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Housing Search Activity and Quantiles-Based Predictability of Housing Price 
Movements in the United States 

Rangan Gupta* and Damien Moodley** 
Abstract 

Recent evidence from a linear econometric framework, tend to suggest that housing search 
activity, as captured from Google Trends data, can predict housing returns of the overall United 
States (US), as well as at the regional-level for Metropolitan Statistical Areas (MSAs). Based 
on search-theory, we, however, postulate that search activity can also predict housing returns 
volatility. Given this, we use a k-th order nonparametric causality-in-quantiles test, which in 
turn, allows us to test for predictability in a robust manner over the entire conditional 
distribution of not only housing price returns, but also its volatility (i.e., squared returns), by 
controlling for nonlinearity and structural breaks that exists in the data. Using this model, over 
the monthly period of 2004:01 to 2021:01, we show that while housing search activity 
continues to predict aggregate US house price returns barring the extreme ends of the 
conditional distribution, volatility is relatively strongly predicted over the entire quantile range 
considered. Our results tend to carry over to an alternative (the Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH)-based) metric of volatility, higher (weekly)-
frequency data (over January, 2018-March, 2021), as well as to over 84% of the seventy-seven 
MSAs considered. Our findings have important implications for investors and policymakers, 
as well as academics.   
Keywords: Housing Search Activity; Housing Returns and Volatility; Higher-Order 
Nonparametric Causality in Quantiles Test 
JEL Codes: C22, R30 
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1. Introduction 
In a recent paper, Møller et al. (2023) provides statistical evidence in favour of the hypothesis 
that online housing search activity (measured by a Housing Search Index (HSI) obtained from 
Google Trends data),1 which captures peoples’ intentions of buying a house and hence, proxies 
for housing demand, contain predictive information for housing price returns for the overall 
United States (US), and its regions. This is not surprising since, an increase in search activity 
is propagated into future periods, which, given various frictions in the housing market, would 
imply sluggish price adjustment in response to an increase in demand, so that search activity 
should hold predictive power for future variation in house prices in line with the theoretical 
search-based models (see, for example, Berkovec and Goodman (1996), Genesove and Han 
(2012), and Carrillo et al. (2015)).  
In this regard, Ngai and Sheedy (2022), extending the earlier works of Díaz and Jerez (2013), 
Ngai and Sheedy (2020), Smith (2020), used a calibrated search-and-matching model with both 
endogenous inflows (new listings) and outflows (sales), to show that a single persistent housing 
demand shock induces more moving and increases the supply of houses on the market, and 
hence, can quantitatively match the data on volatility of various housing-market variables, 
including housing price returns variability. In other words, we can postulate that the HSI of 
Møller et al. (2023), should not only contain predictive information for house price returns, but 
also its volatility. 
To test our proposition, we use the k-th order nonparametric causality-in-quantiles framework 
of Balcilar et al. (2018). This econometric model allows us to test the predictability of the entire 
conditional distributions (capturing regimes) of both housing price returns and squared returns, 
i.e., volatility simultaneously, by controlling for misspecification due to uncaptured 
nonlinearity and regime changes with the HSI - both of which we show to exist in our dataset 
via formal statistical tests. As our focus is on volatility in this paper, being an extension to the 
work of Møller et al. (2023), to check for the robustness of our results, we also apply the first-
order of the test to the conditional volatility as captured by the Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) model of Bollerslev (1986).  While the primary 
focus is the aggregate US housing price returns and its volatility, just as in Møller et al. (2023), 
we also analyse the predictive impact of the HSI for the first and second moment of housing 
                                                             
1 A recent report by the National Association of Realtors (NAR, 2023) shows that home buyers use the internet as 
their main source of information about the housing market, with as many as 96% of home buyers using the internet 
to search for a home. 
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prices of seventy-seven Metropolitan Statistical Areas (MSAs), as it is well-known that the US 
housing market is highly segmented (Gupta et al., 2023). Based on data availability, we conduct 
these predictive experiments over the monthly period of 2004:01 to 2021:01. 
Statistically speaking, US residential real estate represents about 77.33% of total household 
non-financial assets, 37.30% of total household net worth, and 32.99% of household total assets 
(Financial Accounts of the US, Second Quarter, 2023).2 Hence, it is not surprising that housing 
price movements have been historically associated with aggregate and regional business cycles 
(Balcilar et al. (2014), Apergis et al. (2015), Nyakabawo et al. (2015), Emirmahmutoglu et al., 
(2016), Payne and Sun (2023)). Naturally, predicting the future path of housing price returns 
and its volatility contingent on the information content of the HSI in our current context, is of 
immense value to not only real estate consumers and investors, but also to the policymaker. 
Understandably, information on the evolution of house price movements at a higher frequency 
would be immense value in making timely portfolio decisions (Bollerslev et al., 2016; 
Nyakabawo et al., 2018), and in particular to policy authorities from the perspective of 
nowcasting (Bańbura et al., 2011), which will assist in the designing of monetary and fiscal 
responses ahead-of-time to prevent possible recessions (Balcilar et al., 2020, 2021; Bouri et al., 
2021). Hence, we also conduct our analysis at a weekly-frequency over the period of January, 
2018 to March, 2021. 
To the best of our knowledge, this is the first paper that evaluates the predictive power of HSI 
for overall and regional US housing price returns and volatility based on a nonparametric 
higher-order causality-in-quantiles framework. In the process, we add to the large existing 
literature on predicting the first and second moment of US house prices using various types of 
econometric models and predictors, the review of which is not only beyond the scope of this 
paper, but also not its objective, with the reader referred to the recent works of Bork and Møller 
(2015), Bork et al. (2020), Segnon et al. (2021), and Gupta et al. (2022) for this purpose.   
The remainder of the paper is structured as follows: Section 2 describes the data used for our 
analysis, as well as outlines the methodology. Section 3 presents the findings, with Section 4 
concluding the paper.  
 
