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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models, which combines microfoundations (derived

from the optimisation decisions of rational agents) with business cycle fluctuations, have become popular

tools in the context of policy analysis and macroeconomic forecasting. In this regard, the textbook

version of the three-equation New Keynesian (NK) model (see, for example, Woodford (2003), and Galı́

(2008)), has been of particular interest to academics and policymakers. This model basically comprises

of a forward-looking Investment-Saving (IS) equation capturing aggregate demand, a Phillips curve

portraying the aggregate supply-side of the economy, and a rule for the short-term interest rate, which

in turn is the principal policy tool of the central bank.

However, despite of its several applications, the NK model has faced severe criticisms recently in

the wake of the Global Financial Crisis (GFC) of 2007-2009. Firstly, since the model abstracts from the

financial sector, it is unable to accommodate for the impact of developments (or disruption as witnessed

during the GFC) in the financial sector on the rest of the economy. Secondly, the NK model is also

incapable of providing a cost-benefit analysis of quantitative easing (QE) type policies, with these being

among the first and most prominent of several unconventional interventions deployed by the central

banks around the world to tackle the adverse impact of the GFC on the macroeconomy, once the policy

rates reaches the Zero Lower Bound (ZLB). Note that QE again came to the fore following the outbreak

of the COVID-19 pandemic.

Based on the seminal work of Bernanke et al. (1999), quite a bit of progress has been made in terms of

exploiting financial channels in a DSGE framework to improve the fit of the model subjected to turmoil

witnessed during the GFC (see, for example, Christiano et al. (2014), Del Negro and Schorfheide (2013),

Del Negro et al. (2016)). Comparatively, however, the area of research in terms of incorporating QE into

DSGE models is relatively nascent (see for example, Gertler and Karadi (2011, 2013); Carlstrom et al.

(2017); Sims and Wu (2021)), and tends to lack the simplicity and transparency of the textbook three-

equation NK model. Given this, Sims et al. (2020) bridged the gap between the complicated quantitative

QE-based DSGE models with the simplicity of the three-equation NK model, upgraded to incorporate

an explicit financial sector as well.

Specifically speaking, this of model Sims et al. (2020) incorporates financial intermediaries, short- and

long-term bonds, credit market shocks, and a role for unconventional monetary policy, i.e., economically
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relevant central bank bond holdings. The linearized model now has four, rather than three, key equations

as follows: The IS and Phillips curves, just as in the three equation benchmark, with the innovation being

that credit shocks and central bank long bond holdings appear additively in both these equations. In

addition to a rule for the short-term policy rate as in the three equation NK framework, the current

model is closed with an additional equation involving the central bank’s long bond portfolio. Using

this framework, Sims et al. (2020) show that, in equilibrium, optimal monetary policy involves adjusting

the short-term interest rate to neutralize natural rate shocks, but QE is used to offset credit market

disruptions. Moreover, usage of QE is shown to significantly mitigate the welfare costs, associated with

the fluctuations of inflation and the output gap, during a binding ZLB.

Indeed, incorporating a financial channel and QE in the textbook DSGE model is of immense impor-

tance in addressing the effects that structural changes in the underlying economy that extreme events,

such as the GFC and the Coronavirus pandemic, might have had on the parameters and on exogenous

shock processes of the NK framework. But one could, perhaps, also do more in this respect. Recall that,

parameters of a DSGE model are considered to be structural (“deep”) in the sense that these are invariant

to both policy and structural shocks (Lucas, 1976). But, this does not imply that the parameters remain

constant at all time scales, since long-term cultural or technological shifts might result in slow parameter

variation, especially when one looks at lengthy sample periods (Cardani et al., 2019; Kapetanios et al.,

2019). In this scenario, in spite of DSGE models focusing on business cycle frequency, parameter drift

becomes potentially of great importance.

Notwithstanding the structural nature of the DSGE, due to the possibility of time-variation in the

parameters when estimated over more than half a century of data, i.e., 1949-2021, the objective of our

paper is to provide a time-varying parameter extension of the four-equation NK model discussed above.

