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Abstract

Using monthly data for the G7 countries from 1973 to 2020, we study whether stock market

bubbles help to forecast out-of-sample the realized volatility of oil price returns. We use the

Multi-Scale Log-Periodic Power Law Singularity Confidence Indicator (MS-LPPLS-CI) approach

to identify both positive and negative bubbles in the short-, medium, and long-term. First,

we successfully detect major crashes and rallies using the MS-LPPLS-CIs. Having established

the relevance of the bubbles indicators, and given the large number of them, we use widely-

studied shrinkage (Lasso, elastic net, ridge regression) approaches to estimate our forecasting

models. We find that stock market bubbles have predictive value for realized volatility at

a short to intermediate forecast horizon. The number of bubble predictors included in the

penalized forecasting models tend to increase in the forecast horizon. We obtain our main

finding for the various types of stock market bubbles, and for good and bad realized volatilities.
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1 Introduction

We forecast the monthly realized volatility of returns of the West Texas Intermediate (WTI)

oil price, over the period of 1973:01 to 2020:09, based on the information content of indi-

cators of stock market bubbles of the G7 countries (i.e., Canada, France, Germany, Italy,

Japan, the United Kingdom (UK), and the United States (US)). The predictive value of stock

market bubbles for explaining oil market volatility can emanate through multiple channels.

First, it is now theoretically (Biswas et al., 2020) and empirically (Reinhart and Rogoff,

2009; Brunnermeier and Oehmke, 2013; Jordà et al., 2015) well-established that burst-

ing of bubbles leads to severe recessions and major economic losses. At the same time,

recoveries or rallies of stock markets tend to be associated with better performance of the

economy in terms of growth (Caraiani et al., 2023). The resulting up- and downswings of

economic activity, in turn, can have direct repercussions on oil-price movements.

Second, stock market bubbles and the ensuing economics booms and busts can in-

crease macroeconomic uncertainty. As initially pointed out by Bernanke (1983), and more

recently by Ludvigson et al. (2021), economic conditions are negatively associated with

macroeconomic uncertainty. As per the “theory of storage” governing volatility dynamics in

commodity markets (see, Fama and French (1987) for a detailed discussion of the histori-

cal evolution of this theory), rising (falling) macroeconomic uncertainty, in turn, can cause

risk-averse commodity producers to increase (reduce) holding of physical inventory, as fu-

ture cash flows are expected to be negatively (positively) impacted (Gupta and Pierdzioch,

2023). This would result in a rise (fall) in the convenience yield, which in turn will produce

increased (decreased) volatility of the commodity (oil) prices (Gupta and Pierdzioch, 2021a,

2022; Çepni et al., 2022). In other words a stock market crash (recovery) will raise (re-

duce) uncertainty to cause oil market volatility to rise (fall) due to deteriorating (improved)

economic conditions.

Third, the effect of stock market bubbles can feed into the volatility of the oil market

via a “leverage effect” (as initially established by Geman and Shih (2009) and, more re-

cently, stressed by Asai et al. (2019)), when one accounts for the high degree of correlation

between stock and oil returns. The original idea of the leverage effect, proposed for the

stock market by Black (1976), implies that negative (positive) returns are often associated

with upward (downward) revisions of volatility. Aboura and Chevallier (2013), however,
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point out that it is also possible to obtain an increase in the volatility subsequent to a hike

in the oil price as it may reflect that oil consumers fear a rising oil price. Irrespective of

the underlying nature of the leverage effect, and the sign of the correlation, which seems

to have changed from the historically negative one to a positive value since the turn of

the century, and consistently so after the Global Financial Crisis due to the process of

financialization (Antonakakis et al., 2017), this potential channel of stock market bubbles

impacting oil returns volatility cannot be ignored. For example, declining (increasing) stock

returns due to a crash (recovery) would translate into decreasing or increasing (increasing

or decreasing) oil returns, depending on the part of sample period being analyzed, which

would then result in a increase or a decrease (a decrease or an increase) of oil returns

volatility, contingent on the traditional (non-traditional) definition of the leverage effect.

Fourth, stock market bubbles are known to be driven by investor sentiments (Pan,

2020; van Eyden et al., 2023), and with a more financialized oil market, involving increasing

importance of the financial sector and the inreasing role of financial motives, speculation

is likely to have become a common factor driving the higher interconnectedness of returns

between stocks and crude oil. Through this behavioral channel relating the two returns

stock market bubbles could impact volatility of the oil market either directly or indirectly

when stock market bubbles work their way to the oil market via the leverage effect.

Finally, a vast inflow of institutional investors in the oil market, especially over the

last two decades, has led to increasing integration of the oil and stock markets such that

portfolio rebalancing of index investors can result in volatility spillovers, caused by stock

market bubbles through the leverage channel (strong evidence of which can be found in

Goswami et al. (2020)) to the oil market (Bampinas and Panagiotidis 2017).

Given that bubbles are notoriously difficult to detect, we not only use the advanced Log-

Periodic Power Law Singularity (LPPLS) model, tracing back to the work by Johansen et al.

(1999, 2000) and Sornette (2003), to recover positive (upward accelerating price followed

by a crash) as well as negative (downward accelerating price followed by a rally) bubbles,

but we also apply the multi-scale LPPLS confidence indicators studied by Demirer et al.

(2019) to characterize positive and negative bubbles at short-, medium- and long-term

time scales. In this regard, it is important to emphasize that both positive and negative

multi-scale bubbles cannot be detected based on other statistical tests (see, Balcilar et
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al. (2016), Zhang et al. (2016), and Skrobotov (2023) for detailed reviews). We consider

the two aspects nature and time-scale of bubbles important for two reasons. First, these

aspects allow the possible differential predictive effects for the volatility of oil price returns

of positive and negative news, resulting from positive and negative bubbles, to be taken

into account, especially in the context of the leverage-effect-related channel outlined above.

Second, crashes and recoveries at alternative horizons can convey differential information

for different types of traders, as implied by the Heterogeneous Market Hypothesis (HMH;

Müller et al., 1997). The HMH stipulates that different types of traders (i.e.,, investors,

speculators, and traders) populate financial markets, and that these different types of

agents differ with regard to their perception of information flows at different time horizons.

One can easily imagine, for example, that speculators are likely pay attention particularly

to short- and medium-term bubbles, whereas investors are possibly mainly react to long-

term bubbles. In other words, such a disaggregation into sign and time-scale of stock

market bubbles is likely to prevent loss of predictive signals due to aggregation.

We model in terms of the realized volatility as the square root of the sum of daily

squared returns over a month (based on the research by Andersen and Bollerslev, 1998),

which has the advantage that it is an observable and unconditional metric of volatility – an

otherwise latent process. Traditionally, researchers have analyzed the time-varying volatil-

ity of oil-price returns using various models belonging to the generalized autoregressive

conditional heteroskedasticity (GARCH)-family. The characteristic feature of models be-

longing to the GARCH)-family is that the conditional variance is a deterministic function of

model parameters and past data. In more recent research, some researchers have studied

stochastic volatility (SV) models, which imply that volatility is a latent variable governed

by some stochastic process (for further details, see Chan and Grant (2016) and Lux et al.

(2016)). Irrespective of whether one uses a GARCH or a SV model, one obtains an estimate

of volatility that is not unconditional (model-free), as it is in the case with realized volatility.

