR-MOM vs. AR-MOM-CR 0.9400 1.0140 1.0888 1.1616 1.2261
UK / AR vs. AR-MOM 1.7098 1.2985 1.0898 0.9916 0.9226
UK / AR-MOM vs. AR-MOM-CR1 0.9979 0.9991 0.9997 0.9994 0.9997
UK / AR-MOM vs. AR-MOM-CR2 1.0000 0.9992 0.9989 1.0006 0.9987
UK / AR-MOM vs. AR-MOM-CR3 0.9999 0.9989 0.9985 1.0012 0.9975
UK / AR-MOM vs. AR-MOM-CR4 0.9995 0.9983 0.9975 0.9976 0.9948
UK / AR-MOM vs. AR-MOM-CR 0.9977 0.9981 0.9987 1.0024 0.9969
US / AR vs. AR-MOM 1.8939 1.1540 1.0597 1.0153 0.9928
US / AR-MOM vs. AR-MOM-CR1 1.0001 0.9997 0.9994 0.9989 0.9992
US / AR-MOM vs. AR-MOM-CR2 0.9997 0.9998 0.9997 0.9996 1.0002
US / AR-MOM vs. AR-MOM-CR3 1.0000 0.9994 0.9987 0.9981 0.9994
US / AR-MOM vs. AR-MOM-CR4 0.9999 0.9994 0.9984 0.9944 0.9950
US / AR-MOM vs. AR-MOM-CR 0.9999 0.9985 0.9963 0.9923 0.9934
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Table 7: RMSFE ratios for a rolling estimation window (discounting of forecast errors)

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR vs. AR-MOM 2.0897 1.3735 1.1591 1.0970 1.0721
Canada / AR-MOM vs. AR-MOM-CR1 0.9985 0.9982 0.9988 0.9979 1.0008
Canada / AR-MOM vs. AR-MOM-CR2 0.9813 0.9804 0.9798 0.9748 0.9645
Canada / AR-MOM vs. AR-MOM-CR3 0.9794 0.9601 0.9303 0.9083 0.8816
Canada / AR-MOM vs. AR-MOM-CR4 1.0036 0.9995 0.9988 1.0012 1.0015
Canada / AR-MOM vs. AR-MOM-CR 0.9808 0.9526 0.9072 0.8712 0.8458
France / AR vs. AR-MOM 2.0142 1.3740 1.1708 1.1079 1.0673
France / AR-MOM vs. AR-MOM-CR1 0.9998 1.0005 1.0021 0.9992 0.9998
France / AR-MOM vs. AR-MOM-CR2 0.9938 0.9971 0.9908 0.9822 0.9750
France / AR-MOM vs. AR-MOM-CR3 0.9951 0.9976 0.9920 0.9833 0.9757
France / AR-MOM vs. AR-MOM-CR4 0.9939 0.9967 0.9900 0.9793 0.9693
France / AR-MOM vs. AR-MOM-CR 0.9792 0.9882 0.9961 0.9733 0.9543
Germany / AR vs. AR-MOM 1.4643 1.3153 1.1935 1.1244 1.0843
Germany / AR-MOM vs. AR-MOM-CR1 0.9989 1.0005 1.0047 1.0033 1.0008
Germany / AR-MOM vs. AR-MOM-CR2 0.9992 0.9920 0.9920 0.9929 0.9892
Germany / AR-MOM vs. AR-MOM-CR3 0.9981 0.9927 0.9929 0.9937 0.9887
Germany / AR-MOM vs. AR-MOM-CR4 0.9978 0.9881 0.9898 0.9923 0.9912
Germany / AR-MOM vs. AR-MOM-CR 0.9873 0.9960 0.9955 0.9916 0.9847
Italy / AR vs. AR-MOM 1.4029 1.1808 1.0945 1.0683 1.0497
Italy / AR-MOM vs. AR-MOM-CR1 0.9987 1.0037 1.0032 0.9984 0.9984
Italy / AR-MOM vs. AR-MOM-CR2 0.9983 0.9984 0.9996 1.0005 1.0029
Italy / AR-MOM vs. AR-MOM-CR3 0.9978 0.9980 0.9997 1.0010 1.0046
Italy / AR-MOM vs. AR-MOM-CR4 0.9975 0.9990 0.9969 0.9951 1.0053
Italy / AR-MOM vs. AR-MOM-CR 0.9982 0.9992 0.9961 0.9928 0.9954
Japan / AR vs. AR-MOM 1.6847 1.2700 1.0471 0.9242 0.8936
Japan / AR-MOM vs. AR-MOM-CR1 0.9750 0.9897 0.9991 1.0035 1.0014
Japan / AR-MOM vs. AR-MOM-CR2 1.0038 1.0003 0.9998 0.9997 0.9995
Japan / AR-MOM vs. AR-MOM-CR3 1.0035 1.0000 0.9995 0.9997 0.9996
Japan / AR-MOM vs. AR-MOM-CR4 0.9929 1.0708 1.0836 1.0984 1.0925
Japan / AR-MOM vs. AR-MOM-CR 0.9665 1.0481 1.0794 1.0988 1.0902
UK / AR vs. AR-MOM 1.6020 1.3016 1.1255 1.0580 1.0083
UK / AR-MOM vs. AR-MOM-CR1 0.9975 1.0011 0.9999 0.9995 0.9999
UK / AR-MOM vs. AR-MOM-CR2 1.0009 1.0003 0.9991 0.9996 0.9998
UK / AR-MOM vs. AR-MOM-CR3 0.9992 0.9997 0.9985 0.9989 0.9995
UK / AR-MOM vs. AR-MOM-CR4 0.9997 0.9951 0.9953 0.9946 0.9895
UK / AR-MOM vs. AR-MOM-CR 0.9778 0.9792 0.9801 0.9725 0.9726
US / AR vs. AR-MOM 1.7511 1.1482 1.0863 1.0622 1.0413
US / AR-MOM vs. AR-MOM-CR1 1.0000 1.0000 0.9991 0.9980 0.9983
US / AR-MOM vs. AR-MOM-CR2 0.9997 0.9986 0.9971 0.9943 0.9962
US / AR-MOM vs. AR-MOM-CR3 1.0000 0.9989 0.9972 0.9942 0.9979
US / AR-MOM vs. AR-MOM-CR4 0.9991 0.9991 0.9994 0.9986 0.9996
US / AR-MOM vs. AR-MOM-CR 0.9986 0.9988 0.9986 0.9952 0.9976
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Table 8: Results for the optimal stepwise predictor selection approach (RMSFE ratios)