As far as estimation is concerned, we rely on the approach of Galvão et al. (2016), which is an extension

and formalization of rolling-window estimation,1 generalized by combining kernel-generated local like-

lihoods with appropriately chosen priors to generate a sequence of posterior distributions for the objects

of interest over time.2 In the process, we uncover significant variation over time in the parameters, and

1See for example, Canova (2009), Canova and Gambetti (2009), Castelnuovo (2012) in terms of application to the estimation
of the parameters of DSGE models.

2When applied to structural models, the kernel approach assumes that, agents take variation in parameters as exogenous
when forming their expectations about the future, instead of being endowed with perfect knowledge associated with the data
generating process of the economy. This assumption assists in the process of estimation, and can be rationalized based on
models involving learning, wherein agents form beliefs about the parameters by relying on the observation of past data.
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the generated impulse responses of the variables associated with the estimated four-equation NK model.

In addition, we find that, allowing the model parameters to vary over time, also improves the forecasting

performance of the model, in particular for interest rate and long-term bond holdings.

To the best of our knowledge, this is the first paper to highlight the importance of incorporating

time-variation in the four-equation NK model from the perspective of both structural and forecasting

analyses. The remainder of the paper is organized as follows: Section 2 presents the basics of the

four-equation NK model, with Section 3 discussing the data and the underlying methodology used for

estimating this model. Section 4 is devoted to the empirical results, and Section 5 concludes the paper.

2 The Four-Equation Model

Following Sims et al. (2020), we consider the simple New Keynesian model with the following four

equations:

xt = Etxt+1 −
1 − z

σ
(rs

t − Etπt+1 − r∗t )− z[b̄FI(Etθt+1 − θt) + b̄CB(Etqet+1 − qet)], (1)

πt = γζxt −
zγσ

1 − z
[b̄FIθt + b̄CBqet] + βEtπt+1, (2)

rs
t = ρrrs

t−1 + (1 − ρr)[ϕππt + ϕxxt] + srϵr,t, (3)

qet = ρqqet−1 − (1 − ρq)[λππt + λxxt] + sqϵq,t, (4)

where xt is the inflation rate, xt is the output gap, rs
t is the short-term nominal interest rate, and r∗t is the

natural interest rate. The variables θt and qet capture credit conditions of the financial market and real

market value of the central bank’s long-term bond holdings, respectively. The parameter σ measures

the inverse intertemporal elasticity of substitution, β is the discount factor, γ is the elasticity of inflation

w.r.t. real marginal cost, and ζ is the elasticity of real marginal cost w.r.t. output gap. While these

parameters carry the same meaning as in the traditional three-equation New Keynesian model, b̄FI and

b̄CB are new parameters in this four-equation model that takes into account unconventional monetary

policies; they measure the steady-state long-term holdings of financial intermediaries and the central

bank, respectively, relative to the total outstanding long-term bonds. The parameter z stands for the

fraction of children in the total population, as outlined in a full model in Sims et al. (2020). In the special

case where z = 0, the four-equation model collapses to the traditional three-equation model and neither
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credit shocks nor the central bank’s long-term bond holdings would matter for the dynamics of output

and inflation.

Equation (1) is an augmented IS curve, (2) is a Phillips curve, (3) is the Taylor rule, and (4) is an

endogenous QE rule which follows a similar Taylor-type rule that responds to inflation and output gap.

The system of these four equations can be written in the form of a typical rational expectation model; see

the appendix. ρr and ρq are autoregressive parameters; ϕπ and λπ capture the response of the short-term

interest rate and long-term bond holdings to inflation; and ϕx and λx capture the response of the same

two series to the output gap. The system is closed with another two AR(1) processes that guide the

dynamics of the natural interest rate and credit shock, i.e.,

r∗t = ρ f r∗t−1 + s f ϵ f ,t, (5)

θt = ρθθt−1 + sθϵθ,t, (6)

where the ϵ’s are idiosyncratic shocks and the s’s are their standard deviations.

3 Data and Methodology

Our sample includes quarterly data on the output gap (xt), short-term interest rate (rs
t ), inflation rate

πt, and real value of the central bank’s long-term bond holdings (qet) from 1949 to 2021. All data are

retrieved from the Federal Reserve Economic Data (FRED) of the Federal Reserve Bank of St. Louis.

