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Forecasting the Conditional Distribution of Realized Volatility of Oil Price Returns: 
The Role of Skewness over 1859 to 2023 

Rangan Gupta*, Qiang Ji**, Christian Pierdzioch*** and Vasilios Plakandaras*** 
Abstract 

We examine the predictive value of expected skewness of oil returns for the corresponding 
realized volatility using monthly data for the entire modern history of the oil industry, covering 
1859:11 to 2023:04. We utilize a quantile predictive regression model, which is able to 
accommodate nonlinearity and structural breaks. In-sample results show that the predictive 
impact of expected skewness on realized volatility can be both positive and negative, with these 
signs contingent on the quantiles of realized volatility. Moreover, we detected statistically 
significant forecasting gains that arise at the extreme ends and around the median of the 
conditional distribution of realized volatility, at 1-, 3-, 6- and, particularly, 12-month-ahead 
horizons. Our results have important implications for academics, investors and policymakers. 
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1. Introduction 
We analyze the predictability of realized volatility of oil price returns based on the information 
content of the expected skewness constructed from  the West Texas Intermediate (WTI) oil 
price returns over the monthly historical period of 1859:11 to 2023:04. Our data set basically, 
thereby, covers the entire modern era of the petroleum industry, commencing with the drilling 
of the first oil well in the United States (US) in 1859 at Titusville, Pennsylvania. Expected 
skewness is a measure of risk of the oil market as it captures the expected asymmetry of the 
distribution of future realizations of returns. 
 Intuitively, variation in expected skewness is likely to originate from extreme directed changes 
in aggregate demand and supply (Yu et al., 2021; Salisu et al., 2022a), geopolitical acts and 
threats (Salisu et al., 2021), rare disaster events including pandemics (Demirer et al., 2018; 
Bouri et al., 2020; Qin et al., 2020, Salisu et al., 2021), and even financial market spillovers 
(Salisu et al., 2022b). Such changes, in turn, are likely to result in an impact on the volatility 
of the oil-price via a “leverage effect” in the oil market, as initially established by Geman and 
Shih (2009) and, more recently, by Asai et al. (2019, 2020). The original idea of the leverage 
effect, proposed for the stock market by Black (1976), implies that negative (positive) returns 
are generally associated with upward (downward) revisions of volatility. Aboura and 
Chevallier (2013), however, points out that it is also possible to obtain an increase in the 
volatility subsequent to a hike in the oil price as such a hike may reflect that oil consumers fear 
a rising oil price. In this regard, Demirer et al. (2020) argue that the effect on volatility due to 
a price change is in fact dependent on the nature of the underlying demand and supply shocks. 
While oil supply shocks largely relate to geopolitical developments or country/region-specific 
surprises, demand shocks reflect unexpected changes in the aggregate, precautionary or 
speculative demand for oil, driven by market participants' expectations of future economic 
conditions or concerns regarding future supply shortfalls. For instance, an increase in oil returns 
due to a supply shock would be associated with an economic slowdown, and this recessionary 
impact would likely reduce demand and trading activity in the oil market, leading to lower 
volatility in line with the leverage effect. In the case of a positive demand shock, one can argue 
that an increase in oil price due to an economic expansion can either increase trading volumes 
and raise volatility, or reduce volatility by decreasing macroeconomic uncertainty. At the same 
time, if a demand shock is driven by an unexpected rise in precautionary demand as traders 
become nervous about future supply shortfalls, or due to speculation, it could have the opposite 
effect, i.e., driving up volatility in the oil market. 
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In sum, positive (negative) expected skewness in oil returns, on purely theoretical grounds, 
could be associated with decreasing or increasing (increasing or decreasing) subsequent oil 
price returns volatility. Hence, the sign of the link between expected skewness and subsequent 
volatility can only be recovered empirically. In this regard, by covering the longest possible 
data available for constructing a measure of expected skewness over the historical period from 
1859 to 2023, we capture various positive and negative oil shocks associated with, for example, 
the U.S. Civil War, the two World Wars, the West coast gas famine, the Great Depression, the 
Korean conflict, the Suez Crisis, the OPEC oil embargo, the Iranian revolution, the Iran-Iraq 
War, the Gulf War, the global financial crisis, the outbreak of the Coronavirus pandemic in 
2020, and, of course, more recently the ongoing Russia-Ukraine War.1 Moreover, upon 
studying the predictability of oil-price volatility due to oil risks associated with expected 
skewness, we avoid the issue of sample selection bias, and we provide a comprehensive answer 
to the question regarding the sign of the relationship between expected skewness and oil market 
volatility. 
In order to achieve our objective, we predict both in- and out-of-sample the realized volatility 
(RV) of oil price returns based on expected skewness by utilizing a quantiles-based predictive 
regression model. In this regard, it is worth emphasizing that using RV, which in our case is 
captured by the square root of the sum of daily squared price returns over a month (following 
Andersen and Bollerslev, 1998), provides us with an observable and unconditional measure of 
volatility (unlike, as traditionally (see, Chan and Grant (2016)) derived from generalized 
autoregressive conditional heteroscedasticity (GARCH) and stochastic volatility (SV) models), 
which is otherwise a latent process. At the same time, a quantiles-based approach is more 
informative relative to a linear model (also considered), as it investigates the ability of expected 
skewness to predict the entire conditional distribution of RV, rather than being restricted just to 
the conditional-mean. This is important because looking at the conditional mean only of RV 
may “hide” interesting characteristics (Meligkotsidou et al., 2014) as it can lead to poor 
predictive performance, while it is actually valuable for predicting certain parts of the 
conditional distribution of RV. With the quantile-regression model, unlike in the case of the 
popular Markov-switching and smooth transition threshold models, we do not need to specify 
ad hoc the number of regimes of RV. Furthermore, the quantile-regression model retains the 
simple structure of a linear predictive regression model for any given quantile of RV but, 
simultaneously, renders possible to add an element of non-linearity to our empirical research 
                                                
