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Abstract

This study examines the complex relationship between carbon emis-
sions and technological progress in a sample of 60 countries, divided into
four categories based on their per capita income between the periods of
1989-2018. For robustness purposes and due to the broad definition of
technology, we use six different proxies to represent technology; namely:
Information and telecommunication technology (ICT); patents; public
R&D expenditure; total factor of productivity (TFP); and a number of sci-
ence and technology publications. After applying the fixed-effect method
with Driscoll and Kraay standard errors, for the full sample, the results
show that the ICT variables are a good instrument for carbon abate-
ment, while R&D expenditure and patents do not have a clear impact
on carbon emissions, TFP increases carbon emissions, and science and
technology publications are negatively related to carbon emissions. The
impact of the indicators on the various income levels groups of countries
vary which has significant policy implications.

Keywords: Technological progress, Income groups, rebound effect,
fixed effect methodology with Driscoll and Kraay standards errors.

JEL codes: O30, O32, C23,Q56

1 Introduction

Global warming has been one of the most critical environmental issues of our
ages. Over the past few decades, many scientists, researchers, and policymakers
have been trying to find ways and means of reducing greenhouse gas (GHG)
emissions to alleviate global warming. According to many international organi-
zations such as IPCC (2000), UNFCCC (2006), and IEA (2010); burning fossil
fuels such as coal, gas, and oil that come from human activity is the main cause
of global warming. The global economy has been growing at a fast pace since
the industrial revolution. This has thus led to a significant improvement in the
quality of life. The incomes of households have increased - the average GDP
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per capita increased from approximately 500$ in the 1500s to 6000$ in the year
2000 (Maddison Project Database, version 2018). People have increasing access
to energy, energy demanded infrastructure has been built, and life expectancy
has increased. However, all this improvement comes at a cost: global warming.
Now effective measures need to be taken by humanity to protect the earth from
climate disaster. The transition from fossil fuel energy (oil, coal, gas, etc.) to
renewable energy (solar, hydro, wind, etc.), and the improvement of energy ef-
ficiency is considered as the two major solutions to fight global warming (Fare
et al., 1994; Li and Lin, 2016). The initial cost of renewable energy implemen-
tation and production is still high especially for poor countries. Governments
expect a reduction of these initial costs, and one of the major channels by which
this can be achieved is through technological progress.
Technologies are a complex socio-technical system (Mooney, 2011). They

refer to the whole complex of scientific knowledge, process technologies, engi-
neering practices, product characteristics, infrastructures, tools and machines,
skills, and procedures that are used to resolve real-world problems (Mooney,
2011). In recent years, technological progress has been at the forefront of the
fourth industrial revolution1 that has transformed our lives like never before.
Although this revolution operates differently, it affects the environment and the
entire planet whether you are in a rich country or a poor country. Technology is
considered as one of the engines of sustainable economic development (OECD,
2014). Technology plays an important and positive role in the economic devel-
opment of a country (Solow, 1957; Romer, 1986, 1987, 1990). Amongst other
things, it promotes economic growth by improving productivity, infrastructure,
and increasing the quality of goods and services produced. However, the impact
of technological progress on the environment and the climate is still unclear
(Asongu, Le Roux and Biekpe, 2017; Cheng et al., 2019; Churchil et al., 2019).
The relationship between technological change and carbon dioxide emissions

is complex. Numerous studies show that technological progress has a dual effect
on global CO2 emissions. On the one hand, technology reduces overall CO2
emissions by reducing energy intensity, adjusting the energy structure, and fos-
tering the diffusion of green technology in industries and countries (Grubb, 2004;
Barret, 2006, Edmonds et al., 2007; Bosetti et al., 2009). On the other hand,
technology increases CO2 emissions by increasing energy consumption and eco-
nomic growth (Grossman and Krueger, 1995; Bongo, 2005; Hu, Li and Wang,
2006; Bosetti et al., 2008; Zhang and Cheng, 2009; Garrone and Grilli, 2010;
Ghosh, 2010; Gu et al., 2019). An obvious fact is that CO2 emissions have
increased dramatically since the industrial revolution (Boden et al., 2015), fol-
lowing the similar evolution of technological progress. Any immense progress
in technology not only brings about an improvement in the environment and
energy supply but also tremendously stimulates economic development and the
consumption of energy on a large scale (Hertin and Berkout, 2005; Herring and
Roy, 2007; Sorrell and Dimitropoulos, 2008; Sorrell, Dimitropoulos and Som-

1The fourth industrial revolution refers to new information and communication technologies
(NICT), and designates the tools born from the combination of IT, telecommunications and
audiovisual, such as smartphones, microcomputers, tablets (Arnaud, 2019).
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merville, 2009; Hall, 2011; Jin et al, 2017; Cheng et al., 2019).
Measuring technological progress quantitatively is a challenging task, as its

representation and realization vary. The interaction between technology and
the environment, in general, has been the subject of several studies; but to
our knowledge, there has not yet been an analysis of how technology influences
CO2 emissions by assessing various “proxies”of technology since each proxy may
yield different results. Moreover, the positive and negative impact of technology
on CO2 emissions have not yet been comprehensively investigated on different
“income level” scale. Given that the responses to environmental challenges
mostly depend on each country’s financial capacity, it is necessary to look at
this relationship in countries at all levels of development.
Therefore, this study’s purpose is to contribute to the overall discussion on

the nexus between technology and the environment by addressing the following
research questions:

1. What is the impact of technological progress on CO2 emissions when us-
ing various measurements of technology? Notably: R&D expenditure,
patents, information and communication technology (ICT), science and
technology publications, and Total factor productivity (TFP).

2. Does this impact depend on the level of economic development?

To answer these two questions, this paper will use two methodologies: The
fixed effect with Driscoll and Kraay standard errors and the Bruno’s (2005)
biased-corrected LSDV methodology. The strength and the weaknesses of each
proxy in representing technological progress at a country level are also dis-
cussed in the paper. This study will be carried out on a panel of 60 countries
divided into 4 groups according to their level of income. Thus, we will have
15 high-income countries, 15 upper-middle-income countries, 15 lower-middle-
income countries, and 15 lower-income countries. The study period runs from
1989 to 2018. A comparison of how technology interacts with climate change
in low income, lower-middle, upper-middle, and high-income countries will be
conducted.
Measuring the responsiveness of GHG emissions to technological progress is

important for economic and environmental policies for several reasons Firstly,
if the net effect of technological change on carbon emissions is negative; this
implies that within our study period, technology has contributed to carbon
abatement. Secondly, since technology is complex to quantify, using differ-
ent indicators of technology will reveal which indicator works best for carbon
reduction. For instance, one may find that on one hand, public R&D expen-
diture positively impacts carbon emissions because they are mostly directed
to carbon-intensive projects; and on the other hand, the proliferation of mo-
bile phones (ICT) in countries may reduce the transportation of people from
point A to point B2 , thus reducing carbon emissions. In this scenario, the

2People can communicate easily via telephones and do not necessarily have to move to see
each other. They can use different meeting platforms like WhatsApp, Skype or Zoom. This
can reduce the movement of the population, and hence, decrease CO2 emissions.
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Government may consider redirecting public R&D expenditure towards envi-
ronmentally friendly projects and fostering the proliferation of mobile phones
to combat climate change. Lastly, the fact that the study will be done on differ-
ent groups of countries according to their income level has also its importance.
Because some measure of technology advancement may work better in reducing
carbon emissions in some group of countries than in other. In this regard, high-
income countries will particularly be monitored since they are more advanced
in terms of R&D expenditure, the number of patent applications, and TFP.
This study contributes to the literature in the following three ways. Firstly,

while the majority of papers cited in the literature have used only one proxy
to represent technological progress, we employ several proxies to estimate their
different impact on climate change. Technology is a complex concept to mea-
sure. Patents and ICT cannot have the same impact on CO2 emissions, but
they are both “indicators”of technological progress. Therefore, to have a well-
rounded assessment of technology impact on climate change, it is important to
have different measurements of technology. Moreover, in most of the sources
cited in the literature, the strength and weaknesses of technological indicators
used are not discussed. This will be done in this study since each proxy used
cannot be considered as a “perfect” indicator of technological progress. Sec-
ondly, this study will account for the rebound effect which has been left out
in many studies (e.g. Li and Wang, 2017; Higon et al., 2017). They have
treated technological progress and energy consumption as general independent
variables in CO2 emissions model estimation, thus neglecting the interaction
effect of technological progress and energy consumption on CO2 emissions. In
our paper, we will account for the rebound effect by interacting with techno-
logical progress and energy consumption and assess their common impact on
carbon emissions. Thirdly, in this paper, we use a panel of 60 countries divided
into 4 income groups: high income, upper-middle-income, lower-middle-income,
and lower-income countries. Doing so constitutes another novelty of the paper
as the majority of papers in the literature only focus on two groups of coun-
tries: developed and developing countries. Thus, it will be interesting to assess
how technology interacts with the environment in these four groups given their
income differences.
The remainder of this paper is structured as follows: Section II contains a

brief literature review. Section III presents the theoretical model. The method-
ology and the data set are discussed in section IV. In section V, the econometric
results are presented and analyzed. Section VI concludes the study.