The output gap is calculated as the percent deviation of real GDP from potential GDP. The short-term

interest rate is the 3-month treasury bill secondary market rate. The inflation rate is calculated as the

percent change in the GDP deflator. Each of these three variables is then demeaned. The real value of

central bank’s long-term bond holdings is calculated as the natural log of the total face value of U.S.

Treasury securities held by the Federal Reserve maturing in over 10 years, deflated by the GDP deflator.

Given that our sample ranges over a long period of time that covers multiple phases of economic

fluctuations, we use the Bayesian Local Likelihood (BLL) estimation method developed by Galvão et al.

(2016) to explore the time-varying feature of the model parameters. Consider the state-space represen-
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tation of a linearized rational expectation model with a state equation and a measurement equation:

zt = F(Γt)zt−1 + G(Γt)vt, (7)

yt = K(Γt) + H(Γt)zt, (8)

where zt is a n × 1 vector of model variables, vt is a k × 1 vector of structural shocks, yt is a m × 1 vector

of observables, and Γt is a vector of model parameters. The local likelihood of the sample, y := {yj}T
j=1,

can be obtained by employing the Kalman filter in a recursive fashion,

Lt(y|Γt) =
T

∑
j=1

L(yj|yj−1, Γt)
wtj for t = 1, ..., T, (9)

where wtj is the tj-th element of a T × T weight matrix W. The weights are normalized to sum to 2B + 1

for each t, i.e.,

wtj = (2B + 1)
w̃tj

∑T
j=1 w̃tj

for j, t = 1, ..., T, (10)

where w̃tj is given by a kernel function with a bandwidth parameter B.

The local likelihood, Lt(y|Γt), is augmented with the prior distribution of the structural model pa-

rameters to get the posterior distribution using the random walk Metropolis algorithm developed by

Schorfheide (2000).

4 Empirical Results

4.1 Parameter estimates

Our calibrated parameter values in Table 1 follow those of Sims et al. (2020). The discount factor

β pins down the average real interest rate over the sample period. The consumption share of child z

is calibrated to match the share of durable consumption and private investment in aggregate private

non-government domestic expenditure. The parameters γ and ζ are selected to imply a slope of the

Phillips curve of 0.21.
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Table 1: Model parameter calibration

Parameter Description Value
β Discount factor 0.995
z Consumption share of child 0.33
σ Inverse elasticity of substitution 1
b̄FI Weight on credit 0.7
b̄CB Weight on quantitative easing 0.3
γ Elasticity of inflation w.r.t. marginal cost 0.086
ζ Elasticity of marginal cost w.r.t. output gap 2.49

The remaining parameters are estimated using the algorithm described in Section 3. Table 2 presents

their prior distributions. While the Taylor rule parameters ϕπ and ϕx follow standard prior distributions

as in the literature, we use a loose prior for the QE rule parameters λπ and λx. In their calibration

exercise, Sims et al. (2020) vary the values of λπ and λx between 0 and 15. We therefore choose a Normal

prior distribution with mean 5 and a large standard deviation 10. The autoregressive parameters and

standard deviations of the shock processes follow standard prior distributions as in the literature.

Table 2: Model parameter prior distribution

Parameter Description Distribution Mean St. Dev.
ϕπ Taylor rule inflation parameter Normal 1.5 0.1
ϕx Taylor rule output gap parameter Normal 0 0.1
λπ QE rule inflation parameter Normal 5 10
λx QE rule output gap parameter Normal 5 10
ρr Taylor rule AR parameter Beta 0.8 0.1
ρq QE rule AR parameter Beta 0.8 0.1
ρ f Natural rate AR parameter Beta 0.8 0.1
ρθ Credit AR parameter Beta 0.8 0.1
sr Interest rate shock St. Dev. Inverse Gamma 0.1 2
sq QE shock St. Dev. Inverse Gamma 0.1 2
s f Natural rate shock St. Dev. Inverse Gamma 0.1 2
sθ Credit shock St. Dev. Inverse Gamma 0.1 2

