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Abstract 
 This paper provides a novel perspective to the innovation-stock market nexus by examining the 

predictive relationship between technological shocks and stock market volatility using data over a 
period of more than 140 years. Utilizing annual patent data for the U.S. and a large set of 
economies to create proxies for local and global technological shocks and a mixed-sampling data 
(MIDAS) framework, we present robust evidence that technological shocks capture significant 
predictive information regarding future realizations of stock market volatility, both in- and out-of-
sample and at both the short and long forecast horizons. Further economic analysis shows that 
investment portfolios created by the volatility forecasts obtained from the forecasting models that 
incorporate technological shocks as predictors in volatility models experience significantly lower 
return volatility in the out-of-sample horizons, which in turn helps to improve the risk-return 
profile of those portfolios. Our findings present a novel take on the nexus between technological 
innovations and stock market dynamics and paves the way for several interesting avenues for 
future research regarding the role of technological innovations on asset pricing tests and portfolio 
models. 
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1. Introduction 
 There is now a well-established literature that highlights the role of innovation as a driver of 
economic growth boosted by productivity growth via factor reallocation from the less productive 
to more productive firms (e.g., Bartelsman and Doms, 2000; Foster et al., 2001), paving the way 
to further innovations and labor market specialization (Acemoglu et al., 2022). In this setting, 
economic growth via innovation in products and processes is achieved by what the literature terms 
as creative destruction, a process in which unproductive firms are replaced by their innovative 
counterparts (e.g. Aghion and Howitt, 1992; Klette and Kortum, 2004; Lentz and Mortensen, 2008; 
Hsu and Huang, 2010; Acemoglu et al., 2018; Akcigit and Kerr, 2018; among others). As Akcigit 
and Kerr (2018) note, however, innovations differ substantially in terms of their type, quality and 
impact, as many innovations lead to improvements in the existing portfolio of products or 
technologies, while others create new markets for firms who adopt these new technologies and 
improve upon them. The nature of such a growth option embedded in the nature and quality of 
innovations thus leads to variations in expected firm returns as asset betas vary over time with 
corporate investment decisions driven by the option-like features of those investments (Carlson et 
al., 2004). Against this backdrop, this paper contributes to the discussions on the asset pricing 
implications of innovations from a novel perspective by exploring the predictive relationship 
between innovation and stock market volatility via a mixed-data sampling (MIDAS) framework 
that allows to disentangle the short- and long-run effects of technological innovations on stock 
market volatility. By doing so, we present a novel perspective to asset pricing-based explanations 
of how technological changes drive stock market dynamics. 

Our work falls in the strand of the literature that deals with the asset pricing implications of 
technological innovations along the lines of Pastor and Veronesi (2009), Garleanu et al., (2012a,b), 
Kogan and Papanikolaou (2014), Kung and Schmid (2015), among others, however from a 
predictability perspective. In this regard, associated set of empirical studies have depicted evidence 
in favor of technology shocks predicting stock market returns in the U.S., although without a 
consensus on the direction of the predictive relationship  (e.g. Hsu, 2009; Hirshleifer et al., 2013, 
2018; Hou et al., 2022; Sharma and Narayan, 2022). We approach the issue from a forecasting as 
well as economic perspective and extend this line of empirical research by investigating whether 
technology shocks capture predictive information regarding stock market volatility, both in- and 
out-of-sample, along with the economic implications of such predictability. To econometrically 
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provide an answer to our predictive analyses, we first rely on U.S. patent data to obtain a proxy 
for local technology shocks, which we then use as a predictor of stock market volatility. To contrast 
the impact of local and global innovations, we also utilize two alternative proxies for global 
technology shocks based on patent data from 164 countries and the 12 countries in the 
Organization for Economic Cooperation and Development (OECD). To the best of our knowledge, 
ours is the first attempt to conduct predictive analyses of the impact of local and global 
technological shocks on stock market volatility, based on a long span of data involving 143 years. 

In our empirical analysis, given that the patent data that we use to create the technological 
shock series are only available in annual frequency, while the stock market data is monthly, we 
conduct our predictive tests based on the generalized autoregressive conditional heteroskedasticity 
(GARCH) variant of mixed data sampling (MIDAS), i.e., the GARCH-MIDAS model. The choice 
of the mixed data sampling approach is supported by the well-established evidence that volatility 
effects are less likely to be observed in annual data and also loss of information would result by 
averaging the monthly data to a lower frequency (Clements and Galvão, 2008; Das et al., 2019). 
The MIDAS framework has been widely utilized in an extensive list of volatility forecasting 
applications to model return volatility at the daily frequency using various monthly and/or 
quarterly predictors (see, for example, Asgharian et al., 2013; Engle et al., 2013; Conrad and Loch, 
2015; Fang et al., 2020; Segnon et al., 2022; Salisu et al., forthcoming).1 This approach is 
motivated by the argument that volatility is not just volatility, but that there are different 
components to volatility namely, one pertaining to short-term fluctuations and the other to a long-
run component, with the latter likely to be affected by slow-moving economic predictors, which 
in our context are the local and global technology shocks. It must, however, be noted that while 
our focus is not on forecasting daily volatility, as is traditionally done with GARCH-MIDAS 
models, due to the unavailability of such data over a period of more than 140 years, the utilization 
of historical data with the longest possible span has an important advantage of avoiding sample 
selection bias. At the same time, the long sample we employ in our analysis that spans over a 
century allows us to study the entire available information regarding the process of evolution of 
technology (proxied via patents) and its associated transformative effects on the US 
macroeconomy and asset price movements. 

                                                           
1 Earlier works based on spline-GARCH can be found in Engle and Rangel (2008), and Rangel and Engle (2011). 



4  

While our main focus is on the US, we also conduct a comparative forecasting exercise for the 
remaining of the six of the G7 countries, i.e. Canada and Japan (19152018), France, Germany 
and the United Kingdom (18762018) and Italy (19062018), due to their importance in shaping 
the risk profile of the global financial system. Since, we are interested in not only carrying out a 
statistical exercise of the predictive relationships, we also provide an analysis of the economic 
implications of such predictability in terms of utility gains for a typical investor. Finally, we 
conduct our analyses over periods of expansions and recessions separately, and with our out-of-
sample forecasting based on a rolling-window estimation, we are also able to account for possible 
time-variation while drawing our predictive inferences. Our findings yield robust evidence that 
technological shocks capture significant predictive information regarding future realizations of 
stock market volatility, both in- and out-of-sample. We show that accounting for the innovations 
in the number of patents granted from resident applications in a country, as a proxy for 
technological shocks, can significantly improve the accuracy of stock market volatility forecasts, 
both at the short and long forecast horizons. Further economic analysis shows that investment 
portfolios created by the volatility forecasts obtained from the forecasting models that incorporate 
technological shocks as predictors experience significantly lower return volatility in the out-of-
sample horizons, which in turn helps to improve the risk-return profile of those portfolios. 
Accordingly, our findings present a novel take on the nexus between technological innovations 
and stock market dynamics.  

The remainder of the paper is organized as follows. Section 2 presents a brief summary of the 
literature related to the impact of innovations on stock market dynamics along with some 
discussion of the literature on stock market volatility forecasting.  Section 3 outlines the data and 
the results from preliminary analysis. Section 4 describes the methodological framework for 
mixed-data sampling model employed in the forecasting analysis. Empirical findings, associated 
with both statistical and economic evaluations, are discussed in Section 5, while Section 6 
concludes the paper.  
2. Literature Review 

A growing strand of literature on asset pricing has developed structural models that establish 
an association between technological innovations and stock market dynamics (see, for example, 
Hsu and Huang, 2010; Papanikolaou, 2011; Garleanu et al., 2012a,b; Kogan and Papanikolaou, 
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2014; Kung and Schmid, 2015). The evidence regarding the direction and size of the impact of 
innovations on the return and volatility dynamics in the stock market, however, is still inconclusive 
with the literature presenting alternative arguments. One hypothesis in the strand of the literature 
that links innovation to stock market dynamics is motivated by the theoretical framework of 
Garleanu et al. (2012b) who argue that growth options of firms exhibit a “life cycle” driven by 
technological diffusion. In this setting, a disruptive technological shock leads to a rise in growth 
options, which in turn drives the risk premia (and equity price volatility) higher during the early 
phase of the technology shock as these growth options are riskier than existing assets in place. 
However, as the new technology is absorbed and firms start to convert growth options into assets 
over time, the risk premia on their stock begin to fall due to lower anticipated cash flow growth 
and interest rate. In contrast, Pastor and Veronesi (2009) present a risk-based explanation, arguing 
that, during the initial phase of technological shifts in the economy, risk is mostly idiosyncratic to 
firms associated with the new technology, resulting in stocks of innovative firms to be priced at 
high valuation ratios. However, as the adoption probability of the new technology increases, the 
uncertainty related to the new technology transforms into market wide systematic risk, thus 
pushing up discount rates, in turn, depressing stock prices across the market. Accordingly, the 
literature offers contrasting arguments regarding the impact of technological shocks on stock 
market return and volatility dynamics via distinct channels that relate to growth opportunities and 
discount rates without a consensus, however, on the direction of the impact. 