 
                                                             
2 https://www.federalreserve.gov/releases/z1/20230908/z1.pdf. 
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2. Data and Methodology 
2.1. Datasets 
This sub-section provides specific details concerning the dataset used in the main analysis. 
Furthermore, it presents an overview of the econometric methodology implemented to perform 
our investigation.  
As mentioned above we make use of a newly developed housing search index (HSI) introduced 
by Møller et al. (2023) to test the possibility of using online search activity to predict housing 
returns and volatility of the aggregate US and that, for seventy-seven MSAs.3 HSI is 
constructed using Google trends data, to quantify internet search activity related to housing 
demand. Google Trends data are available from 2004 onwards, resulting in a sample period of 
2004:01 to 2021:01 at the monthly frequency. To obtain a measure of housing demand, Møller 
et al. (2023) initially used “buying a house” as their main search term, and subsequently utilized 
a list of 22 related terms, namely: “when buying a house”, “buying a home”, “buy a house”, 
“mortgage”, “buying a new house”, “before buying a house”, “how to buy a house”, “real 
estate”, “steps to buying a house”, “buying a house calculator”, “first time buying a house”, 
“buying a house process”, “house buying process”, “homes for sale”, “building a house”, 
“buying a house with bad credit”, “cost of buying a house”, “buying a house to rent”, “mortgage 
calculator”, “houses for sale”, “buying a house tips”, and “buying a foreclosure house”.  
To filter out the noise and more accurately estimate latent demand, Møller et al. (2023) use the 
elastic net estimator to select the ten most relevant search indexes and then apply Principal 
Component Analysis (PCA) to summarize the most important information from these indices 
into one common component, which is interpreted as a summary measure for housing search, 
and referred to as the HSI.4 Note that the same approach is followed for the overall US, but by 
now explicitly specifying the MSA for which the search is conducted.5  

                                                             
3 The data is available for download from the research segment of the website of Professor Christian Montes 
Schütte at: https://sites.google.com/view/christian-montes-schutte/research?authuser=0. 
4 Before extracting the first principal component, the indexes are used in their logarithms, a sequential testing 
strategy is used to account for the possibility that the individual Google Trends series could follow different trends, 
and seasonality is removed by regressing each series on monthly dummy variables to study the residuals from this 
regression. 
5 While search activity for individuals residing in a given MSA counts in the overall search volume for that 
particular MSA, some individuals may also be interested in buying a home in one of the neighboring MSAs. To 
allow for such potential moves across MSA borders, Møller et al. (2023) also include search activity in the state 
in which the MSA is located. 
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We use the log growth rate (HR) in the seasonally adjusted monthly Federal Housing Finance 
Agency (FHFA) purchase-only house price index for the US and the MSAs to capture housing 
price returns, with the corresponding squared values measuring volatility.6 As indicated earlier, 
a GARCH model was estimated on the log-returns to also provide an alternative conditional 
estimate of volatility. As part of our high-frequency analysis, we also construct housing log-
returns at weekly frequency using the smoothed, seasonally adjusted weekly median sale prices 
from Zillow7 for the overall US over the 1st week of January, 2018 to the 4th week of March, 
2021.  
Table A1 and Figure A1 in the Appendix of the paper summarizes the HR and HSI variables 
for the overall US over 2004:01 to 2021:01. As can be seen from Table A1, HR is negatively 
skewed and has excess kurtosis, resulting in a non-normal distribution as indicated by the 
overwhelming rejection of the null of normality under the Jarque-Bera test. This provides 
preliminary justification for using a quantiles-based approach to predictability. 
2.2. Econometric Model 
In this sub-section, we briefly present the methodology for testing nonlinear causality via a 
hybrid approach as developed by Balcilar et al. (2018), which is based on the frameworks of 
Nishiyama et al. (2011) and Jeong et al. (2012). Let  denote housing returns and  the HSI. 
Further, let  ≡ ( , … , ), ≡ ( , … , ),  = ( , ), and |∙( | •) 
denote the conditional distribution of  given •.  Defining ( ) ≡ ( | ) and 

( ) ≡ ( | ), we have  | { ( )| } =   with probability one. The 
(non)causality in the q -th quantile hypotheses to be tested are: 

:   | { ( )| } = = 1                                                                                     (1)  
:   | { ( )| } = < 1                                                                                      (2)  

Jeong et al. (2012) show that the feasible kernel-based test statistics has the following format: 

               = 1
( − 1)ℎ

−
ℎ ̂ ̂  

,
                                              (3) 

where (•) is the kernel function with bandwidth ℎ,  is the sample size,  is the lag order, 
and ̂ = { ≤ ( )} −  is the regression error, where ( ) is an estimate of the 

                                                             
6 The data is available for download at: https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-
Index.aspx. 
7 The data can be accessed at: https://www.zillow.com/research/data/  
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-th conditional quantile and {•} is the indicator function. The Nadarya-Watson kernel 
estimator of ( ) is given by 

( ) = ∑ −ℎ  { ≤ },
∑ −ℎ,

                                                                   (4)  

with (•) denoting the kernel function.  
Balcilar et al. (2018) extend the model of Jeong et al. (2012) framework, based on the work of 
Nishiyama et al. (2011), to the second (or higher) moment which allows us to test the causality 
between the HSI and housing returns volatility. In this case, the null and alternative hypotheses 
are given by: 

:   | { ( )| } = = 1,    = 1,2, … ,                                                           (5) 
:   | { ( )| } = < 1,    = 1,2, … ,                                                            (6) 

The causality-in-variance test can then be calculated by replacing  in Eqs. (3) and (4) with 
. As pointed out by Balcilar et al. (2018) a rescaled version of the  has the standard normal 

distribution. Testing approach is sequential and failing to reject the test for = 1 does not 
automatically lead to no-causality in the second moment; one can still construct the test for 

= 2.  
The empirical implementation of causality testing via quantiles entails specifying three key 
parameters: the bandwidth (h), the lag order (p), and the kernel types for (∙) and (∙). We use 
a lag order of one based on the Schwarz Information Criterion (SIC). We determine ℎ by the 
leave-one-out least-squares cross validation. Finally, for (∙) and  (∙), we use Gaussian 
kernels. 
 