Panel A: Recursive estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR-MOM vs. AR-MOM-R2 0.9937 0.9891 0.9950 0.9796 0.9609
Canada / AR-MOM vs. AR-MOM-BIC 0.9973 0.9926 0.9942 0.9889 0.9648
Canada / AR-MOM vs. AR-MOM-CP 0.9953 0.9905 0.9939 0.9810 0.9588
France / AR-MOM vs. AR-MOM-R2 0.9983 0.9989 0.9975 0.9988 0.9962
France / AR-MOM vs. AR-MOM-BIC 0.9990 0.9971 0.9985 0.9979 0.9949
France / AR-MOM vs. AR-MOM-CP 0.9985 0.9973 0.9986 0.9990 0.9963
Germany / AR-MOM vs. AR-MOM-R2 0.9988 0.9998 1.0012 1.0023 1.0030
Germany / AR-MOM vs. AR-MOM-BIC 0.9985 0.9992 1.0000 1.0019 1.0031
Germany / AR-MOM vs. AR-MOM-CP 0.9982 0.9994 1.0011 1.0018 1.0030
Italy / AR-MOM vs. AR-MOM-R2 0.9997 0.9958 0.9901 0.9913 0.9863
Italy / AR-MOM vs. AR-MOM-BIC 0.9997 0.9959 0.9943 0.9956 0.9909
Italy / AR-MOM vs. AR-MOM-CP 0.9997 0.9959 0.9927 0.9931 0.9861
Japan / AR-MOM vs. AR-MOM-R2 0.9959 0.9915 0.9925 0.9918 0.9926
Japan / AR-MOM vs. AR-MOM-BIC 0.9989 0.9948 0.9965 0.9980 0.9956
Japan / AR-MOM vs. AR-MOM-CP 0.9930 0.9914 0.9922 0.9916 0.9925
UK / AR-MOM vs. AR-MOM-R2 0.9993 0.9982 0.9987 0.9978 0.9952
UK / AR-MOM vs. AR-MOM-BIC 0.9995 0.9992 0.9978 0.9965 0.9954
UK / AR-MOM vs. AR-MOM-CP 0.9995 0.9991 0.9987 0.9978 0.9954
US / AR-MOM vs. AR-MOM-R2 0.9993 0.9984 0.9991 1.0019 1.0003
US / AR-MOM vs. AR-MOM-BIC 0.9992 0.9988 1.0000 1.0017 0.9994
US / AR-MOM vs. AR-MOM-CP 0.9993 0.9987 0.9987 1.0021 1.0002

