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Abstract

This paper adopts a bivariate Markov switching multifractal (MSM)
model to reexamine co-movement in stochastic volatility between com-
modity, foreign exchange (FX) and stock markets. After the 2007-2008
global financial crisis understanding volatility linkages and the correlation
structure between these markets becomes very important for risk analysts,
portfolio managers, traders, and governments. Using daily data on stock
indices and FX rates from developed and emerging countries and a range
of commodities such crude oil, natural gas, aluminum, copper, gold, sil-
ver, platinum, wheat, corn, soybean and soybean oil we find evidence of
(re)correlation between commodity, FX and stock markets. The bivariate
MSM model compares favorably to a bivariate DCC-GARCH and uni-
variate MSM model, especially at short (1, 5 and 10 days) forecasting
horizons. Furthermore, we discuss its implications for risk and portfolio
management.
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1 Introduction

The rapid financialization of the commodity markets after the 2007-2008 global
financial crisis coupled with the increased financial integration between markets
has led to an increase in dependence between foreign exchange (FX), stock and
commodity markets over the past decade, see, e.g., Fry-McKibbin and McKin-
non (2023), Wang and Cheung (2023), Delatte and Lopez (2013), Mensi et al.
(2013), Du et al. (2011), Creti et al. (2013), Sadorsky (2014), Ding et al. (2021),
Dai et al. (2020), Ali et al. (2020), Nguyen et al. (2020), and Uddin et al.
(2020). Recently, Wang and Cheung (2023) find that the strongness of the
link between commodity prices, financial assets and exchange rates in the post
2007-2008 global financial crisis period depends on the degree of financialization
different commodities experience. As result, a better understanding of the re-
lationship between FX, stock and commodity markets becomes very important
due its implications for volatility forecasting, risk management, asset allocation,
and monetary policy, see, e.g., Fry-McKibbin and McKinnon (2023), Wen and
Wang (2021).

The literature has put forward different theoretical frameworks2 to explain
the link between commodity prices and other financial assets. While Papers
by Chen et al. (2010) and Rossi (2012) argues the existence of a structural link
between future commodity prices and exchange rates through the terms of trade
and income channel, other works have established financial linkages across com-
modity and other financial markets, see, e.g., Tang and Xiong (2012). Cheng
and Xiong (2014) explain how financialization has transformed the commodity
markets through economic mechanisms such as storage, risk sharing and infor-
mation discovery that facilitate the functioning of the commodity markets. As
consequence, these transformations increase the interdependence between com-
modity markets and other financial markets. In fact, storage reduces fluctua-
tions in commodity prices due its stabilizing forces on demand and supply shocks
Deaton and Laroque (1996). In the standard storage theory of Kaldor (1939),
Brennan (1958), and Telser (1958), the commodity producers have the option
to adjust their production levels through inventories, and thus, the marginal
benefit of storage is defined to be the convenience yield. This suggests that the
future spreads between the futures and spot prices are impacted by the levels
of nominal interest rates because they are the main determinants of the financ-
ing cost of the carry trade. Frankel (2006) and Gruber and Vigfusson (2018)
show how monetary policy affects the commodity price volatility through this
interest-rate channel.

Cheng and Xiong (2014) argue that financialization through risk sharing
and information discovery channels has deepened and strengthened the linkage
between commodity prices and other financial assets. Their argumentation is
based on the hedging pressure theory of Keynes (1923), Hicks (1939) and Hirsh-
leifer (1988). According to the theory financialization reduces hedging pressure,
improves risk sharing, and facilitates volatility spillover to commodity markets,

2We refer the reader to Adekoya and Oloyide (2021) for a recent review on the linkages
among different markets.
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see Tang and Xiong (2012). In order to hedge commodity price risks, commod-
ity producers that are on the short side of the futures markets have to offer the
financial investors or speculators positive risk premia that give them the incen-
tive to take the long side of futures markets. By taking the long side, financial
investors or speculators act as providers of liquidity to hedgers, however, due
to their time-varying risk appetites, they can become consumers of liquidity
from hedgers whenever market conditions change. As result, the dual role of
the financial investors causes volatility spillover from other financial markets to
commodity markets. Furthermore, it is well-documented that futures markets
play a crucial role in information discovery during periods of informational fric-
tions in the global supply, demand and inventory of commodities. Singleton
(2014) shows that the information discovery process can influence the expected
returns of commodity futures due to the presence of heterogeneous financial
investors.