2 Literature review

Over time, an extensive literature has developed on the role played by techno-
logical progress in the environment and more particularly in climate change. Ex-
isting studies can be divided into 3 categories. The first strand of the literature
comprises research that has used R&D expenditure as a proxy for technological
progress. The second strand of research has used ICT as a proxy for technolog-
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ical progress. Finally, the third strand of research has employed patents as an
indicator of technological progress.
Bosetti et al. (2008, 2009, 2011, and 2015) are among the first stream of

research. The authors have published several papers that analyze the relation-
ship between international knowledge spillover and carbon emissions on the one
hand; and on the other hand, the relationship between technology and carbon
emissions using aggregate R&D as a proxy for technology (Bosetti et al., 2008,
2009, 2011; Bosetti and Tavoni, 2015). Bosetti et al (2009) found that fostering
R&D expenditure and de-carbonization of energy is essential to reduce carbon
emissions. The authors show that massive investment in R&D would bring en-
ergy effi ciency and allow the development of renewable energy sources such as
solar, wind, and geothermal.
Fernandez, Lopez et al. (2018) employed Ordinary Least Square (OLS)

techniques to analyze the impact of the effort in technological innovation on
greenhouse gas emissions in the United States, European Union, and China
from the year 1990 to 2013. To this end, a linear regression by OLS has been
estimated, having R&D spending and energy consumption as an independent
variable and greenhouse gas emissions as a dependent variable. The findings
support the hypothesis that government spending in R&D translates to a re-
duction of greenhouse gas emissions. Unlike Fernandez and Lopez’s findings,
Garron and Grilli (2010) found that government R&D expenditure fails to have
a significant impact on CO2 emissions reduction in 13 developed countries over
the periods of 1980-2004. The authors argue that for R&D spending to miti-
gate CO2 emissions, it should be coupled with intensive energy effi ciency policy
implementations.
Li and Wang (2017) showed that technological progress has a dual effect on

the aggregate CO2 emissions in a panel of 95 countries over the period of 1996
to 2007. On one hand, technology reduces aggregate CO2 emissions by reduc-
ing energy intensity. On the other hand, technology increases CO2 emissions
through increased economic growth. The authors have demonstrated that CO2
emissions rose with the scale effect of technology change, and previous stud-
ies that considered the intensity effect overestimated the impact of technology
change on CO2 emissions. The authors conclude by saying that technological
progress through R&D expenditure does not necessarily alleviate global warm-
ing.
Churchill et al. (2019) employed panel data techniques to examine the im-

pact of research and development expenditures on carbon emissions in the G-7
countries. The study is particular in the fact it is the first research that analyses
this relationship over 145 years, from the period 1870 to 2014. Their results in-
dicate that the relationship between R&D and CO2 emissions varies over time.
The estimated time-varying coeffi cient function of R&D was negative for three-
quarters of the period studied but was positive for 35 years (1955—1990) during
the second half of the twentieth century.
Zhang et al. (2017) use panel data techniques to analyze the impact of en-

vironmental innovations on reducing carbon emissions of 30 provinces in China.
They describe environmental innovations as measures taken by relevant entities
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(private households, unions, firms) that apply new technology, introduce new
energy effi ciency processes, and new ideas aiming at contributing to a proper
and sustainable environment. These environmental measures comprise innova-
tion performance (economic development level and energy performance); inno-
vation resource (R&D investment); knowledge innovation (number of patents
produced, expansion of ICT); and innovation environment (pollution and en-
vironment regulation). The authors show that most of the environmental in-
novations help in reducing carbon emissions. In particular, R&D expenditure,
patent, and energy effi ciency help in reducing carbon emissions. They also found
that the initial measures taken by China for greenhouse gas emissions reduction
are effective. This study is particular in the sense that it uses comprehensive
measures of environmental innovation.
The second strand of the literature has used ICTs as a proxy for technologi-

cal progress to estimate its impact on carbon emissions (see Moyer and Hugues,
2012; Higon, Gholami, and Shirazi, 2017, Asongu, Le Roux and Biekpe, 2017;
Zhou et al., 2019). These studies identify two opposite effects of ICTs on carbon
emissions. On the one hand, ICTs can increase CO2 emissions through increased
manufacturing production, energy consumption, production of devices and ma-
chinery, and recycling of electronic waste. On the other hand, ICTs can lower
CO2 emissions on a global scale through energy savings, smart effi cient cities,
effi cient production processes, and ecological transportation systems and elec-
trical grids. These studies have generally found that the net effect of ICT on
CO2 emissions is negative.
However, the paper by Xiaoyoung et al. (2019) is amongst the studies that

have found a positive net effect of ICT on carbon emissions. The authors have
explored the extent to which ICTs affect carbon emissions in China. The au-
thors developed and embodied a carbon analysis framework for the ICT sector
by integrating input and output analysis approaches. They found that ICTs are
far from being environmentally friendly. This is because of the carbon-intensive
intermediate inputs used in the production process of ICT items. They show
that the ICT sector uses many materials (metal and non-metal, and chemical)
that degrade the environment. The paper is one of the scarce studies that assess
how ICT drives carbon emissions at sector levels (manufacturing, communica-
tion equipment, audio-visual apparatus, electronic component, telecommunica-
tion services, and ICT services).
Asongu, Le Roux, and Biekpe (2017) used the Generalized Method of Mo-

ment (GMM) approach to examine the effect of information and communication
technology on carbon emissions, and how they both impact inclusive human de-
velopment in 44 sub-Saharan African countries for the period of 2000-2012.
ICT is measured with mobile phone penetration and internet penetration. The
results show that ICT can be used to dampen the negative impact of carbon
emissions on human development. As an illustration, the mobile phone can help
in reducing transportation costs; and this can help households to invest more in
education or health, and hence improving their quality of life. The findings also
indicate a threshold of ICT that allows lowering the negative effect of carbon
emissions on human development for all 44 countries.
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The third strand of the literature has employed patents as a proxy for techno-
logical progress. The paper by Cheng et al. (2019) falls into this category. The
researchers investigated the impact of the various variables on CO2 emissions:
renewable energy, foreign direct investment, GDP per capita, environmental
patent, and exports. The analysis is done for the BRICS countries and the
period runs from 2000 to 2013. The authors emphasize two strategies that are
at the center of the BRICS’s action against global warming: (??) the develop-
ment of renewable energy sources and (2) the development of energy effi ciency
technology. The results indicate that environmental patent, exports, and GDP
per capita increase carbon emissions while renewable energy and foreign direct
investment decrease carbon emissions. The authors explain the positive impact
of patents on carbon emissions by the lack of environmental regulation that can
allow the diffusion of sophisticated technology in the BRICS countries. Other
papers have found similar results for different countries or regions (see Su and
Moaniba, 2017; Du, Li, and Yan, 2019).
Hashmi and Alam (2019) estimate the effect of innovation and environmen-

tal regulations on carbon emissions in OECD countries from 1999 to 2014. The
authors highlighted that the adoption and deployment of eco-friendly technol-
ogy and stringent environmental regulations are the key factors to fight against
global warming. Environmental tax revenue is used as a proxy for environmental
regulations. The empirical results show that a 1 per cent increase in technology
innovation patent lowers carbon emissions by 0.017 per cent and when environ-
mental tax revenue per capita increases by 1 per cent, carbon emissions decrease
by 0.03 per cent in OECD countries.
As mentioned in the introduction, this study uses several indicators of tech-

nological progress and assesses their impact on carbon emissions on a full sample
panel of 60 countries and subsamples of different income categories. This study
also follows the paper by Gu et al. (2019) and analyses the rebound effect by
assessing the common impact of technological progress and energy consumption
on carbon emissions.