Panel B: Rolling estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR-MOM vs. AR-MOM-R2 0.9963 0.9953 0.9750 0.9491 0.9047
Canada / AR-MOM vs. AR-MOM-BIC 0.9983 0.9974 0.9808 0.9653 0.9164
Canada / AR-MOM vs. AR-MOM-CP 0.9971 0.9994 0.9779 0.9546 0.9134
France / AR-MOM vs. AR-MOM-R2 0.9875 0.9876 0.9847 0.9835 0.9787
France / AR-MOM vs. AR-MOM-BIC 0.9921 0.9925 0.9867 0.9842 0.9800
France / AR-MOM vs. AR-MOM-CP 0.9901 0.9889 0.9868 0.9844 0.9788
Germany / AR-MOM vs. AR-MOM-R2 0.9984 0.9994 1.0002 1.0003 1.0012
Germany / AR-MOM vs. AR-MOM-BIC 0.9974 0.9984 0.9986 0.9993 1.0013
Germany / AR-MOM vs. AR-MOM-CP 0.9988 0.9996 1.0002 0.9989 1.0012
Italy / AR-MOM vs. AR-MOM-R2 0.9968 0.9844 0.9793 0.9752 0.9649
Italy / AR-MOM vs. AR-MOM-BIC 0.9969 0.9860 0.9848 0.9847 0.9752
Italy / AR-MOM vs. AR-MOM-CP 0.9969 0.9858 0.9818 0.9745 0.9668
Japan / AR-MOM vs. AR-MOM-R2 0.9796 0.9669 0.9689 0.9922 1.0010
Japan / AR-MOM vs. AR-MOM-BIC 0.9773 0.9700 0.9644 1.0029 1.0073
Japan / AR-MOM vs. AR-MOM-CP 0.9798 0.9671 0.9623 0.9923 1.0033
UK / AR-MOM vs. AR-MOM-R2 0.9995 0.9985 0.9987 0.9998 1.0012
UK / AR-MOM vs. AR-MOM-BIC 0.9995 0.9987 0.9990 0.9989 1.0004
UK / AR-MOM vs. AR-MOM-CP 0.9995 0.9986 0.9987 0.9996 1.0012
US / AR-MOM vs. AR-MOM-R2 1.0088 0.9912 0.9946 0.9950 0.9928
US / AR-MOM vs. AR-MOM-BIC 0.9999 0.9969 0.9939 0.9954 0.9955
US / AR-MOM vs. AR-MOM-CP 1.0089 0.9917 0.9936 0.9930 0.9931
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Table 9: Results for the optimal stepwise predictor selection approach (MAFE ratios)

Panel A: Recursive estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR-MOM vs. AR-MOM-R2 0.9953 1.0058 1.0057 0.9718 0.9366
Canada / AR-MOM vs. AR-MOM-BIC 0.9999 0.9983 1.0041 0.9834 0.9458
Canada / AR-MOM vs. AR-MOM-CP 0.9971 1.0011 1.0036 0.9727 0.9357
France / AR-MOM vs. AR-MOM-R2 0.9948 0.9920 0.9911 0.9945 0.9942
France / AR-MOM vs. AR-MOM-BIC 0.9982 0.9950 0.9934 0.9938 0.9920
France / AR-MOM vs. AR-MOM-CP 0.9970 0.9911 0.9933 0.9951 0.9941
Germany / AR-MOM vs. AR-MOM-R2 0.9743 0.9450 0.9140 0.9044 0.9179
Germany / AR-MOM vs. AR-MOM-BIC 0.9868 0.9610 0.9153 0.9066 0.9196
Germany / AR-MOM vs. AR-MOM-CP 0.9811 0.9481 0.9149 0.9057 0.9177
Italy / AR-MOM vs. AR-MOM-R2 1.0064 0.9998 0.9935 0.9901 0.9894
Italy / AR-MOM vs. AR-MOM-BIC 1.0064 1.0003 0.9978 0.9960 0.9953
Italy / AR-MOM vs. AR-MOM-CP 1.0064 1.0003 0.9970 0.9937 0.9905
Japan / AR-MOM vs. AR-MOM-R2 0.9061 0.9282 0.9359 0.9292 0.9156
Japan / AR-MOM vs. AR-MOM-BIC 0.9463 0.9374 0.9393 0.9289 0.9169
Japan / AR-MOM vs. AR-MOM-CP 0.9050 0.9303 0.9363 0.9291 0.9163
UK / AR-MOM vs. AR-MOM-R2 0.9950 0.9902 1.0066 1.0116 1.0127
UK / AR-MOM vs. AR-MOM-BIC 0.9966 0.9909 0.9835 1.0028 1.0123
UK / AR-MOM vs. AR-MOM-CP 0.9966 0.9924 1.0066 1.0116 1.0123
US / AR-MOM vs. AR-MOM-R2 0.9956 0.9959 0.9933 0.9932 0.9937
US / AR-MOM vs. AR-MOM-BIC 0.9971 0.9967 0.9989 0.9999 0.9961
US / AR-MOM vs. AR-MOM-CP 0.9970 0.9966 0.9934 0.9942 0.9936