1 The reader is referred to Hamilton (2013) for a detailed discussion of historical oil shocks from 1859 to 2009. 
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strategy in that the coefficients of the predictive model are allowed to vary across the different 
quantiles of the conditional distribution of RV. In light of the skewed distribution of RV, and 
statistical evidence of nonlinearity and structural breaks that we detect in its relationship with 
expected skewness, the derivation of our empirical results from a quantile-regression model, 
thus, is highly warranted. 
While in recent literature realized skewness, as derived from intraday data, has been utilized to 
predict daily RV for over the last couple of decades only (see for example, Gkillas et al. (2020), 
Demirer et al. (2022), Luo et al. (2022), and references cited therein), we are the first to shed 
light on the importance of expected skewness in driving RV over the entire history of the WTI 
oil market spanning nearly 165 years. In this process, we add to the already voluminous 
literature on the predictability of oil market volatility based on a wide array of models, and 
macroeconomic, financial, behavioural, and climate patterns-related predictors (see, Bouri et 
al., (2021), and Salisu et al., (2022c) for detailed reviews), by considering the role of expected 
skewness. The only related paper to ours is one by Salisu et al. (2022a), who report that negative 
tail risks, derived from a Conditional Autoregressive Value at Risk (CAViaR) framework, can 
be utilized to the predict realized variance of oil returns over the monthly period of 1859:10 to 
2020:10. Allowing skewness to capture both extreme negative and positive shocks, and 
utilizing a quantile-regression model to predict the entire conditional distribution of oil market 
volatility, is a technical improvement over the conditional mean-based negative shocks-only 
framework studied by Salisu et al. (2022a). At the same time, our findings should be of value 
to researchers, investors and policymakers, because our analysis nests Salisu et al. (2022a) in 
terms of a broader treatment of the shocks investigated, as well as the information on 
predictability involving the entire conditional distribution of RV. 
Besides being an important academic question, our empirical research is important for investors 
and policymakers, because our findings are likely to assist in achieving “optimal” decisions. 
This is because, the financialization of the oil market over the last two decades or so in 
particular (Bampinas and Panagiotidis, 2017) has led to a substantial increase in the 
participation of key investment players such as hedge funds, pension funds, and insurance 
companies in the market, thus making oil a potentially profitable alternative investment in the 
asset-allocation decisions of financial institutions (Degiannakis and Filis, 2017). In addition, 
given that volatility, when interpreted as uncertainty, is a core input to investment decisions 
and portfolio choices (Poon and Granger 2003), precise predictions of oil price returns 
volatility are of paramount importance to participants of the oil market. Moreover, given that 
the second-moment movements in crude oil prices have been historically associated with a 
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negative impact on economic activity (van Eyden et al., 2019), predicting the future path of RV 
is of obvious value to policymakers. 
The remainder of the paper is organized as follows: Section 2 describes the data and 
methodology, Section 3 discusses the forecasting results, and Section 4 concludes. 
 