3 Theoretical model

Global warming is a global phenomenon of climate change characterized by a
general increase in average temperatures and modifies weather balances and
ecosystems (IPCC, 2000). Since the start of the Industrial Revolution, average
temperatures on earth have increased regularly (IPCC, 2014). In 2016, the
average temperature on planet earth was about 1oto 1.5oC above the average
temperatures of the pre-industrial era (before 1850) (IPCC, 2014).
According to the IPCC 2018 report (IPCC, 2018), human activities are esti-

mated to have caused about 1.0oC of global warming above pre-industrial levels,
with a probable of 0.8oC to 1.2oC. If human activities continue to increase at
the current rate, global warming is likely to reach 1.5oC between 2030 and 2052
(IPCC, 2018). The greenhouse gases emitted by humans from the pre-industrial
period to the current period will persist for centuries and continue to cause a
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long-term change in the environment and the climate system, such as ecosystems
disruption, ocean level rise, scarcity of resources, etc. (IPCC, 2018).
Global warming is a consequence of several factors. Mainly, it is the pro-

duction of energy (electricity, heating, etc.) and fuel for transport (mainly cars,
but also aviation and maritime transport) that cause global warming. Defor-
estation, large scale agriculture, and the expansion of livestock are also amongst
the causes of global warming (IPCC, 2014). Consequently, these root problems
are mainly linked to the acceleration of economic growth, energy consumption,
population density, and technology advancement since the industrial revolution.
Following this theory and based on the literature (see Seldan and Song, 1994;
Barbier, 1997; Friedl and Getzner, 2003; Richmond and Kaufmann, 2006; Ang,
2008; Akinlo, 2008; Zhang and Cheng, 2009; Garrone and Grilli, 2010; Shabbaz
et al, 2011; Alkhathlan and Javid, 2015; Higon, Gholami, Shirazi, 2017; Anton-
akakis et al., 2017; Churchill et al, 2019; Gu et al., 2019), this article retains five
factors that are often cited as being among the main drivers of carbon emissions:
fossil fuel consumption, economic growth; population density, technology, and
trade.
Therefore, this study is based on the following theoretical model:

CO2 emissionit = f(GDP itECONSitPOP itEXP itTECHit) (1)

3.1 A priori expectations

GDP (+): Many studies show that at the early stages of development, economic
growth is associated with an increase in carbon emissions (Hertin and Berk-
out, 2005; Bousquet and Favard, 2005; Sorrell, Dimitropoulos and Sommerville,
2009). Greater economic growth leads to greater energy consumption to meet
the growing demands of companies, industries, and households. Unfortunately,
though, the energy developed and used in the world is largely extracted from
our fossil fuels. It is thus expected that economic growth will lead to higher
CO2 emissions. However, for high-income countries, the positive impact of eco-
nomic growth on carbon emissions might change over time (Seldan and Song,
1994). The enrichment of populations in developed countries is generally accom-
panied by a demand for a healthier environment. This observation led to the
following hypothesis: economic growth would be harmful to the environment in
the early stages of development; then, beyond a certain threshold of per capita
income, economic growth would lead to an improvement in the quality of the
environment. This hypothesis is known as the Environmental Kuznets Curve.
Thus, according to this hypothesis, the impact of economic growth on carbon
emissions depends on the stage of development of a country.
Energy consumption (+): Energy consumption is another well-known driver

of carbon emissions (Dimitropoulos and Sommerville, 2009; Hall, 2011; Jin et
al, 2017; Cheng et al., 2019). As mentioned above, the recent pace of higher
economic growth after the industrial revolution has implied higher fossil fuel
energy consumption, (such as oil, coal, and natural gas) which has, in turn,
resulted in environmental degradation. The impact of energy consumption on
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carbon emissions depends on the type of energy used in a country. If the largest
part of energy consumption comes from fossil fuels, which is usually the case
it can be expected that an increase in energy consumption will also increase
carbon emissions.
Population (+): Over the past century, the world’s population has increased

from 1 billion to 7 billion people (World Bank, 2019). To accommodate this
growing population, there was a need for industrialization, urbanization, and
transport infrastructure. The rapid transition from agriculture-based develop-
ment to industrial-based development has required a lot of energy, which led to
increased green gas emissions. It is therefore expected that carbon emissions
will increase as the population is increasing (Seldan and Song, 1994; Borghesi,
1999; Moyer and Hugues, 2010, Churchill et al., 2019).
Export (+/-): After the industrial revolution, the world has become more

and more connected and open to trade. The impact of exports on carbon emis-
sions is inconclusive (Boutabba, 2014; Ertugrul et al., 2016; Shahbaz et al.,
2017; Murat, Ecevit, and Yucel, 2018). It mainly depends on whether the mer-
chandise exported by a country is environmentally friendly or not (Ertugrul et
al., 2016). As an illustration, it can be expected that countries that export oil
and coal will experience higher carbon emissions since these merchandises are
carbon-intensive. Whereas, on the other hand, countries that export cleaner
energy or more eco-friendly products will experience fewer carbon emissions.
Technology (+/-): As stated in the introduction, the impact of technology

on carbon emissions is complex. This impact depends on the environmental
characteristic of the technology used. If the technology used is eco-friendly
such as renewable energy technologies and electric vehicles; then a reduction in
carbon emissions can be expected. However, technology could increase carbon
emissions if the technology developed is not eco-friendly or has been created
to facilitate and increase the production of fossil fuels. As an illustration, the
boom in shale oil production in the 2000s saw the United States become a net
exporter of oil in November 2019 - a startling turnaround for a country that
had imported more than 10 million barrels per day ten years earlier (Our world
in data, 2019). The high production of oil in the US is mainly due to improved
techniques and technologies for drilling shale oil. While this has allowed the
US to have some energy independence, it has come at a cost of more carbon
emissions.

4 Methodology and data

This section describes the methodology and the data used in this study. As
above- mentioned in the introduction, this paper uses proxies that can represent
the level of technological progress reached in each country. In the data section,
the strengths and weaknesses of each proxy used are discussed.
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4.1 Methodology

In this paper, three-panel models are established to analyze how technological
progress affects carbon emissions. The first empirical specification is a static
panel model.

lnCEit = β0 + β1lnTECHit + β2lnECONSit + β3lnGDP it (2)

+β5lnPOP it + β6lnEXP it + Yi + ui,t

The subscripts i and t refer to countries and time. Yi is the unobservable
country-specific characteristics and ui,t is the i.i.d. disturbance terms. CEit
refers to carbon emissions in metric tons per capita. TECHit is our variable
of interest, it represents technological progress which will be replaced by six
different proxies of technology. More specifically, model (2) will be divided into
six different sub-models and each sub-model has its own proxy of technological
progress:

lnCEit = β0 + β1lnMob_celit + β2lnECONSit + β3lnGDP it (2a)

+β5lnPOP it + β6lnEXP it + ρi + ui,t

lnCEit = β0 + β1lnInternetit + β2lnECONSit + β3lnGDP it (2b)

+β5lnPOP it + β6lnEXP it + θi + ui,t

lnCEit = β0 + β1lnPatentit + β2lnECONSit + β3lnGDP it (2c)

+β5lnPOP it + β6lnEXP it + ϑi + ui,t

lnCEit = β0 + β1lnR&Dit + β2lnECONSit + β3lnGDP it (2d)

+β5lnPOP it + β6lnEXP it + ϕi + ui,t

lnCEit = β0 + β1lnTFP it + β2lnECONSit + β3lnGDP it (2e)

+β5lnPOP it + β6lnEXP it + ωi + ui,t

lnCEit = β0 + β1lnScien_techit + β2lnECONSit + β3lnGDP it (2f)

