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Abstract

We examine the predictive power of national housing market-related behavioral variables,

along with their connectedness at the state level, in forecasting US aggregate economic activ-

ity (such as the Chicago Fed National Activity Index (CFNAI) and real Gross Domestic Product

(GDP) growth), as opposed to solely relying on state-level housing price return connectedness.

Our results reveal that while standard linear regression models show statistically insignif-

icant differences in forecast accuracy between the connectedness of housing price returns

and behavioral variables, quantile regression models, which capture growth-at-risk, demon-

strate significant forecasting improvements. Specifically, state-level connectedness of housing

sentiment enhances forecast accuracy at lower quantiles of economic activity, indicative of

downturns, whereas connectedness of housing attention is more effective at upper quantiles,

corresponding to upturns. The results for GDP growth, however, are less conclusive. These

findings underscore the importance of incorporating regional heterogeneity and behavioral

aspects in economic forecasting.
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1 Introduction

The United States (US) residential real estate represents about 85.08% of total household

non-financial assets, 33.16% of total household net worth, and 35.29% of US net wealth

(Financial Accounts of the US, Third Quarter, 2023).1 These figures indicate a notable

relation between housing price movements and the predictive capacity for various mea-

sures of real economic activity, as explored in several studies (see, for example, Balcilar

et al. (2014), Apergis et al. (2015), Nyakabawo et al. (2015), Emirmahmutoglu et al.,

(2016), Piazzesi and Schneider (2016), Christiansen et al. (2019)). Furthermore, with the

US housing market known to be (partially) segmented (see the discussions in Antonakakis

et al. (2020), Chowdhury et al. (2023) and Gabauer et al. (2024)), researchers also have

documented that synchronized movements of regional housing price returns drive aggre-

gate economic activity (Del Negro and Otrok, 2007; Arias et al., 2016; Hernández-Murillo

et al., 2017; Gupta et al., 2023; Payne and Sun, 2023). At the same time, recent ad-

vancements in behavioral economics have led to the development of metrics of aggregate

and regional housing market indexes of sentiment and media attention, which have been

shown to explain a significant portion of the total variation in future house prices at the

state- and overall-level, even after accounting for economic fundamentals, i.e., traditional

predictors used to predict housing price movements (see, for instance, Bork et al. (2020),

Balcilar et al. (2021), Cepni (2023), Cepni and Khorunzhina (2023)). This growing body

of evidence highlights the relevance of behavioral factors in the housing market, offering

potential additional insights that extend beyond traditional price-based analysis.

In light of these developments, our study bridges two crucial strands of research: the

impact of housing prices on economic activity and the predictive role of housing market-

related behavioral variables. We investigate whether national housing market-related be-

havioral variables and their total connectedness at the state level can forecast aggregate

economic activity more effectively than the connectedness of state-level housing price re-

turns. The answer to this query is indeed of importance to policymakers in terms of timely

design of monetary and/or fiscal policies responses to prevent possible economic slow-

downs, especially when we forecast broad (derived from the combination of information on

many real economy-related variables) and high-frequency (monthly) indexes of economic

1https://www.federalreserve.gov/releases/z1/20231207/z1.pdf.
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activity, as we do in our predictive analysis covering the sample period from 1978:02 to

2021:11.

Our methodology extends beyond the traditional conditional mean-based predictive

model by incorporating insights from the recent literature on growth-at-risk (Adrian et

al., 2019; 2022). To this end, we conduct our forecasting experiment using a quantile

regression framework. This approach is more informative relative to a conditional mean-

based predictive model because it investigates the ability of the predictors to forecast the

entire conditional distribution of economic activity, rather than being restricted just to the

conditional mean, with the upper and lower conditional quantiles corresponding to ex-

pansionary and recessionary episodes (without having to identify them explicitly using a

business-cycle-dating approach). In this regard, density forecasts have become important

tools for central banks and policy institutions to estimate and report the degree of uncer-

tainty around their forecasts, while making policy decisions (Rossi, 2014). Furthermore, a

quantile regression framework retains the simple structure of a linear predictive regression

model for any given quantile but, simultaneously, renders it possible to add an element of

underlying non-linearity to our empirical research strategy in that the coefficients of the

predictors are allowed to vary across the different quantiles of the conditional distribution

of economic activity.

It is important to contextualize our study within the broader spectrum of existing lit-

erature. The relationship between real estate markets and economic activity has been

extensively studied, with a focus on understanding how changes in real estate prices can

serve as a barometer for broader economic health. For instance, Case and Shiller (2003)

and Leamer (2007, 2015) provide foundational insights into the predictive power of hous-

ing markets for economic cycles. Their work emphasizes the lead-lag relationship between

housing market trends and overall economic performance, suggesting that housing mar-

ket indicators can be a precursor of economic shifts. Furthermore, the role of behavioral

economics in real estate markets has gained prominence, with researchers like Case et al.

(2012), Shiller (2015) and Shiller and Thompson (2022) exploring the psychological factors

that influence housing market dynamics. These studies have shed light on how sentiment,

media attention, and investor psychology can impact housing prices, often independent of

traditional economic fundamentals. This body of work underscores the importance of con-
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sidering behavioral aspects in real estate market analyses. In addition, recent studies have

increasingly focused on regional housing market dynamics and their impact on national

economic trends. The works of Glaeser et al. (2014) and Mian and Sufi (2014) offer insights

into how localized housing market shocks can propagate to the national economy, high-

lighting the interconnectedness of regional and national economic systems. Their research

illustrates the complex interplay between local housing markets and national economic in-

dicators, reinforcing the need to consider both micro and macro perspectives in housing

market analyses.

Our paper makes a significant contribution to the literature by effectively intertwining

the concepts of housing market sentiment and attention with economic forecasting. Our

approach centers on the examination of national and state-level housing market-related

behavioral variables, particularly their connectedness, and their capacity to forecast US ag-

gregate economic activity. Unlike previous studies that have primarily focused on housing

price returns, our research underscores the predictive power of behavioral variables in the

housing market. Our findings reveal that, while traditional linear regression models show

negligible differences in forecast accuracy between housing price returns and behavioral

variables, quantile regression models, which account for growth-at-risk, indicate a marked

improvement in forecasting capabilities. Specifically, the connectedness of state-level hous-

ing sentiment proves to be a more accurate predictor during economic downturns, while

housing attention is more effective during upturns. These insights not only broaden the

academic understanding of housing markets and their impact on the economy but also

hold substantial implications for policymakers. The ability to accurately forecast economic

activities based on housing market sentiment and attention could lead to more informed

and timely policy interventions, potentially mitigating economic downturns and temper-

ing inflationary pressures. Therefore, our study serves as a pivotal link between regional

housing market dynamics and macroeconomic forecasting, offering a fresh perspective that

could reshape policy formulation and economic analysis.

The structure of our paper is organized in the following manner: Section 2 details the

data utilized in our research. In Section 3, the methodology for constructing the connected-

ness measures is explained. The forecasting models employed in this study are delineated

in Section 4. Section 5 is dedicated to discussing our primary findings. The paper is
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brought to a conclusion in Section 6.