We also must stress that, while oil is a global commodity, we consider the WTI as our

proxy for the world oil price, not only due to consistent availability of data to associate with

major episodes of bubbles covering nearly the last 50 years, but also because the US is a

major player on both the demand- and the supply-front of the oil market. In this regard, our

decision to analyze the G7 stock market bubbles should also be understandable, because
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the G7 countries account for nearly two-third of global net wealth and nearly half of world

output, and, as such, extreme bubble-induced movements in the stock markets of the G7

countries are likely to trigger effects that radiate on a global scale to both the real economy

and financial and commodity markets (Das et al., 2019).

In terms of our empirical research strategy, we rely on a standard linear forecast-

ing regression framework, with the benchmark being an autoregressive model of realized

volatility of oil returns. Based on the identified channels through which stock market bub-

bles may predict oil market volatility, it is clear that the role of the leverage effect is quite

prominent, given the connectedness between stock and oil markets. In order to separate

out the influence of stock market bubbles on oil market developments, required to vali-

date our lines of economic intuition, we augment our benchmark model with structural oil

shocks, known to drive the oil price, following the seminal contribution of Kilian (2009), as

well as oil returns realized volatility (Demirer et al., 2020). In this regard, we consider oil

supply shocks, economic activity shocks, oil-specific consumption demand shocks, and oil

inventory demand shocks.

When we add the 42 (six each: positive and negative at short-, medium-, and long-

horizon, for seven countries) bubbles indicators to our forecasting model and also the

shocks, we can be absolutely sure to capture the additional effect of the booms and busts

of the G7 stock markets on oil price volatility via its returns. In addition, the global demand

and oil-specific consumption demand shocks, make it possible to filter out the economic

activity and speculative channels via which bubbles can impact oil market volatility, as

outlined above. In other words, including the four structural oil shocks in our model as

control variables is strongly warranted in terms of appropriately isolating the predictive role

of stock market bubbles on the realized volatility of oil returns. The oil shocks data, based

on the work of Baumeister and Hamilton (2019), is available from 1975:02, but because

we detect an important crash episode in 1973 (from when our bubbles indicators start), as

part of the collapse of the Bretton Woods system, we also conduct a forecasting analysis

starting in 1973:01 by using oil returns instead of the oil shocks. While it is understand-

able that oil returns is an imperfect substitute of the oil shocks, as it might be masking

many of the channels involving the bubbles-oil volatility nexus, it does serve as a valuable

control in the context of our forecasting experiment.
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In terms of econometrics, while we can rely on the standard Ordinary Least Squares

(OLS) estimator to estimate our benchmark forecasting model, and the augmented one

with the four shocks, we use a shrinkage estimator known as the least absolute shrinkage

and selection operator (Lasso) estimator (Tibshirani, 1996) to analyze the predictive value

of the 42 bubbles indicators. The idea underlying this shrinkage estimator (as well as

its relatives) is to reduce the dimension of a regression model in a data-driven manner to

improve the accuracy of predictions derived from the penalized model. The relatives of the

Lasso estimator that we study in our empirical research are the elastic net estimator and

the ridge regression estimator, two other widely studied shrinkage estimators.

Our analysis stretches beyond academic value, and our findings should be of impor-

tance to investors as well as policymakers, because the trend towards increasing financial-

ization of the oil and other commodity markets (Tang and Xiong, 2012; Büyükşahin and

Robe, 2014), has resulted in increased market participation of institutional investors like

hedge funds, pension funds, and insurance companies. In fact, crude oil is now considered

a profitable “alternative” investment in the portfolios of financial institutions (Degiannakis

and Filis, 2017).

In light of this, in 2022, the world produced an average of 80.75 million barrels of oil per

day (including condensates), such that annual crude oil production reached approximately

29.5 billion barrels, with the market size exceeding $2 trillion at current prices (US Energy

Information Administration (EIA); BP Statistical Review of World Energy), making oil the

by far most actively traded commodity.1 Because standard finance theory implies that the

volatility of price movements is an important input to investment decisions and portfolio

choices (Poon and Granger, 2003), it is clear that accurate forecasts of the realized volatility

of oil-price returns are of key interest to oil traders. At the same time, the variability of oil-

price returns has been shown to be associated with slowdowns in worldwide economic

growth (van Eyden et al., 2019; Salisu et al., 2021). It follows that precise estimates of

future movements of the realized volatility of oil price returns should also be important

for policymakers, who need to design macroeconomic policies ahead of time to prevent the

possibility of deep economic recessions.

1Iron Ore comes a distant second with 2.6 billion tonnes of annual production in 2022, and an associated
market size of $283.4 billion. In fact, the combined market size of the top 10 metal markets amounts to $967
billion, which is still less than half that of the oil market.
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To the best of our knowledge, this is the first paper to analyze the role of stock market

bubble indicators of the G7 for forecasting the realized volatility of WTI oil-price returns,

using statistical learning techniques (Lasso, ridge regression and elastic net), besides the

standard OLS estimator applied to the smaller models involving only a lag of the depen-

dent variable, and structural oil shocks. In this way, we contribute to the already existing

significant literature on forecasting of oil-returns volatility by studying the role of crashes

and recoveries of major international equity markets, with existing studies having consid-

ered the predictive value of a large number of macroeconomic, financial, behavioral, and

climate patterns-related variables based on a plethora of modeling techniques (see, for ex-

ample, Asai et al. (2020), Bonato et al. (2020), Bouri et al. (2020, 2021), Gkillas et al.

(2020), Gupta and Pierdzioch (2021b), Demirer et al. (2022), Salisu et al. (2022), Luo et al.

(2022), and the references cited within these papers).

We structure the remaining sections of this research as follows: In Section 2, we provide

a description of the data we used in our study, while we present a discussion of the un-

derlying methodology and the detected bubbles based on the multi-scale LPPLS confidence

indicators (MS-LPPLS-CI) approach in Section ??. We outline in Section 3 our forecasting

models and discuss our empirical results in Section 4. Finally, we conclude in Section 5.

2 Data

Given the restriction imposed by the availability of data, our sample period cover the

monthly period of 1973:01 to 2020:09. We derive our metric of the realized volatility of

oil-price returns in several steps. First, we compute the daily log-returns, that is, the first-

difference of the natural logarithm of the WTI oil price. The daily WTI crude oil nominal

price data is derived from Global Financial Data (GFD).2 Second, we take the sum of the

daily squared log-returns over a specific month. Third, we take the square root of this

sum. Fourth and finally, due to a large peak of realized volatility at the end of the sample

period, which is associated with the outbreak of the COVID-19 pandemic, we work with

the natural logarithm, ln(1 + RV ), as this also avoids zero entries in the early part of the

sample. We plot the resulting metric of realized volatility in Figure 1.