+β5lnPOP it + β6lnEXP it + Yi + ui,t

In this set of equation Mob_celit represents mobile cellular subscriptions per
100 people; Internetit stands for the percentage of the population using the
internet; Patentit represents the number of patents application; R&Dit refers
to public expenditure in research and development; TFP it represent the total
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factor of productivity; and Scien_techit stand for the number of science and
technology publications.
We use a simple fixed effect (within) method to estimate all six equations in

the model specification (1). We apply the fixed-effect method because it con-
trols for cross-sectional heterogeneity. Countries are different from each other,
and each country’s carbon emissions are not affected by the same factors in
the same way. By incorporating country-specific effects in the models, all the
effects that may influence each country’s carbon emissions (beyond those vari-
ables already included in the model) will be incorporated. Another reason for
using a fixed effect is the correction of potential endogeneity problems since the
within estimator wipes out the individual effects through demeaning and thus
making the OLS coeffi cients unbiased and consistent (Baltagi, 2008). Potential
limitations of the fixed effect method include the presence of serial correlation,
heteroskedasticity, and cross-sectional dependence in the model. In this case,
estimated coeffi cients are still consistent, but they will no longer be effi cient.
The standard errors of the estimates will be biased. This potential problem will
be addressed in the results section.
Many studies have shown that most environmental indicators, CO2 emissions

included, are considered to have a certain time lag effect and that environmental
impacts present some dynamic sustainability(Kais and Sami, 2016; Zhang et al.
2017). Based on these issues, our second empirical specification is a dynamic
panel model with a first-order lag term for carbon emissions. We decided to
adopt a one lag model specification to preserve the maximum possible number
of freedom available for the estimates.

lnCEit = β0 + ρ lnCEit−1 + β1lnTECHit (3)

+β2lnECONSit + β3lnGDP it + β5lnPOP it

+β6lnEXP it + Yi + ui,t

Similar to model (2), TECHit will be successively replaced by six different
proxies of technological progress. Therefore, we will have six different sub-
models3 .
Following the consolidated literature on dynamic panel data models (Kiviet,

1995, 1999; Blundell and Bond, 1998; Bun and Kiviet; 2003, Bruno 2005), we
used Bruno’s (2005) biased-corrected LSDV methodology to estimate model
specification (2). When a lagged dependent variable is included among the
regressors, the Nickell (1981) biased will arise as a possible violation of the
classical assumptions. We will have an endogeneity problem since CEit−1 is
correlated with the unobserved heterogeneity Yi. The LSDVC method corrects
the alleged endogeneity bias of the lagged dependent variable without using any
instrumental variable (Piva and Viveralli, 2007; Justesen, 2008; Abrate et al.,
2009; Garrone and Grilli, 2010). We prefer LSDVC to alternative Nickel biased
correction methodology, such as the GMM method because for two reasons.

3We will have six different sub models with different proxies: 3(a) - Mobile phone, 3(b) -
internet, 3(c) - patents, 3(d) —R&D expenditure, 3(e) - TFP and 3(f) —science and technology
publications.
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First, Judson and Owen (1999), by performing a Monte Carlo experiment show
that for a large period (T ≥ 30), the LSDVC methods may be outperforming the
GMMmethod in terms of effi ciency, bias, and Root Mean Square Error (RMSE).
Secondly, GMM that uses a full set of moments available can be severely biased,
especially when instruments are weak, and the number of moment conditions is
relatively large to the number of entities (N) (Alvarez and Arellano, 2003).
In conclusion, since the two methods have some differences in terms of as-

sumptions, any eventual similarities of the estimates obtained with them would
clearly prove the robustness of the findings. The diagnostic test that will be per-
formed in the results section will give us a preference of which method between
the two will be more considered in the discussion of our results.
Finally, this paper will take into account the rebound effect, which is left

out in many previous studies (e.g. Li and Wang, 2017; Higon et al, 2017).
The rebound effect is a situation in which the additional energy saved due to
the improvement in energy effi ciency (more effi cient heating system, insulation,
fuel-effi cient vehicle, etc.) will be offset by an increase in energy demand (Gu
et al, 2019). For instance, if households heat more, live in larger dwellings, and
must travel long distances to get to work; in the end, energy consumption will
keep increasing. Technological progress suggests the production of energy-saving
technology which leads to lower carbon emissions, but energy consumption is
also stimulated to a certain extent at the same time, which is consistent with
the rebound effect (Gu et al, 2019). This ultimately shows that the impact of
technology on carbon emissions is diffi cult to predict when considering human
behaviour to new technology. In our paper, we will account for the rebound
effect by interacting with technological progress and energy consumption and
assess their common impact on carbon emissions. Therefore, our third empirical
specification is a static panel model that includes an interaction term:

lnCEit = β0 + β1lnTECHit + β2lnECONSit (4)

+β3lnGDP it + β5lnPOP it + β6lnEXP it

+β7lnTECHit∗lnECONSit + Yi + ui,t

Here TECHit will also be replaced by six different proxies of technological
progress4 . Empirical specification (4) will also be estimated with the fixed-effect
method.

4.2 Data

This study uses a balanced panel dataset of 60 countries that is constituted
of 15 high income, 15 upper-middle-income, 15 lower-middle-income, and 15
lower-income economies. The dataset provides a period of 30 years, from 1989
to 2018. The variables used in this study were collected from different sources.

4Panel model (??) will also be divided into six different sub models with different proxies:
4(a) - Mobile phone * energy consumption (EC), 4(b) — internet * EC, 4(c) —patents * EC,
4(d) —R&D expenditure * EC, 4(e) —TFP * EC and 4(f) —science and technology publications
* EC.

12



Table 1 shows the descriptions and sources of the data collected. Tables with
descriptive statistics for the full sample and subsamples are presented in the
Appendix. Data on CO2 emissions (metric tons per capita); energy consump-
tion (tons of oil per capita); GDP per capita (in constant 2010 US$); trade
(exports in constant 2010 US$); the number of scientific and technical articles
and population density were drawn from the World Bank’s Development Indi-
cators (WDI) (World Bank, 2019). Two ICT variables are used in this study:
mobile cellular subscriptions per 100 people and individuals using the internet
(percentage of the population). The ICT variables were also drawn from the
WDI (World Bank, 2019). Data on Research and development expenditure (as
a percentage of GDP) was collected from the United Nations Educational and
Cultural Organization (UNESCO, 2019) and the OECD database, while data on
patents was collected from World Intellectual Property Organization (WIPO,
2020).

4.3 Technology indicators discussion

4.3.1 Public R&D expenditure

R&D expenditure is of fundamental importance in the creation of new tech-
nology, new knowledge, and new products. It is a usual remedy for knowl-
edge spillovers and for market failure that does not foster innovation in the
in-production sector (Churchill et al, 2019). For many Scholars (Solow, 1956;
Romer, 1987, 1990, 1994; Jones, 1995; Kohler et al, 2012; Szarowska, 2018),
the key to economic development is found in research and development, when
companies seek to develop and improve their products, services, technology, and
processes. This comes with the creation of new products, the addition of new
features to old products, and the creation of new production lines.
The energy sector has experienced and continues to experience rapid devel-

opment towards low-carbon energy partly because of investment in research and
development. Investing in R&D has made it possible to develop and extend the
production of renewable energies that feed 10% of the world population today
(Our World in data, 2019). The electric cars, which are considered as the solu-
tion to face the devastating pollution of the combustion engines, were developed
by companies that have invested massively in R&D. Thus, expenditure in R&D
may be regarded as an important technology push measure (Garrone & Grilli,
2010). As such, R&D expenditure should be at the centre of government policies
for technology improvement.
At the same time, Garron and Grill (2010) argue that considering R&D

spending as a climate technology policy towards low carbon energy is some-
times controversial. R&D spending cannot be viewed as a climate technology
policy unless there is initially a market for low-carbon and energy-effi cient prod-
ucts. Moreover, when funds are spent to finance an R&D project, it does not
necessarily mean that project will lead to technological advancement in the short
term, as it may be an attempt that will bear fruit only in the long term. Certain
R&D projects will never be able to give results because of the corruption and
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embezzlement of public funds which undermine many of our countries, espe-
cially the less developed ones. From an environmental angle, it is important to
understand that aggregate R&D is divided into two components: green R&D
expenditure and non-green R&D expenditure. It follows from this fact that the
final impact of R&D expenditure on carbon emissions is uncertain as the two
components clash together. Another limitation of public R&D spending is that
it has a limited impact on the effort done by firms to attract and deploy new
technologies; as the creation of revolutionary technology and products is done
by firms (Sagar and Holdren, 2002; Sagar and Zwaan, 2006). Despite all its
limitations, R&D spending remains a good indicator of technological progress
in a country.