3. Empirical Findings 
Before we discuss the findings from the causality-in-quantiles test, for the sake of completeness 
and comparability we conduct the standard linear Granger causality test, with a lag-length of 
1, as determined by the SIC. The resulting 2(1) test statistic associated with the causality 
running from HSI to HR is 61.5012 with a p-value of 0.0000, i.e., the null hypothesis that 
housing search activity does not Granger cause housing returns, in line with Møller et al. 
(2023), is strongly rejected at 1% level of significance. However, the linear framework is 
unable to provide information on regime-specific, i.e., quantiles-based, predictability, besides 
being silent about the causal influence on volatility, i.e., squared returns. Naturally, we turn to 
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the k-th order nonparametric causality-in-quantiles test next. But to econometrically motivate 
this framework, we statistically examine the presence of nonlinearity and structural breaks in 
the relationship between the HSI and HR. Nonlinearity and regime changes, if present, would 
warrant the use of the nonparametric quantiles-in-causality approach, since this data-driven test 
would formally address the issues of nonlinearity and structural breaks in the relationship 
between the variables under investigation.  
For this purpose, we first apply the Brock et al. (1996, BDS) test on the residual derived from 
the HR equation involving one lag each of HR and HSI. Table A2 in the Appendix presents the 
results of the BDS test of nonlinearity. As the table shows, we find strong evidence, at the 
highest level of significance, for the rejection of the null hypothesis of i.i.d. residuals at various 
embedded dimensions (m), which, in turn, is indicative of nonlinearity in the relationship 
between housing search activity and housing price returns. To further motivate the causality-
in-quantiles approach, we next use the powerful UDmax and WDmax tests of Bai and Perron 
(2003), to detect 1 to M structural breaks in the relationship between HR and HSI, allowing for 
heterogeneous error distributions across the breaks. When we apply these tests to the HR 
equation involving one lag each of HR and HSI, we detect four breaks on: 2008:12, 2012:03, 
2014:09, and 2017:03 associated with the downturns and weak sentiment during the global 
financial and the European sovereign debt crises, but then sustained economic recovery and 
improved sentiment since 2014 (see, Figure A1).   
Given the strong evidence of nonlinearity and structural breaks in the relationship between HR 
and HSI, we now turn our attention to the causality-in-quantiles test, which is robust to 
misspecification in the linear model due to its nonparametric nature, besides allowing us to test 
for predictability over the entire conditional distributions of both returns and volatility. The 
results are reported in Figure 1, whereby we test the regime-specific null hypothesis of no –
Granger causality running from HSI to HR and HR2 over the quantile range of 0.10 to 0.90 
based on the standard normal test statistic. As can be seen from the figure, predictability for 
housing returns from HSI holds over the range of 0.20 to 0.80 at least at the 5% level of 
significance, with the strongest causal influence observed at the median. Interestingly, there is 
no evidence of predictability at the extreme quantiles of 0.10 and 0.90. In other words, allowing 
for a quantiles-based model, we provide a more nuanced evidence of predictability as detected 
by Møller et al. (2023) from a linear (conditional mean-based) predictive regression 
framework, as we are able to detect varied strength of causality conditional on the regimes of 
the market. Put alternatively, we can now say that the impact of HSI on HR increases as we 
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move from a bearish regime to a bullish regime, with a peak at the median, but there is no 
evidence of causal influence at the two extreme-ends of the market. These findings tend to 
support the idea that for exceptionally weak and strong phases of the real estate market, i.e., at 
the quantiles of 0.10 and 0.90, participants tend to herd (Babalos, 2015; Ngene et al., 2017), 
and hence does not require information of a predictor like HSI to gauge the future path of HR. 
Note that, the lack of predictability at the upper quantiles could also be signalling market 
efficiency related to HSI in line with the quantiles-based test of efficiency of Tiwari et al. (2020) 
for the overall US, as well as at the MSA-level.   
Interestingly however, the predictability of HSI for squared returns, i.e., volatility is observed 
over its entire conditional distribution at least at the 5% level of significance for majority of 
the quantiles (barring the 90th quantile, where causality holds at the 10% level), with a peak at 
the quantile of 0.40. In other words, we provide strong evidence in favour of our hypothesis 
that housing search activity can lead house price volatility over and above housing returns, with 
the effect holding irrespective of the size this price variability, unlike returns.  

[INSERT FIGURE 1] 
Although robust predictive inference is derived based on the nonparametric causality-in-
quantiles test, it is also interesting to estimate the sign of the effect of the HSI on HR and HR2 
at various quantiles, especially to validate the theoretical positive relationship outlined in the 
introduction. But, in a nonparametric framework, this is not straightforward, as we need to 
employ the first-order partial derivatives. Estimation of the partial derivatives for 
nonparametric models can give rise to complications, because nonparametric methods exhibit 
slow convergence rates, due to the dimensionality and smoothness of the underlying 
conditional expectation function. However, one can look at a statistic that summarizes the 
overall effect or the global curvature (i.e., the global sign and magnitude), but not the entire 
derivative curve. In this regard, a natural measure of the global curvature is the average 
derivative (AD) using the conditional pivotal quantile, based on approximation or the coupling 
approach of Belloni et al. (2019), which allows us to estimate the partial ADs. Based on the 
ADs reported in Table 1, we find consistent evidence of a positive predictive effect of HSI on 
housing price returns and its volatility. 

[INSERT TABLE 1] 
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When we rely on a GARCH-based metric of volatility,8 our findings, as reported in Figure 2, 
continue to be robust in the sense that predictability is again observed over the entire 
conditional distribution, with a peak at the median, in a quite strong manner at the 1% level of 
significance, except at the two ends where the same holds at the 10% level. Barring the highest 
quantile of 0.90, a similar result is also obtained for weekly squared returns, as seen from Figure 
3. At the same time from the Figure 3, it must be noted that causality of HSI on HR is restricted 
now over the quantile range of 0.30-0.70, i.e., compared to the monthly data, though sample 
periods are different, the lack of predictability at the two ends of the conditional distribution of 
house price returns gets extended. 

[INSERT FIGURES 2 AND 3] 
At the regional-level, as can be seen from Table 2 (Panel A), 65 of the 77 MSAs considered, 
i.e., in 84.42% of the cases considered, there is evidence of predictability running from HSI to 
HR (for at least one quantile of the conditional distribution at the 1% to 10% level of 
significance). In line with the results for the overall US, for these instances, predictability peaks 
at quantiles closer to the median, and fades away at the extreme ends. Furthermore, as reported 
in Table 2 (Panel B), predictability for housing price returns volatility is detected for 68 of the 
77 MSAs, i.e., in 88.31% of instances, again with an inverted u-shaped pattern of the test 
statistic registering its highest value close to the median. But in this case, just as for the 
aggregate US, the coverage of causality over the conditional distribution of volatility is 
relatively higher compared to that of HR, in terms of the number of quantiles for which 
predictability is observed.      

[INSERT TABLE 2] 
In sum, we tend to conclude that the predictability of HSI for house price volatility, unlike 
housing returns is, in general, not regime-specific, and tends to be stronger in the sense of its 
coverage of the entire conditional distribution of the former, with these observations tending to 
hold both at the aggregate and MSA-level of the US housing market. 
 