2See the following internet page: https://globalfinancialdata.com/. Since daily data starts from January,
1977, for the period 1973 to 1976, we use the square root of the squared log-returns.
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− Figure 1 about here. −

We control for monthly log-returns of the WTI price, which starts in 1973:01, also ob-

tained from GFD. Because it is now well-established, however, that oil-price movements

are driven by structural shocks, as discussed in Section 1, our main analysis primarily

focuses on four monthly shocks to separate out the effect of the stock market bubbles. We

account for the following four shocks: an oil supply shock, an economic activity shock, an

oil-specific consumption demand shock, and an oil inventory demand shock, with the data

on shocks obtained from the structural vector autoregressive (SVAR) model of Baumeister

and Hamilton (2019),3 whose framework is less restrictive than what has been predomi-

nantly used in the recent literature following the research by Kilian (2009). The modeling

framework proposed by Baumeister and Hamilton (2019) incorporates uncertainty about

the identifying assumptions of the SVAR model. Their oil shocks, thus, are relatively more

accurately estimated, with each of the shocks accounting for a distinct aspect of the de-

mand for and supply of oil, that is, the information conveyed by the shocks do not overlap.

The data on the structural shocks start from 1975:02, and are depicted in Figure 2.

− Figure 2 about here. −

Turning to our main predictors, we compute first weekly bubble indicators, which we de-

rive by studying the natural logarithmic values of the daily dividend-price ratio of the G7

countries, using the (local currency) dividend and the stock price index series, provided

by Refinitiv Datastream. The estimated bubbles indicators cover the weekly sample period

from the 1st week of (7th) January, 1973 to 2nd week of (13th) September, 2020. Because

our dependent variable is measured at the monthly frequency, in order to obtain a monthly

estimate for every multi-scale confidence indicator, we compute the mean of the weekly

values for each of the scales for a given month.4

− Figure 3 about here. −

We next discuss in detail the evolution of the MS-LPPLS-CIs to inspect their ability to detect

crashes and rallies in real-time. To this end, we plot the short-, medium-, and long-term
3The data is downloadable from the internet page of Professor Christiane Baumeister at: https://sites.

google.com/site/cjsbaumeister/research.
4Please refer to Section A1 at the end of the paper (Appendix) for the details of how we obtain the MS-

LPPLS-CIs. The description of the technical details of the MS-LPPLS model, as well as the discussion of the
estimated bubbles, draws heavily on the discussion of the MS-LPPLS model in Demirer et al. (2019), Caraiani
et al. (2023), Gupta et al. (2023), and van Eyden et al. (2023).
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indicators (green, purple, and red lines), while we show the log price-to-dividend ratio as

a black line in Figure 3. A larger LPPLS-CI value for a particular scale shows that the

LPPLS signature is present for many of the fitting windows to which we calibrated the

model, making it a more reliable bubble indicator. The key message conveyed by Figure

3 is that there are many peaks in the LPPLS-CIs preceding substantial shifts in the log

price-to-dividend ratio.

Consider first the long-term positive LPPLS-CI (red lines in Figure 3). The long-term

positive LPPLS-CI comprises 223 individual LPPLS model fits (where the fitting windows

have length from 300 to 745 observations), representing nearly three years of data. Given

the calibration time-period, we expect that large indicator values can be observed less

frequently than they would for smaller scales. In fact, we observe four strong positive

long-term LPPLS-CI values, the first one from 1973:01 to 1974:12. This crash followed the

collapse of the post World-War-II Bretton Woods system, and the devaluation of the dollar

after the Smithsonian Agreement. We also observe a strong positive long-term LPPLS-CI

value preceding “Black Monday” in 1987:10, and during the Asian Financial Crisis of 1997.

Moreover, highly positive LPPLS-CI values cluster in the lead up to the Dot-com bubble

burst from 2000:03 to 2002:10 and, following the bursting of the bubble, we observe strong

negative LPPLS-CI values (signaling rallies).

As for the medium-term LPPLS-CI (purple lines in Figure 3), this indicator is based on

105 fits and spans fitting windows of length from 90 to 300 observations, representing a

little over one year of data. We observe noticeable (positive and negative) LPPLS-CI values

in periods for which we also recover the same for the long-term LPPLS-CIs. Moreover, our

estimation results show that strong positive medium-term LPPLS-CI values precede strong

long-term LPPLS-CI values in the run up to the Global Financial Crisis.

We next turn to a discussion of the short-term LPPLS-CI (green lines in Figure 3). This

indicator uses 30 fits based on fitting windows with length ranging from 30 to 90 observa-

tions, representing one month. We see in Figure 3 that this scale, as expected, produces

the most signals. Moreover, the smallest crashes/rallies are signaled from this scale, which

possibly indicates that it picks up idiosyncratic signals. We still observe, however, small

corrections after a short-term LPPLS-CI takes on a strong value. Interestingly, just like the

medium-term LPPLS-CIs precede the long-term LPPLS-CIs, the short-term LPPLS-CIs tend
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to precede the medium-term ones in periods of major bubble recovered by the medium- and

long-run LPPLS-CIs. This lends support to the finding reported by Demirer et al. (2019)

that the maturation of the bubble towards instability is present across several distinct

time-scales.

Given that an asset’s volatility increases with the square-root of time, we conclude that

shorter smaller crashes or rallies can best be recovered using shorter time-scales, while

longer time-scales help to detect larger crashes or rallies. In line with the results we plot

in Figure 3, the long-term scales lead to fewer signals but tend to capture larger crashes or

rallies, while the shorter-scales generate frequent signals before smaller crashes or rallies.

Moreover, we observe a similar timing of the strong (positive as well as negative) MS-LPPLS-

CI values in the cross-section of G7 countries, in line with the intuition that boom and bust

cycles of the seven developed equity markets often occur in tandem, motivating the need

to combine the information content of the bubbles to capture fully the potential effect

of financial market collapses and recoveries on the accuracy of forecasts of the realized

volatility of oil price returns.

We also note that the bubble indicators in general display peaks in periods of time

corresponding to crashes and recoveries before and around the Global Financial Crisis of

2007 to 2008, the European sovereign debt crisis from 2009 to 2012, the “Brexit” in 2016,

and to some extent during the COVID-19 episode as well.

3 Forecasting Models

We consider two benchmark models: the AR-CORE model and the AR-SHOCKS model,

given by the following regression equations:

RVt+h = β0 + β1RVt + ut+h, (1)

RVt+h = β0 + β1RVt + β2St + ut+h, (2)

where h denotes the forecast horizon (in months), RVt denotes realized volatility in period

of time t, RVt+h denotes the average of realized volatility between period of time t and period

of time t + h, ut+h denotes the usual disturbance term, St denotes a vector of (oil supply,
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economic activity, oil-specific consumption demand, and oil inventory demand) shocks,

and βj , j = 0, 1 (β2) denote coefficients (a vector of coefficients) to be estimated. The AR-

CORE model and the AR-SHOCKS model feature a small number of predictor variables

and can easily be estimated by the OLS estimator.

The extended rival forecasting models are given by the following AR-CORE-BUBBLES

and the AR-SHOCKS-BUBBLES models:

RVt+h = β0 + β1RVt + β3Bt + ut+h, (3)

RVt+h = β0 + β1RVt + β2St + β3Bt + ut+h. (4)

While the two rival models can in principle also be estimated by the OLS estimator, such

an estimation approach does not take into account that the vector, Bt, of stock market

bubbles has many components. With seven (G7) countries in our sample, and short-term,

medium-term, and long-term bubble predictors, with all three categories further split into

positive and negative bubbles, we have a total of 7 × 3 × 2 = 42 bubble predictors. Adding

the autoregressive predictor and the four shocks gives a total of 47 predictors (excluding

the intercept term).