4.3.2 Patents

Modern intellectual property laws (patents, trademarks, copyrights, etc.) ap-
peared during the industrial revolution era since there was a need to protect the
inventions that were created and could then be reproduced in large numbers
mechanically (Sherman & Bently, 1999). A patent is an exclusive right that
the state grants to its owner to protect his invention and allow him to use and
exploit it, by preventing others from using it without his permission (WIPO,
2020). The invention can be a product, software, a new procedure in the pro-
duction process, or anything technical that is new and has never been created
before (WIPO, 2020). If the owner chooses not to exploit his patent, he can sell
it or assign the rights to another company to license it. A patent generally lasts
for about 20 years (WIPO, 2020).
Patents are good indicators of technical progress because they are often the

result of intense research leading to the creation and production of techniques
that bring added value to industries and positively impact economic growth.
Patents indicate the existence of output or “finished product”unlike R&D ex-
penditure which are the inputs that can lead to the creation of new products or
patents. Patents serve to stimulate technical progress and are indicators of the
technological level reached by a nation.
The use of patents as a proxy for technology has potential limitations that are

important to take note of. Firstly, the number of patents granted in a country
does not necessarily reflect the utility or the quality of the inventions created.
In most countries, to obtain a patent, the invention must present a novelty, an
inventive contribution, and have a utility. The utility or the quality of patents
in terms of "technological contribution" is not the same. Some patents bring a
real revolution to the industry such as the invention of a more effi cient and non-
polluting electric motor, or the invention of drones to help monitor the condition
of crops or those that can deliver medical equipment to hard-to-reach areas.
Looking at the inventions which have proved less usable (until now), to mention
two examples: the "automatic bed maker" (self-maker bed); or the "butter
stick" which allows you to butter your toast without having to use the butter
knives. It follows from these illustrations that a patent or an invention bears a
utility weight that is added to aggregate technology. The utility weight can be
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higher or smaller depending on the value of different innovations, and it has a
different impact on economic growth and the environment. In general, we can
safely say that smaller innovations are more numerous than game-changing ones
(Cremers et al., 1999; Scherer and Harhoff 2000; Hall, Jaffe and Trajtenberg,
2005). In 2018, China overtook the US in terms of patents granted. This does
not automatically mean that China has become more advanced technologically
than the US because the value of patents granted is not the same.
Secondly, patents can reflect technological development but cannot represent

the situation of technological adoption (Du et al., 2019). A Patent can be created
but it does not necessarily mean that it will be automatically adopted by the
industry or the society.

4.3.3 Science and technology publications

Another potential indicator of technological progress in a country is the number
of technical-science and technology publications in a peer-review journal. Sci-
entific journals aim to provide information about new research to increase the
stock of knowledge and facilitate knowledge transmission. Research results pro-
vided must be strong, relevant, reliable, and capable of being replicated in each
context (Monteiro, Devan, Soans, & Jeppu, 2012). Articles published in scien-
tific journals typically have gone through a rigorous screening and validation
process known as blind peer review. In this process, independent researchers
and experts provide the author with critical commentary and suggestions to
improve their final paper, before its publication (Marusic & Marusic, 2009).
Science and technology publications allow fostering and increasing genuine hu-
man knowledge. Scientific methods are the mean that has allowed the gain of
verifiable and applicable knowledge (Marusic & Marusic, 2009). The Scientific
knowledge acquired is further transformed into a concrete product or procedure
that increases the stock of technology. Science and technology publications are
also linked with the improvement of human capital. A country that has a high
level of tertiary education attainment is likely to produce more science and tech-
nology publications than other countries that have a lower level of educational
attainment.
From our point of view, science and technology publications have two major

limitations in representing technological progress. Firstly, not all published
articles are intended to produce a concrete product or procedure. Some articles
may be published just to criticize or review other articles that have come up
with contestable findings. Other articles are published to contribute to the
scientific debate between specialists. Secondly, the quality and relevancy of
articles published sometimes differ greatly. As explained above, most scientific
journals make sure that articles published have a certain standard quality. But
scientific journals do not have the same ranking. Some are more prestigious and
reliable than others. However, despite these limitations, the number of articles
published remains an acceptable indicator of the level of debate, knowledge, and
technical progress reach by a country.
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4.3.4 Information and communication technologies (ICT)

ICT includes all tools, services, and techniques used for the creation, record-
ing, processing, and transmission of information. It is therefore mainly about
computers, the Internet, radio and television, and telecommunications. We
also address the new information and communication technologies (NICT) to
designate the tools born from the combination of IT, telecommunications, and
audiovisual, such as smartphones, microcomputers, tablets. There is a com-
mon consensus in the literature that the ICT sector contributes to technological
progress, productivity, and economic growth (see Wang, 1999; Bongo, 2005;
Ahmed and Ridzuan, 2013, Sassi and Goaied, 2013; Niebel, 2018).
Many countries including the United States, Japan, UK, Korea, and Ger-

many have experienced significant economic growth due to labour productivity
growth in the second half of the 19th century. Several researchers have tried
to break down the US labour productivity growth during this period, and have
found that ICT has significantly contributed to both labour productivity and
total factor productivity (TFP) growth over this period (see Oliner and Sichel,
2000; Gordon, 2000; Bakhshi and Larsen, 2005). In this paper, we use the per-
centage of internet users and the number of mobile phone users as proxies of
ICT development.
Having a high number of mobile phone users does not necessarily mean that

the country is technologically advanced5 . Using the number of mobile phone
users as an indicator of technological progress should be taken cautiously. Some
countries that have a good number of mobile phone users are not mobile phone
producers. This is the case in many less developed countries- these countries
adopt this technology but are not producers of this technology. They do not
often have high skilled workers, technicians, and high-tech infrastructures to
produce smartphones, tablets, computers, and other connected objects. In those
countries where mobile phones are produced, the number of mobile phones or
internet users can be seen as an input that boosts technological progress. For
example, for students and researchers, a smartphone allows them to acquire new
knowledge and information, and to download useful applications and procedures
that are going to increase their stock knowledge.

4.3.5 The total factor productivity (TFP)

TFP is the part of economic growth that is unexplained by the accumulation of
capital or labour (Haider, Kunst, & Wirl, 2020). TFP is also called the Solow
residual (Solow, 1957). In 1956, Solow attempted to explain the factor that
allows the economy to grow in the long run. He developed a growth model that
shows an increase in production with constant capital and labour. The model
developed by Solow was able to indicate whether output growth is attributed to
an increase in the two factors of production or more effi cient uses of these two

5As an illustration, according to the World Bank database (WDI, 2019), Gambia which is
among lower-income countries has more mobile cellular subscriptions (139 mobile phones per
hundred people) than France which is part of high-income group (108 mobile phones per 100
people).
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factors. Solow found that in the United States between the years 1910-1950, the
capital increase was able to explain only 12 per cent of the increase in labour
productivity (Solow, 1956). In other words, the increase in productivity was
due to a more knowledgeable workforce due notably to technological progress
(Solow, 1956).
The drawback of TFP as a measure of technological progress comes from its

estimation (Hall, Using productivity growth as an innovation indicator, 2011).
Generally, to measure TFP, the following standard Cobb Douglas production
function is used:

Y = AKβ L1−β (5)

Where output is denoted by Y , the level of capital stock is represented by K,
and L is labour (and potentially other noncapital inputs)6 . β and (1 − β)
represent the share of revenue received by capital and labour. A is the overall
level of technology that varies across countries. That is, because of differences
among countries, in terms of human capital, research, and development, high-
tech infrastructures, ICT level, etc. Thus, countries with identical levels of K
and L may not be able to achieve the same level of output Y .
For measurement purposes, the logarithm of equation (5) is taken; we then

have the growth (Υ) of each variable.

ΥY = ΥA + βΥK + (1− β)ΥL (6)

Equation (2) yields an expression for total factor productivity:

TFP ≡ ΥA = ΥY − βΥK − (1− β)ΥL (7)

It follows from equation (5) that measuring TFP requires measures of real out-
put Y , real labour L and real capital stock K (as well as possible other inputs,
such as energy and materials) (Hall, 2011). Moreover, one will need to fairly
determine the weight of parameters β and (1− β). Hall (2011) notes that there
are many approaches used by researchers, agencies, or organizations to mea-
sure the inputs and outputs factors. Unfortunately, TFP measurement can be
greatly impacted by the choices done in these approaches. The diffi culty lies in
the measurement of real inputs and outputs while holding constant the unit of
measure over time. Unlike other proxies that are simply recorded such as R&D
expenditure and the number of patents, TFP needs reliable data of labour and
capital stock of a given economy to be calculated. Many developing countries
lack consistent data on labour and capital stock. TFP measures need to be used
carefully, with an understanding of the approach used for deflation and quality
adjustment (Hall, 2011). The TFP measure used in this study comes from the
Penn World Table. To calculate TFP, they use a procedure where the nominal
value of capital is deflated, and the quality of labour is adjusted.