In this paper our goal is to shed light on the implications of the relationship
between commodity, stock and FX markets for forecasting accurate volatility
in a multivariate framework. Forecasting volatility in asset markets is not only
critical for portfolio selection, risk management and the pricing of derivatives,
but is also of high importance for policymakers in designing monetary and fis-
cal policies as volatility shocks represent uncertainty (Liu et al. (2020); Liu
and Gupta (2022)). Since the seminal papers by Engle (1982) various uni- and
multivariate volatility models have been put forward and successfully used to
produce accurate volatility forecasts in stock, commodity, FX markets, see, e.g.,
Zaharieva et al. (2020) for a recent review on multivariate stochastic volatility
(SV) models, Bauwens et al. (2012) and Francq and Zaköıan (2019) for a re-
view on multivariate GARCH models. Recent developments in modeling and
forecast volatility in commodity and financial markets are the adaptation of
the multifractal processes to finance by Mandelbrot (1974), Calvet and Fisher
(2001, 2004)3. While the academic literature on modeling the linkage between
stock, FX and commodity markets and forecasting volatility using the DCC-
GARCH model of Engle (2002) is vast, see, e.g., Ashfaq et al. (2019), Kumar
and Anandarao (2019) among others, it remains on this particular subject using
the multivariate multifractal processes somewhat sparse. Our contribution is to
close this gap in the literature.

To this end, we consider a new class of volatility models that are designed
via the multifractal processes. In fact, the theory of multifractal measures was
originally proposed by Mandelbrot (1974) to model turbulent flows and sub-
sequently has received a huge attention in modeling and forecasting financial
market volatility in the recent years due to certain similarities of volatility to
fluid turbulence. The main reasons for this increased interest in applying mul-
tifractal processes for forecasting volatility are two folds: (i) the multifractal
model provides a simple uniform framework for long-memory and fat tails in
the volatility process and structural breaks through regime switching, (ii) it

3see Lux and Segnon (2018) for an excellent review on uni- and multivariate multifractal
volatility models and their applications in finance.
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has been showed to be robust and capable of producing more accurate volatil-
ity forecasts than the traditional (MS-)GARCH models, see Calvet and Fisher
(2004), Lux (2008), among others.

We illustrate the performance of our bivariate multifractal model against
the bivariate DCC-GARCH and univariate GARCH models using daily data
on stock indices and FX rates from eight developed and emerging countries
(Malaysia, Australia, Russia, South Africa, Norway, Mexico, Canada and Brazil)
and a range of commodities such as crude oil, natural gas, Aluminum, copper,
Gold, silver, Platinum, Wheat, corn, soybean, soybean oil. The rationale be-
hind the selection of these particular countries stems from their significant roles
as major exporters in these commodity markets. The economic and financial
landscapes of these nations are deeply intertwined with the global movements
of these commodities, making their currencies and stock markets highly respon-
sive to changes in commodity prices. For example, Canada, Norway and Russia
are influential in the global energy sector, especially in the markets for oil and
natural gas. Australia’s economic fortunes are strongly linked to the export of
metals such as aluminum and gold, with South Africa being a prominent ex-
porter of platinum and gold. In the same vein, Brazil is a key player in the
market for soybeans.

Our out-of-sample results indicate that the bivariate multifractal model pro-
duces more accurate volatility forecasts and outperforms the DCC-GARCH and
univariate multifractal models at short- and long forecasting horizons and across
all three markets. This suggests that the bivariate multifractal framework is
more appropriate to model volatility and dynamic conditional correlations be-
tween commodity, stock and foreign exchange markets.

The rest of the paper is organized as follows. Section 2 presents the data sets
used in our empirical analysis. The bivariate multifractal model is presented in
Section 3. Section 4 presents and discusses the empirical results and finally,
Section 5 concludes.