Panel B: Rolling estimation window

Country / Models h=1 h=3 h=6 h=9 h=12
Canada / AR-MOM vs. AR-MOM-R2 0.9855 1.0050 0.9771 0.9511 0.9154
Canada / AR-MOM vs. AR-MOM-BIC 0.9934 1.0014 0.9835 0.9713 0.9246
Canada / AR-MOM vs. AR-MOM-CP 0.9884 1.0128 0.9789 0.9620 0.9190
France / AR-MOM vs. AR-MOM-R2 0.9752 0.9865 0.9845 0.9850 0.9820
France / AR-MOM vs. AR-MOM-BIC 0.9847 0.9902 0.9883 0.9851 0.9851
France / AR-MOM vs. AR-MOM-CP 0.9761 0.9882 0.9874 0.9860 0.9813
Germany / AR-MOM vs. AR-MOM-R2 0.9584 0.9171 0.8943 0.9017 0.9141
Germany / AR-MOM vs. AR-MOM-BIC 0.9780 0.9398 0.8992 0.9030 0.9196
Germany / AR-MOM vs. AR-MOM-CP 0.9691 0.9294 0.8961 0.9047 0.9157
Italy / AR-MOM vs. AR-MOM-R2 0.9896 0.9729 0.9719 0.9654 0.9611
Italy / AR-MOM vs. AR-MOM-BIC 0.9908 0.9780 0.9777 0.9762 0.9707
Italy / AR-MOM vs. AR-MOM-CP 0.9906 0.9765 0.9746 0.9650 0.9605
Japan / AR-MOM vs. AR-MOM-R2 0.9124 0.9440 0.9548 0.9373 0.9209
Japan / AR-MOM vs. AR-MOM-BIC 0.9244 0.9486 0.9613 0.9458 0.9226
Japan / AR-MOM vs. AR-MOM-CP 0.9130 0.9432 0.9567 0.9378 0.9235
UK / AR-MOM vs. AR-MOM-R2 0.9904 0.9869 0.9839 0.9822 0.9872
UK / AR-MOM vs. AR-MOM-BIC 0.9937 0.9910 0.9842 0.9786 0.9823
UK / AR-MOM vs. AR-MOM-CP 0.9936 0.9880 0.9843 0.9818 0.9860
US / AR-MOM vs. AR-MOM-R2 0.9905 0.9919 0.9904 0.9923 0.9897
US / AR-MOM vs. AR-MOM-BIC 0.9918 0.9948 0.9969 0.9994 0.9897
US / AR-MOM vs. AR-MOM-CP 0.9923 0.9939 0.9948 0.9920 0.9882
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Table 10: Quantile causality between climate risks and stock market moments

Canada
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 1.4978 1.7393* 91.9725*** 32.0321*** 7.8300***
CR2–>LEV 4.3687*** 6.4757*** 27.2468*** 8.0222*** 1.9234*
CR3–>LEV 1.5033*** 1.8139* 85.4449*** 29.8660*** 7.2901***
CR4–>LEV 5.5286*** 8.3368*** 19.9097*** 5.8775*** 1.3974
CR1–>SKEW 2.0905*** 3.5621*** 4.1122*** 2.8427*** 2.0953**
CR2–>SKEW 1.1506 2.0198*** 3.3858*** 2.5277*** 1.7042*
CR3–>SKEW 1.8494* 3.4642*** 3.9374*** 2.6851*** 2.0167**
CR4–>SKEW 1.7398* 3.4852*** 3.7353*** 2.6334*** 1.4553
CR1–>KURT 6.1995*** 8.7549*** 10.2622*** 8.8002*** 6.1283***
CR2–>KURT 5.1118*** 8.0175*** 8.8443*** 7.1014*** 4.7106***
CR3–>KURT 6.4727*** 9.0833*** 11.0922*** 9.3952*** 6.1743***
CR4–>KURT 6.0728*** 8.9802*** 10.2290*** 9.0012*** 6.1037***