Regarding the focus on volatility in our application, it is well-established that appropriate 
modelling and forecasting of volatility is of high interest due to several reasons, as outlined in 
Poon and Granger (2003). Firstly, when volatility is interpreted as uncertainty, it becomes a key 
input to investment decisions and portfolio choices. Secondly, volatility is the most important 
variable in the pricing of derivative securities as one needs reliable estimates of the volatility of 
the underlying assets when it comes to pricing of options and option-like instruments. Thirdly, 
financial risk management according to the Basel Accord as established in 1996 also requires 
modelling and forecasting of volatility as a compulsory input to risk-management for financial 
institutions around the world. Finally, financial market volatility, as witnessed during the Global 
Financial Crisis and the COVID-19 pandemic, can have wide repercussions on the economy as a 
whole, via its effect on real economic activity and public confidence. Hence, estimates of market 
volatility can serve as a measure for the vulnerability of financial markets and the economy, and 
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can help policy makers design appropriate policies. Evidently, appropriate modelling and accurate 
forecasting of the process of volatility, particularly at higher frequencies, has ample implications 
for portfolio selection, the pricing of derivative securities and risk management (Rapach et al., 
2008).  

In our application, we build on the recent work of Sharma and Narayan (2022) who document 
strong evidence of in-sample predictability of the US equity premium, particularly at longer 
horizons and during economic expansions, principally driven by global technology factors.2 
Although the effect of technological innovations on economic growth and stock market returns is 
well-studied in the literature (see Hsu and Huang, 2010 and references cited therein), its effect on 
stock market volatility is relatively understudied. One argument that can be made in this regard is 
that innovations are likely to reduce the volatility in the factors that reflect future cash flows by 
lowering economic uncertainty (Bernanke, 1983) and the discount factor (Schwert, 1989). Along 
the same lines, considering that the present value model of asset prices (Shiller, 1981a, b) can be 
used to show that stock market volatility depends on the volatility of cash flows and the discount 
factor, one can argue that positive technology shocks are likely to reduce stock returns variance. 
The ultimate effect on stock price volatility, however, will be dependent on the strength of these 
channels, and is obviously an empirical question. Given the importance of volatility forecasts in a 
wide array of applications from portfolio management, hedging to the pricing of derivatives, our 
work presents novel contribution to the massive existing literature on the predictability of US stock 
market volatility based on a wide array of (univariate and multivariate) models and (behavioral, 
financial, and macroeconomic) predictors, a review of which is beyond the scope and objective of 
this paper, by considering the role of technological innovations in predicting the future path of 
stock market volatility.3 
3. Data and Preliminary Analyses 
 The first component of our data comprises monthly stock indexes for the US (S&P500 
Index), sourced from the Global Financial Database over the period of 1876:01-2018:12 whose 
                                                           
2 For 11 other OECD countries, Sharma and Narayan (2022) also show evidence of time-varying return predictability 
for seven countries; however, in-sample and long horizon predictability were, in general, weak. 
3 The reader is referred to the recent works of Ben Nasr et al. (2014, 2016), Boubaker et al. (2022), Gupta et al. (2022), 
Liu and Gupta (2022), Salisu et al. (2022), and references cited therein to get an understanding of the existing and 
ever burgeoning number of studies on modeling and forecasting of US stock market volatility.  
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coverage is governed the available data for Technology shocks. Log-returns are computed by 
taking the first differences of the natural logarithms of the monthly indexes and following Welch 
and Goyal (2008), the equity premium is then computed by subtracting the U.S. risk-free rate, 
obtained from the website of Professor Amit Goyal.4 

Regarding the construction of the technology shock (TS) series, annual data on patents 
granted from resident applications in a country is used along the lines of Sharma and Narayan 
(2022) who adopt the same approach previously proposed in Hsu (2009). In this approach, TS is 
estimated by detrending the growth in patents in a year based on a 5-year moving window using 
the formula −1 = ln( −1)-(1/5)∑ ln( ), where  represents the number of 
patents. The choice of the 5-year window is motivated by the need to control for the effect of 
delays that may occur during the application process which can take up to five years from the date 
a patent application is submitted until it is granted (Sharma and Narayan, 2022). In this 
formulation, TS tracks the technology prospects for an economy, wherein a positive value suggests 
that technology prospects at time t are better than the past. There are two specific advantages of 
this approach namely, this measure is free from the so-called look-ahead bias, and it takes the 
weakest assumptions on model parameters. In addition to the TS series based on U.S. patent data, 
Sharma and Narayan (2022) also create global technology shocks using the sum of patents from 
164 countries (GTS_164) for which data are available. As another measure, the authors also 
aggregate the patents for 12 OECD countries (G7 plus five other major countries namely, 
Australia, Denmark, Finland, Norway and Spain) to generate an OECD-specific technology shock 
series (GTS_OECD) based on the above specification.5 The raw data on patents granted (residents) 
are available from the World Intellectual Property Organization’s (WIPO) website 
(https://www.wipo.int/portal/en/index.html), which has archived data from 1883 to 1979, while 
data from 1980 to 2018 are available in non-archived view from: 
http://www.wipo.int/ipstats/en/statistics/patents/. Note that, the start and the end points of the 
sample are purely driven by data availability for the excess-returns and the technology shocks at 
the time of writing this paper. 

                                                           
4 https://sites.google.com/view/agoyal145 
5 We are indebted to Professor Paresh K. Narayan for kindly providing us with the TS data. 
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Figure 1 presents a visual representation of the relationship between U.S. excess stock 
market returns and its country-specific technological shock series along with global technological 
shocks. The excess stock return series exhibits several notable spikes which appear to coincide 
with periods of global recession (indicated by the shaded intervals), more prominently during the 
Great Depression in 1930s, later during the World War II and during the global financial crisis of 
2008/2009. Similar high volatility periods characterized by large positive and negative market 
fluctuations are also observed, although in relatively smaller magnitudes, during  the Panic of 1907 
and oil embargo of early 1970s. In the case of technology shocks, not surprisingly, a notable 
positive spike is observed in all three TS series during the dot-com period of the 1990s along with 
another notable positive spike during the post-World War II boom in 1950s. These patterns are 
instructive to the separate examination of the effect global recessions and expansions in our 
subsequent analysis of the technological shock–stock market volatility nexus. 

Table 1 presents the summary statistics (mean, standard deviation, kurtosis and skewness) 
and some preliminary results (ARCH, first and higher order serial correlation) that reflect the 
inherent salient features of the series employed in the analysis. Panels A and B report the 
descriptive statistics for the standardized country-specific and global technology shock series 
(GTS_164 and GTS_OECD) computed at annual frequency, respectively and Panel C reports the 
same for monthly excess stock market returns for the US. We observe, on average, a positive value 
for the country-specific TS while that of the global TS is mixed as the global technology shock 
series (GT_164) has a negative mean while it is positive for the OECD specific technology shock 
series (GTS_OECD). The dominance of developed/highly industrialized economies in the 
GTS_OECD may be responsible for the positive value observed for this group of countries relative 
to the GT_164 that is dominated by the developing countries. Expectedly, we observe a positive 
mean for the excess stock market returns while as typical for volatile series, we find evidence of 
conditional heteroscedasticity and serial correlation as well as excess kurtosis in both the stock 
and TS series. The evidence of volatility in the series further attests to the appropriateness of the 
GARCH-type model framework in this study as described in the next section.  
4.      Methodology 

Since our focus is to examine the predictive information captured by technological shocks 
on stock market volatility, given that the technological shock series as the predictor variables are 
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available on an annual frequency while the excess stock market returns series is monthly (to be 
meaningful from a practical investment perspective), we conclude that a mixed-data sampling 
(MIDAS) framework would be most appropriate to avoid information loss due to aggregation or 
observational biases due to the choice of data splicing procedures. The MIDAS model has been 
employed widely in econometric applications that involve data at mixed frequencies and, in our 
case, given with the observed significant ARCH effects, we choose the GARCH-MIDAS model 
for our empirical analysis as the model is well suited to handle a mixed data frequency setting 
wherein the examined nexus is between a high frequency dependent variable that exhibits 
conditional heteroscedasticity and a lower frequency predictor variable. Essentially, this 
framework ensures that every possible information is taken into cognisance when modelling the 
volatility in the returns. This feat is its merit over the extant uniform frequency methods that are 
characterized by information loss and observational bias due to distortion of the originality of the 
data frequency.  