2 Multifractal models

Most financial market models are based on the additive structure of asset returns
dynamics, and models with multiplicative operations have been introduced un-
der the heading of multifractal models. Mandelbrot et al. (1997) introduces the
multifractal model of asset returns (MMAR), and the multifractal model as-
sumes that returns rt follow a compound process, in which an incremental frac-
tional Brownian motion is subordinate to the cumulative distribution function
of a multifractal measure. However, the practical applicability of MMAR suf-
fers from the non-causal nature of the time transformation and non-stationarity
due to the inherent restriction to a bounded interval. These limitations have
been overcome by the development of an iterative version of the multifractal
models, including the Markov-switching multifractal model (MSM), see Calvet
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and Fisher (2004) and Lux (2008). MSM models asset returns as:

rt = σ

(
k∏

i=1

M
(i)
t

)1/2

· ϵt, (1)

the instantaneous volatility is determined by the product of k volatility com-

ponents or multipliers M
(1)
t , M

(2)
t ..., M

(k)
t , with a constant scale parameter σ.

In addition, Mt can be drawn from either a discrete distribution, e.g., a bino-
mial distribution in Calvet and Fisher (2004), or a continuous distribution, e.g.,
lognormal distribution in Lux (2008). Each volatility component is updated at
time t with probability γi depending on its rank within the hierarchy of multi-
pliers or remains unchanged with probability 1 − γi. Calvet and Fisher (2004)
specify the transition probabilities as:

γi = 1− (1− γ1)
(bi−1), (2)

with parameters γ1 ∈ (0, 1) and b ∈ (1,∞); In contrast, without introduc-
ing additional parameters, Lux (2008) proposes γi = 2(k−i). Both specifica-
tions guarantee convergence of the discrete-time multifractal process to a lim-
iting continuous-time version with random renewals of the multipliers. In this
approach, asset returns volatilities are conceived as hierarchical multiplicative
processes with heterogeneous components at different lifetimes.

This novel approach preserves the hierarchical structure of MMAR, but dis-
penses with its restriction to a bounded interval. While this model is asymp-
totically “well-behaved” (i.e., it shares all the convenient properties of Markov-
switching processes), it is still capable of capturing some important properties of
financial markets time series data, namely, volatility clustering and the power-
law behaviour of the autocovariance function of absolute moments:

Cov(|rt|q, |rt+τ |q) ∝ τ2d(q)−1. (3)

2.1 Bivariate multifractal models

In order to study the interactions and comovements among financial assets, mul-
tifractal models can be easily extended to multivatiate setting without imposing
much restrictions. For a bivariate models, Calvet and Fisher (2006) assume that
instantaneous volatility is composed of heterogenous frequencies, and model the
bivariate asset returns rt as:

rt = σ ⊗ [g(Mt)]
1/2 ⊗ ϵt. (4)

Here, rt, σ, and ut are all bivariate vectors: rt =

[
r1,t
r2,t

]
, σ =

[
σ1

σ2

]
, ϵt =[

ϵ1,t
ϵ2,t

]
, and ⊗ denotes element by element multiplication. σ is the vector of

constant scale parameters (the unconditional standard deviation); ϵt is a 2× 1
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vector whose elements follow a bivariate standard normal distribution, with
an unknown correlation parameter ρ. g(Mt) is the vector of the products of

multifractal volatility components, i.e. g(Mt) =

[
g(M1,t)
g(M2,t)

]
, with each element

defined as in the univariate case:

g(Mj,t) =

k∏
i=1

M
(i)
j,t , (5)

as the product of volatility components for asset j, and the bivariate volatility
components at frequency i of series j = 1, 2:

M
(i)
t =

[
M

(i)
1,t

M
(i)
2,t

]
. (6)

M
(i)
t are drawn from the bivariate binomial distribution M = (M1, M2)

′,
with M1 taking values m1 ∈ (1, 2) and 2−m1, and M2 taking values m2 ∈ (1, 2)
and 2 − m2. While the framework by Calvet et al., (2006) allow for variation
of the correlation ρm between components M1 and M2, they report that a
correlation ρm equal to one is never rejected in their empirical applications.
We therefore restrict this parameter to unity to economize on the number of
parameters to be estimated.