France
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 7.8922*** 5.6531*** 23.0042*** 6.7184*** 1.5987
CR2–>LEV 7.4188*** 4.7035*** 28.2205*** 8.2587*** 1.9777**
CR3–>LEV 7.1398*** 4.7934*** 27.8810*** 8.1611*** 1.9553**
CR4–>LEV 6.5322*** 4.3240*** 30.8706*** 9.0443*** 2.1694***
CR1–>SKEW 10.4843*** 7.2272*** 12.0224*** 10.8113*** 7.3684***
CR2–>SKEW 9.7263*** 6.2407*** 10.9346*** 10.0485*** 6.8481***
CR3–>SKEW 9.4921*** 6.4972*** 11.2255*** 9.7436*** 6.8134***
CR4–>SKEW 8.9816*** 6.0901*** 10.6693*** 9.4493*** 6.6170***
CR1–>KURT 10.9793*** 7.4253*** 12.1250*** 10.3631*** 7.2542***
CR2–>KURT 9.8271*** 6.6601*** 10.8572*** 9.6058*** 6.2061***
CR3–>KURT 9.3618*** 6.7098*** 11.2931*** 9.5606*** 6.4775***
CR4–>KURT 9.0247*** 6.4544*** 10.8118*** 9.0243*** 6.0832***

Germany
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 1.8264* 2.2431** 89.7564*** 33.1427*** 8.0836***
CR2–>LEV 1.3063 2.0243** 117.2215*** 43.2907*** 10.5412***
CR3–>LEV 1.4627 2.2115** 95.5475*** 35.7116*** 8.7063***
CR4–>LEV 1.1957 2.0275** 111.3745*** 41.6249*** 10.1343***
CR1–>SKEW 4.2068*** 7.8725*** 7.9979*** 5.6804*** 3.3724***
CR2–>SKEW 3.0630*** 8.5449*** 9.0162*** 5.0730*** 2.1566***
CR3–>SKEW 3.9450*** 7.7203*** 7.9870*** 5.4234*** 3.3621***
CR4–>SKEW 2.7127*** 8.3724*** 9.0297*** 5.2916*** 2.3872***
CR1–>KURT 3.7283*** 6.2506*** 8.2476*** 8.8427*** 4.4456***
CR2–>KURT 3.0876*** 5.2306*** 7.4489*** 8.1627*** 3.5532***
CR3–>KURT 3.6739*** 5.6812*** 8.3721*** 8.5761*** 3.9456***
CR4–>KURT 3.5190*** 5.2571*** 7.8559*** 8.3658*** 3.7300***

To be continued on next page.
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Continued.

Italy
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 1.5942 2.9577*** 75.4886*** 25.8020*** 6.2824***
CR2–>LEV 1.0679 1.2462 97.9389*** 33.1754*** 8.0650***
CR3–>LEV 2.3431 3.8731*** 48.6253*** 14.2652*** 3.4175***
CR4–>LEV 2.0296** 3.4415*** 54.8544*** 16.0940*** 3.8575***
CR1–>SKEW 8.0665*** 13.9902*** 5.8921*** 2.3340*** 1.1643
CR2–>SKEW 9.6775*** 15.2936*** 5.0938*** 1.9069***** 1.0428
CR3–>SKEW 9.6126*** 15.2693*** 5.8803*** 2.2146*** 1.1819
CR4–>SKEW 10.1131*** 16.3069*** 6.1359*** 2.2592*** 1.1598
CR1–>KURT 8.8021*** 14.7119*** 6.6057*** 3.2732*** 1.8952
CR2–>KURT 10.8965*** 19.9517*** 6.7015*** 2.6355*** 1.3865
CR3–>KURT 10.8965*** 19.9517*** 6.7015*** 2.6355*** 1.3865
CR4–>KURT 11.9122*** 21.5946*** 6.9944*** 2.6055*** 1.3554