We define excess monthly stock returns  ,i tr  as the log returns of the stock price index less 
the risk-free rate (here, the US treasury bill rate). Given that our series are of mixed frequencies, 
we note that 1,..., ti N  and 1,...,t T  respectively denote monthly and annual frequencies with 

tN  representing the number of months in a given year t . The model specification for the GARCH-
MIDAS model is expressed as: 
  , , , ,          1,...,i t t i t i t tr g e i N            (1) 

where    represents the unconditional mean of excess stock returns; ,t i tg   is the 
conditional variance that comprises two components  (i) a long-run component  t  that captures 
the long-run volatility, (ii) a  GARCH 1,1  based short-run component  ,i tg  that is characterized 
by a higher frequency with  , 1, ~ 0,1i t i te N  representing the error distribution, where 1,i t  
denotes the available information at month 1i  of year t .6 The conditional variance part of the 
short-run component is defined in Equation (2) as:  

                                                           
6 See Engle et al. (2013) for further technical details on the construction of the GARCH-MIDAS model. 
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where   and  respectively denote the ARCH and GARCH terms, satisfying the following 
conditions 0  , 0   and 1   . In this setting, the annual frequency technological shocks 
(TS) are transformed to monthly frequency, without loss of originality of the model, following 
Engle et al. (2013). Consequently, our annual varying long-term component  t  is transformed 
to monthly, rolling back the months across the years without keeping track of it. Equations (3) and 
(4) respectively define the monthly long-term component  i  for the realized volatility and the 
exogenous factor: 
    1 2

1
,K

i k i k
k

m RV     
        (3) 

    1 2
1

,K
i k i k

k
m X     

         (4) 

where m  denotes the long-run component intercept;  denotes the coefficient of the 
incorporated predictor, i.e. realized volatility or technological shocks. In our application, we 
examine four variants of the GARCH-MIDAS long-run component in which the models are 
distinguished by the comprising predictor(s). These variants are as follows: (i) the benchmark 
GARCH-MIDAS variant that only incorporates realized volatility (RV); (ii) RV and TS; (iii) RV 
and GTS_OECD; and (iv) RV and GTS_164. Also note that for the variants interacted with RV, 
we employed the principal components analysis (PCA) to combine the information of the variables 
into a single factor. 

Equations (3) and (4) comprise beta polynomial weights  1 2, 0, 1,...,k w w k K   , with a 
summation constrained to unity in order to achieve the identification of the model’s parameters. 
The secular component of the MIDAS weights is filtered using  10K   MIDAS years, which is 
the optimal lag for our specification. Hinging on the flexibility of the beta weighting scheme as 
highlighted by Colacito et al. (2011), we adopt the one-parameter beta polynomial. The weighting 
scheme allows for the transformation of a two-parameter beta weighting function defined by  

          21 2 1 11 1 1
1 2 1, 1 1 1 1 1 1 ww w wK

k jw w k K k K j K j K   
                        to a 
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one-parameter beta weighting function       11
11 1 1 1 ww K

k jw k K j K 


              , by 
constraining 1w  to unity and setting 2w w . This imposes a monotonically decreasing function 
(Engle et al. 2013) where the weights  k  are positive and sum to one  1 1K

kk   . Also, the 
imposition of a constraint on the parameter  w , such that it is greater than unity  1w  ensures 
that more recent observation lags are assigned larger weights compared to those that are more 
distant. 

The in-sample predictability of the comprising predictor(s) is ascertained by testing the 
hypothesis of the statistical significance of the slope parameter () such that a statistically 
significant estimate implies predictability for excess stock return volatility based on the 
corresponding predictor. Given our earlier discussion regarding the possible link between 
technological shocks and stock market returns along with the mixed findings reported in Sharma 
and Narayan (2022), a priori, technological shocks can be expected to impact stock market returns 
either negatively or positively although one can argue that higher TS would be associated with 
greater market uncertainties regarding the impact of the new technologies on firm returns thus, 
drawing mixed reactions from investors with varying degrees of risk preferences and access to 
information, which in turn would contribute positively to volatility. Aside from the sign and size 
of the effect of these shocks on volatility, however, of particular interest in our context is the out-
of-sample forecast performance of the contending model variants that incorporate these shocks as 
predictors in comparison with the conventional GARCH-MIDAS model used as the benchmark 
model. 

In our empirical application, we use the full sample for the in-sample predictability analysis 
and where the data sample is partitioned into expansion and recession periods, their corresponding 
full data samples are used as well. However, for the purpose of forecast evaluation in an out-of-
sample setting, we employ a 75:25 data split between the in- and out-sample periods and conduct 
the modified Diebold-Mariano (DM) test (see Harvey, Leybourne, and Newbold, 1997) to assess 
the relative performance of the competing models. The modified DM test, extends the Diebold and 
Mariano (1995) test, by accounting for potential autocorrelation and heavy-tailed distributions. 

DMThe modified DM statistic represented as is expressed as: 
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        (5) 

   ~ 0,1V dDM d NT 1
1 T

ttd dT  where  is the conventional DM test equation;  
 tV dis the mean of the loss differential between the two competing models,  is the unconditional 

   t TS RVd l l    TSl variance of the loss differential where ,  is the loss function of the 
 RVl forecast error of the GARCH-MIDAS-TS model,  is the loss function of the forecast error 

of the GARCH-MIDAS-RV model; and h  is the forecast horizon. The null hypothesis of equality 
0 : ( ) 0tH E d of the accuracy of the two model variants, that is, , is tested against the alternative 

 1 : ( ) 0tH E d hypothesis  that the forecast accuracy differs between the two  contending models. 
A negatively significant test statistic implies the superiority of the augmented GARCH-MIDAS 
model that incorporates technological shocks as a predictor over the benchmark model that 
includes only the RV factor (i.e. GARCH-MIDAS-RV) and converse is true if the test statistic is 
significantly positive. On the forecast-evaluation, we focus on the out-of-sample forecast 
evaluations in a rolling window setting and consider 3-, 6- and 12- months-ahead forecasts as the 
out-of-sample forecast horizons. 
5.      Empirical Findings 
5.1    In-Sample Predictability Analyses 
 Table 2 presents the in-sample predictability results from the estimation of a GARCH-MIDAS 
model that incorporates annual technological shock series as the predictor for the US stock market 
volatility. The reported parameters include the unconditional mean excess stock returns ( ), the 
ARCH term ( ), the GARCH term ( ), the slope coefficient ( ), the adjusted beta polynomial 
weight ( ), and the long run constant term ( ) for four contending GARCH-MIDAS model 
variants. Note that the GARCH-MIDAS-RV model is the benchmark model that is based on the 
past realizations of realized volatility only, without any of the predictors. Similarly, the GARCH-
MIDAS- (TS, GTS_OECD, GTS_164) models denote the alternative variants supplemented with 
the technological shock series for the US, 12 OECD countries and the larger sample of 164 
economies, respectively. Panels A, B and C present the findings for the whole sample, and the 
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recession and expansion periods, respectively, (see Table A1 in the appendix). Specifically, the 
recession (expansion) periods are incorporated in the model using dummy variables that take on 
the value one to indicate the period of recession (expansion) and zero otherwise, as the case may 
be. The dummy variables are thereafter combined with TS, GTS_OECD and GTS_164 to reflect 
the period being considered.  
 The model results reported in Table 2 yield significant estimates for all estimated parameters 
in the GARCH-MIDAS model except for the case of the long run constant term in the GARCH-
MIDAS variant with global technological shocks. We find the ARCH and GARCH terms under 
all four GARCH-MIDAS variants to be statistically significant, with the summation less than 
unity, indicating the presence of high but temporal persistence in stock market volatility, which 
may only require a longer time to fizzle out. Imperatively, shocks emanating from the stock market 
itself are not likely to cause a structural shift in the historic pattern of the market volatility. Also, 
the beta weight estimates are found to  be greater than unity, which implies that the weights 
assigned to more recent observation lags are higher than weights assigned to far distant observation 
lags, indicating that more importance is attached to immediate past than distant past observations. 
On the predictability stance, we find that the US excess stock return volatility responds positively 
to its realized volatility, which implies that the market volatility is aggravated by the uncertainties 
within the market. However, the models yield negative slope coefficient ( ) estimates, significant 
at the highest statistical level, across all alternative TS proxies, i.e., the country specific as well as 
the global variants. This suggests that positive technological shocks, irrespective of the source 
(country-specific or global), are generally associated with lower subsequent stock market 
volatility. 
 The feat of predictability observed in the full sample period is not markedly altered when we 
consider the recession (Panel B) and expansion (Panel C) periods. We observe that the nexus is 
still negative and statistically significant, suggesting that innovations generally predict lower stock 
market returns in subsequent periods irrespective of the business cycle. The negative predictive 
relationship between technological shocks and stock market volatility could be a manifestation of 
the life cycle in growth options suggested by Garleanu et al. (2012b) wherein the risk premia (and 
equity price volatility) begin to fall as the new technology is absorbed and firms start to convert 
growth options into assets over time. It is also possible that the flexibility of firms to adapt to 
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fundamental economic restructuring, as noted by  Berk et al. (1999), plays a significant role in how 
stock market volatility evolves as a result of the realization of the real growth options created by 
those innovations. Nevertheless, the consistent negative effect of innovations on stock market 
volatility across the local and global technological shock series and the business cycle is in contrast 
with the findings by Sharma and Narayan (2022) for the equity premium who find relatively 
stronger effect for local technological shocks and for global shocks during expansions. 
Accordingly, we conclude that effect of technological innovations on stock market dynamics is 
primarily concentrated on volatility rathe than the risk premium. Considering that in-sample 
predictability does not necessarily suggest a predictive relation out-of-sample, we next perform 
out-of-sample evaluation to ascertain whether the observed predictability transcends the in-sample 
period.  
5.2    Out-of-Sample Predictability Analyses 
 Having examined the predictive power of technological shocks for the US excess stock 
returns volatility within an in-sample setting, we next subject the contending GARCH-MIDAS 
models to out-of-sample forecast evaluations for 3-, 6- and 12- months ahead forecast horizons. 
To this end, we perform two forms of comparisons: First, we compare the benchmark GARCH-
MIADS-RV model with the variants augmented with the technological shocks as predictors, i.e. 
the GARCH-MIDAS-G(TS) model variants. Next, we perform a horse race within the set of 
augmented models by comparing the forecasting performance of local against global technological 
shocks by setting the GARCH-MIDAS-TS as a benchmark against the GARCH-MIDAS-GTS 
model variants. Table 3 presents the out-of-sample forecast performance analysis for the 
benchmark forecasting model (labelled in each column in Panels A and B) against its augmented 
variations that incorporate technological shocks as predictors of stock market volatility. We 
employ the modified Diebold and Mariano test statistics under a null of equality in the forecast 
performances of the contending GARCH-MIDAS models. Reported in each cell is the estimated 
Diebold and Mariano statistic where a negative and significant DM statistic value indicates better 
out-of-sample forecast performance of the augmented model compared to the benchmark model. 
In Panel A, the benchmark model is the conventional GARCH-MIDAS-RV model which includes 
only the past realizations of realized volatility (RV) as the predictor. The benchmark is compared 
to three alternative augmented models that incorporate TS, GTS_OECD and GTS_164 as 
predictors. In Panel B, the benchmark model is the GARCH-MIDAS-TS model which incorporates 
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TS as the predictor and is compared against the model variations that include GTS_OECD and 
GTS_164 as predictors. 