Given the large number of predictors, we use a shrinkage estimator to estimate the

forecasting models given in Equation (3) and (4). One popular shrinkage estimator is the

least absolute shrinkage and selection operator (Lasso) developed by Tibshirani (1996). In

the case of the AR-SHOCKS-BUBBLES model, the Lasso estimator leads to a parsimo-

nious (penalized) forecasting model by minimizing the following expression (for a textbook

exposition, see Hastie et al. (2009)):

T∑
t=1

(RVt+h − β0 − β1RVt − β2St − β3Bt)
2 + λ

(
n∑

i=1

|βi|

)
, (5)

where T denotes the number of observations used to estimate the forecasting model, λ

denotes a shrinkage parameter, and n denotes the number of coefficients that are subject

to the shrinkage process. Hence, the Lasso estimator adds to the standard quadratic loss

function that forms the foundation of the OLS estimator a penalty term that increases

in the absolute value of the coefficients. The Lasso estimator, thereby, implies that it is
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preferable to select coefficients that are small in absolute value or even zero, where the

effect of this shrinking of coefficients towards zero must be balanced against the resulting

effect on the quadratic loss function.

Equation (5) can be easily modified to obtain two other popular shrinkage estimators.

The first alternative shrinkage estimator is the so-called ridge regression estimator. This

estimator uses the squared coefficients rather than the absolute coefficients in the penalty

term of Equation (5). The second alternative shrinkage estimator is the elastic net estima-

tor, which uses a weighted average of the penalty terms that form the foundation of the

Lasso and Ridge regression estimators, with some mixing parameter 0 ≤ m ≤ 1 (such that

the Lasso estimator obtains as a special case for m = 1). In our empirical analysis, we

shall mainly set m = 0.5 when we study the elastic net estimator, but we shall also present

results for an alternative numerical value of the mixing parameter.

We estimate our forecasting models on four different estimation training-data windows

covering 50% up to 75% of the data, and use the remaining test data to compute forecasts of

realized volatility. We subtract the actual realizations of realized volatility from the forecasts

to obtain the forecast error, which we then scale by the actual realizations of realized

volatility to obtain the relative forecast error. We use the relative forecast error because,

as we show in Figure 1, realized volatility exhibits a very large outburst at the end of

the sample period. Using the relative forecast error mitigates the effect of this clearly

atypical period of very large realized volatility on our results. Equipped with the relative

forecast error, we compute the root-mean-squared-relative-forecast error (RMSRFE) for the

benchmark and the rival forecasting models, which we then combine to form a RMSRFE

ratio. A RMSRFE ratio that exceeds unity shows that the rival model performs better than

the benchmark model. In addition, we use the modified Diebold and Mariano (1995) test

(Harvey et al., 1997) to shed light on the statistical significance of our results.

We use the R language and environment for statistical computing (R Core Team 2023;

version 4.3.0) the R add-on package “glmnet” (Friedman et al. 2010; version 4.1-7) to

estimate our forecasting models. We use 10-fold cross-validation to determine the optimal

shrinkage parameter (the one that minimizes the mean cross-validated error).
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4 Empirical Results

We set the stage for our empirical analysis by summarizing in Table 1 the number of bubble

predictors included in the penalized forecasting models, where we use the Lasso estimator,

the elastic net estimator, and the Ridge regression estimator to select among all predictors

and, thus, to obtain a parsimonious penalized version of the AR-CORE-BUBBLES model.

We present results for five different forecast horizons and four different training windows.

The results show that the number of bubble predictors included in the penalized forecast-

ing model under the Lasso and elastic net estimators tends to increase in the forecast

horizon, whereas the penalized forecasting models selected by means of the Ridge regres-

sion estimator always include all bubble predictors. Hence, as expected, the elastic net

strikes a balance between the Lasso estimator and the Ridge regression estimator in terms

of the parsimony of the penalized forecasting models. Moreover, the penalized forecasting

models estimated by means of the Lasso estimator, in the majority of model configurations,

do not include bubble predictors at all for the one-month forecast horizon, while the fore-

casting models selected by means of the elastic net estimator typically feature a few bubble

predictors also at the short forecast horizon. It follows that for the elastic net estimator

(and the Ridge regression estimator) the selected bubble predictors contribute to forecast

accuracy also at the one-month-ahead horizon.5

− Table 1 about here. −

In Table 2, we compare the three estimators in terms of the RMSRFE ratio. The RMSRFE

ratio is computed by dividing the RMSRFE of the first model reported in the first column

of the table model by the RMSRFE (of the second model reported in the first column. A

RMSRFE ratio larger than unity, thereby, indicates that the the second model is superior

relative to the first model. The results of the model comparison show that the elastic net

estimator tends to dominate the Lasso estimator for forecast horizons up to and including

three months, and for some model configurations also for the two long forecast horizons.

The results for the two long forecast horizons, however, are more balanced than those for

5As for the shocks, the results (not reported for reasons of space, but available from the authors upon
request) show that mainly supply shocks are included in the penalized model (Lasso estimator and elastic net
estimator), while demand shocks enter the penalized model for a combination of a long training-data window
and a long forecast horizon. Inventory shocks, in turn, enter the penalized model for a combination of a short
training-data window and a long forecast horizon.

12



the shorter forecast horizons, which is not surprising given that the number of bubble

predictors selected by the two estimators is similar for the two long forecast horizons (see

Table 1). Moreover, the Lasso estimator tends to be superior (inferior) to the Ridge re-

gression estimator for a combination of a short training-data window and a short forecast

horizon, while the Ridge regression estimator gains ground for the long forecast horizons.

Finally, the elastic net estimator dominates the Ridge regression estimator mainly at the

two short training-data windows, while the Ridge regression estimator appears to perform

slightly better for the two long training-data windows.

− Table 2 about here. −

In sum, the elastic net estimator performs reasonably well relative to the other two estima-

tors, which reflect that this estimator yields a reasonable compromise between the aim (i)

to obtain a parsimonious forecasting model, and, (ii) to capture the informational content

of the bubble predictors for subsequent the realized volatility. For this reason, we shall

focus in the remainder of this section on the results for the elastic net estimator.

− Table 3 about here. −

We summarize the results for the RMSRFE and MARFE ratios in Table 3. We compare the

AR-CORE with the AR-CORE-BUBBLES model and the and the AR-SHOCKS with the and

the AR-SHOCKS-BUBBLES model. The the AR-CORE and the AR-SHOCKS benchmark

models are estimated by means of the OLS estimator. The general pattern that emerges

from the results is that the AR-CORE-BUBBLES and AR-SHOCKS-BUBBLES rival models

outperform the benchmark models for the forecast horizons of up to and including three

months, where, depending on whether bubbles predictors are included in the penalized

forecasting models (see Table 1), the superior performance of the rival forecasting model at

the one-month-ahead forecast horizon does not necessarily stem from the bubble predic-

tors, but from the shrinking of the coefficients of the benchmark model.