Japan
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 1.0090 1.7932* 86.9123*** 33.4591*** 8.1734***
CR2–>LEV 1.8338 1.1615* 112.5297*** 56.7905*** 13.8649***
CR3–>LEV 3.9203 4.8826*** 34.1961*** 10.0578*** 2.4181**
CR4–>LEV 1.0386 1.3249*** 112.2820*** 32.9812*** 7.8648***
CR1–>SKEW 6.0102*** 7.1255*** 3.4002*** 2.9397*** 1.8928*
CR2–>SKEW 8.1390*** 7.8728*** 4.2918*** 3.0540*** 2.0114**
CR3–>SKEW 8.5571*** 9.1759*** 2.2244*** 1.0460 0.6812
CR4–>SKEW 13.7893*** 21.7054*** 9.3734*** 3.6441*** 1.2782
CR1–>KURT 7.8088*** 10.9723*** 10.0109*** 7.5958*** 5.1426***
CR2–>KURT 9.3512*** 19.0372*** 10.2802*** 4.5657*** 2.4813***
CR3–>KURT 8.4489*** 13.1936*** 8.0366*** 4.4609*** 2.3887***
CR4–>KURT 13.7893*** 21.7054*** 9.3734*** 3.6441*** 1.2782

UK
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 1.6138 2.4345*** 194.3323*** 71.7660*** 17.5420***
CR2–>LEV 5.1310*** 6.6179*** 10.2200*** 13.6397*** 10.7775***
CR3–>LEV 1.7439* 1.8655* 210.0351*** 78.6779*** 19.2301***
CR4–>LEV 1.7343* 1.6790* 227.5496*** 85.4019*** 20.8710***
CR1–>SKEW 5.3069*** 7.4690*** 9.3459*** 13.8428*** 10.9803***
CR2–>SKEW 5.3069*** 7.4690*** 9.3459*** 13.8428*** 10.9803***
CR3–>SKEW 5.1310*** 6.6179*** 10.2200*** 13.6397*** 10.7775***
CR4–>SKEW 4.8513*** 6.1309*** 9.8515*** 13.7905*** 11.2422***
CR1–>KURT 9.4234*** 12.6813*** 11.7096*** 8.6022*** 6.7766***
CR2–>KURT 9.7315*** 12.6514*** 9.9259*** 8.3293*** 5.9110***
CR3–>KURT 9.4412*** 12.2899*** 11.0056*** 7.3879*** 5.7274***
CR4–>KURT 9.6464*** 12.2148*** 10.3582*** 6.7688*** 5.3893***

US
Quantiles

0.1 0.25 0.5 0.75 0.9
CR1–>LEV 8.2779*** 11.7762*** 29.6758*** 8.7010*** 2.0696**
CR2–>LEV 6.7967*** 9.6414*** 39.5453*** 11.5800*** 2.7752***
CR3–>LEV 7.6296*** 11.6130*** 31.9295*** 9.3309*** 2.2254**
CR4–>LEV 6.0168*** 8.8138*** 43.1347*** 12.6594*** 3.0374***
CR1–>SKEW 5.4382*** 8.6904*** 9.9798*** 8.3495*** 6.5274***
CR2–>SKEW 4.0497*** 6.4134*** 7.8359*** 6.8463*** 6.3471***
CR3–>SKEW 4.9730*** 7.8084*** 8.4092*** 7.8795*** 6.5663***
CR4–>SKEW 4.0501*** 6.4653*** 6.6500*** 5.8199*** 6.0277***
CR1–>KURT 6.6547*** 8.0887*** 9.5206*** 8.2255*** 5.2138***
CR2–>KURT 6.5073*** 6.8945*** 7.4919*** 6.1029*** 3.9002***
CR3–>KURT 6.6717*** 7.8321*** 8.0959*** 7.7029*** 4.6618***
CR4–>KURT 6.4571*** 5.9593*** 6.3552*** 6.2074*** 3.8690***

Note: Entries report the standard normal test statistic for the hypothesis that there is no Granger causality for a
particular quantile running from a specific climate risks predictor (CRi, i = 1, 2, 3, 4) to a particular moment (LEV ,
SKEW , KURT ) of stock returns; ***, ** and * indicates rejection of the null hypothesis at 1% (Critical value: 2.5750),
5% (Critical value: 1.96), and 10% (Critical value: 1.645) level of significance, respectively.
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Figure 1: Quantile regression results for a recursive estimation window (RMSFE ratios)
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Figure 2: Quantile regression results for a rolling estimation window (RMSFE ratios)
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