The findings in Table 3 yield robust evidence supporting the predictive information 
captured by technological shocks over stock market volatility, indicated by the outperformance of 
the GARCH-MIDAS-G(TS) model variants over the GARCH-MIDAS-RV model, consistently 
across all forecast horizons and sample periods (full, recession and expansion). The negative and 
highly significant DM statistics reported in Panel A suggest that incorporating any of the (country-
specific or global) technological shock series in the forecasting model improves the stock market 
volatility forecasts over the conventional GARCH-MIDAS-RV model. These feats transcend the 
three stated forecast horizons up to one year, which is an indication of the robustness of the model 
results to forecast horizons. Examining the forecasting performance of local against global 
technological shocks by setting the GARCH-MIDAS-TS model as the benchmark, we observe in 
Panel B that none of the models that incorporate global shocks can improve the volatility forecasts 
for the US stock market over and above the model that incorporates technological shocks 
associated with the US, implied by the largely insignificant and, in some cases positive, DM 
statistics in the panel. This suggests that the predictive power of innovations on stock market 
volatility in the US is primarily driven by local technological innovations rather than global 
developments. This finding is not unexpected considering that US has been at the forefront of 
technological innovations throughout the sample period and it is only natural that US stock market 
volatility is primary dominated by the technological shocks associated with the US.  

On the second strand of comparison however, we show that the GARCH-MIDAS-TS offers 
as much useful predictive value as the GARCH-MIDAS-GTS_164 and even offers a higher 
predictive value at a lower forecast horizon. In other words, the US-specific TS that captures 
technological innovations specifically for the US environment appears to be more connected with 
the country’s stock market particularly in terms of improving its out-of-sample forecasts. 
5.3    Economic Significance 
 Having presented evidence in favour of the in- and out-of-sample forecasting gains from 
incorporating technological shocks as predictors of stock market volatility, we now extend our 
analysis to the economic implications of the findings. Specifically, we examine whether 
incorporating different variants technological shocks as predictor variables in our GARCH-
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MIDAS framework provides any economic gains as another way to ascertain that the technological 
shocks series are relevant in the modelling of the US stock market volatility. Essentially, this 
provides an economic-based confirmation to lend support to the earlier reached statistical 
conclusions drawn from the modified DM statistics. Assuming that a characteristic mean-variance 
utility investor would optimize the available portfolios in contrast to a risk-free asset by 
apportioning shares among investment options, we define the optimal weight, tw  as 

   1 1
2 2
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ˆ ˆ11
ˆ

f
t t

t
t

r rw  
   


          (6) 

where   denotes the risk aversion coefficient;   is a leverage ratio which we set to 6 and 
8 on the premise of a 10% margin often maintained by investors; 1t̂r   represents the US stock 
market realized volatility forecast at time 1t  ; 1ˆ f

tr   is a risk-free asset (Treasury bill rate); and 
2

1ˆ t   denotes return volatility estimate, obtained as a 6-month moving window of monthly returns. 
The goal here is to quantify the economic gains of different GARCH-MIDAS-G(TS) model 
variants that incorporate different variants of technological shocks, compared with the benchmark 
GARCH-MIDAS-RV model that is based on the past realizations of realized volatility. To this 
end, the economic significance is then determined by maximizing the objective utility function 
formulated as  

              2 2 20.5 1 1 0.5 1f f
p p pU R E R Var R w r r w r w            (7) 

where   2 2 2
pVar R w    is the variance of the portfolio return; 2  denotes excess return 

volatility; pR  is the portfolio return defined as    1f f
pR w r r w r    . The contending 

models are then compared on the basis of the economic gains achieved by the investor in terms of 
the highest returns and Sharpe ratio, = ; along with minimum volatility (Liu et al., 

2019). Given that transaction costs are an important consideration in a practical investment setting, 
we also account for the cost of implementing the portfolio investment strategy by incorporating 
the transaction costs in the computation of the economic significance for each contending models. 
To that end, drawing from Callot et al. (2017), we compute the average portfolio turnover (TO) 
for the out-of-sample period by 
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   = −                (8) 
 where    1 1 1 , 1ˆ ˆ 1 1hold

t t t p tw w r R         denotes the weight of the holding portfolio. In 
this formulation, turnover is measured by the average change in the portfolio weights, which is 
well suited for the case where a combination of the risk-free and a risky asset is considered, hence, 
only the transaction cost  c  for the risky asset is required. The adjusted portfolio returns for the 
risky asset is then defined as adjust

p pR R cTO  ; and the corresponding volatility, and Sharpe ratios 
are computed for the adjusted portfolio returns. 

Table 4 reports the results from the economic analysis based on the mean portfolio return, 
volatility, and Sharpe Ratio (SR) values for the investment portfolios obtained from the contending 
volatility models. The benchmark model, reported in shaded rows, is the conventional GARCH-
MIDAS-RV model which includes only the past realizations of realized volatility (RV) as the 
predictor. The leverage ratio is denoted by   with a value of one indicating no leverage. We set 
the leverage ratio to 6 and 8; and set the risk aversion level to 3. Panels A and B report the results 
without transaction costs and with transaction costs of c=0.5%, respectively. In Panel A, we 
observe that the benchmark forecasting model (GARCH-MIDAS-RV) that is based on the past 
realizations of volatility yields the highest volatility in portfolio returns compared to the models 
that are supplemented by the technological shock series as a predictor. Although the mean portfolio 
return associated with the benchmark model is higher, we observe that the forecasting models that 
utilize the predictive information of technological shocks offer improved risk adjusted returns 
indicated by higher Sharpe ratios associated with the GARCH-MIDAS-G(TS) model variants. 
This shows that the incorporation of technological shocks in a GARCH-MIDAS model framework 
can help achieve economic gains compared to the forecasting models that ignore the predictive 
information captured by these shocks. We find that this feat of higher economic gains achieved 
from the incorporation of TS variants is replicated under the recession and expansion periods.  