− Table 4 about here. −

In order to inspect whether the differences between the accuracy of forecasts are statisti-

cally significant, we report in Table 4 the results of the modified Diebold-Mariano test. The

null hypothesis is that the benchmark and rival forecasts are equally accurate, while the
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alternative hypothesis is that the rival forecasts outperform the benchmark forecasts. We

present results for a quadratic-forecast-error loss function and an absolute-forecast error

loss function (we use relative forecast errors in both cases). We reject in the null hypothesis

for the one-month-ahead and two-months-ahead forecast horizons and, mainly under the

assumption of an absolute-forecast error loss function, also for the three-months-ahead

forecast horizon in some cases. These test results are in line are in line with the results we

report in Table 3.

− Table 5 about here. −

We summarize the RMSRFE ratios that we obtain when we consider four extensions in Ta-

ble 5. First, we consider an extension in which we estimate both the AR-SHOCKS bench-

mark model and the AR-SHOCKS-BUBBLES model by means of the elastic net estimator,

such that we can directly compare penalized versions of both forecasting models. Second,

we compute the RMSRFE ratios based on the anti-logs of the forecasts and the actual re-

alizations of realized volatility. Third, we use oil price returns to replace the shocks, which

renders it possible to extend the sample period back to 1973:01. Fourth, we report the re-

sults we obtain when we change the mixing parameter from 0.5 to 0.25, bringing the elastic

net somewhat closer to the Ridge regression estimator and, thereby, inflating the number

of bubble predictors included in the penalized forecasting model. All four extensions are in

line with the results of the baseline scenario that we consider in Table 3 in that the rival

forecasting models tend to produce more accurate forecasts than the respective benchmark

models for forecast horizons up to and including three months.

− Table 6 about here. −

We document in Table 6 the results we obtain when we differentiate the bubble predictors

according to the “type” of bubble: short-term, medium-term, and long-term bubbles as

well as positive and negative bubbles. Two results emerge. First, irrespective of the type

of bubble being studied, the RMSRFE ratios exceed unity for forecast horizons up to and

including three months. Second, the rival model outperforms the benchmark model when

we consider short-term bubbles also at the two long forecast horizons. The results for

medium-term and long-term bubbles is weaker in this regard, but tends to strengthen

in the length of the training-data window. Similarly, we observe that the AR-SHOCKS-

BUBBLES rival model outperforms the AR-SHOCKS benchmark model when we study one

14



of the two long training-data windows in the case of the negative bubbles also at the two

long forecast horizons.

− Table 7 about here. −

Finally, we differentiate between “good” and “bad” realized volatility, whereby the former is

based on the square root of daily squared positive log-returns only, and the latter uses only

negative log-returns. The results that we summarize in Table 7 for this scenario show that

the AR-SHOCKS-BUBBLES rival model outperforms the AR-SHOCKS benchmark model in

the case of good realized volatility: (i) for the three short and intermediate forecast horizons,

and, (ii) for the two long forecast horizons also when we study a long training-data window.

Similarly, the results for bad realized volatility strengthen for the two long training-data

windows in favor of the AR-SHOCKS-BUBBLES rival model when we consider a forecast

horizon up to and including three months.

5 Concluding Remarks

The objective of this paper is to forecast monthly realized volatility of returns of the WTI

oil price based on the information content of multi-scale positive and negative stock mar-

ket bubbles indicators of the G7 countries over 1973:01 to 2020:09. After successfully

detecting major crashes and rallies, our main finding is that stock market bubbles have

predictive value for realized volatility at a short to intermediate forecast horizon. This is

particularly the case when the shrinkage estimators that we have studied tend to include

more of the bubble predictors in the penalized forecasting model as the forecast horizon

increases, where in some cases no stock market bubbles makes it into the penalized fore-

casting model at the one-month-ahead forecast horizon, especially when we have studied

the Lasso estimator. In this regard, we have found that the elastic net estimator strikes

a reasonable balance between the aim of model parsimony and the aim to exploit the pre-

dictive value of the stock-market bubbles for the realized volatility of oil price returns.

Our main finding also holds for various types of stock market bubbles, good and bad re-

alized volatilities, and for several model extensions. Moreover, statistical tests show that

the difference in accuracy between the benchmark and rival forecasts, while moderate in

some cases, at short to intermediate forecast horizons are often statistically significant.
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Given that the pattern of results is similar across the various model configurations that

we have studied we conclude that our empirical results lend support to the hypothesis

that speculative stock market bubbles help to improve the accuracy of forecasts of the re-

alized volatility of oil price returns (after controlling for the impact of the autoregressive

component of realized volatility, various shocks, and oil price returns) mainly at short- and

intermediate-forecast horizons.

We consider our findings to be important not only from the perspective of academics,

whereby we are able to econometrically validate the intuition that stock market bubbles

can have repercussions in the form of oil-price fluctuations, beyond market-specific struc-

tural shocks. In addition to being important for academics, our results also yield impor-

tant insights for investors because the predictive role of G7 stock market bubbles for oil

price volatility may help oil traders to reach better portfolio-allocation decisions. Moreover,

volatility is a crucial parameter in the pricing of derivative securities. For pricing an op-

tion, one needs reliable forecasts of the volatility of the underlying asset(s). In this regard,

our main finding that stock market bubbles have predictive value for the subsequent re-

alized volatility of oil-price movements at short- and intermediate forecast horizons can be

utilized efficiently by investors for pricing oil derivatives. Finally, in light of the oil volatility-

recession nexus, policymakers will now need to be cognizant of not only the direct effect of

the boom-bust cycles in the G7 stock markets on real activity, but also a potential indirect

effect that could originate via oil returns volatility, resulting in more persistent impacts.

This would be a pertinent issue when designing the strength and time-profile of macroeco-

nomic (monetary and fiscal) policies to combat possible second-round adverse real effects

of large stock market swings and particular stock market crashes that are likely to result

in higher oil price volatility.

Though we are able to obtain favorable predictive outcomes for oil market volatility due

to stock market bubbles based much research remains to be done. For example, in a recent

paper, Balcilar et al. (2022) show that oil uncertainty, as captured by oil returns volatility,

can predict the connectedness of stock markets of advanced countries. Given this, and our

observation of the synchronicity in the movement of the MS-LPPLS-CIs, an interesting area

of research is to analyze whether oil uncertainty can in fact explain the connectedness of

positive and negative bubbles at the short-, medium-, and long-run, besides possibly even
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the individual-level bubbles indicators. This would then tie the work with the possible role

of uncertainty and volatility as an explanatory variable for the origin and bursts of bubbles,

besides other factors (as discussed in detail in Sornette et al., 2018).
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Table 1: Inclusion of bubble predictors in the forecasting model

Panel A: AR core model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
Lasso estimator

w=0.5 1 2 9 28 27
w=0.58 0 0 10 22 25
w=0.67 0 8 8 16 21
w=0.75 2 5 11 25 28

Elastic net estimator
w=0.5 2 13 10 26 29
w=0.58 3 9 12 18 25
w=0.67 3 9 5 17 22
w=0.75 4 11 15 26 25

Ridge regression estimator
w=0.5 42 42 42 42 42
w=0.58 42 42 42 42 42
w=0.67 42 42 42 42 42
w=0.75 42 42 42 42 42

Panel B: AR plus shocks model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
Lasso estimator

w=0.5 2 2 8 21 29
w=0.58 0 0 1 20 24
w=0.67 0 0 8 16 25
w=0.75 2 2 13 25 30

Elastic net estimator
w=0.5 2 6 15 27 22
w=0.58 0 8 11 18 25
w=0.67 1 8 9 19 22
w=0.75 4 8 13 26 27