In addition, whether or not a volatility component (new arrival) being up-
dated for the individual multifractal processes is governed by the transition
probabilities, we use γi = 2(k−i) as in Lux (2008). The correlation of arrivals
between the two series is characterized by a parameter λ ∈ [0, 1], i.e., the proba-
bility of a new arrival at hierarchy level i for one time series given a new arrival
in the other time series is (1− λ)γi + λ. New arrivals are independent if λ = 0
and simultaneous if λ = 1.

2.2 Two-stage estimation

The dynamics of MSM with a binomial distribution multipliers can be consid-
ered as a special case of a Markov-switching process, therefore its likelihood
function can be derived by determining the exact form of each possible compo-
nent in the transition matrix since the state spaces are finite. Let rt be the set
of joint return observations {rj,t} for j = 1, 2, and t = 1, 2 . . . T . The likelihood
function can be explicitly evaluated as below:

f(r1, · · · , rT ; Θ) =

T∏
t=1

f(rt|Mt = mi) ·
(2n)k∑
i=1

P (Mt = mi|r1, · · · , rt−1)


=

T∏
t=1

f(rt|Mt = mi) · (πt−1A) . (7)

Θ is a set of parameters to be estimated, n is the number of assets. There are
three elements within the likelihood function above, namely, (1) the density of
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the innovation rt conditional on Mt, which is f(rt|Mt = mi) =
FN{rt÷[σ⊗η1/2]}

σ⊗η1/2 ;

FN{·} denotes the bivariate standard normal density function, ÷ represents
element-by-element division, and η = g(Mt); (2) a vector of conditional prob-

ability of πt−1 = (π1
t−1, . . . , π

(2n)k

t−1 ), and πi
t = P (Mt = mi|r1, · · · , rt); (3) the

transition matrixA contains componentsAij which are P (Mt+1 = mj |Mt = mi).
Note that i, j = { 1, 2 . . . (2n)k} and it indicates the transition matrix A has
the dimension of 4k × 4k for a bivariate model.

Since the large degree of heterogeneity of volatility trajectories that can be
modelled with a relatively large number of k is one of most attractive features
of the multifractal approach, therefore, with a larger number of k, the numerous
multiplications with the transition matrix A within an optimization step pose
computational constraints on this straight forward approach of Eq. (7). One
can easily see the computational complexity of evaluating the 4k×4k elements of
the transition matrix at each time-step for the maximum likelihood estimation.
In practice, it hardly works for the number of multipliers larger than 5, i.e.,
k > 5, due to the capacity of current personal computers. We therefore adopt a
two-stage procedure proposed by Calvet and Fisher (2006), which combines an
maximum likelihood (ML) estimator for the first group of parameters {m1,i, σi}
with an simulation based ML estimator for the second group {ρ and λ}. The
second stage is to maximise the simulation based likelihood through the particle
filter approach.

As particle filters treat the discrete support generated by the particles as
the ‘true’ filtering density, this allows us to produce an approximation to the
prediction probability density P (Mt+1 = mi

t|rt), by using the discrete support of
the number B of particles, and then the one-step-ahead conditional probability
is

πi
t+1 ∝ f(rt+1|Mt+1 = mi)

1

B

B∑
b=1

P (Mt+1 = mi|Mt = m(b)). (8)

then the approximate likelihood function is given below:

g(r1, · · · , rT ; Θ) ≈
T∏

t=1

[
1

B

B∑
b=1

f(rt|Mt = M̂
(b)
t )

]
. (9)

The recursive particle filter procedure is detailed in the Appendix.

3 Empirical Results

3.1 Data Description

We collect commodity, stock indices, and foreign exchange rates data cover the
period from 7/07/2014 to 25/01/2022. Daily returns are calculated as the log
difference, denoted by rt = ln(pt) − ln(pt−1), where pt represents the prices
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of commodities, stock indices, and exchange rates. The commodities include
natural gas, crude oil, soybean oil, corn, wheat, aluminum, soybean, copper,
gold, silver and platinum. The stock indices pertain to the markets of eight
countries: Malaysia, Australia, Russia, South Africa, Norway, Mexico, Canada,
and Brazil. The exchange rates are for the currencies of these eight countries
relative to the U.S. dollar. Data is obtained from Bloomberg terminal.