2. Data and Methodology 
We use daily and monthly WTI crude oil prices obtained from Global Financial Data2, over the 
period of1859:11 to 2023:04.  Both frequencies of the oil price data are converted into log 
returns in percentage, i.e., the first-difference of the natural logarithm of the price multiplied 
by 100. Then RV is computed as the square root of the sum of daily squared returns over a 
month, as per availability of daily data. Note that oil price data is available at monthly 
frequency only over the period 1920-1976 and, hence, we measure RV as the square root of 
monthly squared log-returns over this part of the overall sample.  
Koenker and Bassett (1978) show that quantile regression estimators are more efficient and 
robust than mean regression estimators based on ordinary least squares (OLS), in cases where 
nonlinearities and deviations from normality exist, with both these features existing in our data 
(as discussed below). Hence, we consider the specific quantile regression model of the 
following form: 
       = ( ) + ( ) + ( ) + ( ) + ( ) +       (1) 
where RVt is the realized volatility at time t; SKEWNESSt is the expected skewness at time t 
(which we discuss below in detail); ∈ (0,1) and  are assumed independent derived from 
an error distribution ( ) with the -th quantile equal to 0, i.e., ( ) = . The three 
lags of RV are selected based on the Schwarz Information Criterion (SIC), and capture the 
persistence of the process, with the intercept and the regression coefficients depending upon . 
The estimators of the parameters of the quantile regression model in Equation (1) minimize 
∑ ( − ( ) + ( ) + ( ) + ( ) + ( ) ), where 

( ) = − ( < 0) = | | + (2 − 1) . The forecast of the -th quantile of the 
distribution RV at time + 1 is obtained as:  ( ) = ( ) + ( ) + ( ) +

( ) + ( ) . Our benchmark model is nested in equation (1) and obtained 
by setting ( ) = 0. 

                                                
2 https://globalfinancialdata.com/. 
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In order to get a time-varying measure of expected skewness of oil returns (r), we estimate the 
following autoregressive quantile regression of order 1: 

( ) =  + ( ) (2) 
Using the estimated model parameters from this quantile regression, we compute the one-step-
ahead expected, or predicted, Kelley skewness (Kelley, 1947) as follows: 

( ) = . + . − 2 .
. − .  (3) 

In equation (1), we simplify the notation by setting −1 ( )  to SKEWNESSt 
henceforth. 
Figure A1 (Appendix) plots RVt and SKEWNESSt, with Table A1 presenting the corresponding 
summary statistics. The variables are non-normal distributed based on the rejection of the null 
hypothesis of normality under the Jarque-Bera test at the highest level of significance, with the 
heavy right tail of RV providing a preliminary motivation to look at a quantile predictive 
regression model. 
 