The inferences obtained in Panel A are further strengthened when we account for 
transaction costs in Panel B. We find that the economic gains of incorporating TS, GTS_OECD 
and GTS_164 are consistently higher than the economic gains associated with the benchmark 
forecasting model that utilizes only historical realized volatility as a predictor of subsequent 
volatility patterns. Clearly, this highlights the importance of accounting for the transaction costs 
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in portfolio performance analysis, as neglect could lead to understatement of the economic gains 
of an incorporated predictor variable(s). Further comparing the models based on the nature of the 
technological shocks used in the predictor set (i.e., local or global), we find that the portfolios 
created using the volatility forecasts obtained from the model that incorporates global 
technological shocks generally yield more favourable economic outcomes than those that 
incorporate US technological shocks. Specifically, we find that the portfolios based on the 
GARCH-MIDAS-GTS_164 model enjoy lower return volatility, which in turn, helps to improve 
the risk-adjusted returns for these portfolios. This result is further confirmation to the stance in the 
modified DM statistics that indicates the statistical importance of technological shocks as a 
predictor for US excess returns volatility. These inferences are also supported by several 
robustness checks across the alternative leverage parameters as reported in the table. Overall, the 
analysis of the economic outcomes from the predictive relationships show that technological 
shocks are indeed relevant predictors, both statistically and economically, for the prediction of 
stock market volatility. 
5.4    International Evidence 
 The analysis so far has focused solely on U.S. stock market volatility and the predictive 
information captured by the local and global innovations regarding subsequent volatility dynamics 
in this leading economy globally. In this section, we extend our analysis to the remaining G7 
nations in order to ascertain whether there exists some international evidence of the innovation-
volatility nexus as is the case for the US. To that end, we conduct similar out-of-sample estimations 
and report the statistical measure of forecast performances as well as the corresponding economic 
analysis of the portfolios obtained from the volatility forecasts. Our goal here is twofold. First, we 
aim to ascertain whether the stance of improvement of the forecast precision of the predictive 
model for stock market volatility over the GARCH-MIDAS-RV variant is robust to the choice of 
the country being considered. Second, we explore whether or not any differences exists in the 
innovation-volatility nexus across markets. Table A2 in the Appendix presents the out-of-sample 
forecast performance analysis for the benchmark forecasting model (labelled in each column in 
Panels A and B) against its augmented variations that incorporate technological shocks as volatility 
predictors. In Panel A, the benchmark model is the conventional GARCH-MIDAS-RV model 
which includes only the past realizations of realized volatility (RV) as the predictor. The 
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benchmark is compared to three alternative augmented models that incorporate TS, GTS_OECD 
and GTS_164 as predictors. In Panel B, the benchmark model is the GARCH-MIDAS-TS model 
which incorporates TS as the predictor and is compared against the model variations that include 
GTS_OECD and GTS_164 as predictors. 

Examining the estimated modified DM statistics in Panel A, the comparison of the 
GARCH-MIDAS-G(TS) models against the benchmark GARCH-MIDAS-RV model yields 
generally consistent results with those observed for the US. While we observe some heterogeneity 
across the countries, we observe that the nexus between technological innovations and stock 
market volatility is generally robust for the majority of the G7 economies, leading to improved 
stock market volatility forecasts in most stock markets. Specifically, we find that incorporating the 
volatility models with the technological shock predictors yields more accurate out-of-sample 
volatility forecasts, particularly for Canada, France, Japan and UK, indicated by the negative and 
significant DM statistic values. The findings, however, highlight the predictive role of global 
shocks relative to local shocks, with the GARCH-MIDAS-GTS_OECD model resulting in 
stronger performance against the benchmark model for four out of the six G7 nations in the sample, 
consistently across both the expansionary and recessionary states. This finding could be a 
manifestation of the predictive impact of the innovations driven by the US over global economies, 
which in turn, drives the outperformance of the model that incorporates the technological shocks 
for the OECD as a whole. Interestingly, however, the results yield no evidence of such 
predictability in the case of Germany and Italy, for which we find outright outperformance of the 
benchmark GARCH-MIDAS-RV model over the GARCH-MIDAS variants that incorporate 
technological shocks. This suggests that idiosyncratic factors at the market level could be playing 
a role in how the innovation-volatility nexus plays out in a given market.  

In the comparison of the GARCH-MIDAS-GTS model variants with GARCH-MIDAS-TS 
benchmark in Panel B, we find that the volatility models that incorporate global technological 
shock series outperform their counterparts based on local shocks in four out of the six markets, 
particularly Canada, Germany, Italy and Japan. The predictive power of innovations over the stock 
market is largely concentrated on recessionary market states for Japan and Italy, while we do not 
observe a clear pattern regarding the role of business cycles for the other economies. Interestingly, 
in the case of France and UK, we find that incorporating the local technological shocks as a 
predictor of stock market volatility yields more accurate out-of-sample volatility forecasts 
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compared to models that incorporate global shocks, possibly highlighting the investments made 
by these economies in research and development throughout much of the sample period. These 
results transcend the forecast horizons and data sample (full, recession and expansion), and is 
indicative of the robustness of results to forecast horizons and data sample, and sensitivity of 
results to the choice of country stocks. 

Further extending the international evidence to the economic implications of the findings, 
Table A3 in the Appendix reports the mean portfolio return, volatility, and Sharpe Ratio (SR) 
values, computed over the out-of-sample forecasting horizon. The benchmark model, reported in 
shaded rows, is the benchmark GARCH-MIDAS-RV model which includes only the past 
realizations of realized volatility (RV) as the predictor. Panels A and B report the results with and 
without transaction costs, respectively. We observe similar feats for the large majority of countries 
including France, Italy, Japan and UK as observed for the US, indicating that the portfolios created 
from volatility models that incorporate technological shocks generally yield more favorable 
economic outcomes for a mean-variance investor compared to those based on the benchmark 
forecasting model. We find that incorporating technological shocks, particularly the OECD-based 
series, in the forecasting model helps to reduce portfolio volatility in the out-of-sample horizon, 
thus yielding more favorable risk-adjusted return, implied by higher Sharpe ratios for those 
portfolios. The largest improvement in the risk-adjusted returns are observed in the case of France, 
Italy, Japan and UK, while Germany experienced negative mean returns and Sharpe ratios, likely 
due to the inclusion of the two world wars in the long sample that led to devastation in this 
country’s economy. Nevertheless, comparing the economic outcomes for Germany for the 
benchmark against the augmented models, we find that incorporating technological shocks help 
improve the risk-adjusted returns positively, further supporting the economic value of these shocks 
as a predictor. Overall, our analysis of the remaining G7 stock markets suggests that technological 
shocks are indeed a relevant predictor for stock market volatility, not only by helping to improve 
the accuracy of out-of-sample forecasts, but also by yielding higher economic gains than the 
benchmark forecasting model that excludes technological shocks. 
6.      Concluding Remarks 
 The nexus between technological innovations and economic growth is well studied in the 
literature. The asset pricing implications of technological innovations, particularly on stock market 
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volatility however, is relatively understudied without a consensus on the significance and direction 
of the predictive relationship. This paper presents a novel perspective to this nexus by investigating 
the predictive power of technological shocks over stock market volatility dynamics, both in- and 
out-of-sample, using data over a period of more than 140 years and whether or not such a predictive 
relationship can be used to create economic gains for investors. To this end, given the mixed 
frequency nature of the data available to capture technological innovations and stock market 
dynamics, we adopt a mixed data sampling approach via a GARCH-MIDAS model framework 
that allows for simultaneously incorporating mixed data frequencies within a volatility model 
framework. Specifically, we use a proxy for technological shocks based on annual patent data from 
a large number of economies and compare stock market volatility forecasts obtained from 
forecasting models that incorporate technological shocks as predictors against a benchmark model 
that is based only on past realizations of volatility. We then examine the economic implications of 
our findings by creating portfolios using the volatility forecasts obtained from each contending 
model and comparing their economic outcomes.  

Both in- and out-of-sample tests for the U.S. yield robust evidence that technological 
shocks capture significant predictive information regarding future realizations of stock market 
volatility. Our findings suggest that accounting for the innovations in the number of patents granted 
from resident applications in a country, as a proxy for technological shocks, can significantly 
improve the accuracy of stock market volatility forecasts, both at the short and long forecast 
horizons. While our findings are in line with the presence of a life cycle in growth options wherein 
the risk premia (and equity price volatility) evolves over time based on how firms adapt to the new 
technology, one can also argue that the predictive power of innovations on stock market volatility 
is a manifestation of how technological shifts in the economy transforms from primarily an 
idiosyncratic, firm (or industry) specific risk into a market wide systematic risk as the adoption 
probability of the new technology increases over time. Whatever the underlying reason might be, 
however, our findings show that the predictive relationship between technological innovations and 
stock market volatility can indeed be utilized by mean-variance investors to create economic gains. 
Our economic analysis shows that investment portfolios created by the volatility forecasts obtained 
from the forecasting models that incorporate technological shocks as predictors experience 
significantly lower return volatility in the out-of-sample horizons, which in turn helps to improve 
the risk-return profile of those portfolios.  
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Extending our analysis to the remaining G7 economies further supports our inferences 
regarding the nexus between technological innovations and stock market volatility in most of the 
G7 countries. We observe, however, some heterogeneity in the predictive importance of local 
versus global technological shocks over stock market volatility across the G7 economies although 
no clear pattern is observed regarding the role of the business cycle. While the predictive 
relationship between innovations and stock market volatility could be driven by what Jiang (2010) 
terms as the heterogeneous effects associated with the changes in the relative competitive 
advantage of firms and resource allocation as a result of technological shifts, our findings provide 
a novel opening, both from the portfolio management and asset pricing perspectives. From a 
portfolio management perspective, our analysis of the economic implications of the predictive 
nexus between innovations and volatility suggests that the improved volatility forecasts obtained 
from forecasting models that incorporate measures of technological innovations can help portfolio 
risk and improve portfolio performance on a risk-adjusted basis. From an asset pricing perspective, 
considering the well-documented evidence that establishes a link between idiosyncratic volatility 
and the real option opportunities associated with a firm (e.g. Cao et al., 2008; Chen and Petkova, 
2012, among others), our analysis suggests that asset pricing models could be improved by 
incorporating sensitivity to technological innovations as a driver of idiosyncratic volatility at the 
firm or industry levels. This, in turn, can help improve the outcomes from cross-sectional analysis 
of firm returns as the difference in returns among firms sorted on various firm-level characteristics 
including idiosyncratic volatility is largely driven by their differences in exposures to a common 
systematic risk factor associated with these firms’ sensitivities to technology shocks (Kogan and 
Papanikolaou, 2014). Nevertheless, our work paves the way for several interesting avenues for 
future research regarding the impact of innovations on stock market dynamics. 
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Figure 1. Technological shocks and U.S. excess returns 
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Note: The figure plots the time series of annual excess stock market returns for the U.S. along with the 
technological shock series for the U.S., OECD economies and larger sample of 164 global economies. 
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Table 1. Summary Statistics and Preliminary Analyses 
  Mean Standard Deviation  Skewness  Kurtosis N ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