Ridge regression estimator
w=0.5 42 42 42 42 42
w=0.58 42 42 42 42 42
w=0.67 42 42 42 42 42
w=0.75 42 42 42 42 42

The AR-CORE and AR-SHOCKS forecasting models are estimated by the OLS technique. The AR-SHOCKS-BUBBLES model,
which includes all bubbles as potential predictors, is estimated by the Lasso estimator, elastic net estimator, and the Ridge
regression estimator. The estimations are done for four different windows of training data covering 50% up to 75% of the
data, as indicated by the parameter w. The forecasting models are used to compute forecasts of the remaining test data.
The numbers in the table summarize how many bubble predictors the penalized forecasting models include. h denotes the
forecast horizon (in months).
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Table 2: Comparison of estimator performance

Panel A: AR-CORE model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
Lasso estimator vs. elastic net estimator/w=0.5 1.0082 1.0239 1.0118 0.9854 1.0111
Lasso estimator vs. elastic net estimator/w=0.58 1.0152 1.0036 1.0431 0.9854 0.9100
Lasso estimator vs. elastic net estimator/w=0.67 1.0171 1.0320 1.0207 1.0063 0.9960
Lasso estimator vs. elastic net estimator/w=0.75 1.0073 1.0237 1.0379 1.0143 1.0078
Lasso estimator vs. Ridge regression estimator/w=0.5 0.6014 1.0041 1.0313 0.8299 1.0268
Lasso estimator vs. Ridge regression estimator/w=0.58 0.5709 1.0042 0.9495 1.2227 0.8843
Lasso estimator vs. Ridge regression estimator/w=0.67 1.0296 1.0716 1.0365 1.0076 1.0086
Lasso estimator vs. Ridge regression estimator/w=0.75 1.0474 1.1052 1.0594 0.9965 0.9633
Ridge regression estimator vs. elastic net estimator/w=0.5 1.6764 1.0197 0.9811 1.1873 0.9847
Ridge regression estimator vs. elastic net estimator/w=0.58 1.7783 0.9994 1.0986 0.8060 1.0291
Ridge regression estimator vs. elastic net estimator/w=0.67 0.9879 0.9631 0.9848 0.9988 0.9875
Ridge regression estimator vs. elastic net estimator/w=0.75 0.9617 0.9262 0.9797 1.0178 1.0462

Panel B: AR-SHOCKS-BUBBLE model is the benchmark model

Estimators h=1 h=2 h=3 h=6 h=12
Lasso estimator vs. elastic net estimator/w=0.5 1.0242 1.0382 1.0298 1.0370 1.5074
Lasso estimator vs. elastic net estimator/w=0.58 1.0208 1.0583 1.0301 1.1239 1.0772
Lasso estimator vs. elastic net estimator/w=0.67 1.0088 1.0177 1.0514 1.0161 1.0094
Lasso estimator vs. elastic net estimator/w=0.75 1.0087 1.0213 1.0209 0.9970 0.9898
Lasso estimator vs. Ridge regression estimator/w=0.5 0.6233 0.9807 0.9745 1.1373 1.1310
Lasso estimator vs. Ridge regression estimator/w=0.58 0.6019 1.0047 1.0422 1.2106 1.1679
Lasso estimator vs. Ridge regression estimator/w=0.67 1.0349 1.0768 1.0546 1.0156 1.0302
Lasso estimator vs. Ridge regression estimator/w=0.75 1.0559 1.0990 1.1250 0.9911 0.9528
Ridge regression estimator vs. elastic net estimator/w=0.5 1.6431 1.0586 1.0567 0.9118 1.3328
Ridge regression estimator vs. elastic net estimator/w=0.58 1.6962 1.0533 0.9884 0.9283 0.9224
Ridge regression estimator vs. elastic net estimator/w=0.67 0.9747 0.9451 0.9969 1.0005 0.9798
Ridge regression estimator vs. elastic net estimator/w=0.75 0.9553 0.9293 0.9075 1.0060 1.0388

The AR-CORE-BUBBLES (AR-SHOCKS-BUBBLES) model, which includes all bubbles as potential predictors, is estimated
by the Lasso estimator, elastic net estimator, and the Ridge regression estimator. The estimations are done for four different
windows of training data covering 50% up to 75% of the data, as indicated by the parameter w. The forecasting models
are used to compute forecasts of the remaining test data. The RMSRFE ratio is defined by dividing the RMSRFE of the
benchmark (first model reported in the first column) model by the RMSRFE of the rival (second model reported in the first
column) model. A RMSRFE ratio larger than unity indicates the the rival model produces more accurate forecasts than the
benchmark model. The parameter. h denotes the forecast horizon (in months).
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Table 3: RMSRFE and MARFE ratios

Panel A: AR core model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
RMSRFE ratios

AR-CORE vs. AR-CORE-BUBBLES/w=0.5 1.0967 1.0605 1.0406 0.6001 0.4351
AR-CORE vs. AR-CORE-BUBBLES/w=0.58 1.0805 1.0823 1.0990 0.4256 0.2985
AR-CORE vs. AR-CORE-BUBBLES/w=0.67 1.0634 1.0980 1.0779 0.9371 0.9831
AR-CORE vs. AR-CORE-BUBBLES/w=0.75 1.0625 1.0903 1.0898 0.9536 1.0037

MARFE ratios
AR-CORE vs. AR-CORE-BUBBLES/w=0.5 1.0780 1.0246 0.9893 0.7189 0.6021
AR-CORE vs. AR-CORE-BUBBLES/w=0.58 1.0622 1.0555 1.0470 0.6116 0.5139
AR-CORE vs. AR-CORE-BUBBLES/w=0.67 1.0445 1.0693 1.0446 0.9588 0.9821
AR-CORE vs. AR-CORE-BUBBLES/w=0.75 1.0504 1.0664 1.0438 0.9807 1.0182

Panel B: AR-SHOCKS model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
RMSRFE ratios

AR-SHOCKS vs. AR-SHOCK-SBUBBLES/w=0.5 1.1068 1.1103 1.0738 0.5073 0.6162
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.58 1.0814 1.1251 1.1157 0.5018 0.2832
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.67 1.0620 1.0922 1.1137 0.9472 0.9978
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.75 1.0680 1.0902 1.0719 0.9501 1.0016

MARFE ratios
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.5 1.0846 1.0656 1.0098 0.6586 0.7189
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.58 1.0629 1.0917 1.0552 0.6655 0.4981
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.67 1.0441 1.0562 1.0623 0.9653 0.9975
AR-SHOCKS vs. AR-SHOCK-BUBBLES/w=0.75 1.0537 1.0564 1.0273 0.9761 1.0151