 
 

                                                             
8 Complete details of the parameter estimates of the GARCH model are available upon request from the authors. 
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4. Conclusions 
In a recent study, Møller et al. (2023), developed a Google-based online search volume index 
of housing activity as a measure of underlying housing demand to show that the metric can 
predict housing price returns of the US and its MSAs. Based on recent models of housing search 
theory, we can also postulate that this housing search index (HSI) should also be able to predict 
volatility in house prices. To test our hypothesis, we use the k-th order nonparametric causality-
in-quantiles framework of Balcilar et al. (2018), which is capable of capturing predictability of 
the entire conditional distributions of both housing price returns and squared returns, i.e., 
volatility simultaneously, by controlling for misspecification due to uncaptured nonlinearity 
and regime changes with the HSI, which we statistically show to exist in our dataset over the 
monthly period of 2004:01 to 2021:01. 
We show that while housing search activity continues to predict aggregate US house price 
returns under the misspecified linear Granger causality model, as in Møller et al. (2023), the 
same, in general, also holds true for the quantiles-causality framework, barring at the extreme 
ends of the conditional distribution of returns. Our results thus provide a more nuanced 
evidence of causality running from HSI to housing price returns, with an inverted u-shape of 
the strength of the underlying standard normal test statistic, which reached its peak at the 
median. Comparatively, volatility is found to relatively strongly predicted over the entire 
quantile range considered of squared returns, with the highest value test statistic again 
registered close to the median. Our results tend to carry over to an alternative (the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH)-based) metric of volatility, as well 
as for higher-frequency, i.e., weekly data over January, 2018 to March, 2021. When we take a 
regional perspective by delving into 77 MSAs, we find that the predictive impact of HSI is 
detected for 65 and 67 of the cases for the first and second moment of house prices, 
respectively. In other words, the causal influence of HSI is dominant not only for the overall 
US, but also at the local-level, with strong evidence in favour of our hypothesis that housing 
search activity tends to predict housing returns volatility, over and above returns.  
Since our predictive analysis is performed at the monthly as well as weekly frequencies 
associated with housing returns, our results can be used by policymakers to obtain high-
frequency information about where the housing market is headed due to changes in housing 
search activity, and predict the future path of low-frequency, i.e., quarterly, economic activity 
variables, such as growth of Gross Domestic Product (GDP), at monthly and weekly-levels, 
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given that house price movements are known to lead US business cycles. Moreover, monthly 
and weekly predictions of housing returns and volatility contingent on online housing search 
activity, capturing latent demand, would also help investors to make optimal portfolio 
allocation decisions in a timely-manner. Finally, from the perspective of a researcher, our 
results suggest that the housing market is in fact inefficient in the semi-strong sense, given the 
predictive role of search activity, but this result is also contingent on the phase of the housing 
returns, which excludes bearish- and bullish-regimes. In other words, our results have 
important implications for policy authorities, investors, and academics. 
Since in-sample predictability does not necessarily translate into out-of-sample gains, as part 
of future research, it would be interesting to extend our analysis to a full-fledged forecasting 
exercise using the k-th order nonparametric causality-in-quantiles test, as outlined in 
Bonaccolto et al. (2018).  
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Figure 1. k-th order causality-in-quantiles test results for housing price returns and volatility 
for the US using monthly data: 2004:01-2021:01 

 
  
 
 
 
Figure 2. k-th order causality-in-quantiles test results for GARCH-based housing price 
returns volatility for the US using monthly data: 2004:01-2021:01 
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Note: Vertical axis reports the standard normal test statistic for the hypothesis that there is no Granger 
causality for a particular quantile on the horizontal axis running from housing search activity index 
(HSI) to housing price returns (HR) and squared returns (volatility; HR2); CV 10%, CV 5% and CV 
1 % correspond to the critical values of 1.645, 1.96 and 2.575 respectively. 

Note: Vertical axis reports the standard normal test statistic for the hypothesis that there is no Granger 
causality for a particular quantile on the horizontal axis running from housing search activity index 
(HSI) to GARCH-based housing price returns volatility; CV 10%, CV 5% and CV 1 % correspond 
to the critical values of 1.645, 1.96 and 2.575 respectively.  
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Figure 3. k-th order causality-in-quantiles test results for housing price returns and volatility 
for the US using weekly data: 2018:01-2021:03 

 
 
 
 
 
Table 1. Average Derivative Estimates for the Effect of HSI on housing price returns and 
volatility for the US using monthly data: 2004:01-2021:01 

Quantile HR HR2 
0.10 0.8934 0.0637 
0.20 0.8667 0.1696 
0.30 0.7906 0.1680 
0.40 0.7151 0.2372 
0.50 0.7775 0.2351 
0.60 0.7213 0.2635 
0.70 0.6685 0.2758 
0.80 0.6361 0.2767 
0.90 0.5778 0.2175 

Note: Entries correspond to average derivative (AD) estimates of the sign of the effect of HSI on to housing price 
returns (HR) and its volatility (HR2) at a particular quantile. 
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1 % correspond to the critical values of 1.645, 1.96 and 2.575 respectively.  



 

18 
 

Table 1 (Panel A). k-th order causality-in-quantiles test results for housing price returns at local (MSA) level using monthly data: 2004:01-
2021:01 

Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Miami, FL 1.0315 1.4009 1.4803 1.1712 0.7886 0.8352 1.1120 1.0232 0.9610 
Los Angeles–Long Beach 1.6172 2.4281** 3.1131*** 2.6601*** 2.9570*** 2.4529** 2.5215** 1.8816* 1.7244* 

San Francisco, CA 0.3846 0.5856 0.5890 0.7001 0.8839 0.6040 0.9766 0.8529 0.8039 
San Diego, CA 0.0297 0.0125 0.0049 0.0011 0.0069 0.0026 0.0049 0.0056 0.0019 

Salt Lake City–Ogden, UT 0.8457 1.1103 1.6508* 2.1129** 1.6261 1.4383 1.0168 0.7117 0.4247 
New York, NY 0.5398 0.6002 0.9871 0.8503 1.0702 0.6045 0.7042 0.4508 0.1450 

New Orleans, LA 0.2549 0.9730 0.9229 0.8069 0.4172 0.4403 0.4563 0.1943 0.0415 
Chicago, IL 0.0783 0.0204 0.0424 0.0151 0.0150 0.0142 0.0296 0.0314 0.0470 

West Palm Beach–Boca Raton, FL 0.7922 0.5847 0.5895 0.4146 0.5078 1.1368 1.1028 1.0023 0.1704 
Boston–Worcester–Lawrence–Lowell–MA-NH 0.5223 0.7183 1.1918 1.2904 1.1493 1.5974 2.0438** 1.1216 0.6838 
Seattle–Bellevue–Everett, WA 1.3265 2.1514** 1.3000 2.2435** 2.0830** 1.7651* 0.9728 0.9178 0.6126 