6See H.Hall
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5 Results estimation and discussions

5.1 Estimation procedure

The following steps are taken to check the full sample dataset and estimate the
results:
Step 1. A series of diagnostic tests are conducted to correctly identify a

suitable method for the estimation of the results. In the dataset, we check for
the presence of heteroskedasticity; serial correlation; cross-sectional dependence;
panel effect; and time fixed effect. Cross-sectional dependence in the dataset is
verified with the Pesaran cross-sectional dependence (CD) test (2004). Breusch-
Pagan (1980) LM-test and Wald tests are used to check the presence of panel
effect and time fixed effect in the model specifications. A modified Wald test
for GroupWise heteroskedasticity is performed to check for heteroskedasticity.
Serial correlation in the dataset is checked using the Wooldridge test (2002) for
autocorrelation in panel data.
Step 2. The Im, Pesaran, and Shin (2003) (IPS) test is performed to inves-

tigate the univariate characteristic of each variable.
Step 3. Cointegration among variables is verified using the Kao (1999),

Pedroni (2004), and Westerlund (2005) cointegration test.
Step 4. A fixed-effect method is used to estimate the panel model (1) and (3).

Bruno’s (2005) biased-corrected LSDV methodology is employed to estimate
panel model (2).

5.2 Diagnostic test results

Before estimating our models, we start by conducting a basic diagnostic test
for the presence of heteroskedasticity, serial correlation, panel fixed effects, and
time fixed effect and cross-sectional dependence for all six sub-models in panel
model (1). Table 2 shows that we fail to reject the null hypothesis of no cross-
sectional dependence, no serial correlation, and no heteroskedasticity in all six
sub-models. The diagnostic test also confirms the presence of a panel effect
in the data. Regarding the time fixed effect, it is only present in one sub-
model. If these diagnostic issues are not addressed, the empirical results might
be biased and inconsistent. Thus, this paper considers these issues in the results
estimation section.

5.3 Panel unit root test and cointegration results

Before estimating our regressions, we need to define which variables in the data
are stationary and which are non-stationary. We use the IPS unit root test
to inspect the univariate characteristic of each variable. The IPS has been
chosen since it assumed the individual unit root process, thus better suited for
detecting cross-section heterogeneity in the dataset (Baltagi, 2008). The Akaike
information criterion is used to determine the optimal number of lags, within
a maximum value of 2. We subtract cross-sectional means by demeaning the
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series to assist with cross-sectional correlation and cross-sectional dependence.
For most variables, we fail to reject the null hypothesis of a unit root and
conclude that most series are not stationary. Consequently, cointegration tests
are necessary to avoid spurious relationships when estimating regressions with
non-stationary variables.
Westerlund (2005), Pedroni (1999, 2004), and Kao (1999) tests are performed

to check for cointegration. When there is cointegration in the models tested,
it means that the results of the regressions are not spurious and there is a
long-run relationship amongst variables. Cointegration results are presented in
Table 4. Except for the Augmented Dickey-Fuller statistic in panel model (2b),
(2c), (2d), and (2f); all other statistics are statistically significant’at least at a
10% level. Thus, our study concludes that cointegration exists in all six-panel
sub-models.

5.4 Results estimation

In this section, we discuss the results of the impact of technological progress on
carbon dioxide emissions. This study applies two methods for estimating the
regression results: the fixed-effect method with Driscoll and Kraay standard
errors and the Bruno LSDVC corrector for robustness check. Our preferred
model will be the fixed effect with Driscoll and Kraay standard errors because
these standard errors are unbiased and robust in the presence of serial correla-
tion, cross-sectional dependence, and heteroskedasticity in the dataset (Hoechle,
2007).
The section is divided into four subsections. In the first subsection, we

examine the relationship between technology advancement and carbon emissions
in the full sample7 using the fixed-effect method with Driscoll and Kraay’s
standard errors. We assess the responsiveness of carbon emissions to six proxies
of technological progress (ICT, R&D expenditure, patents, TFP, and science
and technology publications). The same relationship is analyzed in the second
subsection with the Bruno LSDVC corrector; a dynamic term will be added to
the model. In the third subsection, we consider the rebound effect and test how
the joint effect of technology and energy consumption influence carbon emissions
using the fixed effect with Driscoll and Kraay standard errors. Finally, in the
fourth subsection, we examine the influence of technology on C02 emissions in
the different income group levels..

5.4.1 Full sample analysis

Tables A to F in the appendix8 presents detailed results obtained from the full
sample analysis. Table 5 below presents a summary of these results. Table 5
shows the responsiveness of carbon emissions when each variable of technology

7For all 60 countries in the dataset
8These tables contain a series of regression for each sub model [Model 2(a) to model 2(f)]

where each explanatory variable is included once at a time. We could not include these tables
in this section because of space limitation.
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is included with all other explanatory variables at once9 . It can be observed
from table 5 that a rise in ICTs variables causes a decline in CO2 emissions.
When all other independent variables remain constant, a 1 per cent increase in
mobile cellular subscriptions and internet use lower carbon emissions by 0.016
and 0.018 per cent, respectively. Mobile cellular subscriptions and internet use
are significant at a 5 and 10 per cent level, respectively. Regarding the impact of
patents and R&D expenditure on carbon emissions, when only GDP and energy
consumption are included as explanatory variables, patents and R&D expendi-
ture increase carbon emissions. 1 per cent rise of patents and R&D expenditure,
increase carbon emissions by 0.032, and 0.033 per cent, respectively10 . Patents
and R&D expenditure have opposite signs after including additional explana-
tory variables, and they are both statistically insignificant at the conventional
level of significance (see table 5). When all explanatory variables are included
in the model, the sign of TFP is positive and statistically significant at 5 per
cent level of significance while the sign of science and technology publications is
negative and statistically significant at 5 per cent level of significance. A 1 per
cent rise in TFP increases carbon emissions by 0.1449 per cent, while a 1 per
cent increase in number of science and technology publications reduces carbon
emissions by 0.0374 per cent.
Regarding other core drivers of carbon emissions, the results show that GDP

per capita, energy consumption, and population density have a positive and
statistically significant impact on carbon emissions in all six sub-models. This
is in accordance with most of the literature that has found a positive relationship
between these variables and carbon emissions (see Hu et al., 2005; Wang, 2007;
Clarke et al., 2008; Allen, 2012; Bhattacharya et al., 2015). Export is associated
with an increase in carbon emissions only in two of the sub-models.
The full sample results confirm the complex relationship between technolog-

ical progress and carbon emissions stated in the literature. The results show
that each indicator of technology may have different impacts on carbon emis-
sions. Our fixed effect results reveal that ICT is a good instrument for carbon
abatement. The net effect of ICT (internet and mobile phone subscriptions) on
CO2 emissions is negative and statistically significant. ICT includes many ben-
efits that can explain its negative impact on carbon emissions. According to a
2015 report by the Global e-Sustainability Initiative (GeSI, 2015), mobile com-
munications technology and the internet are making a considerable contribution
to action on climate change. Analyzes revealed that the use of mobile phones
and other telecommunications devices save more than 180 million tons of CO2
emissions per year in the US and Europe. This amount of carbon emissions is
more than the one produced annually by the Netherland. Mobile phones create
emissions savings in many different ways across several key categories. As an
illustration, communication has succeeded in overcoming the distances and phys-
ical barriers that separate people who no longer need to travel to meet. Many
public and private services have become available online and accessible through