In selecting the currencies, stocks, and commodities for our study, we focus
on countries that are major players in the export markets of these commodities.
This choice is grounded in the substantial literature that highlights the critical
role of export-oriented economies in the global commodity markets and their
impact on related financial assets (Kocaarslan et al. (2017)). These countries
are known for their substantial exports in these commodities, influencing global
prices and market dynamics.

For example, Canada, Norway and Russia are among the world’s largest
oil and natural gas exporters, while Brazil is a significant exporter of various
commodities, including soybeans, corn and crude oil.4 Similarly, Australia’s
economy is closely tied to the export of metals such as aluminum and gold,
as highlighted in the research by Golev and Corder (2016), which explores the
importance of metal flows in the Australian economy. The influence of Mexico
in the silver market is well-recognized, a point noted by Garner (2020). The
choice of the South African Rand is motivated by South Africa’s pivotal role in
the platinum and gold markets.5 The dominance of these countries in the com-
modity market renders their currencies and stock markets particularly sensitive
to fluctuations in commodity prices. This interrelationship is evident in studies
such as that by Kilian (2009), which highlights the impact of crude oil prices
on macroeconomic variables, and in the work of Umar et al. (2021), which ex-
amines the relationship between equity markets and oil prices in some of these
countries.

The summary statistics presented in the Table 1 provide a detailed snapshot
of the behavior of stock indices (ST) and foreign exchange rates (FX) across
eight countries, alongside the performance of eleven diverse commodities. For
stock indices, we observe a spectrum of mean returns, with Russia displaying
the highest at 0.039, while Malaysia shows a negative mean return of -0.011.
This range indicates varying degrees of market performance across these na-
tions. Volatility, as measured by standard deviation, is notably high in Brazil’s
stock market (1.641), suggesting significant market fluctuations, in contrast to
Malaysia, which exhibits the lowest volatility (0.688). The skewness and kur-
tosis values across the board suggest deviations from a normal distribution,
particularly in Canada and Brazil, where kurtosis values of 11.29 and 13.02,
respectively, indicate the presence of outliers or extreme market movements.
The Augmented Dickey and FullerDickey-Fuller (ADF) test results uniformly
confirm the stationarity of the series across these markets, while the significant
ARCH effects underscore the presence of volatility clustering.

4see, https://oec.world/en/profile/country/bra.
5see, https://commodity.com/data/south-africa/.
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In examining the foreign exchange markets, the mean returns are more con-
tained, with Brazil leading and Canada exhibiting the lowest. The volatility
within these FX markets shows a marked contrast, with Russia’s FX market
displaying the highest standard deviation, denoting substantial volatility, while
Canada’s market is the least volatile. The skewness and kurtosis across these
markets suggest non-normality, particularly in Russia and Norway, where the
kurtosis indicates heavy-tailed distributions. The pronounced volatility clus-
tering in these FX markets is evident from the ARCH test results, especially
in Russia and Norway. In the commodities sector, the variation in mean re-
turns, with some commodities like natural gas and platinum showing negative
values, reflects diverse market trends. The standard deviation is markedly high
for crude oil, suggesting significant price fluctuations, whereas gold exhibits the
least volatility. The commodities demonstrate non-normal distributions, as in-
dicated by the skewness and kurtosis values, with particularly high kurtosis in
crude oil and natural gas, pointing towards potential outlier events.

3.2 Empirical Findings

We separate each time series data into two subsets (i.e., in-sample data used for
estimation, and out-of-sample data for forecasting assessments). We estimate
the in sample data from 07/07/2014 to 31/12/2018, and then perform out-
of-sample evaluation of volatility forecasting using data from 01/01/2019 to
25/01/2022, based on the DCC-GARCH, and bivariate multifractal models.