The AR-CORE (AR-SHOCKS) forecasting model is estimated by the OLS technique. The AR-CORE-BUBBLES (AR-SHOCKS-
BUBBLES) model, which includes all bubbles as potential predictors, is estimated by the elastic net estimator. The estima-
tions are done for four different windows of training data covering 50% up to 75% of the data, as indicated by the parameter
w. The forecasting models are used to compute forecasts of the remaining test data. The RMSRFE (MARFE) ratio is defined
by dividing the RMSRFE (MARFE) of the benchmark (AR-CORE or AR-SHOCKS) model by the RMSRFE (MARFE) of the rival
(AR-CORE-BUBBLES or AR-SHOCKS-BUBBLES) model. A RMSRFE (MARFE) ratio larger than unity indicates the the rival
model produces more accurate forecasts than the benchmark model. The parameter. h denotes the forecast horizon (in
months).
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Table 4: Modified Diebold-Mariano tests

Panel A: AR-CORE model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
Quadratic-forecast-error loss function

AR-CORE vs. AR-CORE-BUBBLES/w=0.5 0.0000 0.0845 0.2893 0.9814 0.9431
AR-CORE vs. AR-CORE-BUBBLES/w=0.58 0.0001 0.0380 0.1154 0.9475 0.9217
AR-CORE vs. AR-CORE-BUBBLES/w=0.67 0.0005 0.0489 0.1346 0.7721 0.7190
AR-CORE vs. AR-CORE-BUBBLES/w=0.75 0.0041 0.0408 0.1406 0.7365 0.4642

Absolute-forecast-error loss function
AR-CORE vs. AR-CORE-BUBBLES/w=0.5 0.0000 0.1388 0.6055 0.9961 0.9928
AR-CORE vs. AR-CORE-BUBBLES/w=0.58 0.0000 0.0013 0.0567 0.9892 0.9716
AR-CORE vs. AR-CORE-BUBBLES/w=0.67 0.0001 0.0002 0.0766 0.7482 0.6610
AR-CORE vs. AR-CORE-BUBBLES/w=0.75 0.0006 0.0016 0.1302 0.6227 0.3592

Panel B: AR-SHOCKS model is the benchmark model

Models h=1 h=2 h=3 h=6 h=12
Quadratic-forecast-error loss function

AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 0.0000 0.0461 0.2011 0.9729 0.9594
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 0.0001 0.0432 0.1102 0.9524 0.9215
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 0.0003 0.0503 0.1157 0.7339 0.5325
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 0.0033 0.0481 0.1748 0.7524 0.4855

Absolute-forecast-error loss function
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 0.0000 0.0018 0.3986 0.9965 0.9932
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 0.0000 0.0000 0.0353 0.9889 0.9727
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 0.0001 0.0040 0.0226 0.7112 0.5245
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 0.0005 0.0100 0.2672 0.6529 0.3831

The AR-CORE (AR-SHOCKS) forecasting model is estimated by the OLS technique. The AR-CORE-BUBBLES (AR-SHOCKS-
BUBBLES) model, which includes all bubbles as potential predictors, is estimated by the elastic net estimator. The estima-
tions are done for four different windows of training data covering 50% up to 75% of the data, as indicated by the parameter
w. The forecasting models are used to compute forecasts of the remaining test data. The null hypothesis of the modified
Diebold-Mariano test is that the forecasts obtained from the benchmark (AR-CORE or AR-SHOCKS) model and forecasts
obtained from the rival (AR-CORE-BUBBLES or AR-SHOCKS-BUBBLES) model are equally accurate. The alternative hy-
pothesis is that the rival forecasts are more accurate than the benchmark forecasts. The test is applied to the relative
forecast errors. The table plots the p-value of the test. h denotes the forecast horizon (in months).
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Table 5: Extensions

Models h=1 h=2 h=3 h=6 h=12
Penalized AR-SHOCKS model

AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0449 1.0451 1.0225 0.5798 0.4649
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0606 1.0515 1.0380 0.4935 0.3047
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0404 1.0556 1.0355 0.9258 0.9681
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0347 1.0327 1.0287 0.9221 0.9849

Anti-log of realized volatility
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.1241 1.1517 1.1287 0.5405 0.6367
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0965 1.1678 1.1675 0.5440 0.3382
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0740 1.1174 1.1632 0.9473 0.9986
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0839 1.1226 1.1252 0.9496 1.0019

AR-RETURNS model
AR-RETURNS vs. AR-RETURNS-BUBBLES/w=0.5 1.1129 1.1068 0.9986 0.7341 0.8271
AR-RETURNS vs. AR-RETURNS-BUBBLES/w=0.58 1.0861 1.1315 1.1144 0.8854 0.8619
AR-RETURNS vs. AR-RETURNS-BUBBLES/w=0.67 1.0857 1.1110 1.1074 0.9203 0.9722
AR-RETURNS vs. AR-RETURNS-BUBBLES/w=0.75 1.0658 1.0900 1.0698 0.9387 1.0233

Mixing parameter 0.25
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0879 1.1032 1.0719 0.5048 0.5356
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0458 1.1437 1.1393 0.5685 0.3256
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0930 1.1328 1.1247 0.9448 1.0040
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0834 1.1275 1.1187 0.9465 1.0275

Panel A: The benchmark model is the penalized AR-SHOCKS model estimated by the elastic net estimator. The AR-SHOCKS-
BUBBLES rival model is estimated by the elastic net estimator. Panel B: The RMSRFE is computed for the anti-log of
realized volatility. The AR-SHOCKS benchmark model is estimated by the OLS estimator and the AR-SHOCKS-BUBBLES
rival model is estimated by the elastic net estimator. Panel C: The AR-RETURNS model, estimated by the OLS estimator, is
the benchmark model and the AR-RETURNS-BUBBLES model, estimated by the elastic net estimator, is the rival model. The
sample period starts in 1973/01. Panel D: The AR-SHOCKS-BUBBLES rival model is estimated by the elastic net estimator
with a mixing parameter equal to 0.25. All Panels: The estimations are done for four different windows of training data
covering 50% up to 75% of the data, as indicated by the parameter w. The forecasting models are used to compute forecasts
of the remaining test data. The RMSRFE ratio is defined by dividing the RMSRFE of the benchmark model by the RMSRFE
of the rival model. A RMSRFE ratio larger than unity indicates the the rival model produces more accurate forecasts than
the benchmark model. The parameter. h denotes the forecast horizon (in months).
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Table 6: Results by type of bubbles

Models h=1 h=2 h=3 h=6 h=12
Short-term bubbles

AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0738 1.0850 1.0663 1.0200 1.0060
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0769 1.0881 1.0646 1.0192 1.0208
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0622 1.0977 1.0782 1.0187 1.0356
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0480 1.0800 1.0927 1.0409 1.0685

Medium-term bubbles
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0718 1.0627 1.0414 0.9597 0.9581
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0755 1.0673 1.0511 0.9633 1.0002
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0576 1.0765 1.0957 0.9773 1.0161
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0682 1.1028 1.1093 0.9742 1.0232

Long-term bubbles
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0587 1.0585 1.0485 0.7839 0.4656
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0270 1.0773 1.0881 0.8402 0.2847
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0573 1.0684 1.0735 0.9681 1.0270
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0410 1.0681 1.0620 0.9731 1.0425

Positive bubbles
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0882 1.0753 1.0610 0.7833 0.8812
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0700 1.0883 1.1024 0.9075 0.9555
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0650 1.0789 1.0860 0.9314 0.9786
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0493 1.0727 1.0530 0.9620 1.0134

Negative bubbles
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.0588 1.0810 1.0871 0.7910 0.4721
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.0661 1.0877 1.0845 0.7815 0.4100
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.0569 1.0825 1.1020 1.0495 1.0434
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0650 1.0837 1.0874 1.0068 1.0570

The AR-SHOCKS forecasting model is estimated by the OLS technique. The AR-SHOCKS-BUBBLES model, which includes
the short-term, medium-term, or long-term bubbles as potential predictors, is estimated by the elastic net estimator. The
estimations are done for four different windows of training data covering 50% up to 75% of the data, as indicated by the
parameter w. The forecasting models are used to compute forecasts of the remaining test data. The RMSRFE ratio is defined
by dividing the relative RMSRFE of the benchmark (AR-SHOCKS) model by the relative RMSRFE of the rival (AR-SHOCKS-
BUBBLES) model. A RMSRFE ratio larger than unity indicates the the rival model produces more accurate forecasts than
the benchmark model. The parameter. h denotes the forecast horizon (in months).