2 Data

As far as our dependent variable involving monthly economic activity is concerned, we use

two alternative measures. The first is the Chicago Fed National Activity Index (CFNAI),

which is a weighted average of 85 monthly indicators of national economic activity derived

from four broad categories of data: production and income; employment, unemployment,

and hours; personal consumption and housing; and sales, orders, and inventories.2 A

zero value for the CFNAI has been associated with the national economy expanding at its

historical trend (average) rate of growth; negative values with below-average growth (in

standard deviation units); and positive values with above-average growth. Secondly, we

utilize a metric of real Gross Domestic Product (GDP)-based economic growth derived from

the Mixed-Frequency-Vector Autoregressive (MF-VAR) model of Koop et al. (2023).3 The

authors make use of quarterly real income and expenditure-side GDP, along with monthly

data on unemployment, hours worked, the consumer price index, the industrial production

index, personal consumption expenditure, the federal funds rate, the Treasury bond yield,

and the S&P 500 index.

Following the growth-at-risk literature, we first control for the financial state of the

economy by using the Chicago Fed’s National Financial Conditions Index (NFCI), which, in

turn, provides a comprehensive weekly update on US conditions in money markets, debt

and equity markets, and the traditional and “shadow” banking systems.4

As far as the national- and state-level housing price log-returns data is concerned, we

rely on the seasonally-adjusted house price indexes provided by Freddie Mac, which are

based on an ever-expanding database of loans purchased by either Freddie Mac or Fannie

Mae.5 Based on the work of Cepni and Khorunzhina (2023) at the quarterly-frequency,

we construct monthly state-level housing-sentiment indexes using consumer attitudes and

expectations about home-buying conditions from the Survey of Consumers of the Univer-

2The data is publicly available at: https://www.chicagofed.org/research/data/cfnai/current-data.
3The data is downloadable from: https://sites.google.com/view/aubreybcpoon/research?authuser=0.
4The weekly data, which is averaged to monthly frequency, can be retrieved from: https://www.chicagofed.

org/research/data/nfci/current-data.
5The data is available for download from: https://www.freddiemac.com/research/indices/

house-price-index.
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sity of Michigan, with the corresponding version for the overall US utilized in its original

form to capture national housing market sentiment. As in the original work, we exploit the

regional identifier of the survey, which allows us to extract regional variation in the com-

position of sentiment. Then, using Partial Least Squares (PLS), we construct state-level

housing-sentiment indexes by linking the regional variation in sentiment composition with

the target variable of the state-level housing price returns. Finally, as in Cepni (2023), who

introduces quarterly aggregate- and state-level housing media attention indexes based on

the Bloomberg Terminal News Trends (NT) function, we create corresponding monthly ver-

sions of these indexes based on news counts of 20 housing market related topics.6 Note

that the Bloomberg Terminal News Trends (NT) function collects articles from various news

and social media sources and identifies their content using artificial intelligence tools.

The state-level data on housing price returns, sentiment, and attention indexes are then

utilized to obtain corresponding total connectedness indexes using the recently proposed

model-free approach of Gabauer et al. (2023), with the technical details outlined at the

end of the paper (Appendix 3), which, in turn, allows us to consider large number (such

as 50, in our case) of time series in the network. Based on data availability, the models

involving the national housing price returns versus housing sentiment, and housing price

returns and housing attention index cover the monthly periods of 1978:02 to 2021:11, and

1999:01 to 2021:11, respectively. The corresponding models involving the connectedness

of the relevant variables, due to a 60-month rolling-window approach, utilized to obtain the

associated time series covers 1983:01 to 2021:11, and 2003:12 to 2021:11, respectively.

We plot our data in Figures 1 to 4.

− Figures 1 and 4 about here. −

3 Model-Free Estimate of Connectedness

To measure the propagation mechanism among the three separate categories of the state-

level housing variables (housing price returns, housing sentiment indexes, and housing

6The topics considered are: “home sales, “home price”, “housing price”, “housing demand”, “housing sup-
ply”, “housing market”, “housing cost”, “home buyers”, “home inventory”, “homeownership”, “real estate agen-
cies”, “real estate”, “real estate listing”, “mortgage rate”, “mortgage demand”, “mortgage credit”, “subprime
mortgage”, “residential property price”, “home foreclosure”, and “mortgage affordability”.
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media attention indexes), we employ the recently developed model-free connectedness ap-

proach of Gabauer et al. (2023). They have shown that the unscaled generalized forecast

error variance decomposition (GFEVD) of Koop et al. (1996) and Pesaran and Shin (1998)

can be formulated in terms of variance-covariances:

φgeni←j =
Σ2

ij

ΣjjΣii
=

(
Σij√
ΣjjΣii

)2

= ρ2ij = R2
ij . (1)

This measure remains invariant to the forecast horizon, being the squared Pearson correla-

tion coefficient,7 defined as the R2 goodness-of-fit measure for a bivariate linear regression

between series i and j. This definition implies R2
ii = 1 and R2

ij = R2
ji.

Utilizing the normalization technique proposed by Diebold and Yilmaz (2012), the (scaled)

GFEVD can be formulated as follows:

gSOTi←j =
R2

ij∑k
l=1R

2
il

(2)

where
∑k

j=i gSOTi←j = 1 and
∑

j=i

∑k
i=i gSOTi←j = k.

The total connectedness index (TCI) of Diebold and Yilmaz (2009, 2012, 2014) is given

by

TCI =

∑k
i,j=1,i 6=j gSOTi←j(H)

k − 1
. (3)

The TCI illustrates the average contribution of one series to all others, and vice versa, the

average contribution of all other series to one series. A low (high) TCI indicates a low (high)

level of network interconnectedness and market risk.

4 Predictive Regressions

Our forecasting model uses, in addition to a specific housing market-related variable, Xt,

lagged economic activity, EAt, and National Financial Conditions Index, NFCIt, as control

variables. Note that for EAt we use the monthly estimate of GDP, as well as the Chicago

7For robustness purposes, the Spearman and Kendall correlation coefficients are used. The Spearman
correlation coefficient is equal to the Pearson correlation coefficient between the ranked series, cov(R(x),R(y))

σ(R(x))σ(R(y))
,

while the (transformed) Kendall rank correlation coefficient is equal to sin( π
n(n−1)

∑
i<j sgn(xi − xj)sgn(yi − yj))
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Fed National Activity Index (CFNAI). As far as Xt is concerned, it includes the national

housing returns (NHPR), national housing sentiment index (NHSI), national housing atten-

tion index (NHAI), connectedness of these three state-level housing market variables (hpr,

hsi and hai) considered independently, based on Pearson, Spearman, and Kendall corre-

lation approaches. We estimate this forecasting model by the ordinary-least-squares (OLS)

technique. The forecasting model is given by the following equation:

EAt+h = β0 + β1EAt + β2NFCIt + β3Xt + ut+h, (4)

where βj , j = 0, .., 3 are the coefficients to be estimated, ut+h denotes a disturbance term, and

EAt+h is the average economic activity over the forecast horizon, h, where we set h = 1, 6, 12

for our monthly data.

We estimate our forecasting model using ten different estimation windows, each cover-

ing a range from 50% to 75% of the data (starting at the beginning of the sample period

for which data on the connectedness measures are available).8 We use the remaining test

data along with the estimated forecasting models to compute forecasts of economic activity,

which we then use to compute time series of forecast errors. Finally, we use the resulting

time series of forecast errors to compute the root-mean-squared-forecast error (RMSFE),

the mean-absolute forecast error (MAFE) and the test for comparing non-nested forecasts

proposed proposed by Diebold and Mariano (1995) test, as modified by Harvey et al. (1997),

which we denote as DM.