3. Empirical Results 
For the sake of completeness and comparability, we also estimate the conditional mean version 
of equation (1) using ordinary least squares (OLS) with heteroscedasticity and autocorrelation 
adjusted (HAC) standard errors (Newey and West, 1987). Findings (not reported in detail) 
show that  is equal to -12.2154, with a p-value of 0.4095, i.e., the predictive effect of 
SKEWNESS is found to be negative but insignificant.3 
In order to motivate the quantile regression approach, we now turn to statistical evidence of 
possible misspecification in the classical mean regression model, which may account for the 
insignificant predictive impact of expected skewness. In this regard, we first apply the Brock 
et al. (1996, BDS) test of nonlinearity on the residuals of the conditional mean model outlined 
above. As can be observed from Table 1 the i.i.d. null hypothesis is rejected for all dimensions 
(m) at the highest level of significance, thus providing strong evidence of nonlinearity in the 
relationship between SKEWNESSt and RVt+1. In addition, we also conducted the Bai and Perron 
(2003) test of multiple structural breaks on the conditional-mean estimated regression. The 
                                                
3 Following Ghysels et al. (2018), we also obtained the measure of SKEWNESS based on a quantile-Mixed Data 
Sampling (MIDAS) model. However, the estimate of  (=-2.6273), continued to be insignificant (with a p-value 
of 0.3086) , with further details of this exercise are available upon request from the authors. This observation 
tends to suggest that the underlying way of computing the expected skewness is not necessarily the source of 
insignificant predictability, but, as we show below with the quantile predictive model, it is more due to 
misspecifications with the conditional mean framework. 
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UDmax and WDmax tests under the specification of 1 to M globally determined breaks revealed 
five breaks at: 1884:11, 1909:04, 1933:10, 1966:11, and 1991:04. Existence of nonlinearity 
and regime-changes confirm that the linear conditional mean-based predictive regression is 
misspecified, and the (insignificant) predictive impact of expected skewness on the RV cannot 
be considered reliable. This, in turn, leads us to consider the quantile regression model for 
further analyses. 
 

[INSERT TABLE 1 HERE] 
 
In Figure 1, we present ( ), at τ= 0.05, 0.10, …,0.90, 0.95, i.e., the estimated quantile-specific 
response of SKEWNESSt and RVt+1. As it is obvious, the effect is positive until quantile 0.40, 
and then turns negative. We observe a significant (at 1% level) positive effect over the quantile 
range of 0.35-0.40, while the predictive impact is significantly negative at the highest level 
over τ= 0.50 to 0.95.4 In other words, the sign and statistical significance of predictability of 
RV due to SKEWNESS is quantile-specific. Economically speaking, when risk is initially low 
in the oil market, as captured by the lower quantiles, a positive expected skewness causing 
higher returns seems to be driving more trading activity and, hence, volatility, as in Fan et al. 
(2008), Zhang et al. (2008), Aboura and Chevallier (2013) and Demirer et al. (2020). However, 
beyond the median, higher returns associated with a higher skewness, tend be associated with 
lower uncertainty, and reduce the risk in the oil market via a well-established leverage effect 
in WTI oil prices, reported, among others, in Agnolucci (2009), Geman and Shih (2009), 
Larsson and Nossman (2011), Chang (2012). Put differently, we observe that the leverage 
effect causes a negative link between expected skewness and oil market volatility only beyond 
the conditional median of the latter. Using the longest available data sample, we are thus able 
to add another layer to the volatility-skewness nexus of oil returns in the sense that not only do 
we find positive and negative impacts of the latter on the former, but these signs are contingent 
on the states, as defined by the quantiles, of the latter.5  
 

[INSERT FIGURE 1 HERE] 
                                                
4 Figure A2 (Appendix) plots the predictive impact of expected kurtosis on RV. Note that, after estimating 
Equation (2), ( )  is given by: . .