Table 7: Results for good and bad realized volatility

Models h=1 h=2 h=3 h=6 h=12
Good realized volatility

AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 1.1589 1.1362 1.1247 0.9767 0.7715
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 1.1153 1.1353 1.1898 0.8619 0.4849
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.1100 1.1330 1.1720 1.0410 1.0889
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.0599 1.1197 1.1119 1.0238 1.1090

Bad realized volatility
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.5 0.4086 0.5399 0.5707 0.7787 0.8303
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.58 0.3826 0.5195 0.5717 0.9264 0.9304
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.67 1.1624 1.2123 1.1562 0.9845 1.0207
AR-SHOCKS vs. AR-SHOCKS-BUBBLES/w=0.75 1.1657 1.1929 1.0966 0.9439 0.9728

The AR-SHOCKS forecasting model is estimated by the OLS technique. The AR-SHOCKS-BUBBLES model, which includes
all bubbles as potential predictors, is estimated by the elastic net estimator. The estimations are done for four different
windows of training data covering 50% up to 75% of the data, as indicated by the parameter w. The forecasting models are
used to compute forecasts of the remaining test data. The RMSRFE ratio is defined by dividing the RMSFE of the benchmark
(AR-SHOCKS) model by the RMSRFE of the rival (AR-SHOCKS-BUBBLES) model. A relative RMSRFE ratio larger than unity
indicates the the rival model produces more accurate forecasts than the benchmark model. The parameter. h denotes the
forecast horizon (in months).
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Figure 1: Realized volatility
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Figure 2: Shocks
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Figure 3: G7 Monthly Mulit-Scale LPPLS-CI
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Appendix

A1 The MS-LPPLS Model: Structure and Estimation

We describe here in some detail the Multi-Scale Log-Periodic Power Law Singularity (MS-

LPPLS) Model. We use the stable and robust calibration scheme developed by Filimonov

and Sornette (2013) to set up a LPPLS model of the following format:

lnE[p(t)] = A+B(tc − t)m + C(tc − t)m cos(ω ln (tc − t)m − φ), (A1)

where tc denotes the critical time, that is, the period of time when a bubble burst, and

A denotes the expected log values of the observed time-series, in our case the stock price-

dividend ratio, at time tc. Moreover, B, denotes the amplitude of the power law acceleration,

and C denotes the relative magnitude of the log-periodic oscillations. The exponent of the

power law growth is given by m. The frequency of the log-periodic oscillations is denoted

by ω, while φ denotes a phase shift parameter.

Like Filimonov and Sornette (2013), we re-express Equation (A1) and, thereby, reduce

the complexity of the calibration process. Specifically, we eliminate the nonlinear parame-

ter φ and use the expansions C to C1 = C cosφ and C2 = C cosφ for the linear parameters.

The resulting equation is given by

lnE[p(t)] = A+B(f) + C1(g) + C2(h), (A2)

where
f = (tc − t)m,

g = (tc − t)mcos[ω ln (tc − t)],

h = (tc − t)msin[ω ln (tc − t)].

We estimate Equation (A2) on the log of the price-dividend ratio so as to obtain estimates

of the three nonlinear parameters, {tc,m, ω}, and the four linear parameters, {A,B,C1, C2}.

To this end, we use the L2 norm to obtain

F (tc,m, ω,A,B,C1, C2) =
N∑
i=1

[
ln p(τi)−A−B(fi)− C1(gi)− C2(hi)

]2
. (3)
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Because the estimates of the nonlinear parameters depend on the linear ones, we formulate

the following cost function:

F1(tc,m, ω) = min
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2) = F (tc,m, ω, Â, B̂, Ĉ1, Ĉ2), (4)

and estimate the linear parameters by solving the following optimization problem:

{Â, B̂, Ĉ1, Ĉ2} = arg min
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2), (5)

which can be done analytically by solving the following matrix equation:


N

∑
fi

∑
gi

∑
hi∑

fi
∑
f2i

∑
figi

∑
fihi∑

gi
∑
figi

∑
g2i

∑
gihi∑

hi
∑
fihi

∑
gihi

∑
h2i




Â

B̂

Ĉ1

Ĉ2

 =



∑
ln pi∑
fi ln pi∑
gi ln pi∑
hi ln pi

 . (6)

In the next step, we determine the three nonlinear parameters by solving the following

nonlinear optimization problem:

{t̂c, m̂, ω̂} = arg min
tc,m,ω

F1(tc,m, ω), (7)

using the Sequential Least Squares Programming (SLSQP) search algorithm (Kraft, 1988).

We use the LPPLS confidence indicator, developed by Sornette et al. (2015), to measure

the prevalence of bubble patterns in the log price-dividend ratio of the of the G7 countries.

A large LPPLS confidence indicator (CI) is a reliable signal of the presence of a LPPLS

bubble pattern. We compute the indicator by calibrating the LPPLS model to shrinking time

windows by shifting the initial observation, t1, forward in time towards the final observation,

t2, with a step dt. For each LPPLS model fit, we compare the estimated parameters against

established thresholds and take the qualified fits as a fraction of the total number of positive

or negative fits, where B < 0 ( B > 0) for a positive (negative) fit.

Building on the research by Demirer et al. (2019), we study bubbles of varying multiple

time-scales, sampling the time series in steps of 5 trading days. We define the nested

windows [t1, t2] and iterate through each window in steps of 2 trading days, resulting in a
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weekly resolution that we use to compute the following indicators:

• Short-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits for

estimation windows of length dt := t2 − t1 ∈ [30 : 90] trading days per t2. This indicator

is comprised of (90− 30)/2 = 30 fits.

• Medium-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits for

estimation windows of length dt := t2 − t1 ∈ [30 : 90] trading days per t2. This indicator

is comprised of (300− 90)/2 = 105 fits.

• Long-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits for

estimation windows of length dt := t2 − t1 ∈ [30 : 90] trading days per t2. This indicator

is comprised of (745− 300)/2 = 223 fits.

After having calibrating the model, we consider the following filter conditions to check

which fits are qualified:

m ∈ [0.01, 0.99],

ω ∈ [2, 15],

tc ∈ [max(t2 − 60, t2 − 0.5(t2 − t1)),min(252, t2 + 0.5(t2 − t1))],

O > 2.5,

D > 0.5,

where
O =

ω

2π
ln
( tc − t1
tc − t2

)
,

D =
m|B|
ω|C|

.
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