9Table 5 contains all six “regressions 5”of panel sub model A to F which are presented in
the appendix.
10Please refer to table C and D in the appendix.
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mobile phones. The use of online banking allows reducing the number of people
going down to the local bank branch. The transition to cloud computing is
one of the main trends in modernization. ICT tools used within companies help
streamline business processes and improve energy effi ciency. Another example is
energy reductions in buildings, which are the result of technologies that improve
energy effi ciencies, such as building management systems and smart meters.
The negative impact of science and technology publications on CO2 emis-

sions is an indication that scientific debate and research can progressively foster
a green economic transformation across the globe. Since global warming is in-
creasingly becoming a subject of great concern, the scientific debate is gradually
becoming more direct towards ensuring economic growth without damaging the
environment, and this also helps in raising the awareness of governments, busi-
nesses, and the public.
R&D expenditure and patents do not have a clear impact on carbon emis-

sions. A possible explanation is the dual effect of these two measures of tech-
nology on carbon emissions. R&D expenditure and patents may increase or
decrease carbon emissions, depending on whether they are environmentally
friendly or not. The two effects tend to cancel each other out, resulting in an
insignificant impact on CO2 emissions. As above- mentioned in the data section,
R&D expenditure and patents data used in this study are in aggregate. This
means they are not necessarily green R&D or patents. Another explanation is
that during our period of study, R&D expenditure and patents did not increase
enough to impact carbon emissions. Thus, there is a possible inverted U-shape
relationship between carbon emissions and technological progress. When R&D
expenditure and patents are at a low level, they bring an increase in carbon
emissions; while when they exceed a certain turning point11 , R&D expenditure
and patents start reducing carbon emissions progressively. If this is the case,
then it suggests that in our data and analysis; R&D expenditure and patents
have not yet reached the turning point where CO2 emissions are declining. Fur-
ther analysis will therefore be necessary to verify these hypotheses.

5.4.2 Bruno LSDVC estimation

The LSDVC is used as a robustness check for results found with the fixed effect
methodology. Table 6 shows that ICT variables are still negative and statisti-
cally significant at a 1 per cent level of significance. Similar to the fixed effect
results, number of science and technology publications has a negative sign whilst
TFP has a positive sign. They are both statistically significant at 5 per cent
level of significance. The dynamic term ‘coeffi cient’is positive and statistically
significant in all sub-models. R&D expenditure is the only variable that changes
when using the LSDVC methodology. While R&D expenditure has a negative
sign in both methods, it turns out to be statistically significant only in the
LSDVC results.
11 In this case, a quadratic term should be added in the model to verify nonlinearities and

confirm or infirm the inverted U-shape.
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As we mentioned earlier, our preferred results are the ones estimated with
Driscoll and Kraay standard errors, since they are robust to many types of bias
including cross-sectional dependence. As such, this simple fixed-effect model
results will only serve the purpose of a benchmark.

5.4.3 The rebound effect

Panel model three introduces an interaction term to account for the rebound
effect. When technology is associated with energy consumption, does it increase
or decrease CO2 emissions? In other words, what is the impact of technology
on carbon emissions when the rebound effect is taken into consideration?
The results indicate that for two joint interactions, carbon emissions de-

crease despite the rebound effect. CO2 emissions decline when energy consump-
tion is associated with ICT variables, and science and technology publications.
However, carbon emissions increase when energy consumption is associated with
TFP. The joint interactions between energy consumption and R&D expenditure;
and energy consumption and patents are positive but statistically insignificant.

5.4.4 Subsample analysis

Table 8 presents the results of the impact of technology advancement on carbon
emissions across different income levels using the fixed effect methodology with
Driscoll and Kraay standard errors. The full sample is divided into four sub-
samples: High-income countries (subgroup 1), Upper-middle income countries
(subgroup 2), Lower-middle income countries (subgroup 3), and lower-income
countries (subgroup 4). In general, the signs of ICT’s proxies are negative and
significant across all income levels. In high-income and upper-middle-income
countries, 1 per cent increase in mobile cellular subscriptions decreases carbon
emissions by 0.011 and 0.010 per cent, respectively; and a 1 per cent increase in
internet use decreases CO2 emissions by 0.007 and 0.006 per cent, respectively.
The results are not really different in lower-middle-income and lower-income
countries. A 1 per cent increase in mobile cellular subscriptions decreases CO2
emissions by 0.013 per cent in lower-middle-income countries and 0.05 per cent
in lower-income countries. Carbon emissions decline by 0.036 and 0.033 per cent
when internet connection increases by 1 per cent in lower-middle-income and
lower-income countries, respectively. Globally, ICT appears to be a good tool
to reduce CO2 emissions.
The coeffi cient on patents is statistically significant and positively affects

carbon emissions in 3 out of the 4 groups of countries. A 1 per cent increase
in patent application increases carbon emissions by 0.032 per cent in high-
income countries, 0.047 per cent in lower-middle-income countries, and 0.06
per cent in lower-income countries. R&D expenditure causes CO2 emissions
to rise only in lower-middle-income countries by 0.055 per cent. The impact
of R&D expenditure on carbon emissions in the other groups of countries is
positive but not statistically significant. The number of science and technology
publications produced reduces carbon emissions only in high income and upper-
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middle-income countries. This might be explained by the number of science and
technology publications produced in high-income economies compared to lower-
income economies. According to data compiled from the World Bank database,
on average, science and technology publications produced in high-income coun-
tries are 400 hundred times superior to those produced in lower-income countries
(World Bank, 2020). TFP increases carbon emissions in Upper-middle income
and Lower-middle income countries.
Energy consumption is positive and statistically significant in all regressions.

This is consistent with the literature since we expect a positive relationship be-
tween energy consumption and carbon emissions. Regarding GDP per capita,
this variable is statistically significant and positively related to carbon emis-
sions in most of the regressions. Population density appears to be positive and
statistically significant in half of the regressions. Population growth has always
been considered as one of the major factors of global warming. High population
density means more demand for fossil fuels to provide more energy and fuel with
an increasingly mechanized lifestyle.
Another interesting result is about exports. In most of the regressions, ex-

ports are negatively related to carbon emissions in high-income countries, and
positively related to carbon emissions in lower-income countries. An explanation
for this might be that, despite being the biggest consumers of fossil fuel energy,
high-income countries also export more green-friendly products compared to
the other groups of countries. Another explanation is that they easily exchange
amongst themselves and adopt green technologies since they are part of or-
ganizations where the free trade regime is effi ciently implemented. Developed
countries have gradually put in place and imposed stricter and more environ-
mentally friendly regulations. Therefore, countries that export their products to
this group of countries ensure that their goods comply with the environmental
regulations in place.

5.4.5 Subsample results discussion

In all four groups of countries, mobile cellular subscriptions, and internet connec-
tion reduce carbon emissions. This result is in line with what previous papers
have found (see Asongu, Roux, and BIekpe, 2017; Anon Higon et al., 2017;
Moyer and Hugues, 2012). ICT lowers carbon emissions via two main12 chan-
nels: by increasing energy effi ciency and by lowering the cost of renewable energy
adoption. This negative impact seems to outweigh the positive impact ICT has
on carbon emissions because of also contributing to the increase in GDP. Even
though the magnitude of the coeffi cients of mobile cellular subscriptions and
internet connection in the estimation results are not very high, they remain
negative and statistically significant across all income levels. Thus, investment
in the ICT sector can be recommended as a good policy to combat climate
change, especially for lower-income countries since they are at an early stage of
development. The number of science and technology publications is associated