To enhance interpretability, we calculate ratios of the RMSFE (MAFE) statistic, and av-

erage the results across the ten different estimation windows. We call the resulting ratios

the L2 and L1 ratios. Here, the L1 ratio represents the Absolute-forecasts-error loss func-

tion, and the L2 ratio represents the Squared-forecasts-error loss function. A ratio larger

than unity indicates that a rival model using connectedness measure, COt,R, delivers more

accurate forecasts than some benchmark model using a different connectedness measure,

COt,B. It should be noted that the benchmark and rival forecasting models, thus, are non-

nested forecasting models. Likewise, the Diebold-Mariano (DM) test serves as a one-sided

test for the null hypothesis of equal predictive accuracy, where the alternative hypothesis

8We use the R language and environment for statistical computing (R Core Team, 2023) for our empirical
analysis.
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is that the rival model yields more accurate forecasts than the benchmark model.

As an extension, we also estimate our forecasting models by means of a quantile-

regression model. A quantile-regression model has the advantage that we can trace out

the incremental contribution of the rival models, in terms of forecasting performance rela-

tive to the benchmark model, across the quantiles of CFNAI and GDP growth.

b̂q = argmin

T∑
t

ρq (EAt+h − β0,q − β1,qEAt − β2,qNFCIt − β3,qXt) , (5)

where q denotes the quantile being studied, b̂q denotes the quantile-dependent vec tor of

coefficients to be estimated, and the function ρq, denotes the usual check function, defined

as ρq = qut+h in case ut+h > 0, and ρq = (q − 1)ut+h in case ut+h < 0.

5 Empirical Results

We begin our presentation with a discussion of the OLS results for the aggregate data

summarized in Table 1, as obtained for a fixed-estimation window. The results for the

L1 and L2 ratios are smaller than unity, with only one exception. The ratios decrease

in value when we increase the forecast horizon, irrespective of whether we study CFNAI

or GDP growth as our left-hand-side variable. As a result, the benchmark NHPR model

performs somewhat better than the NHSI and NHAI models, and this superior performance

strengthens in the forecast horizon. This could be attributed to the model’s ability to

better capture and integrate long-term economic trends and cycles, which might not be

as effectively represented in the NHSI and NHAI models. However, it’s important to note

that all Diebold-Mariano (DM) tests yield statistically insignificant results. This outcome

implies that the differences in the forecasting performance of the NHPR model compared

to the NHSI and NHAI models are not substantial enough to definitively favor one model

over the others. In other words, while the NHPR model shows some advantages in our

analysis, these are not strong enough to conclusively discount the utility of the NHSI and

NHAI models. In other words, the hypothesis that there is no systematic difference in the

performance of the forecasts derived from the NHPR vs. NHSI (NHPR vs. NHAI) models

8



cannot be rejected.9

− Tables 1 and 2 about here. −

Table 2 summarizes the results for the aggregate data that we obtain when we base our

empirical analysis on a quantile-regression model. The general picture that emerges from

the results, again based on a fixed-estimation window, is that the L1 ratios (based on the

check-function) show no systematic pattern across quantiles and forecast horizons except

that, while few ratios exceed unity, the vast majority of the ratios is smaller than unity,

indicating that the rival model does not outperform the benchmark model in a systematic

quantile-dependent way.

− Tables 3 and 4 about here. −

Next, we report the results, for a fixed estimation window, for the Pearson, Spearman, and

Kendall connectedness measures in Tables 3 (OLS results) and 4 (results for the quan-

tile regression model). The OLS results for both the L1 and the L2 ratio show that the

sentiment and attention models often tend to outperform the benchmark (hpr) model in

forecasting CFNAI, especially when the length of the forecast horizon increases. Such find-

ings suggest that behavioral factors, encapsulated in sentiment and attention models, may

have a more significant impact on economic activity than previously understood, especially

over extended periods. This could be due to these models’ ability to capture the nuanced

and often rapidly changing economic sentiments and attentions, which traditional models

might overlook. However, when it comes to forecasting GDP growth, in turn, the results

are less decisive in this regard. Similarly, while there are few statistically significant DM

test results for the CFNAI models, the test results are all insignificant for GDP growth.10

As for the quantile-regression model, we find that the sentiment and attention models

outperform the benchmark (hpr) model in the majority of combinations of quantiles and

9A natural question is whether the results change when we opt for a recursive-estimation window, that is an
estimation window that recursively expands until we reach the end of the sample period. The results, reported
in Table A1 at the end of the paper (Appendix A1), are in line with the results for the fixed estimation window.

10As in the case of the aggregate data, the results for a recursive-estimation window corroborate the results
for the fixed-estimation window (see Table A2). In terms of robustness, we report in Tables A3 (fixed-estimation
window) and A4 (recursive-estimation window) some additional results based on metrics of short-term and
long-term connectedness, derived from the time-varying general dynamic factor model (tvGDFM), as developed
by Barigozzi et al. (2021). The results show again that, while sentiment and attention do add some value-added
in some cases in terms of forecasting performance, especially for CFNAI, the differences as compared to the
benchmark model are in general statistically insignificant.
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forecast horizons when we study CFNAI. Interestingly, the sentiment models yield a su-

perior performance mainly at the quantiles below the median, while the attention models

tend to perform better than the benchmark model for the quantiles above the median. This

implies that during periods of economic downturns or slower growth, sentiment indicators

become more predictive. It could reflect how negative consumer or investor sentiment im-

pacts economic activity. Conversely, attention models excel in higher quantiles, indicating

their predictive power during periods of economic growth or expansion. This might be due

to heightened media and public attention positively correlating with economic upturns.

When focusing on GDP growth, the short-term forecast horizon shows no significant

difference between the benchmark and the behavioral models. This could suggest that

in the immediate future, traditional economic indicators are just as effective as sentiment

and attention metrics in predicting GDP growth. However, for longer forecast horizons, both

sentiment and attention models demonstrate superior performance at lower quantiles. This

trend again underscores the importance of behavioral indicators in anticipating periods of

slower economic growth or potential downturns. The fact that these models are more

predictive at lower quantiles for longer horizons could indicate their potential utility in

long-term economic planning and risk assessment, especially in identifying early warning

signs of economic deceleration.

− Table 5 about here. −

Results for the DM test reported in Table 5 show that for CFNAI, and as expected less so for

GDP growth, this pattern of results for the sentiment and attention models are statistically

significant in several cases. Hence, the forecasts derived from the sentiment models tend to

outperform the forecasts extracted from the benchmark (hpr) model at the lower quantiles,

while the forecasts produced by means of the attention model tend to be more accurate

than the benchmark forecasts for the upper quantiles.

6 Concluding Remarks

In recent research, national and state-level housing market sentiment and attention vari-

ables have been shown to possess additional information over fundamental variables in

forecasting housing price returns of the US. At the same time, the role of aggregate and
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synchronized housing price returns across states have served as a leading indicator for eco-

nomic activity. In the context of these two lines of research, we aim to determine whether

the national housing market-related behavioral variables, and their total connectedness

at the state-level, forecast aggregate economic activity relatively better than overall and

total connectedness of state-level housing price returns. In this regard, we rely on both

conditional-mean and quantiles-based predictive regressions over the monthly period of

1978:02 to 2021:11. We find statistically insignificant forecast comparison results between

state-level connectedness of housing price returns and the two behavioral variables, in line

with the corresponding national data, using a standard linear regression model. However,

several results are statistically significant when we consider a quantile-regression model,

capturing growth-at-risk. Relative to connectedness of housing price returns, a model us-

ing the total connectedness of state-level housing sentiment improves forecasting accuracy

at the lower quantiles of the conditional distribution of the broad CFNAI, while the same for

an attention model does so mainly at the upper quantiles. Results for the monthly-metric

of GDP growth are less decisive.