The in-sample DCC-GARCH estimates are shown in Table 2 to 4. Specifi-
cally, we estimate the bivariate DCC-GARCH model of Engle (2002), which is
an extension of the conventional GARCH model of Bollerslev (1986). With the
univariate GARCH (1, 1) formulated as: r = µ + ϵt, and ϵt|It−1 ∼ N(0, σt),
the volatility process follows: σt = ω + α · ϵ2t−1 + β · σ2

t−1. The dynamic con-
ditional correlation (DCC) has a non-linear GARCH-type specification: Qt =
(1− a− b)Q̄+ aϵt · ϵ′t−1 + bQt−1, where a and b are the so-called news and de-
cay coefficients, respectively. Q̄ = E[ϵt · ϵ′t−1] is the unconditional variance and
covariance matrix of the standardized residuals (the unconditional covariance)
and ρ12 represents the unconditional correlation coefficient in the matrix Q̄. We
find most of the unconditional returns are positive for stock indices and foreign
exchange rates, while most of commodities returns are negative. Though most
of GARCH persistent parameter β estimates are within a reasonable range, i.e.,
around 0.9, the GARCH reaction parameter estimates α for the Canada ex-
change rates, copper and platinum return volatilities are much lower, which are
indicative of much less spikes in volatility. For the correlation coefficient ρ12,
we find that most of estimates for the stock markets and commodity markets
correlation are positive, in contrast, most of estimates for the foreign exchange
markets and commodity markets correlation are negative.

The bivariate multifractal models parameters estimates are presented in Ta-
bles 5 to 7. Note that the vector of bivariate multifractal model parameters
consists of {m1,i, σi, ρ, λ}, i stands for returns of stock index, foreign exchange
rates and commodity prices, respectivly. We use the two-stage estimation pro-
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cedure illustrated in the last section, that is, an ML estimator for the first group
of parameters {m1,i, σi} and a simulation based ML estimator for the second
group {ρ and λ}. The latter are obtained through the particle filter approach
keeping the first set of parameters at their ML-estimated values, and we then
maximize the simulated likelihood using the Nelder-Mead algorithm.6 The first
four of these parameters (Table 5) could be identified by an estimator for a
univariate multifractal model, while the remaining ones require the complete
bivariate data set. In terms of ’fractality’ of volatility as measured by the pa-
rameter m1, we find that most of the estimates are around 1.2, which indicates
assets returns exhibit reasonable persistence for stock markets, foreign exchange,
and commodity markets. The unconditional volatility estimate of σ reveals that
commodity returns are much volatile than those of the stock indices and foreign
exchange rates.

In terms of the correlation of innovations ρ, we find that most of estimates
for bivariate models of stock markets and commodity markets correlation are
positive (Table 6), while for correlation estimates of the foreign exchange mar-
kets and commodity markets correlation are mostly negative (Table 7). We also
observe that the correlations for pairs of oil and stock indices and pairs of oil
and foreign exchange rates appearing to be more pronounced. Since the corre-
lation across markets often pertain to the arrival of new volatility components,
empirical estimates of λ show significant degree of co-movement for all pairs of
assets return volatilites.

Table 8 to Table 16 present the out-of-sample forecasting performances at
different horizons with a range of 1 day to 100 days. We report the relative
mean square error (RMSE), i.e., the mean square error (MSE) divided by the
respective statistics of the naive volatility predictor (derived using historical
volatility). Therefore, any value smaller than 1 indicates an improvement rel-
ative to historical volatility. A glance at Table 8 reveals that the volatility
forecasting performance of the univariate multifractal models is quite encour-
aging for stock indices, foreign exchange rates and commodities. Specifically,
we observe most of the reported RMSEs are below 1 for 1, 5, 10 and 20 days
horizons, except with some cases at the longer horizons of 50 and 100 days.

We then assess the forecasting performances of the bivariate models when
using stock indices and commodities prices pairs, and foreign exchange rates
and commodities prices pairs. Table 9 and 10 present volatility forecasting re-
sults based on DCC-GARCH models for the eight countries’ stock indices and
commodities data. We find that DCC-GARCH models perform well at short
time horizons, while most of the RMSEs for longer horizons are above 1, for ex-
ample, RMSEs of the stock markets and commodities of Canada and Malaysia
at 10 to 100 days horizons. For the same pairs of data, Table 11 and 12 report
the forecasting performances based on bivariate multifractal models. In general,
bivariate multifractal models outperform the DCC-GARCH models statistically
significant manner at long horizons under the RMSE criteria. The fact that these

6The two-stage approach provides a reduction in computation time, and it also makes the
choice of larger number of cascade level k feasible. Note that, use k = 8 which is consistent
with the existing literature.
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gains are statistically significant relative to the DCC-GARCH models are also
strongly confirmed by the dominant number of significant Diebold and Mariano
(1995) test statistics. Turning to foreign exchange markets and commodities
markets pair data, the forecasting results based on CC-GARCH models are re-
ported in Table 13 and 14; the forecasting performances based on the bivariate
multifractal models are provided in Table 15 and Table 16. Though our results
are not entirely homogeneous, in general, bivariate multifractal models outper-
form the DCC models in most cases, and the multifractal models produce better
forecasting performances by their ability to capture the same in a genuine, i.e.,
non-spurious-manner, by allowing for regime-switching cascades.