Sarasota–Bradenton, FL 0.5239 0.7290 0.8896 1.3928 1.3280 0.9660 0.9136 0.8324 0.4598 
Milwaukee–Waukesha, WI 0.9720 1.5021 1.2144 1.7936* 1.9767** 1.9644** 1.5705 1.1497 0.8825 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Jacksonville, FL 1.0741 1.8793* 2.1737** 1.4697 1.4369 1.5129 1.4428 1.1978 1.0618 
Portland–Vancouver, OR–WA 1.5964 1.5876 3.2543*** 3.1052*** 2.8820*** 2.6871*** 3.1567*** 2.1055** 1.2170 

Orlando, FL 0.2242 0.1142 0.1436 0.1765 0.2541 0.2259 0.1878 0.1155 0.0102 
Charleston–North Charleston, SC 1.1628 1.4145 1.3444 1.5315 1.8511* 2.4513** 1.6873* 1.6276 0.7773 

Pittsburgh, PA 0.0297 0.0125 0.0109 0.0011 0.0069 0.0026 0.0003 0.0003 0.0227 
Baltimore, MD 0.8807 1.5390 1.7551* 1.1636 1.5181 1.7940* 1.7453* 1.4437 0.8052 

Detroit, MI 1.3360 1.9523* 2.9844*** 3.2718*** 2.4783** 1.2232 0.8939 1.1375 0.5979 
Las Vegas, NV–AZ 1.2482 2.4415** 1.8425* 2.4518** 1.8768* 1.1186 1.0021 0.8975 0.7407 

Rochester, NY 1.2886 0.9997 1.5033 2.1694** 2.3091** 3.0241*** 2.1271** 1.2446 0.8146 
Tucson, AZ 1.3234 1.0723 2.1754** 2.1017** 1.8669* 2.0634** 1.5311 1.5100 0.9449 

Knoxville, TN 0.9294 1.3284 1.1705 1.4031 1.8139* 2.0568** 2.2482** 2.2348** 1.1416 
Minneapolis–St. Paul, MN–WI 0.8279 1.4193 1.1155 1.4068 1.7771* 2.5054** 2.6168*** 2.8726*** 1.9257* 

Hartford, CT 0.9639 2.0299** 2.4521** 2.3619** 1.5036 1.1521 1.4457 1.1273 0.6974 
Springfield, MA 1.7069* 2.1698** 1.8684* 2.0740** 2.1631** 1.2705 0.8792 1.0704 1.1143 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Denver, CO 1.2080 2.4052** 3.1959*** 2.6348*** 1.7198* 1.5048 1.0974 1.3067 0.8487 
Providence–Warwick–Pawtucket, 

RI 
1.1515 1.4914 1.9584* 1.9702** 1.9663** 2.5125** 2.7372*** 1.6985* 1.2235 

Washington, DC–MD–VA–WV 1.1079 1.8825* 2.0805** 1.9628** 2.3268** 2.6011*** 3.1993*** 2.5861*** 1.6609* 
Phoenix–Mesa, AZ 1.0222 1.6476* 2.6507*** 2.5610** 2.0493** 2.2587** 2.1026** 1.7802* 0.5833 

Scranton–Wilkes-Barre–Hazleton, 
PA 

0.7570 1.1224 1.3310 2.3950** 2.4429** 2.9612*** 2.3274** 2.4546** 1.6816* 
Harrisburg–Lebanon–Carlisle, PA 0.9990 1.5114 1.7468* 1.9619** 2.8813*** 1.8169* 1.7417* 1.6672* 0.9664 

Bakersfield, CA 1.0639 0.8970 2.5892*** 2.2546** 1.8009* 1.7610* 2.5116** 1.4811 0.7470 
Philadelphia, PA–NJ 1.3665 1.8516* 1.7397* 2.2293** 3.0995*** 2.2630** 1.4608 1.4072 0.7484 

Colorado Springs, CO 1.2947 1.9661** 2.7020*** 2.4998** 2.7360*** 2.1308** 1.9941** 1.7832* 1.2118 
Albany–Schenectady–Troy, NY 1.4288 1.8400* 1.6962* 1.8392* 2.0853** 2.9321*** 2.2955** 1.9511* 1.0322 

Baton Rouge, LA 1.5405 1.8065* 1.9067* 1.7699* 2.2405** 2.0414** 1.5779 1.5663 0.7470 
Memphis, TN–AR–MS 1.9584* 2.8592*** 3.8258*** 3.9451*** 3.4101*** 2.1399** 1.9956** 2.2495** 1.6166 

Buffalo–Niagara Falls, NY 1.7342* 2.8795*** 3.0687*** 3.4654*** 2.7187*** 1.8934* 2.0187** 1.8165* 1.2763 
Fresno, CA 1.5792 1.5859 2.0167** 2.5058** 3.1755*** 3.7592*** 2.9497*** 1.9863** 1.3931 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mobile, AL 1.5873 2.0574** 2.5170** 2.6588*** 2.7147*** 2.4968** 3.0013*** 2.2005** 1.6771* 
Stockton–Lodi, CA 1.2421 1.7719* 2.3989** 3.0228*** 2.4810** 1.9310* 2.2088** 2.0231** 1.1430 

Raleigh–Durham–Chapel Hill, NC 1.7304* 1.7121* 1.5564 1.9191* 1.9940** 1.7604* 2.0654** 2.4008** 1.7610* 
Albuquerque, NM 1.1578 1.7769* 2.3672** 2.7646*** 3.8512*** 2.3503** 2.1771** 1.8785* 1.1242 
Birmingham, AL 0.9247 1.7948* 1.9787** 2.3515** 2.5025** 3.3346*** 2.5357** 2.2238** 1.3168 

Dallas, TX 2.1536** 3.2999*** 4.0244*** 3.6804*** 2.8397*** 2.6609*** 2.4549** 2.3625** 1.7889* 
Syracuse, NY 1.4190 1.8243* 2.2039** 2.2401** 2.3091** 2.7562*** 2.8785*** 1.9178* 1.4464 
Toledo, OH 1.2193 2.0333** 2.2469** 2.0911** 2.5175** 2.7884*** 3.3375*** 2.7302*** 1.7709* 