Academically speaking, our findings highlight the importance of accounting for regional

heterogeneity across the US housing market, as well as the need to go beyond models of

conditional mean, and study the entire conditional distribution of economic activity via a

quantiles-based framework. Keeping this in mind, our results are also policy relevant, since

policmakers will be better off in utilizing housing market-related behavioral variables rather

than housing price returns in forecasting growth-at-risk of especially a broad measure of

economic activity. The fact that the connectedness of sentiment and attention can produce

more accurate forecasts of downturns and upturns, respectively (while performing equally

well to housing returns connectedness for other parts of the conditional distribution), and

are likely to be available without publication delays and measurement errors as in house

prices, policy authorities can design appropriate monetary and fiscal policy responses in a

timely manner to prevent or reduce the likelihood of recessions and inflationary pressures.

Furthermore, understanding the relative strengths of different forecasting models can

help policymakers in designing more targeted economic policies. For instance, in antici-

pating economic downturns, models that perform better at lower quantiles (like sentiment

models) might be more useful. Investors could leverage these insights to adjust their port-
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folios based on the economic cycle, using different models to assess risk and return in

different market conditions. Given the segmented nature of the US housing market, future

research could focus on regional or state-level analysis to capture more localized economic

dynamics.
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Figure 1: Aggregate Data
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Figure 2: Measures of Economic Activity
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Figure 3: Predictors
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Figure 4: Control Variable
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Table 1: Aggregate data (OLS results)

Panel A: CFNAI

Models h = 1 h = 6 h = 12
L1 ratio

NHPR vs. NHSI 0.9768 0.9497 0.8426
NHPR vs. NHAI 0.9901 0.9426 0.9045

L2 ratio
NHPR vs. NHSI 0.9973 0.9511 0.8429
NHPR vs. NHAI 0.9996 0.9973 0.9637

DM statistic (p-value, L1)
NHPR vs. NHSI 0.8467 0.7685 0.8336
NHPR vs. NHAI 0.9791 0.9240 0.8298

DM statistic (p-value, L2)
NHPR vs. NHSI 0.5811 0.9227 0.9148
NHPR vs. NHAI 0.5607 0.6197 0.8537

Panel A: GDP

Models h = 1 h = 6 h = 12
L1 ratio

NHPR vs. NHSI 1.0159 0.9868 0.9256
NHPR vs. NHAI 0.9936 0.9644 0.9605

L2 ratio
NHPR vs. NHSI 0.9876 0.9736 0.9033
NHPR vs. NHAI 0.9928 0.9580 0.8840

DM statistic (p-value, L1)
NHPR vs. NHSI 0.1727 0.6158 0.7383
NHPR vs. NHAI 0.8605 0.8628 0.7291

DM statistic (p-value, L2)
NHPR vs. NHSI 0.8382 0.8619 0.8961
NHPR vs. NHAI 0.9362 0.8534 0.8247

L1: Absolute-forecasts-error loss function. L2: Squared-forecasts-error loss function. L1 ratio and L2 ratio: results for
the benchmark model divided by the results for the rival model such that a ratio larger than unity indicates a superior
performance of the rival model given the respective loss function. DM statistic: Results of the modified Diebold-Mariano
test (p-values) given the respective loss function. The alternative hypothesis is that the rival forecasts are more accurate
than the benchmark forecasts. Results are based on ten fixed-estimation windows of varying in length: 0.50, 0.53, 0.56, ,,,,
0.75 of the data are used as training data (beginning at the start of the sample period). Results are averages across the ten
fixed-estimation windows. h denotes the forecast horizon.
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Table 2: Aggregate data (quantile results)

Panel A: CFNAI

Models q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9
h = 1

NHPR vs. NHSI 0.9272 0.9298 0.9513 0.9799 0.9881 0.9891 1.0224 1.0585 1.0485
NHPR vs. NHAI 0.9934 1.0059 1.0072 1.0051 0.9980 0.9991 0.9839 0.9759 0.9852

h = 6
NHPR vs. NHSI 0.9697 0.9268 0.9184 0.9643 0.9967 0.9893 1.0113 1.0002 0.9438
NHPR vs. NHAI 1.0078 1.0001 0.9844 0.9549 0.9367 0.9452 0.9272 0.9148 0.9084

h = 12
NHPR vs. NHSI 0.9335 0.9341 0.9594 0.9804 0.9606 0.9538 0.9323 0.8656 0.8791
NHPR vs. NHAI 0.9644 0.9055 0.9051 0.9523 0.9430 0.9066 0.8860 0.8633 0.8580

Panel B: GDP

Models q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9
h = 1

NHPR vs. NHSI 0.9961 0.9881 1.0301 1.0386 1.0274 1.0008 0.9904 0.9874 0.9543
NHPR vs. NHAI 0.9939 0.9937 1.0019 1.0004 1.0043 0.9879 0.9894 1.0010 0.9900

h = 6
NHPR vs. NHSI 1.0058 1.0312 1.0044 0.9911 0.9931 0.9889 0.9922 0.9806 0.9319
NHPR vs. NHAI 0.9832 1.0234 1.0408 1.0033 0.9753 0.9282 0.9356 0.9442 0.9839

h = 12
NHPR vs. NHSI 0.9652 0.9660 0.9046 0.9187 0.9582 0.9678 0.9716 0.9648 0.8447
NHPR vs. NHAI 1.0329 0.9833 0.9976 1.0275 0.9221 0.9180 0.8673 0.8543 0.9349

Results are loss ratios for the check function (that is, absolute-forecasts-error loss function). Ratio: results for the bench-
mark model divided by the results for the rival model such that a ratio larger than unity indicates a superior performance
of the rival model given the respective loss function. Results are based on ten fixed-estimation windows of varying in length:
0.50, 0.53, 0.56, ,,,, 0.75 of the data are used as training data (beginning at the start of the sample period). Results are
averages across the ten fixed-estimation windows. h denotes the forecast horizon. q quantile.
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Table 3: Fixed-estimation window (OLS results)

Panel A: CFNAI

Models h = 1 h = 6 h = 12

L1 ratio
Pearson hpr vs. Pearson hsi 0.9928 1.0062 1.0979
Pearson hpr vs. Pearson hai 1.0216 1.0309 1.0136
Spearman hpr vs. Spearman hsi 0.9733 0.9922 1.0773
Spearman hpr vs. Spearman hai 1.0237 1.0411 1.0386
Kendall hpr vs. Kendall hsi 0.9645 1.0260 1.1929
Kendall hpr vs. Kendall hai 1.0316 1.0831 1.1393

L2 ratio
Pearson hpr vs. Pearson hsi 0.9881 0.9653 0.9607
Pearson hpr vs. Pearson hai 1.0011 1.0286 1.0516
Spearman hpr vs. Spearman hsi 0.9875 0.9696 0.9653
Spearman hpr vs. Spearman hai 1.0018 1.0242 1.0586
Kendall hpr vs. Kendall hsi 0.9893 0.9894 1.0202
Kendall hpr vs. Kendall hai 1.0029 1.0305 1.1095