Panel A: Country-specific technological shocks 
US 2.27E-16 1.00E+00 -1.03E-01 3.41E+00 143   0.431   3.645***   1.885** 2.693 27.618*** 40.967***   3.201*   14.598**   29.312*** 

Panel B: Global technological shocks 
GTS_164 -1.49E-16 1.00E+00 -4.06E-01 3.68E+00 130   0.017   0.105   0.270 5.957** 22.378*** 30.125***   5.828**   16.634**   21.251** GTS_OECD 3.63E-17 1.00E+00 5.70E-01 4.59E+00 143   3.148*   1.850*   1.753* 0.828 24.009*** 27.863***   8.517***   35.363***   37.681*** 

Panel C: Excess stock market returns 
US 8.10E-02 4.10E+00 -4.02E-01 1.42E+01 1716 15.659*** 39.180*** 25.636*** 0.795 22.093*** 26.246*** 15.570*** 272.790*** 457.950*** 

Note: Panels A and B report the descriptive statistics for the standardized country-specific and global technology shock series computed at annual frequency, 
respectively and Panel C reports the same for monthly excess stock market returns. (#), (#) and (#) are formal tests for the presence of ARCH effects, 
first and higher order serial correlation respectively, at the specified lags. ***, ** and * respectively denote statistical significance of the formal tests at 1%, 5% and 
10% levels of significance. Statistical significance of these tests indicates evidence of the presence of conditional heteroscedasticity and serial correlation.   
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Table 2. GARCH-MIDAS In-Sample Predictability Result (United States) 
Model         w  m  

Panel A: Full Sample Period 
RV 0.3317*** [0.0869] 0.1702*** [0.0155] 0.7569*** [0.0257] 0.0378*** [0.0101] 1.0011*** [0.3284] 9.6813*** [2.0649] 
TS 0.1994*** [0.0620] 0.0846*** [0.0049] 0.9154*** [0.0051] -0.0229*** [0.0068] 4.8249*** [1.8514] -0.7220* [0.3700] 
GTS_OECD 0.2005*** [0.0620] 0.0846*** [0.0049] 0.9154*** [0.0051] -0.0223*** [0.0068] 4.8280** [1.9025] -0.7228* [0.3703] 
GTS_164 0.1999*** [0.0647] 0.0815*** [0.0048] 0.9185*** [0.0050] -0.0217*** [0.0067] 4.9109** [1.9506] -0.2445 [0.4031] 

Panel B: Recession Period 
RV 0.3317*** [0.0869] 0.1702*** [0.0155] 0.7569*** [0.0257] 0.0378*** [0.0101] 1.0011*** [0.3284] 9.6813*** [2.0649] 
TS 0.1975*** [0.0619] 0.0846*** [0.0049] 0.9154*** [0.0051] -0.0227*** [0.0068] 4.8542*** [1.8681] -0.7317** [0.3690] 
GTS_OECD 0.1989*** [0.0619] 0.0847*** [0.0049] 0.9153*** [0.0051] -0.0219*** [0.0068] 4.8536** [1.9303] -0.7345** [0.3693] 
GTS_164 0.1954*** [0.0646] 0.0816*** [0.0048] 0.9184*** [0.0050] -0.0216*** [0.0067] 4.9090** [1.9502] -0.2546 [0.4024] 

Panel C: Expansion Period 
RV 0.3317*** [0.0869] 0.1702*** [0.0155] 0.7569*** [0.0257] 0.0378*** [0.0101] 1.0011*** [0.3284] 9.6813*** [2.0649] 
TS 0.1913*** [0.0650] 0.0849*** [0.0050] 0.9151*** [0.0052] -0.0365*** [0.0093] 2.9097*** [0.7988] -0.2030 [0.4215] 
GTS_OECD 0.2029*** [0.0622] 0.0846*** [0.0049] 0.9154*** [0.0051] -0.0226*** [0.0069] 4.8055** [1.8777] -0.7146* [0.3714] 
GTS_164 0.2043*** [0.0647] 0.0815*** [0.0048] 0.9185*** [0.0050] -0.0217*** [0.0067] 4.9083** [1.9665] -0.2373 [0.4036] 
Note: The table reports the estimated coefficients and their associated standard errors in square brackets for the GARCH-MIDAS model described in 
Equations 1-4. RV is realized volatility and TS, GTS_OECD, GTS_164 refer to the technological shock series for the U.S., OECD economies and 
164 global economies, respectively. The conventional GARCH-MIDAS model that includes realized volatility (RV) is considered as the benchmark 
and each row corresponds to the model variation augmented with the predictor variable listed in the first cell. Panels A, B and C report the in-sample 
predictability results for the whole sample, recessions and expansions based on NBER dates summarized in Table A1 in the Appendix, respectively. 
***, ** and * respectively denote statistical significance at 1%, 5% and 10% levels of significance.  
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Table 3. Out-of-Sample Forecast Evaluation via Diebold and Mariano Tests (United States). 
Model TS GTS_OECD GTS_164  GTS_OECD GTS_164 

Panel A: Benchmark model, GARCH-MIDAS-RV Panel B: Benchmark model, GARCH-MIDAS-TS 
Full Sample Period 

3h   -7.2415*** -7.2618*** -7.0988***  1.7359* 2.2635** 
6h   -5.5903*** -5.6019*** -5.4630***  1.3932 1.7448* 
12h   -4.3470*** -4.3659*** -4.2608***  0.9837 1.3772 

Recession Period 
3h   -7.2533*** -7.2830*** -7.1455***  1.6814* 1.4104 
6h   -5.5962*** -5.6149*** -5.4968***  1.3479 1.0877 
12h   -4.3512*** -4.3782*** -4.2863***  0.9501 0.8628 

Expansion Period 
3h   -7.3447*** -7.2342*** -7.0719***  1.7945* 2.1523** 
6h   -5.7073*** -5.5839*** -5.4444***  1.3192 1.5832 
12h   -4.3560*** -4.3499*** -4.2508***  0.9294 1.1203 

Note: The table presents the out-of-sample forecast performance analysis for the benchmark forecasting model (labelled in each column in Panels A and B) against 
its augmented variations that incorporate technological shocks as volatility predictors. Reported in each cell is the estimated Diebold and Mariano statistic where 
a negative and significant DM statistic value indicates better out-of-sample forecast performance of the augmented model compared to the benchmark model. In 
Panel A, the benchmark model is the conventional GARCH-MIDAS-RV model which includes only the past realizations of realized volatility (RV) as the predictor. 
The benchmark is compared to three alternative augmented models that incorporate TS, GTS_OECD and GTS_164 as predictors. In Panel B, the benchmark model 
is the GARCH-MIDAS-TS model which incorporates TS as the predictor and is compared against the model variations that include GTS_OECD and GTS_164 as 
predictors. ***, ** and * respectively denote statistical significance at 1%, 5% and 10% levels of significance.  
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Table 4: Economic Analysis.  
Period Model Return Volatility SR  Return Volatility SR 

3 6and    3 8and    
Panel A: Without Transaction Costs  

Full Sample Period 
RV 3.096 0.145 7.704  4.083 0.257  7.724 
TS 2.340 0.068 8.323  3.075 0.121 8.353 
GTS_OECD 2.339 0.068 8.335  3.074 0.121 8.365 
GTS_164 2.345 0.063 8.687  3.082 0.112 8.718 

Recession Period 
RV 3.096 0.145 7.704  4.083 0.257 7.724 
TS 2.339 0.068 8.328  3.073 0.121 8.358 
GTS_OECD 2.338 0.068 8.334  3.072 0.121 8.364 
GTS_164 2.342 0.062 8.699  3.077 0.111 8.731 

Expansion Period 
RV 3.096 0.145 7.704  4.083 0.257 7.724 
TS 2.368 0.066 8.596  3.112 0.117 8.626 
GTS_OECD 2.341 0.068 8.330  3.077 0.121 8.360 
GTS_164 2.348 0.063 8.669  3.085 0.113 8.700 