. . . The nature of predictability for RVt due to 
KURTOSISt-1 is qualitatively similar to that of SKEWNESSt-1, though in this case only statistically significant 
negative effect at the 1% level is detected over the quantile range of 0.45 to 0.95.  
5 In this regard, note that, Kristoufek (2014) had indicated that the existence of the leverage effect is time-scale-
dependent. 
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Since in-sample predictability does not guarantee out-of-sample forecasting gains, we conduct 
a one-step-ahead (h = 1) forecasting exercise that starts in 1884:11 and corresponds to the first 
identified structural break date. The quantile regression is recursively estimated over the out-
of-sample period of 1884:11-2023:04, with an in-sample of 1859:11-1884:10, for each of the 
19 considered quantiles. In line with the extant literature of using (Root) Mean Square Errors 
((R)MSE) as the forecast performance statistic involving quantile regressions in forecasting 
movements in financial and macroeconomic variables (Gupta et al., 2017; Korobilis, 2017), in 
Table 2, we present the MSE-F test statistic of McCracken (2007). The MSE-F statistic 
tentatively6 tests whether the MSEs for the model in Equation (1) with lagged SKEWNESS are 
lower than those produced by its nested benchmark equation with β4 = 0, i.e., without 
SKEWNESSt-1 (basically an autoregressive model of order 3: AR(3)), in a statistically 
significant manner.7 As can be seen from the table, forecasting gains due to expected skewness 
for RV are primarily statistically significant, consistently at the 1% level, over the range τ= 0.60 
to 0.95 (with the exceptions of the quantiles 0.70 and 0.85), which is in line with the strongly 
significant leverage effect observed in Figure 1, associated with in-sample predictability. 
Having said this, significant forecasting gains, at the 5% level, are also observed over the range 
τ = 0.05 to 0.15, i.e., at the lower quantiles, suggesting that there is not necessarily a one-to-
one correspondence between in- and out-of-sample predictability results. 
Given that, the ultimate test of any predictive model (in terms of econometric methodologies 
and predictors used) is in its forecasting performance (Campbell, 2008), in Table 2, we present 
the MSE-F statistics for the longer forecasting horizons of 3-, 6- and 12-month-ahead over the 
out-of-sample period of 1884:11 to 2023:04. The quantile-regression model continues to be the 
preferred model in light of strong evidence of nonlinearity at the longer forecast horizons, as 
reported in Table 1. Furthermore, for h = 3-, 6-, and 12-month-ahead, five break dates are 
detected for each case,8 and, hence, warrant the usage of the quantiles-based approach. The 
results are in line with the one-month-ahead i.e., h = 1 findings, especially for h = 3, with the 
                                                
6 See Koenker and Machado (1999) for a detailed discussion. 
7 Unlike the Diebold and Mariano (1995) test of comparing forecast accuracy between two non-nested forecasting 
models, the MSE-F test is designed to accommodate for nestedness across the two competing models. The statistic 
is formally given as: (T-R-h+1)(MSE0/MSE1-1), where MSE0 (MSE1) is the MSE from the restricted or 
benchmark (unrestricted or full (including SKEWNESS)) model, T is the total sample size, R is number of 
observations used for estimation of the model from which the first forecast is formed (i.e. the in-sample portion 
of the total number of observations), and h the forecasting horizon.  
8 The breaks were at: 1884:11, 1909:04, 1933:10, 1966:11, 1991:04; 1885:04, 1909:09, 1934:03, 1974:05, 
1998:10, and; 1885:08, 1909:12, 193408, 1961:12, 1986:04 for h = 3-, 6-, and 12-month-ahead, respectively. 
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effect being slightly weaker under h = 6, but quite stronger under h = 12, in terms of the number 
of quantiles for which statistically significant forecasting gains are observed over the 
benchmark AR(3) model (primarily at the 1% level), due to SKEWNESS for RV.9 From these 
results, we can, in general, conclude that expected skewness forecasts the extreme ends and 
around the median of the conditional distribution of oil market volatility, especially in the 
longer-run.10 In the process, just like intraday data-based results spanning the last two decades 
or so, skewness is shown to contain information for producing accurate forecasts of RV on oil 
price returns, but only in a quantile-specific manner.11 