DM statistic (p-value, L1)
Pearson hpr vs. Pearson hsi 0.5654 0.5930 0.5552
Pearson hpr vs. Pearson hai 0.0415 0.3023 0.4680
Spearman hpr vs. Spearman hsi 0.6478 0.6346 0.5920
Spearman hpr vs. Spearman hai 0.0487 0.2333 0.4018
Kendall hpr vs. Kendall hsi 0.6423 0.6140 0.2335
Kendall hpr vs. Kendall hai 0.0424 0.1175 0.2108

DM statistic (p-value, L2)
Pearson hpr vs. Pearson hsi 0.7047 0.6240 0.5943
Pearson hpr vs. Pearson hai 0.3312 0.0811 0.1855
Spearman hpr vs. Spearman hsi 0.7350 0.6165 0.5896
Spearman hpr vs. Spearman hai 0.1638 0.0492 0.1508
Kendall hpr vs. Kendall hsi 0.6852 0.5152 0.3550
Kendall hpr vs. Kendall hai 0.1171 0.0306 0.0929

Panel B: GDP

Models h = 1 h = 6 h = 12

L1 ratio
Pearson hpr vs. Pearson hsi 0.9806 0.9594 0.9904
Pearson hpr vs. Pearson hai 0.9996 1.0017 0.9511
Spearman hpr vs. Spearman hsi 0.9901 0.9642 0.9958
Spearman hpr vs. Spearman hai 0.9991 1.0030 0.9544
Kendall hpr vs. Kendall hsi 1.0018 0.9678 1.0290
Kendall hpr vs. Kendall hai 0.9983 1.0469 1.0356

L2 ratio
Pearson hpr vs. Pearson hsi 0.9967 0.9819 0.9680
Pearson hpr vs. Pearson hai 0.9999 1.0134 1.0076
Spearman hpr vs. Spearman hsi 0.9979 0.9830 0.9732
Spearman hpr vs. Spearman hai 0.9997 1.0105 1.0102
Kendall hpr vs. Kendall hsi 1.0002 0.9903 0.9988
Kendall hpr vs. Kendall hai 0.9991 1.0210 1.0611

DM statistic (p-value, L1)
Pearson hpr vs. Pearson hsi 0.8881 0.6966 0.6185
Pearson hpr vs. Pearson hai 0.5498 0.4838 0.6852
Spearman hpr vs. Spearman hsi 0.8236 0.7175 0.6240
Spearman hpr vs. Spearman hai 0.5850 0.4669 0.6834
Kendall hpr vs. Kendall hsi 0.5288 0.7484 0.4603
Kendall hpr vs. Kendall hai 0.6578 0.1258 0.3753

DM statistic (p-value, L2)
Pearson hpr vs. Pearson hsi 0.6484 0.5953 0.6097
Pearson hpr vs. Pearson hai 0.5058 0.3402 0.4532
Spearman hpr vs. Spearman hsi 0.6203 0.5975 0.5922
Spearman hpr vs. Spearman hai 0.5221 0.3307 0.4290
Kendall hpr vs. Kendall hsi 0.5093 0.5412 0.4358
Kendall hpr vs. Kendall hai 0.6097 0.1878 0.2158

L1: Absolute-forecasts-error loss function. L2: Squared-forecasts-error loss function. L1 ratio and L2 ratio: results for
the benchmark model divided by the results for the rival model such that a ratio larger than unity indicates a superior
performance of the rival model given the respective loss function. DM statistic: Results of the modified Diebold-Mariano
test (p-values) given the respective loss function. The alternative hypothesis is that the rival forecasts are more accurate
than the benchmark forecasts. Results are based on ten fixed-estimation windows of varying in length: 0.50, 0.53, 0.56, ,,,,
0.75 of the data are used as training data (beginning at the start of the sample period). Results are averages across the ten
fixed-estimation windows. h denotes the forecast horizon.
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Table 4: Fixed-estimation window (quantile results)

Panel A: CFNAI

Models q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9
h = 1

Pearson hpr vs. Pearson hsi 1.2260 1.2931 1.2358 1.1119 0.9475 0.8976 0.8690 0.8586 0.9034
Pearson hpr vs. Pearson hai 0.9096 0.9871 1.0113 1.0315 1.0122 1.0461 1.0643 1.0627 1.0603
Spearman hpr vs. Spearman hsi 1.1542 1.1966 1.1600 1.0620 0.9336 0.9002 0.8905 0.8865 0.9477
Spearman hpr vs. Spearman hai 0.9052 0.9927 1.0076 1.0284 1.0078 1.0534 1.0611 1.0626 1.0614
Kendall hpr vs. Kendall hsi 1.1438 1.2601 1.1639 1.0274 0.9271 0.9176 0.9686 0.9024 0.9805
Kendall hpr vs. Kendall hai 0.9237 1.0115 1.0085 1.0277 1.0256 1.0769 1.0641 1.0595 1.0561

h = 6
Pearson hpr vs. Pearson hsi 1.6232 1.3312 1.2475 1.0983 1.0270 0.9614 0.8251 0.7834 0.8470
Pearson hpr vs. Pearson hai 0.9974 1.0020 0.9926 1.0191 1.0553 1.1017 1.1618 1.2511 1.2311
Spearman hpr vs. Spearman hsi 1.4629 1.2354 1.1120 1.0678 1.0101 0.9335 0.8555 0.8185 0.8659
Spearman hpr vs. Spearman hai 1.0019 1.0069 1.0055 1.0347 1.0676 1.1164 1.1855 1.2729 1.2004
Kendall hpr vs. Kendall hsi 1.2258 1.2670 1.1494 1.0568 1.0367 1.0119 0.9597 0.9571 0.9864
Kendall hpr vs. Kendall hai 1.0359 1.0390 1.0444 1.0891 1.1002 1.1465 1.2311 1.2506 1.2120

h = 12
Pearson hpr vs. Pearson hsi 1.8177 1.5720 1.5807 1.3517 1.1070 0.9501 0.8956 0.7945 0.7793
Pearson hpr vs. Pearson hai 1.1311 1.0541 1.0236 1.0250 1.1110 1.1841 1.2810 1.3364 1.3714
Spearman hpr vs. Spearman hsi 1.6290 1.5001 1.4849 1.2573 1.0611 0.9313 0.8980 0.8275 0.8165
Spearman hpr vs. Spearman hai 1.1130 1.0390 1.0375 1.0048 1.1306 1.1909 1.2762 1.3267 1.3674
Kendall hpr vs. Kendall hsi 1.3563 1.3195 1.2871 1.1840 1.0775 0.9839 1.0336 1.0329 1.0619
Kendall hpr vs. Kendall hai 1.1193 1.0609 1.1048 1.1176 1.1418 1.2009 1.2742 1.3244 1.3371