In addition, we are interested in studying if it is likely to exist a bidirectional
relationship between the volatility process of the stock markets and commodity
markets, the foreign exchange market and commodity returns, as discussed in
the introduction. We find either stock markets or foreign exchange markets have
major impacts on commodity markets, for instance, for those crude oil export-
ing countries: Malaysia, Norway, Mexico, Canada and Russia, including their
stock market indices or exchange rates do not improve the oil price volatility
forecasting. However, some commodity markets do significantly impact foreign
exchange rates. As shown in Table 15, Canada exports not only crude oil, but
also wheat, Aluminum and gold, we find including oil significantly improves
the Canadian dollar exchange rates volatility forecasting at all horizons; For
Malaysia, including natural gas also significantly improves the exchange rates
volatility forecasting; For Mexican, silver price has a major impact on Mexican
exchange rates volatility forecasting at short horizons.

3.3 Implications for risk management

The notion of correlation is central to modern risk management. In fact, corre-
lation is used as a measure of dependence between financial assets in different
markets. As a key input in volatility forecasting, dynamic portfolio manage-
ment, and value-at-risk computation, a change in the correlation represents a
risk. It is well-documented that while the correlations between financial assets
may be low (or moderate) during low volatility regimes or in normal market
circumstances due some arbitrage opportunities or heterogeneity in market par-
ticipant behaviors, they are very strong during volatile periods or times of crisis.
As result, an underestimation of correlation will lead to inaccurate estimates of
portfolio volatility, and thus, to inaccurate value-at-risk forecasts, mispricing
of short-lived options and inefficient capital allocation. This could on one side
misguide financial institutions to hold less than the optimal amount of capital
against potential losses from adverse market moves and on the other side also
affect the financial decisions of market participants. Furthermore, a hidden cor-
relation risk between commodity, FX and stock markets can negatively influence
the flow of capital to a one of these markets that is experiencing a temporary
liquidity crisis.

The correlation parameters in the bivariate MSM model are well estimated
and allow us to refine our understanding of volatility linkages between commod-
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ity, stock and FX markets. Although the estimated correlation parameters are
small, they are statistically significant different from zero at 5% confidence level
and contribute to the improvement of volatility forecast accuracy of the bivariate
MSM model over the DCC-GARCH and univariate multifractal model. While
the DCC-GARCH model captures the time dependency between these markets,
the parsimonious specification of the bivariate MSM consider several volatil-
ity and correlation states and allows us to model different market-dependent
dynamics7 and the occurrence of contagion phenomena. Our empirical results
suggest that analysts should use the bivariate MSM model that seems to be
more appropriate for modeling correlation structure between commodity, FX
and stock markets and producing more accurate volatility forecasts.

4 Conclusion

This paper uses the bivariate MSM to reexamine volatility linkages between
commodity, FX and stock markets. The parsimonious specification of the MSM
framework permits to study the correlation between volatility components in
several regimes. Using daily data on stock indices and FX rates from developed
and emerging countries and a range of commodities such crude oil, natural gas,
aluminum, copper, gold, silver, platinum, wheat, corn, soybean and soybean oil
we estimate the two parameters, λ̂ and ρ̂ that characterize co-movement between
volatility components and covariation between prices in stock and commodity
(or FX and commodity) markets, respectively. The estimated correlation pa-
rameters across stock and commodity or exchange-rate and commodity pairs
for all eight developed and emerging countries are statistically significant at 5
% confidence level, however remain low. We identify positive (negative) covari-
ation between prices in stock and commodity markets (in FX and commodity
markets). We have showed that the bivariate MSM model outperforms the
DCC-GARCH and the univariate multifractal model at 1, 5, and 10 days fore-
casting horizons. Our results show that after the 2007-2008 global financial
crisis there is an increase in interdependencies between commodity, FX and
stock markets. As result, the bivariate MSM model seems to be capable to
capture the dependency structures between these markets, and thus, produces
more accurate volatility forecasts.