 
[INSERT TABLE 2 HERE] 

 
4. Conclusions 

We analyse the predictive value of the expected skewness of oil returns for the realized 
volatility of oil price returns over the historical monthly period of 1859:11 to 2023:04. Our in-
sample analysis shows that, while predictability cannot be detected by the misspecified 
conditional mean-based predictive model, due to nonlinearity and regime-changes, a causal 
impact does indeed exist in a quantile-regression model, that is able to accommodate for such 
misspecifications. Specifically, we observed that the predictive effect of skewness can be both 
positive and negative, with the sign contingent on the states (quantiles) of realized volatility. 
Based on an out-of-sample forecasting analysis, we also found statistically significant 
forecasting gains not only at the short one-step-ahead horizon, but also at medium- to long-run 
forecasting horizons of three-, six-, and twelve-month-ahead. Hence, expected skewness 
forecasts the extreme ends and around the median of the conditional distribution of oil market 
volatility, particularly in the long-run. 

                                                
9 Note that, for h > 1, RVt+h is the average value of  over t to t+h, and then the same static-forecasting approach 
over the out-of-sample period. 
10 Interestingly, the MSE-F statistics for the conditional mean-based model was also found to be statistically 
significant at the 1% level for h =1, 3, and 6, but not 12, with the stats being respectively, 20.6915, 20.6667, 
5.9406, and -4.7934. The fact that the misspecified model produced forecasting gains for 3 of the 4 horizons, 
could be due to the fact that the recursive estimation of the conditional mean model over the out-of-sample period 
starts on the first break date, and hence, is able to accommodate, at least partially, for nonlinearity and regime 
changes, unlike in the case of the full-sample predictability test.  
11 We must point out that, the quantile-MIDAS-based estimate of SKEWNESS as outlined in Ghysels et al. (2018) 
performed relatively weakly in the sense that it produced significant forecasting gains for RV in 23 cases compared 
to the 33 derived under the standard AR(1) quantile regression approach in Equation (2), for the four forecasting 
horizons considered. Complete details of these results are available upon request from the authors. 
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Given the importance of real-time forecasts of oil price volatility for both investors and policy 
authorities, our results have important  implications for these two groups of economic agents. 
Our findings can be used by policymakers to obtain information on the future path of oil returns 
volatility due to associated expected skewness at various forecasting horizons. This knowledge, 
in turn, could be useful to predict economic recessions gathering steam, given that oil-price 
volatility is known to negatively impact real economic activity, by designing and implementing 
appropriate response of macroeconomic policies. Moreover, with volatility being a key input 
in portfolio decisions, the forecastability of oil returns volatility due to expected skewness 
should be of vital importance to oil investors, especially over the investment horizon of one 
year. Finally, academically, we add to the debate of whether oil price returns skewness impacts 
the volatility of the market negatively or positively, by showing that both these effects are 
possible, depending on whether the initial level of variability is low or high at the time a 
positive skewness shock hits the oil sector. 
As an extension of this study, it would be interesting to investigate the role of own- and/or 
cross-market(s) expected skewness in predicting historical volatility of other important asset 
markets, contingent on the availability of data. 
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Table 1. BDS Test of Nonlinearity 
m h = 1 h = 3 h = 6 h = 12 
2 23.5949*** 23.7299*** 33.3961*** 45.7055*** 
3 26.6924*** 26.8075*** 36.5895*** 50.0014*** 
4 28.4299*** 28.6670*** 38.9465*** 53.7848*** 
5 30.8409*** 31.1933*** 43.2056*** 59.1051*** 
6 33.9820*** 34.6113*** 48.4391*** 65.8200*** 

Note: m stands for the number of (embedded) dimension which embed the time series into m-dimensional vectors, 
by taking each m successive points in the series; Entries correspond to the z-statistic associated with the BDS test 
applied to the residuals recovered from the conditional mean model: = + + ++ + ; h is the forecast horizon; *** indicates rejection of the null hypothesis of i.i.d. 
residuals involving the BDS test at 1% level of significance.  
 