Panel B: GDP

Models q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9
h = 1

Pearson hpr vs. Pearson hsi 1.0085 1.0657 1.0695 1.0615 0.9920 0.9614 0.9859 0.9809 0.9425
Pearson hpr vs. Pearson hai 1.0039 0.9993 0.9945 0.9984 1.0007 0.9809 1.0181 0.9674 0.9481
Spearman hpr vs. Spearman hsi 1.0082 1.0267 1.0456 1.0460 0.9932 0.9678 1.0031 1.0027 0.9661
Spearman hpr vs. Spearman hai 1.0083 0.9990 0.9933 0.9967 0.9989 0.9889 1.0085 0.9790 0.9557
Kendall hpr vs. Kendall hsi 1.0416 1.1931 1.0376 1.0180 0.9904 0.9607 1.0472 1.0587 1.0665
Kendall hpr vs. Kendall hai 1.0040 1.0011 0.9951 0.9969 0.9986 0.9930 1.0097 0.9895 0.9650

h = 6
Pearson hpr vs. Pearson hsi 1.4094 1.3318 1.2292 1.0806 0.9962 0.9298 0.8906 0.8608 1.0708
Pearson hpr vs. Pearson hai 1.1401 1.0900 1.0256 1.0251 1.0788 1.0621 1.0549 1.0468 0.9728
Spearman hpr vs. Spearman hsi 1.2485 1.1980 1.1122 1.0444 0.9899 0.9485 0.9163 0.8978 1.0910
Spearman hpr vs. Spearman hai 1.1529 1.0922 1.0200 1.0432 1.0719 1.0676 1.0575 1.0664 1.0611
Kendall hpr vs. Kendall hsi 1.1999 1.1999 1.1611 1.0275 0.9681 0.9429 0.9157 0.9098 1.1660
Kendall hpr vs. Kendall hai 1.1736 1.0816 1.0347 1.0823 1.0847 1.0726 1.0806 1.0661 1.0864

h = 12
Pearson hpr vs. Pearson hsi 1.6199 1.4594 1.3136 1.1924 1.0360 0.9705 0.9073 0.8802 0.8558
Pearson hpr vs. Pearson hai 1.2924 1.1556 1.0668 1.0953 1.2031 1.2022 1.1582 1.1259 1.0953
Spearman hpr vs. Spearman hsi 1.4520 1.2212 1.2467 1.1439 1.0445 0.9854 0.9271 0.9119 0.8836
Spearman hpr vs. Spearman hai 1.2821 1.1302 1.0547 1.1160 1.2155 1.2387 1.1547 1.1113 1.0728
Kendall hpr vs. Kendall hsi 1.1735 1.0986 1.2135 1.1306 1.0915 1.0148 0.9379 0.9072 0.9537
Kendall hpr vs. Kendall hai 1.2707 1.1380 1.0976 1.1660 1.2238 1.2380 1.1789 1.0941 1.0843

Results are loss ratios for the check function (that is, bsolute-forecasts-error loss function). Ratio: results for the benchmark
model divided by the results for the rival model such that a ratio larger than unity indicates a superior performance of the
rival model given the respective loss function. Results are based on ten fixed-estimation windows of varying in length: 0.50,
0.53, 0.56, ,,,, 0.75 of the data are used as training data (beginning at the start of the sample period). Results are averages
across the ten fixed-estimation windows. h denotes the forecast horizon. q quantile.
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Table 5: Fixed-estimation window (DM results for quantiles)

Panel A: CFNAI

Models q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9
h = 1

Pearson hpr vs. Pearson hsi 0.0131 0.0025 0.0074 0.1613 0.6706 0.7965 0.9024 0.9714 0.9946
Pearson hpr vs. Pearson hai 0.9680 0.6666 0.3285 0.0697 0.3573 0.0943 0.0110 0.0127 0.0876
Spearman hpr vs. Spearman hsi 0.0277 0.0304 0.0609 0.2172 0.7159 0.7793 0.8920 0.9669 0.8596
Spearman hpr vs. Spearman hai 0.9389 0.5835 0.4013 0.1119 0.4003 0.0655 0.0060 0.0046 0.0400
Kendall hpr vs. Kendall hsi 0.0354 0.0075 0.0882 0.3301 0.7182 0.7867 0.6598 0.9824 0.5596
Kendall hpr vs. Kendall hai 0.8544 0.3109 0.2034 0.0713 0.2064 0.0192 0.0030 0.0007 0.0527

h = 6
Pearson hpr vs. Pearson hsi 0.0290 0.0554 0.1532 0.4044 0.5603 0.6913 0.8570 0.9880 0.9498
Pearson hpr vs. Pearson hai 0.5196 0.5048 0.5305 0.4186 0.2012 0.0506 0.0079 0.0001 0.0002
Spearman hpr vs. Spearman hsi 0.0205 0.1034 0.3475 0.4909 0.6295 0.7621 0.8673 0.9853 0.9207
Spearman hpr vs. Spearman hai 0.4993 0.4772 0.4879 0.3514 0.1525 0.0498 0.0013 0.0001 0.0172
Kendall hpr vs. Kendall hsi 0.0275 0.0764 0.2908 0.5194 0.5651 0.4477 0.6303 0.5376 0.5209
Kendall hpr vs. Kendall hai 0.3489 0.3501 0.3514 0.1986 0.1208 0.0163 0.0005 0.0003 0.0007

h = 12
Pearson hpr vs. Pearson hsi 0.0355 0.0493 0.0927 0.2225 0.5731 0.7442 0.7770 0.9305 0.9897
Pearson hpr vs. Pearson hai 0.4005 0.4598 0.4705 0.4475 0.2091 0.0594 0.0093 0.0008 0.0008
Spearman hpr vs. Spearman hsi 0.0405 0.0637 0.1188 0.3327 0.6097 0.7643 0.8064 0.9350 0.9826
Spearman hpr vs. Spearman hai 0.3982 0.4804 0.4545 0.4962 0.1442 0.0190 0.0042 0.0006 0.0014
Kendall hpr vs. Kendall hsi 0.1149 0.1720 0.4854 0.5991 0.6841 0.7310 0.4141 0.4630 0.4751
Kendall hpr vs. Kendall hai 0.3647 0.4113 0.3162 0.2153 0.1267 0.0295 0.0062 0.0015 0.0011

Panel B: GDP

Models q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9
h = 1

Pearson hpr vs. Pearson hsi 0.3148 0.0686 0.1130 0.0693 0.6810 0.9166 0.6664 0.8387 0.9777
Pearson hpr vs. Pearson hai 0.4435 0.5605 0.5378 0.6223 0.4910 0.9273 0.1554 0.8874 0.9790
Spearman hpr vs. Spearman hsi 0.3141 0.1253 0.1439 0.0817 0.7025 0.9003 0.6239 0.4980 0.7969
Spearman hpr vs. Spearman hai 0.4281 0.5336 0.6246 0.7392 0.5672 0.8760 0.2257 0.8696 0.9766
Kendall hpr vs. Kendall hsi 0.1275 0.0280 0.0446 0.2003 0.8331 0.9640 0.5148 0.4082 0.4590
Kendall hpr vs. Kendall hai 0.3886 0.4289 0.6064 0.7259 0.5841 0.7924 0.2482 0.7317 0.9483

h = 6
Pearson hpr vs. Pearson hsi 0.1413 0.0506 0.1098 0.2398 0.5632 0.7666 0.9006 0.9319 0.4924
Pearson hpr vs. Pearson hai 0.1085 0.2140 0.3663 0.3605 0.1482 0.1643 0.1857 0.1870 0.5458
Spearman hpr vs. Spearman hsi 0.1229 0.0904 0.1444 0.3318 0.5943 0.7525 0.9022 0.8775 0.4720
Spearman hpr vs. Spearman hai 0.1378 0.2037 0.4156 0.2906 0.1449 0.1383 0.1387 0.1270 0.2794
Kendall hpr vs. Kendall hsi 0.1264 0.0646 0.1340 0.4158 0.6928 0.7777 0.9056 0.8246 0.4857
Kendall hpr vs. Kendall hai 0.0912 0.2446 0.3620 0.1628 0.0764 0.0427 0.0412 0.0654 0.1753

h = 12
Pearson hpr vs. Pearson hsi 0.1510 0.1170 0.1152 0.3033 0.6290 0.7588 0.8196 0.9199 0.9887
Pearson hpr vs. Pearson hai 0.1495 0.1834 0.3355 0.2714 0.0838 0.0401 0.0190 0.0577 0.1146
Spearman hpr vs. Spearman hsi 0.1625 0.1897 0.1424 0.3428 0.6129 0.7412 0.8206 0.9087 0.9772
Spearman hpr vs. Spearman hai 0.1978 0.2371 0.4051 0.2239 0.0926 0.0034 0.0086 0.0575 0.1943
Kendall hpr vs. Kendall hsi 0.2064 0.2954 0.1884 0.4339 0.4539 0.5355 0.8219 0.9348 0.7439
Kendall hpr vs. Kendall hai 0.1504 0.2937 0.3777 0.1643 0.0731 0.0030 0.0036 0.0639 0.0467