Our results have important implications for academics, investors and policy
authorities. First, investors in commodity exporting countries can improve their
portfolio allocation, pricing of derivative securities and risk management by
accommodating the role of commodity market volatility into their models of
volatility that are primarily multivariate in nature and capture long-memory
and regime-changes, i.e., via the usage of bivariate MSM models. In this regard,
from the perspective of an academician, our findings provide further evidence
of the connectedness of stock and currency markets with the commodity sector,
and hence highlights the influence of the process of financialization. Finally,
since volatility provides high-frequency forecasts of uncertainty, which in turn

7The dynamics in calm and highly volatile markets may be different.
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is known to contain leading information for economic activity, policymakers can
nowcast low-frequency macroeconomic variables, and design appropriate policy
responses in advance.

Future research can study the relationship between commodities, FX rates,
stock indices and digital assets such as cryptocurrencies, NFTs, and DeFi. Given
the important impact of digital assets on economic growth in the recent years,
it would be interesting to reexamine co-movement in volatility and covariation
in prices between the traditional financial markets (commodity, FX and stock
markets) and digital financial markets and their implications for volatility fore-
casting, risk management, portfolio allocation and economic growth.

12
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A Particle filter

In the second stage of estimation, we adopt simulation-based maximum likeli-
hood (SML) approach proposed by Calvet and Fisher (2006). Specifically, by
keeping the first set of parameters at their ML-estimated values, we maximize
the simulated likelihood using particle filter. The two-stage approach provides
a reduction in computation time against a complete SML approach, and it also
makes the choice of larger number of cascade level k feasible. Note that, use
k = 8 which is consistent with the existing literature.

Recall the conditional probability πi
t = P (Mt = mi|r1, · · · , rt), and due to

4n∑
i=1

πi
t = 1; by Bayesian updating, we get

πt+1 =
f(rt+1|Mt+1 = mi)⊗ (πtA)∑
f(rt+1|Mt+1 = mi)⊗ (πtA)

. (A1)

In order to reduce the computational burden, instead of explicitly evaluating
the exact 4k × 4k elements within the transition matrix, the particle filter uses
an approximation to the prediction probability density P (Mt = mi

t|rt−1), by
using the discrete support of a finite number B of particles. Denoting by m(b)

the volatility state of any particle b = 1, . . . , B, the one-step-ahead conditional
probability is approximated by:

πi
t ∝ f(rt|Mt = mi)

1

B

B∑
b=1

P (Mt = mi|Mt−1 = m(b)). (A2)

As can be seen, Eq (A2) provides a discrete approximation of the conditional
densities by filtering the particles. This approximation not only simplifies the
maximum likelihood estimation by avoiding evaluation of the infeasible dimen-
sions of the transition matrix, but also provides a practical solution for multi-
step forecasting. For instance, to obtain one-step ahead πi

t+1, we use particle
filter with sampling/importance resampling (SIR), cf. Rubin (1987), Pitt and
Shephard (1999), i.e., simulating each m(b) one-step forward and re-weighting
using an importance sampler as follows:

1. Simulate the Markov chain one-step-ahead to obtain M̂
(1)
t+1 given M

(1)
t .

Repeat B times to generate draws M̂
(1)
t+1, M̂

(2)
t+1, . . . , M̂

(B)
t+1 .

2. This preliminary step only uses information available at date t, and must
therefore be adjusted to account for the new return. Drawing a random
number q from 1 to B with probabilities of:

P (q = b) =
f(rt+1 | Mt+1 = m(b))∑B
i=1 f(rt+1 | Mt+1 = m(i))

. (A3)

3. We then select M
(1)
t+1 = M̂

(q)
t+1, and repeat B times to obtain B draws to

get the new M
(1)
t+1, . . .M

(B)
t+1 , which have been adjusted to account for the

new realizations.

This recursive procedure provides a discrete approximation to Bayesian up-
dating, which is computationally convenient in large state spaces.
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