 
 
 
 
 
Figure 1. In-sample Predictive Impact of Expected Skewness (SKEWNESS) on Realized 

Volatility (RV)  
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Note: The figure plots the estimated parameter ( ) (in blue) for the equation: = ( ) + ( ) +
( ) + ( ) + ( ) +  at the quantiles τ = 0.05, 0.10,…0.90, 0.95, with lower and 

upper 95% confidence bands (in orange). 
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Table 2. Out-of-sample Forecasting Results of Realized Volatility (RV) from Expected 
Skewness (SKEWNESS)  

Quantile Regression (τ) h = 1 h = 6 h = 9 h = 12 
0.05 5.9417*** 5.9345*** 4.0521*** 0.3690 
0.10 4.0595*** 4.0546*** 33.4010*** 1.7292** 
0.15 1.9969** 1.9945** -22.9396 6.0962*** 
0.20 -25.7436 -25.7127 -7.9035 -18.5431 
0.25 0.3743 0.3738 -42.9027 -52.7130 
0.30 -4.4436 -4.4383 -34.5828 -14.2317 
0.35 -23.1330 -23.1052 -53.6389 -20.3499 
0.40 -5.8396 -5.8326 -25.9456 7.5521*** 
0.45 -1.8121 -1.8099 -18.4494 109.4094*** 
0.50 -0.6746 -0.6738 -10.1691 25.0393*** 
0.55 -0.5909 -0.5902 16.6940*** 20.2168*** 
0.60 15.2664*** 15.2480*** -9.6048 -73.3776 
0.65 89.4419*** 89.3345*** -77.1870 112.2568*** 
0.70 -3.1969 -3.1931 -9.9420 97.4393*** 
0.75 120.6791*** 120.5343*** -276.7012 -7.7630 
0.80 120.6431*** 120.4983*** -10.3778 16.5276*** 
0.85 -9.1227 -9.1117 -67.0148 7.8648*** 
0.90 14.8585*** 14.8406*** 13.9713*** -101.2330 
0.95 47.4214*** 47.3644*** -113.5328 12.9182*** 

Note: The entries correspond to the MSE-F test statistic of McCracken (2007), which tests whether the MSE of 
the unrestricted model ( = ( ) + ( ) + ( ) + ( ) + ( ) + ) is 
statistically lower than that of the restricted model ( = ( ) + ( ) + ( ) + ( ) + ) 
for a specific quantile τ and forecast horizon h; *** and ** indicates 1% and 5% levels of significance respectively 
of the MSE-F statistic with critical values of 3.9510 and 1.5180. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

16 

APPENDIX:  
 

Figure A1. Data Plot (a). Realized Volatility (RV) 
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Table A1. Summary Statistics 

STATISTIC RV SKEWNESS 
Mean 101.1786 0.0197 

Median 18.8682 0.0186 
Maximum 6376.1450 0.3189 
Minimum 0.0000 -0.0803 
Std. Dev. 351.3405 0.0198 
Skewness 10.7726 2.7898 
Kurtosis 151.1006 38.7215 

Jarque-Bera 1831036.0000 106860.1000 
p-value 0.0000 0.0000 

Obs. 1962 1962 
Note: RV and SKEWNESS denotes realized volatility and skewness of oil returns respectively; Std. Dev. 
symbolizes the Standard Deviation; p-value corresponds to the test of normality based on the Jarque-Bera test.  
 
 
 
 
 
Figure A2. In-sample Predictive Impact of Expected Kurtosis (KURTOSIS) on Realized 

Volatility (RV)  
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Note: The figure plots the estimated parameter ( ) (in blue) for the equation: =
( ) + ( ) + ( ) + ( ) + ( ) +  at the quantiles τ = 

0.05, 0.10,…0.90, 0.95, with lower and upper 95% confidence bands (in orange). 