DM statistic: Results of the modified Diebold-Mariano test (p-values) given the respective loss function. The alternative
hypothesis is that the rival forecasts are more accurate than the benchmark forecasts. Results are loss ratios for the check
function (that is, bsolute-forecasts-error loss function). Results are based on ten fixed-estimation windows of varying in
length: 0.50, 0.53, 0.56, ,,,, 0.75 of the data are used as training data (beginning at the start of the sample period). Results
are averages across the ten fixed-estimation windows. h denotes the forecast horizon. q quantile.
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Appendix

A1 Additional Results

Table A1: Aggregate data (recursive-estimation window)

Panel A: CFNAI

Models h = 1 h = 6 h = 12
L1 ratio

NHPR vs. NHSI 0.9759 0.9381 0.9316
NHPR vs. NHAI 0.9971 0.9927 1.0351

L2 ratio
NHPR vs. NHSI 0.9847 0.9319 0.8564
NHPR vs. NHAI 0.9995 0.9930 0.9917

DM statistic (p-value, L1)
NHPR vs. NHSI 0.9560 0.8631 0.7466
NHPR vs. NHAI 0.8182 0.5589 0.4342

DM statistic (p-value, L2)
NHPR vs. NHSI 0.9170 0.9135 0.911
NHPR vs. NHAI 0.6756 0.8843 0.558

Panel A: GDP

Models h = 1 h = 6 h = 12
L1 ratio

NHPR vs. NHSI 1.0159 0.9868 0.9256
NHPR vs. NHAI 0.9936 0.9644 0.9605

L2 ratio
NHPR vs. NHSI 0.9876 0.9736 0.9033
NHPR vs. NHAI 0.9928 0.9580 0.8840

DM statistic (p-value, L1)
NHPR vs. NHSI 0.1727 0.6158 0.7383
NHPR vs. NHAI 0.8605 0.8628 0.7291

DM statistic (p-value, L2)
NHPR vs. NHSI 0.8382 0.8619 0.8961
NHPR vs. NHAI 0.9362 0.8534 0.8247

L1: Absolute-forecasts-error loss function. L2: Squared-forecasts-error loss function. L1 ratio and L2 ratio: results for
the benchmark model divided by the results for the rival model such that a ratio larger than unity indicates a superior
performance of the rival model given the respective loss function. DM statistic: Results of the modified Diebold-Mariano test
(p-values) given the respective loss function. The alternative hypothesis is that the rival forecasts are more accurate than
the benchmark forecasts. The first 0.50 of the data are used as training data (beginning at the start of the sample period). h
denotes the forecast horizon.
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Table A2: Recursive-estimation window (OLS results)

Panel A: CFNAI

Models h = 1 h = 6 h = 12

L1 ratio
Pearson hpr vs. Pearson hsi 1.0031 0.9935 1.0640
Pearson hpr vs. Pearson hai 0.9972 0.9546 0.9505
Spearman hpr vs. Spearman hsi 1.0009 1.0007 1.0682
Spearman hpr vs. Spearman hai 0.9947 0.9452 0.9384
Kendall hpr vs. Kendall hsi 1.0001 1.0188 1.1291
Kendall hpr vs. Kendall hai 0.9888 0.9438 0.9692

L2 ratio
Pearson hpr vs. Pearson hsi 1.0191 0.9576 0.9484
Pearson hpr vs. Pearson hai 0.9982 0.9960 1.0093
Spearman hpr vs. Spearman hsi 1.0188 0.9637 0.9563
Spearman hpr vs. Spearman hai 1.0006 0.9938 0.9910
Kendall hpr vs. Kendall hsi 1.0167 0.9718 0.9877
Kendall hpr vs. Kendall hai 1.0002 0.9933 1.0015

DM statistic (p-value, L1)
Pearson hpr vs. Pearson hsi 0.4446 0.5234 0.3836
Pearson hpr vs. Pearson hai 0.6881 0.8817 0.6620
Spearman hpr vs. Spearman hsi 0.4827 0.4971 0.3575
Spearman hpr vs. Spearman hai 0.7955 0.9441 0.7405
Kendall hpr vs. Kendall hsi 0.4984 0.4078 0.1861
Kendall hpr vs. Kendall hai 0.9152 0.9415 0.6452

DM statistic (p-value, L2)
Pearson hpr vs. Pearson hsi 0.1315 0.8049 0.6532
Pearson hpr vs. Pearson hai 0.9454 0.8183 0.3665
Spearman hpr vs. Spearman hsi 0.1304 0.7987 0.6500
Spearman hpr vs. Spearman hai 0.3964 0.9358 0.6856
Kendall hpr vs. Kendall hsi 0.1296 0.7775 0.5567
Kendall hpr vs. Kendall hai 0.4553 0.9110 0.4577

Panel B: GDP

Models h = 1 h = 6 h = 12

L1 ratio
Pearson hpr vs. Pearson hsi 0.9888 0.9540 0.9929
Pearson hpr vs. Pearson hai 1.0073 0.9552 0.9236
Spearman hpr vs. Spearman hsi 0.9925 0.9580 1.0082
Spearman hpr vs. Spearman hai 1.0061 0.9517 0.9070
Kendall hpr vs. Kendall hsi 0.9953 0.9577 1.0265
Kendall hpr vs. Kendall hai 1.0086 0.9522 0.9214

L2 ratio
Pearson hpr vs. Pearson hsi 1.0033 0.9835 0.9664
Pearson hpr vs. Pearson hai 0.9923 0.9757 0.9764
Spearman hpr vs. Spearman hsi 1.0036 0.9875 0.9729
Spearman hpr vs. Spearman hai 0.9925 0.9751 0.9686
Kendall hpr vs. Kendall hsi 1.0026 0.9883 0.9821
Kendall hpr vs. Kendall hai 0.9868 0.9736 0.9777

DM statistic (p-value, L1)
Pearson hpr vs. Pearson hsi 0.8702 0.7539 0.5174
Pearson hpr vs. Pearson hai 0.1878 0.9221 0.8886
Spearman hpr vs. Spearman hsi 0.8161 0.7608 0.4754
Spearman hpr vs. Spearman hai 0.2199 0.9505 0.9591
Kendall hpr vs. Kendall hsi 0.7174 0.7659 0.4127
Kendall hpr vs. Kendall hai 0.2562 0.9211 0.9657

DM statistic (p-value, L2)
Pearson hpr vs. Pearson hsi 0.2354 0.7229 0.6309
Pearson hpr vs. Pearson hai 0.9249 0.9225 0.7035
Spearman hpr vs. Spearman hsi 0.2063 0.7030 0.6262
Spearman hpr vs. Spearman hai 0.9173 0.9312 0.8167
Kendall hpr vs. Kendall hsi 0.2336 0.7004 0.5929
Kendall hpr vs. Kendall hai 0.9116 0.9273 0.8398