Nashville, TN 1.8309* 2.7301*** 3.4952*** 3.4010*** 2.9874*** 2.3399** 2.6290*** 2.9454*** 2.0077** 
Houston, TX 1.4731 1.5189 2.0764** 2.2869** 2.6411*** 2.7310*** 2.9190*** 2.4201** 1.2746 

Louisville, KY–IN 1.7590* 2.0245** 2.2745** 2.1711** 1.9693** 1.6940* 1.4193 1.2770 1.1261 
El Paso, TX 1.6071 1.6035 3.2674*** 3.1187*** 2.9011*** 2.7018*** 3.1655*** 2.1168** 1.2268 

St. Louis, MO–IL 1.6979* 2.1327** 2.0580** 2.3715** 3.1767*** 2.5749** 1.6855* 1.6462* 0.9160 
Grand Rapids–Muskegon–Holland, 

MI 
1.3830 2.1189** 2.8493*** 2.6240*** 2.8924*** 2.2741** 2.1277** 1.8781* 1.2852 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Cincinnati, OH–KY–IN 1.4276 1.7081* 1.6916* 3.2130*** 2.6618*** 2.7388*** 2.0568** 1.7322* 1.0176 
Atlanta, GA 1.1597 2.0861** 2.2544** 1.9151* 2.1358** 2.5020** 2.5864*** 2.0286** 1.2088 
Akron, OH 1.3681 1.4483 1.5130 1.9876** 2.0251** 1.8975* 1.7117* 1.9233* 1.1918 

Richmond–Petersburg, VA 1.1380 1.6732* 2.5305** 2.9522*** 2.1733** 1.0307 0.7218 0.8730 0.3825 
Youngstown–Warren, OH 1.0673 0.8120 1.2339 1.8985* 1.9496* 2.5551** 1.7199* 0.9278 0.5679 

Columbia, SC 1.0899 0.8096 1.7444* 1.6330 1.4198 1.7113* 1.3049 1.2619 0.7193 
Columbus, OH 0.5767 1.1656 1.4594 2.0776** 1.4285 1.4978 1.0568 0.9371 0.6818 

Greenville–Spartanburg–
Anderson, SC 

1.3893 2.0681** 2.5085** 2.6938*** 2.3514** 2.0502** 1.7485* 1.2987 0.7215 
Little Rock–North Little Rock, AR 0.4724 0.6745 1.0939 0.7762 1.1838 0.6972 0.8240 0.8068 0.3496 

San Antonio, TX 0.5114 1.0929 1.2055 1.2786 1.6673* 2.7928*** 1.8211* 1.5456 0.7899 
Austin–San Marcos, TX 1.0708 1.5119 1.1402 1.2476 1.3066 0.5248 0.2587 0.4986 0.7598 

Charlotte–Gastonia–Rock Hill, 
NC–SC 

0.6165 0.8297 1.3283 1.4147 1.2774 1.7696* 2.1862** 1.2142 0.7585 
Greensboro–Winston–Salem–High 

Point, NC 
0.4463 1.0402 1.1558 1.3421 0.9448 1.3012 2.0395** 1.7061* 1.0543 

Kansas City, MO–KS 1.7648* 2.5646** 1.9925** 2.8205*** 2.7256*** 1.9966** 1.3909 1.4963 1.0217 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Oklahoma City, OK 2.4923** 3.1768*** 3.9544*** 4.4959*** 4.2997*** 4.0092*** 3.6874*** 3.0245*** 2.1822** 
Tulsa, OK 1.2549 1.8172* 2.1911** 2.2828** 3.1208*** 2.0177** 2.0014** 2.0320** 1.1488 

Omaha, NE–IA 1.0514 1.8565* 2.1434** 1.4386 1.3987 1.4674 1.4104 1.1597 1.0404 
McAllen–Edinburg–Mission, TX 1.5781 1.5605 3.2318*** 3.0817*** 2.8491*** 2.6618*** 3.1415*** 2.0862** 1.2003 

Dayton–Springfield, OH 0.7699 0.9734 1.5553 1.6369 1.8718* 1.3761 1.3163 1.2357 0.7780 
Indianapolis, IN 1.2560 1.5460 1.4584 1.6395 1.9304* 2.6180*** 1.8842* 1.7453* 0.8653 
Fort Wayne, IN 0.4695 0.7598 1.0543 1.1525 0.9726 1.7609* 1.5190 0.9813 0.7564 

Wichita, KS 0.7452 0.7934 0.9622 1.5843 1.6864* 1.4958 1.0378 1.4877 0.8458 
Note: ***, ** and *** indicate rejection of the null hypothesis of no Granger causality running from the housing search activity index (HSI) to housing price returns (HR) for a particular quantile at 1%, 5% and 10% levels 
of significance (i.e., critical values of 2.575, 1.96 and 1.645 of the standard normal test statistic) respectively. 
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Table 1 (Panel B). k-th order causality-in-quantiles test results for squared housing returns (volatility) at local (MSA) level using monthly data: 
2004:01-2021:01 

Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Miami, FL 0.8703 0.8950 1.3486 1.8427* 2.2876** 2.2929** 2.1602** 1.9359* 1.2383 
Los Angeles–Long Beach, CA 0.7213 1.2580 1.1667 1.2354 1.2994 0.8677 0.8762 1.0332 0.3263 

San Francisco, CA 0.7275 1.2885 1.5128 1.5848 1.8735* 2.4123** 2.8068*** 1.8178* 1.3707 
San Diego, CA 0.0747 0.3316 0.4756 0.5282 0.2470 0.4307 0.3147 0.1035 0.1510 

Salt Lake City–Ogden, UT 0.5626 0.7968 0.8965 0.6792 1.8796* 1.4745 1.7500* 2.0929** 0.7326 
New York, NY 1.9700** 2.5368** 3.0200*** 2.8922*** 2.8510*** 2.6424*** 2.5665** 2.8133*** 2.0357** 

New Orleans, LA 2.0347** 2.8877*** 3.1719*** 3.7951*** 3.4485*** 3.3966*** 3.1575*** 2.7593*** 1.8943* 
Chicago, IL 2.5074** 3.0688*** 3.2208*** 3.0966*** 3.3560*** 3.3225*** 3.3806*** 2.5228** 1.8023* 

West Palm Beach–Boca Raton, FL 2.3858** 3.5280*** 3.6042*** 3.2835*** 3.2161*** 3.1981*** 3.0464*** 2.9806*** 1.9629** 
Boston–Worcester–Lawrence–Lowell–