Panel B: With Transaction Costs  

Full Sample Period 
RV 3.296 0.145 8.229  4.349 0.257 8.249 
TS 2.565 0.068 9.185  3.375 0.121 9.215 
GTS_OECD 2.561 0.068 9.184  3.369 0.121 9.214 
GTS_164 2.566 0.063 9.567  3.376 0.112 9.598 

Recession Period 
RV 3.296 0.145 8.229  4.349 0.257 8.249 
TS 2.563 0.068 9.189  3.372 0.121 9.219 
GTS_OECD 2.559 0.068 9.183  3.366 0.121 9.213 
GTS_164 2.562 0.062 9.580  3.371 0.111 9.610 

Expansion Period 
RV 3.296 0.145 8.229  4.349 0.257 8.249 
TS 2.590 0.066 9.461  3.408 0.117 9.491 
GTS_OECD 2.563 0.068 9.179  3.372 0.121 9.209 
GTS_164 2.569 0.063 9.548  3.380 0.113 9.579 

Note: For each model variation, we report the Return, Volatility, and Sharpe Ratio (SR) values, computed over the out-
of-sample forecasting horizon. The benchmark model, reported in shaded rows, is the conventional GARCH-MIDAS-
RV model which includes only the past realizations of realized volatility (RV) as the predictor. The leverage ratio is 
denoted by   with a value of one indicating no leverage. We set the leverage ratio to 6 and 8; and set the risk aversion 
level to 3. Panels A and B report the results without transaction costs and with transaction costs based on portfolio 
turnover formulated in Equation (8), respectively. Bold figures indicate cases where the augmented GARCH-MIDAS 
model variants yield higher economic gains than the benchmark GARCH-MIDAS-RV.   
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Appendix 
 

Table A1. Periods of Global Recession 
Period 

1873 – March 1879 
March 1882 – May 1885 

February 1893 – June 1894 
December 1895 – June 1897 

May 1907 – June 1908 
January 1920 – July 1921 

October 1929 – 1932 
May 1937 – June 1938 

February 1945 – October 1945 
December 1973 – March 1975 
July 1981 – November 1982 

July 1990 – March 1991 
December 2007 – June 2009 
February 2020 – April 2020 

Source: https://blogs.worldbank.org/opendata/understanding-depth-2020-global-recession-5-charts  
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Table A2. Out-of-Sample Forecast Evaluation via Diebold and Mariano Tests (Other G7 Countries). 
Forecast 
Horizon 

TS GTS_OECD GTS_164 TS GTS_OECD GTS_164 TS GTS_OECD GTS_164  GTS_OECD GTS_164 GTS_OECD GTS_164 GTS_OECD GTS_164 
Panel A: BENCHMARK Model: GARCH-MIDAS-RV Panel B: BENCHMARK Model: GARCH-MIDAS-TS 

Full Sample Period Recession Period Expansion Period Full Sample Period Recession Period Expansion Period 
Canada 

h=3 5.0158*** -2.1642** 5.0213*** 5.0242*** -2.1921** 5.0300*** 3.7775*** -2.1298** 5.0130***  -5.0287*** 4.9285*** -5.0369*** 4.9439*** -3.8369*** 6.6258*** 
h=6 3.5534*** -1.6721* 3.5537*** 3.5604*** -1.6931* 3.5608*** 2.7004*** -1.6460 3.5468***  -3.5657*** 3.4312*** -3.5724*** 3.4428*** -2.7434*** 4.6849*** 
h=12 2.5048** -1.3181 2.5042** 2.5096** -1.3330 2.5091** 1.9055* -1.2991 2.4994**  -2.5144** 2.4193** -2.5190** 2.4276** -1.9350* 3.3646*** 

France 
h=3 -12.9034*** -12.9173*** -10.6687*** -12.9399*** -12.9527*** -10.5957*** -12.8635*** -12.8783*** -10.6379***  0.7922 6.7010*** 0.8120 6.0923*** 0.7765 6.3902*** 
h=6 -9.2615*** -9.2726*** -7.6190*** -9.2863*** -9.2964*** -7.5496*** -9.2342*** -9.2459*** -7.5868***  0.5811 4.9728*** 0.5959 4.5500*** 0.5694 4.7654*** 
h=12 -6.7418*** -6.7480*** -5.6059*** -6.7562*** -6.7618*** -5.5594*** -6.7257*** -6.7324*** -5.5903***  0.4424 3.8870*** 0.4529 3.6259*** 0.4341 3.7731*** 

Germany 
h=3 3.7172*** 5.1501*** 1.2851 2.7234*** 5.2601*** 1.3007 3.2071*** 3.0189*** 1.2322  2.0752** -3.7311*** 4.5761*** -2.6660*** -1.1375 -3.3834*** 
h=6 2.6417*** 3.5485*** 0.9298 2.0592** 3.5732*** 0.9411 2.3401** 2.1795** 0.8932  1.4227 -2.6053*** 3.1128*** -2.0050** -0.7990 -2.4049** 
h=12 2.0270** 2.5341** 0.7276 1.7071* 2.5006** 0.7422 1.8463* 1.6905* 0.6945  1.0187 -1.9494* 2.1808** -1.6428 -0.5953 -1.8166* 

Italy 
h=3 1.9017* 1.7702* 1.7432* 1.9280* 1.7944* 1.7668* 1.8749* 1.7452* 1.7191*  -7.0488*** -4.8183*** -7.0607*** -4.8585*** -7.0438*** -4.7799*** 
h=6 1.5789 1.4697 1.4437 1.5995 1.4888 1.4622 1.5578 1.4500 1.4247  -4.9889*** -3.5007*** -4.9940*** -3.5291*** -4.9884*** -3.4733*** 
h=12 1.5267 1.4231 1.3873 1.5436 1.4390 1.4026 1.5093 1.4066 1.3716  -3.5799*** -2.5639** -3.5818*** -2.5844*** -3.5812*** -2.5440** 

Japan 
h=3 -4.2396*** -6.7568*** -4.2630*** -4.3575*** -6.0453*** -7.2112*** -4.2319*** -3.7757*** -4.2219***  -5.2727*** -0.3037 -2.2188** -5.9313*** 0.2199 1.8567* 
h=6 -3.3112*** -5.5581*** -3.3312*** -3.4155*** -4.9732*** -6.0015*** -3.3134*** -2.9229*** -3.4008***  -3.9337*** -0.2256 -1.645 -4.4140*** 0.1671 1.3922 
h=12 -2.5253** -4.3567*** -2.5409** -2.6093*** -3.8906*** -4.7366*** -2.5295** -2.2170** -2.6240***  -2.9907*** -0.1693 -1.2551 -3.3655*** 0.1255 1.0719 

UK 
h=3 -6.6320*** -6.7007*** -6.9286*** -6.8401*** -6.6468*** -6.9253*** -6.8245*** -6.8199*** -6.9283***  -1.6650* -0.4689 -0.6044 0.6638 0.5876 0.7611 
h=6 -4.8055*** -4.8695*** -5.0457*** -4.9756*** -4.8295*** -5.0433*** -4.9476*** -4.9595*** -5.0450***  -1.215 -0.3357 -0.4324 0.4735 0.4277 0.5486 
h=12 -3.5459*** -3.6025*** -3.7461*** -3.6870*** -3.5707*** -3.7440*** -3.6527*** -3.6743*** -3.7457***  -1.0015 -0.2637 -0.3141 0.3554 0.3484 0.4357 

Note: The table presents the out-of-sample forecast performance analysis for the benchmark forecasting model (labelled in each column in Panels A and B) against its augmented 
variations that incorporate technological shocks as volatility predictors. Reported in each cell is the estimated Diebold and Mariano statistic where a negative and significant DM 
statistic value indicates better out-of-sample forecast performance of the augmented model compared to the benchmark model. In Panel A, the benchmark model is the conventional 
GARCH-MIDAS-RV model which includes only the past realizations of realized volatility (RV) as the predictor. The benchmark is compared to three alternative augmented models 
that incorporate TS, GTS_OECD and GTS_164 as predictors. In Panel B, the benchmark model is the GARCH-MIDAS-TS model which incorporates TS as the predictor and is 
compared against the model variations that include GTS_OECD and GTS_164 as predictors. ***, ** and * respectively denote statistical significance at 1%, 5% and 10% levels of 
significance.  
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Table A3. Economic Analysis (Other G7 countries). 
Country Period Model Returns Volatility SR  Returns Volatility SR  Returns Volatility SR  Returns Volatility SR 3 6and     3 8and     3 6and     3 8and    

  Panel A: Without transaction costs   Panel B: With transaction costs   

Canada 

 RV 3.478 0.182 7.763  4.593 0.323 7.781  3.845 0.182 8.622  5.082 0.323 8.641 
Full Sample 

TS 3.241 0.251 6.138  4.276 0.446 6.155  3.723 0.251 7.102  4.919 0.446 7.119 
GTS_OECD 3.600 0.138 9.230  4.754 0.246 9.252  4.038 0.138 10.409  5.339 0.246 10.430 
GTS_164 3.217 0.252 6.077  4.245 0.448 6.093  3.675 0.252 6.988  4.854 0.448 7.004 