L1: Absolute-forecasts-error loss function. L2: Squared-forecasts-error loss function. L1 ratio and L2 ratio: results for
the benchmark model divided by the results for the rival model such that a ratio larger than unity indicates a superior
performance of the rival model given the respective loss function. DM statistic: Results of the modified Diebold-Mariano test
(p-values) given the respective loss function. The alternative hypothesis is that the rival forecasts are more accurate than
the benchmark forecasts. The first 0.50 of the data are used as training data (beginning at the start of the sample period). h
denotes the forecast horizon.
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Table A3: Additional OLS results (fixed-estimation window)

Panel A: CFNAI

Models h = 1 h = 6 h = 12

L1 ratio
hpr conn short vs. hsi conn short 0.9958 1.0870 1.1431
hpr conn long vs. hsi conn long 1.0180 1.1758 1.2714
hpr conn short vs. hai conn short 1.0210 1.0939 1.1227
hpr conn long vs. hai conn long 1.0320 1.0744 1.0003

L2 ratio
hpr conn short vs. hsi conn short 0.9973 1.0577 1.1791
hpr conn long vs. hsi conn long 0.9952 1.0349 1.1739
hpr conn short vs. hai conn short 1.0194 1.0337 1.0748
hpr conn long vs. hai conn long 1.0437 1.0335 0.9926

DM statistic (p-value, L1)
hpr conn short vs. hsi conn short 0.7513 0.1674 0.2432
hpr conn long vs. hsi conn long 0.2886 0.0237 0.0430
hpr conn short vs. hai conn short 0.1667 0.1171 0.2827
hpr conn long vs. hai conn long 0.1067 0.2165 0.4977

DM statistic (p-value, L2)
hpr conn short vs. hsi conn short 0.7176 0.2027 0.1980
hpr conn long vs. hsi conn long 0.6767 0.2338 0.0787
hpr conn short vs. hai conn short 0.1632 0.1097 0.1403
hpr conn long vs. hai conn long 0.0536 0.1424 0.5548

Panel B: GDP

Models h = 1 h = 6 h = 12

L1 ratio
hpr conn short vs. hsi conn short 1.0228 1.0619 1.1259
hpr conn long vs. hsi conn long 1.0492 1.1827 1.2555
hpr conn short vs. hai conn short 0.9963 0.9507 0.9115
hpr conn long vs. hai conn long 0.9967 0.9330 0.9156

L2 ratio
hpr conn short vs. hsi conn short 1.0169 1.0712 1.1894
hpr conn long vs. hsi conn long 1.0665 1.1680 1.2147
hpr conn short vs. hai conn short 0.9976 0.9464 0.9258
hpr conn long vs. hai conn long 0.9978 0.9353 0.9424

DM statistic (p-value, L1)
hpr conn short vs. hsi conn short 0.1821 0.2126 0.1942
hpr conn long vs. hsi conn long 0.0469 0.0317 0.0091
hpr conn short vs. hai conn short 0.6079 0.8048 0.7362
hpr conn long vs. hai conn long 0.6944 0.8079 0.6894

DM statistic (p-value, L2)
hpr conn short vs. hsi conn short 0.2049 0.1371 0.1608
hpr conn long vs. hsi conn long 0.0875 0.0661 0.0573
hpr conn short vs. hai conn short 0.5915 0.8505 0.8560
hpr conn long vs. hai conn long 0.6650 0.8402 0.8565

L1: Absolute-forecasts-error loss function. L2: Squared-forecasts-error loss function. L1 ratio and L2 ratio: results for
the benchmark model divided by the results for the rival model such that a ratio larger than unity indicates a superior
performance of the rival model given the respective loss function. DM statistic: Results of the modified Diebold-Mariano
test (p-values) given the respective loss function. The alternative hypothesis is that the rival forecasts are more accurate
than the benchmark forecasts. Results are based on ten fixed-estimation windows of varying in length: 0.50, 0.53, 0.56, ,,,,
0.75 of the data are used as training data (beginning at the start of the sample period). Results are averages across the ten
fixed-estimation windows. h denotes the forecast horizon.
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Table A4: Additional OLS results (recursive-estimation window)

Panel A: CFNAI

Models h = 1 h = 6 h = 12

L1 ratio
hpr conn short vs. hsi conn short 0.9940 1.0345 1.0589
hpr conn long vs. hsi conn long 1.0052 1.1197 1.1511
hpr conn short vs. hai conn short 1.0125 1.0101 1.0674
hpr conn long vs. hai conn long 1.0335 1.0548 1.0078

L2 ratio
hpr conn short vs. hsi conn short 0.9990 1.0008 1.0815
hpr conn long vs. hsi conn long 0.9763 1.0164 1.0797
hpr conn short vs. hai conn short 1.0033 1.0079 1.0159
hpr conn long vs. hai conn long 1.0199 1.0471 0.9941

DM statistic (p-value, L1)
hpr conn short vs. hsi conn short 0.8288 0.2394 0.3066
hpr conn long vs. hsi conn long 0.4065 0.0507 0.0739
hpr conn short vs. hai conn short 0.1410 0.4239 0.3365
hpr conn long vs. hai conn long 0.0172 0.2305 0.4800

DM statistic (p-value, L2)
hpr conn short vs. hsi conn short 0.6179 0.4862 0.2173
hpr conn long vs. hsi conn long 0.8080 0.4066 0.0514
hpr conn short vs. hai conn short 0.3359 0.4176 0.3283
hpr conn long vs. hai conn long 0.0566 0.1627 0.5573

Panel B: GDP

Models h = 1 h = 6 h = 12

L1 ratio
hpr conn short vs. hsi conn short 1.0086 1.0277 1.0971
hpr conn long vs. hsi conn long 1.0245 1.1080 1.1653
hpr conn short vs. hai conn short 0.9967 0.9952 0.9593
hpr conn long vs. hai conn long 0.9987 0.9792 0.9387

L2 ratio
hpr conn short vs. hsi conn short 1.0050 1.0224 1.1271
hpr conn long vs. hsi conn long 1.0150 1.0588 1.1247
hpr conn short vs. hai conn short 1.0019 0.9944 0.9577
hpr conn long vs. hai conn long 1.0012 0.9799 0.9681

DM statistic (p-value, L1)
hpr conn short vs. hsi conn short 0.2919 0.2320 0.1549
hpr conn long vs. hsi conn long 0.0163 0.0482 0.0337
hpr conn short vs. hai conn short 0.6256 0.5445 0.6376
hpr conn long vs. hai conn long 0.6231 0.6543 0.6615

DM statistic (p-value, L2)
hpr conn short vs. hsi conn short 0.3527 0.2126 0.1391
hpr conn long vs. hsi conn long 0.1105 0.2019 0.0328
hpr conn short vs. hai conn short 0.3974 0.5810 0.8367
hpr conn long vs. hai conn long 0.3849 0.6648 0.8266

L1: Absolute-forecasts-error loss function. L2: Squared-forecasts-error loss function. L1 ratio and L2 ratio: results for
the benchmark model divided by the results for the rival model such that a ratio larger than unity indicates a superior
performance of the rival model given the respective loss function. DM statistic: Results of the modified Diebold-Mariano test
(p-values) given the respective loss function. The first 0.50 of the data are used as training data (beginning at the start of
the sample period). h denotes the forecast horizon.
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