MA-NH 
2.3321** 3.6856*** 3.8455*** 3.7483*** 3.7849*** 3.9532*** 4.0359*** 3.4730*** 2.4074** 

Seattle–Bellevue–Everett, WA 1.7174* 3.2167*** 3.4201*** 4.0392*** 3.5926*** 3.3423*** 3.0351*** 2.9114*** 1.3935 
Sarasota–Bradenton, FL 0.0042 0.0125 0.0049 0.0026 0.0069 0.0011 0.0003 0.0056 0.0019 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Milwaukee–Waukesha, WI 0.4985 0.5995 0.5232 1.2423 1.2790 1.3837 1.5230 0.7894 0.3720 
Jacksonville, FL 1.2901 3.1035*** 3.2118*** 2.8427*** 2.5329** 2.2116** 1.4379 0.7276 0.5150 

Portland–Vancouver, OR–WA 0.4586 0.6138 0.9899 1.3995 1.2190 1.2726 2.0073** 0.8690 0.3902 
Orlando, FL 2.4296** 3.9410*** 3.4785*** 3.6268*** 3.7040*** 3.4718*** 3.0547*** 2.9759*** 1.8225* 

Charleston–North Charleston, SC 0.3375 0.3577 0.7429 0.7065 1.2109 1.2095 0.7105 1.0772 0.5840 
Pittsburgh, PA 2.5278** 3.0941*** 3.3136*** 3.6568*** 4.0745*** 3.9911*** 3.3000*** 2.2853** 1.7135* 
Baltimore, MD 1.9005* 3.0557*** 4.1613*** 4.3945*** 4.3343*** 4.7444*** 5.2918*** 4.2823*** 2.2293** 

Detroit, MI 0.9201 0.9385 1.4495 1.9332* 2.3648** 2.3560** 2.2123** 1.9660** 1.2604 
Las Vegas, NV–AZ 1.4486 1.6593* 1.4347 1.6429 2.2149** 2.0583** 1.7868* 1.5392 0.8722 

Rochester, NY 0.6384 1.1238 1.3760 1.4089 1.7111* 2.2279** 2.5964*** 1.5997 1.1879 
Tucson, AZ 0.9062 1.9164* 2.5067** 2.1125** 2.1777** 2.0804** 1.4190 1.2101 1.2126 

Knoxville, TN 0.9554 1.8263* 2.0436** 1.7790* 2.4685** 2.2650** 2.3140** 2.5703** 1.2816 
Minneapolis–St. Paul, MN–WI 1.3702 1.8024* 2.2160** 1.8775* 1.8316* 1.6450* 1.8495* 2.2751** 1.6257 

Hartford, CT 1.7256* 2.5832*** 3.0645*** 2.6259*** 1.7448* 1.4598 1.8168* 1.5229 0.8309 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Springfield, MA 0.7719 1.2192 1.2653 1.3262 1.4975 1.6951* 2.4270** 1.6050 0.6698 
Denver, CO 2.0919** 2.5273** 2.6077*** 2.9588*** 3.0687*** 3.2438*** 2.7256*** 2.1361** 1.7162* 

Providence–Warwick–Pawtucket, RI 1.1044 2.3733** 2.0048** 1.8707* 2.2137** 2.0510** 1.7915* 2.0273** 1.3533 
Washington, DC–MD–VA–WV 1.2803 2.2880** 2.5206** 2.1444** 2.0815** 2.4187** 2.6160*** 2.3878** 1.7671* 

Phoenix–Mesa, AZ 1.3113 3.0041*** 2.8881*** 3.5670*** 3.0388*** 2.1941** 2.0342** 1.9509* 0.7595 
Scranton–Wilkes-Barre–Hazleton, PA 1.0561 1.2866 1.1985 1.8976* 2.0250** 2.4707** 2.6621*** 1.7903* 0.9243 

Harrisburg–Lebanon–Carlisle, PA 1.2589 3.0361*** 3.1269*** 2.7738*** 2.4950** 2.1588** 1.3991 0.6818 0.5005 
Bakersfield, CA 1.1184 1.8107* 2.1036** 2.6435*** 2.6641*** 2.0956** 2.6565*** 1.6240 1.1635 

Philadelphia, PA–NJ 1.3496 1.9497* 2.1062** 2.3734** 2.5730** 2.9948*** 3.7178*** 2.5190** 1.7351* 
Colorado Springs, CO 1.0634 1.8171* 1.9610** 2.5025** 2.7436*** 2.4228** 2.2589** 2.5706** 1.2080 

Albany–Schenectady–Troy, NY 0.9097 1.5745 3.0043*** 3.9817*** 3.7736*** 3.0433*** 3.3014*** 1.5944 0.8832 
Baton Rouge, LA 0.9090 2.0467** 2.8309*** 2.6395*** 2.6998*** 3.1491*** 3.5969*** 2.7533*** 1.3631 

Memphis, TN–AR–MS 1.7452* 2.9557*** 3.0763*** 3.8195*** 3.3128*** 2.8290*** 2.7686*** 2.7780*** 1.9302* 
Buffalo–Niagara Falls, NY 2.5312** 2.8628*** 3.1145*** 3.3351*** 3.7601*** 3.5848*** 3.6605*** 2.9605*** 2.2033** 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fresno, CA 2.1116** 2.5803*** 3.0367*** 2.8128*** 3.1856*** 2.9397*** 2.9705*** 2.2250** 1.9952** 
Mobile, AL 2.0718** 2.9141*** 2.9610*** 3.0311*** 3.0133*** 3.1211*** 2.6828*** 2.7084*** 1.9030* 

Stockton–Lodi, CA 2.3866** 3.5564*** 3.9375*** 3.8241*** 4.1971*** 4.1110*** 3.8094*** 3.2976*** 2.3427** 
Raleigh–Durham–Chapel Hill, NC 2.5448** 3.3876*** 4.1297*** 4.0599*** 4.0583*** 3.9497*** 3.5219*** 3.2509*** 2.4664** 

Albuquerque, NM 2.6521*** 3.6986*** 3.8698*** 4.4678*** 4.3920*** 4.2729*** 3.9686*** 3.4709*** 2.5719** 
Birmingham, AL 2.3044** 3.0809*** 3.3656*** 3.4531*** 3.5504*** 3.2768*** 2.9780*** 2.8053*** 2.1962** 

Dallas, TX 2.9449*** 4.0323*** 4.6233*** 4.8084*** 4.5618*** 4.5782*** 4.2095*** 3.6711*** 2.9286*** 
Syracuse, NY 3.0918*** 4.0467*** 4.6168*** 4.8342*** 4.3974*** 3.7560*** 3.6350*** 3.1527*** 2.5518** 
Toledo, OH 2.3007** 3.6586*** 3.8203*** 3.7104*** 3.7419*** 3.9179*** 4.0102*** 3.4479*** 2.3914** 