The time-varying pattern of parameters estimated from a Normal kernel is depicted in Figure 1. The

figure plots the posterior mean of each parameter in solid blue line and 90 percent confidence intervals

of the posterior distribution in dashed red lines. The Taylor rule inflation parameter, ϕπ, is relatively

stable over the entire sample period; it varies between 1.5 in the early 1950s and 1.6 around the Great

Recession. Other parameters, however, exhibit more variation over time. The Taylor rule output gap
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parameter, ϕx, varies between 0.2 and 0.4 prior to the 1990s and declines to near zero thereafter. Around

the same point in time, the response of QE to output gap, λx, increases dramatically. The AR parameter

in the Taylor rule, ρr, decreases between the 1950s and 1990s, and then starts to increase until it reaches

the peak at the end of the sample period. The AR parameter of the natural rate shock, ρ f , fluctuates over

time and exhibits a downward trend. Both AR parameters of the QE rule and credit shock, ρq and ρθ ,

are significantly higher in the post-2000 period. The standard deviations of structural shocks also vary

significantly over time, especially those of the QE shock (sq) and credit shock (sθ).3
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Figure 1: Time-varying parameter estimates

As a comparison, we also estimate the model assuming constant value parameters. Figure 2 reports

the constant value parameter estimates in solid red lines and their 90 percent confidence intervals in

3As a robustness check, we also use a rolling-window estimation strategy rather than a Normal kernel and similar results
can be found in Figure A1 in the appendix.
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dashed red lines. It also plots the time-varying parameter estimates as in Figure 1 in solid blue lines.

For most of the model parameters, the time-varying parameter estimate fluctuates out of the 90 percent

confidence intervals of its time-invariant estimate, which suggest that a time-varying parameter version

of the model is more adequate compared to its constant value parameter counterpart.
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Figure 2: Time-invariant parameter estimates

4.2 Impulse responses

In this subsection, we present the time-varying impulse responses of the main model variables to each

of the key structural shocks. Figure 3 plots the impulse responses to a one-standard-deviation interest

rate shock ϵr. Following a positive interest rate shock, interest rate increases and both output gap and

inflation decrease. This shock’s impacts on output gap, interest rate, and inflation exhibit significant

time variation, but they are short-lived in general. However, the shock has a long-lasting positive impact
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on central bank’s long-term bond holdings during the Great Recession.

Figure 3: Time-varying impulse responses to the interest rate shock

Figure 4 plots the impulse responses to a one-standard-deviation QE shock ϵq. Such a shock is

irrelevant in the traditional three-equation DSGE model but plays an important role in the four-equation

model proposed by Sims et al. (2020). The purchase of long-term bonds by the central bank, starting

in the early 2000s, significantly affects output gap and inflation. During the Great Recession period, a

positive QE shock of one standard deviation increases output gap and inflation by a maximum of 10 and

1.5 percentage points, respectively. The positive QE shock promotes aggregate demand and therefore

leads to an increase in the short-term interest rate.
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Figure 4: Time-varying impulse responses to the QE shock

Figure 5 shows the impulse responses to a one-standard-deviation credit shock ϵθ . The credit shock

in the financial market crowds out the long-term holdings of the central bank. Just like the QE shock, the

credit shock significantly increases output gap and inflation. It also causes an increase in the short-term

interest rate due to its positive impact on the aggregate demand.
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Figure 5: Time-varying impulse responses to the credit shock

4.3 Forecast evaluation

The time-varying estimation of the four-equation DSGE model confirms that model parameters ex-

hibit significant variation over time. In this subsection, we explore the 1- to 8-quarter-ahead forecasting

performance of the time-varying parameter model relative to the constant value parameter model. We

choose to split the sample into an estimation sample between 1949Q1 and 2007Q4 and an evaluation

sample between 2008Q1 and 2019Q4. We estimate the model parameters using data up to the last pe-

riod of the in-sample and then generate projections 1 to 8 quarters ahead. Table 3 reports evaluates

the forecasting performance using root mean squared forecast errors (RMSFEs) for output gap, interest

rate, inflation, and long-term bond holdings of the central bank over the entire evaluation sample and

two sub-samples. Values smaller than one imply more accurate forecasts of the time-varying parameter

model relative to its time-invariant counterpart.
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Table 3: Forecasting evaluation