Recession 
TS 3.241 0.251 6.134  4.276 0.446 6.150  3.724 0.251 7.098  4.920 0.446 7.114 
GTS_OECD 3.600 0.139 9.209  4.755 0.247 9.230  4.036 0.139 10.379  5.337 0.247 10.401 
GTS_164 3.219 0.253 6.072  4.246 0.449 6.088  3.677 0.253 6.985  4.858 0.449 7.001 

Expansion 
TS 3.292 0.141 8.324  4.344 0.250 8.347  3.872 0.141 9.870  5.118 0.250 9.894 
GTS_OECD 3.599 0.138 9.252  4.754 0.245 9.273  4.039 0.138 10.439  5.341 0.245 10.460 
GTS_164 3.216 0.251 6.082  4.242 0.447 6.098  3.671 0.251 6.991  4.850 0.447 7.008 

France 

 RV 3.111 0.032 16.462  4.102 0.057 16.502  2.561 0.032 13.386  3.367 0.057 13.417 
Full Sample 

TS 2.664 0.011 23.859  3.506 0.019 23.927  2.004 0.011 17.549  2.623 0.019 17.598 
GTS_OECD 2.716 0.012 23.639  3.575 0.021 23.705  2.043 0.012 17.397  2.675 0.021 17.445 
GTS_164 2.757 0.016 20.543  3.630 0.028 20.600  2.056 0.016 14.982  2.692 0.028 15.022 

Recession 
TS 2.665 0.011 23.793  3.507 0.020 23.861  2.007 0.011 17.525  2.627 0.020 17.574 
GTS_OECD 2.718 0.012 23.576  3.578 0.021 23.643  2.048 0.012 17.380  2.681 0.021 17.428 
GTS_164 2.732 0.016 20.366  3.597 0.028 20.423  2.008 0.016 14.619  2.629 0.028 14.658 

Expansion 
TS 2.664 0.011 23.913  3.506 0.019 23.981  2.001 0.011 17.563  2.619 0.019 17.612 
GTS_OECD 2.714 0.012 23.688  3.573 0.021 23.755  2.038 0.012 17.403  2.669 0.021 17.451 
GTS_164 2.721 0.017 19.779  3.582 0.030 19.834  2.015 0.017 14.311  2.638 0.030 14.350 

Germany 

 RV 0.022 0.000 -47.301  -0.016 0.000 -44.667  0.006 0.000 -52.312  -0.037 0.000 -49.703 
Full Sample 

TS -0.004 0.000 -17.048  -0.051 0.000 -16.264  -0.007 0.000 -17.310  -0.056 0.000 -16.613 
GTS_OECD -0.005 0.000 -22.920  -0.052 0.000 -21.864  -0.021 0.000 -24.995  -0.073 0.000 -23.978 
GTS_164 -0.005 0.000 -23.918  -0.052 0.000 -22.816  -0.021 0.000 -26.148  -0.074 0.000 -25.084 

Recession 
TS -0.015 0.000 -12.336  -0.065 0.000 -11.785  -0.038 0.000 -13.890  -0.095 0.000 -13.331 
GTS_OECD -0.005 0.000 -23.338  -0.052 0.000 -22.258  -0.023 0.000 -25.795  -0.076 0.000 -24.738 
GTS_164 -0.005 0.000 -24.374  -0.052 0.000 -23.248  -0.023 0.000 -26.931  -0.076 0.000 -25.829 

Expansion 
TS -0.003 0.000 -16.984  -0.049 0.000 -16.201  -0.001 0.000 -16.745  -0.048 0.000 -16.074 
GTS_OECD -0.005 0.000 -21.960  -0.052 0.000 -20.953  -0.018 0.000 -23.612  -0.070 0.000 -22.659 
GTS_164 -0.005 0.000 -23.171  -0.052 0.000 -22.107  -0.019 0.000 -25.012  -0.071 0.000 -24.001 

Italy 

 RV 4.333 0.224 8.805  5.732 0.398 8.821  4.305 0.224 8.747  5.694 0.398 8.761 
Full Sample 

TS 4.515 0.032 24.171  5.975 0.058 24.212  4.026 0.032 21.452  5.320 0.058 21.485 
GTS_OECD 4.515 0.032 24.253  5.974 0.057 24.294  4.017 0.032 21.474  5.308 0.057 21.508 
GTS_164 4.507 0.032 24.130  5.963 0.057 24.172  4.017 0.032 21.407  5.308 0.057 21.440 

Recession 
TS 4.514 0.032 24.152  5.973 0.058 24.193  4.024 0.032 21.434  5.318 0.058 21.467 
GTS_OECD 4.513 0.032 24.235  5.972 0.057 24.277  4.015 0.032 21.457  5.306 0.057 21.491 
GTS_164 4.505 0.032 24.114  5.961 0.058 24.155  4.015 0.032 21.390  5.306 0.058 21.423 

Expansion 
TS 4.517 0.032 24.191  5.977 0.057 24.232  4.027 0.032 21.470  5.322 0.057 21.503 
GTS_OECD 4.516 0.032 24.271  5.976 0.057 24.312  4.018 0.032 21.492  5.310 0.057 21.525 
GTS_164 4.508 0.032 24.148  5.965 0.057 24.189  4.018 0.032 21.424  5.310 0.057 21.457 
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Table A3 (continued). 

 
Japan 

Full Sample 
RV 3.773 0.101 11.354  4.985 0.179 11.377  3.038 0.101 9.042  4.003 0.179 9.060 
TS 3.428 0.081 11.455  4.525 0.144 11.478  2.407 0.081 7.869  3.161 0.144 7.886 
GTS_OECD 3.765 0.101 11.306  4.974 0.180 11.329  3.036 0.101 9.017  4.000 0.180 9.035 
GTS_164 3.635 0.442 5.217  4.802 0.786 5.229  3.837 0.442 5.520  5.071 0.786 5.532 

Recession 
TS 3.523 0.089 11.233  4.652 0.159 11.256  2.580 0.089 8.077  3.392 0.159 8.094 
GTS_OECD 3.355 0.079 11.372  4.427 0.140 11.396  2.305 0.079 7.628  3.025 0.140 7.645 
GTS_164 3.763 0.101 11.312  4.972 0.180 11.334  3.022 0.101 8.978  3.981 0.180 8.996 

Expansion 
TS 3.821 0.102 11.466  5.048 0.181 11.488  3.119 0.102 9.265  4.111 0.181 9.283 
GTS_OECD 3.785 0.105 11.167  5.001 0.187 11.189  3.050 0.105 8.900  4.019 0.187 8.917 
GTS_164 3.783 0.103 11.280  4.998 0.183 11.302  3.062 0.103 9.031  4.034 0.183 9.048 

UK 

Full Sample 
RV 2.501 0.251 4.661  3.290 0.446 4.678  2.851 0.251 5.361  3.757 0.446 5.377 
TS 2.497 0.219 4.981  3.284 0.389 4.998  2.842 0.219 5.718  3.744 0.389 5.736 
GTS_OECD 2.491 0.219 4.964  3.277 0.390 4.981  2.837 0.219 5.702  3.738 0.390 5.720 
GTS_164 3.067 0.769 3.307  4.044 1.367 3.316  3.429 0.769 3.720  4.527 1.367 3.729 

Recession 
TS 2.498 0.218 4.993  3.285 0.387 5.011  2.843 0.218 5.732  3.745 0.387 5.750 
GTS_OECD 2.492 0.220 4.958  3.277 0.391 4.976  2.837 0.220 5.695  3.738 0.391 5.713 
GTS_164 2.478 0.225 4.875  3.259 0.400 4.892  2.822 0.225 5.600  3.718 0.400 5.618 

Expansion 
TS 2.495 0.221 4.956  3.282 0.392 4.974  2.840 0.221 5.691  3.742 0.392 5.709 
GTS_OECD 2.491 0.219 4.969  3.277 0.389 4.987  2.837 0.219 5.708  3.738 0.389 5.726 
GTS_164 2.490 0.252 4.627  3.275 0.448 4.643  2.837 0.252 5.317  3.737 0.448 5.334 

Note: For each model variation, we report the Return, Volatility, and Sharpe Ratio (SR) values, computed over the out-of-sample forecasting horizon. The benchmark 
model, reported in shaded rows, is the conventional GARCH-MIDAS-RV model which includes only the past realizations of realized volatility (RV) as the predictor. 
The computed statistics for GARCH-MIDAS-RV is the same for the full sample, recession and expansion periods. The leverage ratio is denoted by   with a value 
of one indicating no leverage. We set the leverage ratio to 6 and 8; and set the risk aversion level to 3. Panels A and B report the results with and without transaction 
costs, respectively. Bold figures indicate cases where the augmented GARCH-MIDAS model variants yield higher economic gains than the benchmark GARCH-
MIDAS-RV.  
 
 
 
 