Nashville, TN 2.2370** 3.0924*** 3.2461*** 3.8869*** 3.7642*** 3.5127*** 3.2286*** 3.3857*** 2.1694** 
Houston, TX 2.7515*** 3.9438*** 4.4109*** 4.2427*** 4.3691*** 4.2894*** 3.9229*** 3.5593*** 2.5118** 

Louisville, KY–IN 2.5604** 3.5874*** 4.3698*** 3.6192*** 4.0795*** 3.9993*** 3.6115*** 3.1413*** 2.0755** 
El Paso, TX 2.2442** 3.0897*** 3.0920*** 3.3278*** 3.1480*** 3.1096*** 2.9105*** 2.9025*** 2.1632** 

St. Louis, MO–IL 2.2421** 2.9522*** 3.3401*** 3.2736*** 3.5053*** 3.5653*** 3.8323*** 3.2400*** 2.3885** 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Grand Rapids–Muskegon–Holland, MI 2.5279** 4.0167*** 3.6860*** 3.9030*** 3.9668*** 3.7672*** 3.3539*** 3.2432*** 2.0050** 
Cincinnati, OH–KY–IN 2.2388** 2.9998*** 3.4880*** 3.7923*** 4.1827*** 4.3543*** 3.7351*** 3.4423*** 2.5692** 

Atlanta, GA 2.5835*** 3.1895*** 3.4345*** 3.7882*** 4.1923*** 4.1291*** 3.4081*** 2.4040** 1.8084* 
Akron, OH 2.2533** 3.4198*** 3.9638*** 3.8596*** 3.6327*** 3.7273*** 3.7135*** 3.2775*** 2.3498** 

Richmond–Petersburg, VA 0.7017 0.7832 1.0523 1.5680 2.0568** 2.1281** 1.9971** 1.7976* 1.1402 
Youngstown–Warren, OH 1.9397* 2.8534*** 3.1442*** 2.9138*** 2.8365*** 2.5522** 2.6584*** 2.5106** 1.7579* 

Columbia, SC 0.2409 0.8537 1.2956 0.9853 0.6724 0.8433 0.5656 0.3082 0.3845 
Columbus, OH 0.5614 0.7676 1.3391 1.1282 1.6215 1.4030 1.5389 1.2441 1.1088 

Greenville–Spartanburg–Anderson, SC 0.7214 1.2265 1.6382 1.6722* 1.2023 0.7185 0.8307 1.4257 0.5427 
Little Rock–North Little Rock, AR 0.5026 0.6365 0.8494 1.6220 1.3867 0.8672 1.1021 0.8013 0.4811 

San Antonio, TX 0.9044 0.8797 0.6511 0.7969 0.7757 0.6941 1.2459 0.7842 0.3383 
Austin–San Marcos, TX 0.7190 0.9101 1.2932 1.1730 1.7133* 2.4632** 2.1453** 1.3625 0.8940 

Charlotte–Gastonia–Rock Hill, NC–
SC 

1.5769 2.4250** 1.6712* 1.6665* 2.0390** 2.0765** 0.9206 0.8035 0.8019 
Greensboro–Winston–Salem–High Point, NC 1.8372* 0.8819 0.6037 0.7192 0.7967 0.8120 0.8495 1.0102 0.4916 
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Quantiles 
MSA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Kansas City, MO–KS 1.6603* 3.1778*** 3.3138*** 3.9360*** 3.4434*** 3.1102*** 2.8301*** 2.7626*** 1.2862 
Oklahoma City, OK 0.7622 0.8718 0.8250 1.5776 1.7039* 2.0880** 2.2510** 1.3679 0.6632 

Tulsa, OK 0.7513 0.9374 1.3036 1.3077 1.7797* 2.0324** 1.7535* 1.1327 0.4420 
Omaha, NE–IA 1.2067 2.9158*** 2.9786*** 2.6564*** 2.4341** 2.0698** 1.3378 0.6098 0.4794 

McAllen–Edinburg–Mission, TX 0.6717 1.2159 1.7774* 0.7030 1.0303 0.9283 0.7171 0.6253 0.3363 
Dayton–Springfield, OH 1.0504 1.7978* 1.9333* 2.4781** 2.7191*** 2.4009** 2.2392** 2.5539** 1.1952 

Indianapolis, IN 1.2693 1.5350 1.5973 2.2893** 2.3702** 2.0141** 1.4383 1.1400 0.7896 
Fort Wayne, IN 0.5610 1.0066 1.5165 1.9027* 1.7622* 1.5717 0.8940 0.8619 0.6646 

Wichita, KS 0.3596 1.0858 0.7555 1.5275 1.3643 0.9991 0.8174 0.7549 0.4577 
Note: ***, ** and * indicate rejection of the null hypothesis of no Granger causality running from the housing search activity index (HSI) to squared housing price returns (HR2) for a particular quantile at 1%, 5% and 10% 
levels of significance (i.e., critical values of 2.575, 1.96 and 1.645 of the standard normal test statistic) respectively. 
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Appendix 
 Figure A1. Data Plots of Housing Price Returns (HR) and Housing Search Activity Index 
(HSI) 
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Table A1. Summary Statistics 
 

 Variable 
Statistic Housing Price 

Returns (HR) 
Housing 

Search Activity 
Index (HSI) 

Mean 0.0027 0.0000 
Median 0.0041 0.2032 

Maximum 0.0162 5.3304 
Minimum -0.0178 -4.2176 
Std. Dev. 0.0057 1.9094 
Skewness -0.8805 0.2334 
Kurtosis 3.7467 3.4026 

Jarque-Bera 31.2536*** 3.2452 
Observations 205 

   
 
 

 Table A2. Brock et al. (1996, BDS) Test of Nonlinearity 
 

Independent 
Variable 

Dimension (m) 
2 3 4 5 6 

HSI 2.0535** 4.1866*** 4.5429*** 5.1949*** 5.6212*** 
 
 

Note: Std. Dev: stands for standard deviation; The null hypotheses of the 
Jarque-Bera test correspond to the null of normality; *** indicates rejection of 
the null hypothesis at the 1% level of significance.  

Note: Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals, with the test applied to the residuals 
recovered from the housing returns equation with one lag each of housing price returns and housing search activity index 
(HSI); ** and *** indicates rejection of the null hypothesis at 5% and 1% levels of significance, respectively. 