Evaluation sample: 2008Q1 to 2019Q4
Variable h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
Output gap 1.56* 1.35 1.47 1.58 1.70 1.87 2.00 2.26
Interest rate 0.53* 0.60* 0.66* 0.68* 0.72 0.78 0.83 0.89
Inflation 1.10 1.12 1.20 1.34 1.44 1.49 1.55 1.53
Long-term bond holdings 0.68* 0.66* 0.66* 0.66* 0.66* 0.66* 0.66* 0.66*

Evaluation sample: 2008Q1 to 2013Q4
Variable h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
Output gap 1.59 1.76 1.91 2.08 2.33 2.68 3.08 3.53
Interest rate 0.57* 0.67* 0.76 0.79 0.85 0.93 1.00 1.08
Inflation 1.25 1.37 1.54 1.73 1.84 2.00 2.13 1.99
Long-term bond holdings 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.88

Evaluation sample: 2014Q1 to 2019Q4
Variable h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
Output gap 1.50* 1.09 1.13 1.15 1.20 1.25 1.31 1.41
Interest rate 0.48* 0.47* 0.48* 0.48* 0.49* 0.50* 0.51* 0.51*
Inflation 0.91 0.83 0.79 0.81 0.84 0.87 0.88 1.02
Long-term bond holdings 0.17* 0.19* 0.20* 0.19* 0.20* 0.20* 0.20* 0.20*

The table reports ratios of RMSFEs of the time-varying parameter model relative to the time-invariant parameter model.
* indicates rejection of the null of equal performance against the two-sided alternative at the 10 percent level using the
Diebold and Mariano (1995) test.

Over the entire evaluation sample and both sub-samples, the time-varying parameter model and

time-invariant parameter model perform equally well for the forecasts of inflation. The former version

significantly under-performs the latter at the 10 percent level for the 1-quarter ahead forecasts of output

gap over the entire evaluation sample and between 2014Q1 and 2019Q4, but not for the 2008Q1-2013Q4

period. However, for the forecasts of short-term interest rate and long-term bond holdings, which are the

key features of the four-equation model, the time-varying parameter version significantly outperforms

the constant value parameter model at various forecast horizons, especially over the 2014Q1-2019Q4

period.

5 Conclusion

The recently proposed four-equation New Keynesian (NK) DSGE model by Sims et al. (2020) aims to

capture the effects of unconventional monetary policy, besides an explicit role of the financial sector on

the macroeconomy, which are absent in the traditional three-equation model. We extend this framework

by building the time-varying parameter feature. We find that both parameters and impulse responses
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of the variables of the four-equation DSGE model exhibit significant variation over time. Moreover,

the time-varying parameter four-equation model significantly outperforms its constant value parameter

counterpart in terms of forecasts of the short-term interest rate and long-term bond holdings of the

central bank, whereas both versions perform equally well for the forecasts of output gap and inflation.

In the process, our paper highlights the importance of incorporating time-variation into an extended

NK DSGE model, over and above the influence of the financial sector and quantitative easing, when

aiming to capture structural changes in the economy and policy-making associated with more than half

a century of data involving the US.
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Appendix

Let zt = [πt, xt, rs
t−1, qet−1]

′, the system of the four-equation New Keynesian model can be written as:

B1Etzt+1 = B2zt, (A1)

where

B1 =


β 0 0 − zγσ

1−z b̄CB

1−z
σ − zb̄CB(1 − ρq)λπ 1 − zb̄CB(1 − ρq)λx − 1−z

σ zb̄CB(1 − ρq)
0 0 1 0
0 0 0 1

 , (A2)

and

B2 =


1 −γζ 0 0
0 1 0 0

(1 − ρr)ϕπ (1 − ρr)ϕx ρr 0
(1 − ρq)λπ (1 − ρq)λx 0 ρq

 . (A3)

Then we have:

Etzt+1 = B−1
1 B2zt. (A4)
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Figure A1: Rolling-window parameter estimates
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