12Many other channels exist. Higon et al. (2017) note that ICT can also foster the devel-
opment of smarter cities, electrical grids, transportation system and industrial processes.
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with a decrease in carbon emissions in high-income and upper-middle-income
countries. Science and technology publications fail to have a significant impact
on carbon emissions in lower-middle and low-income countries. This is not sur-
prising given the huge gap in several scientific publications between high-income
countries and low-income countries. According to the World Bank database
(2020), on average during our study period, high-income countries have pub-
lished about 70 000 articles each year, while low-income countries have only
published approximately 165 science and technology publications.
In high-income countries, the number of patents applications is positively

and significantly related to carbon emissions. This is an indication that most of
the patents granted within our study period in these countries were not neces-
sarily environmentally friendly. The industry sector (iron and steel production,
chemical production, machinery production, etc.) accounted for 37 per cent of
global energy used in 2018 (IEA, 2020). Most of the energy-intensive industries
are located in High-income countries. These industries are continuously inno-
vating and expanding, thus increasing their energy demand. According to IEA
(2020), industrial energy consumption increased by 0.9 per cent each year on
average between 2010 and 2018. It seems like patents granted in these coun-
tries and more specifically in energy-intensive industries, which have the biggest
share in energy used, are not enough environmentally friendly. Therefore, it will
be necessary to encourage green patent applications and intensify policies that
will encourage firms and industries to produce products that are less damaging
to the environment. R&D expenditure and TFP do not have a clear impact on
carbon emissions in high-income countries. The coeffi cients of R&D expenditure
and TFP are positive but not statistically significant at the conventional level
of significance. However, it is worth noting that the positive coeffi cient of TFP
is statistically significant only at the 20 per cent level of significance.
Regarding upper-middle-income countries, the results are not very clear. We

could not find a significant impact of R&D expenditure and patents on carbon
emissions. Their coeffi cients in the regression results were, at first, positive
and statistically significant when they were the only explanatory variables used
in their respective regressions. However, their coeffi cients became statistically
insignificant as additional explanatory variables were added in the regressions.
An explanation might that upper-middle countries (it can also be the case for
high-income countries) are reaching a point where the gains from energy savings
due to technological improvement equal the increase of energy consumption
also due to technological improvement, resulting in an insignificant impact on
carbon emissions. Another explanation is the lack of stringent environmental
regulations that can convince industries to adopt green-friendly products. Green
patents and green R&D expenditure can very well be present in the market. But
if there is no strong regulation to “force” industries and companies to adopt
and use them, then they may not have the expected negative effect on carbon
emissions.
In lower-income countries, patent applications and R&D expenditure en-

hance carbon emissions. This suggests that in these countries, public expen-
diture in R&D is still more directed toward carbon-intensive projects. Also,
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patents granted in these countries reflect inventions that might be beneficial
for households, companies, or industries but damaging for the environment.
Another explanation is the limitation of funds allocated to R&D expenditure
in annual state budgets. Also, these countries do not often have the means,
skills, and high-tech infrastructures necessary to develop inventions that lead to
the creation of patents. Similar to the results found by Li and Wang (2017),
lower-income countries pay little attention to developing low carbon produc-
tion technologies. This is not very surprising as these countries are seeking to
expand their economic growth to join other groups of high-level income coun-
tries. Therefore, they invest massively in energy-intensive projects which un-
fortunately do not often consider environmental sustainability. TFP seems to
increase carbon emissions in these countries.
Results also confirm that GDP per capita; energy consumption; and popu-

lation are the key drivers of carbon emissions in each group of countries. The
impacts of these three variables are higher than the effect of technology variables
in all models and income groups. These results are similar to those found in
other studies (see Selden and Song, 1994; Dinda and Coondoo, 2006; Wang et
al., 2016; Antonakakis et al., 2017; 2016 Hashmi and Alam, 2019; Cheng, Ren,
and Yan, 2019).

6 Conclusion

The relationship between technological change and carbon emissions is complex.
Numerous studies show that technological progress has a dual effect on global
CO2 emissions. On the one hand, technology reduces overall CO2 emissions
by reducing energy intensity; adjusting the energy structure; and fostering the
diffusion of green technology in industries and countries. On the other hand,
technology increases CO2 emissions by increasing energy consumption and eco-
nomic growth. The purpose of this study is to reexamine the above relationship
in a group of 60 countries divided into four categories based on their per capita
income level for the period of 1989-2018.
This paper seeks to answer two questions. The first question is to determine

the impact of technological progress on CO2 emissions when using various mea-
surements of technology. Notably: Information and telecommunication technol-
ogy (mobile cellular subscription and percentage of internet user); the number
of patents; public R&D expenditure; total factor of productivity (TFP); and a
number of science and technology publications.
To answer this question, we use the full sample of 60 countries. After apply-

ing the fixed-effect method with Driscoll and Kraay standard errors and com-
plement the latter with the Bruno (2005) LSDVC methodology as a robustness
check, the following mixed results have been found: ICT variables appear to be
good instruments for carbon abatement. The net effect of ICT variables on CO2
emissions is negative and statistically significant. However, R&D expenditure
and patents do not have a clear impact on carbon emissions. Their coeffi cients
are positive but not statistically significant. TFP increases carbon emissions,
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while the number of science and technology publications is negatively related
to carbon emissions. We also found that key determinants of carbon emissions
such as GDP per capita, energy consumption, population density, and exports
are positively related to carbon emissions. This paper also considers the re-
bound effect by interacting with technological progress and energy consumption
and assessing their common impact on carbon emissions. The results indicate
that CO2 emissions are declining when energy consumption is associated with
ICT variables, and science and technology publications. However, carbon emis-
sions increase when energy consumption is associated with TFP. The joined
interactions between energy consumption and R&D expenditure, and energy
consumption and patents are positive but statistically insignificant.
The second question is to determine whether the impact of our measure-

ment of technological progress depends on the level of economic development
of a country. To answer this question, the full sample is divided into four
sub-samples according to their level of income. Thus, we had 15 high-income
countries, 15 upper-middle-income countries, 15 lower-middle-income countries,
and 15 lower-income countries. After running several regressions with the fixed
effect methodology with Driscoll and Kraay standard errors for the four subsam-
ples, the results reveal that ICT development is associated with a decline in CO2
emissions in all four groups of countries. The coeffi cient on patents is statistically
significant and positively affects carbon emissions in 3 out of 4 groups of coun-
tries (high income, lower-middle-income, and lower-income countries). R&D
expenditure causes CO2 emissions to rise only in lower-middle-income coun-
tries but fails to have a significant impact on carbon emissions in high-income
countries. The number of science and technology publications is negatively as-
sociated with carbon emissions only in high-income and upper-middle-income
countries.
Climate change requires a collective effort from governments, businesses, and

households if we are to succeed in limiting the increase of a global temperature
below 1.5 degrees by 2100 as stated in the Paris agreement (2015). The policy
implications that can be drawn from this study are as follows: (1) government
and industries should continue to promote the development and expansion of
ICTs to fight climate change. For example, the use of smartphones helps in de-
creasing carbon emissions through encouraging behaviours such as the reduction
of movement of people using cars13 , the increasing use of public transport, and
the use of remote control for home heating and other connected devices. The
benefits associated with ICTs are even more felt during the Covid 19 pandemic
that hit the planet in 202014 . (2) Governments around the world should have a
common agreement to encourage green patent applications and intensify policies
that will encourage firms and industries to produce products that are less dam-
aging to the environment. (3) Public R&D expenditure should be more directed

13Most cars need fuel to move. Smartphones also help in reducing movement of people
through online shopping.
14There has been a sharp decline of CO2 emissions between March and June in 2020 due

to the lockdown regulations put in place in most countries around the world. Working from
home is believed to have significantly contributed to this decline.
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towards projects that will result in the production of environmentally friendly
products and technologies. (4) Science and technology publication should be
promoted as it fosters the debate on solutions to how to reach green and sus-
tainable development. (5) These policy recommendations may not succeed if
there are no strong environmental regulations and a clear commitment from
governments to gradually decrease the use of traditional energy and increase
the level of renewable energy.
The idea of this paper was to examine the impact of “aggregate”technology

on carbon emissions. A broad concept of technology has been used and it was
represented by the six proxies employed in this study. There was no distinction
between green technology and non-green technology. This paper shows that
“aggregate”R&D expenditure and “aggregate”patents fail to have a clear im-
pact on carbon emissions. In terms of future research, it will be interesting to go
further and assess the impact of green R&D expenditure and green patents on
carbon emissions in different income groups of countries. Future research can
also consider the creation of a composite indicator of technological progress in
each group of income. The index can be obtained from the synthesis of technical
indicators used in this paper.
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Table 1. Variables description 

Variables Description Sources 

ln CEit Carbon dioxide emissions in metric tons per capita. CO2 

emissions include the combustion of fossil fuels for 

electricity generation and heat production (in industries, 

households, etc.), for transportation, and the industrial 

process including the manufacturer of cement. 

WDI (World Bank, 2019) 

 

  

lnGDPit Per capita real gross domestic product in 2010 constant 

US$ term.  

WDI (World Bank, 2019) 

lnECONSit Energy use in tons of oil equivalent per capita. It refers 

to the use of primary energy before transformation to 

other end-use fuels such as liquefied petroleum gas, 

kerosene, diesel, gasoline…etc.   

WDI (World Bank, 2019) 

 

lnMob_celit 
Two ICT’s variables are used in this study: mobile 

cellular subscriptions per 100 people  

WDI (World Bank, 2019) 

lnInternetit Individual using the internet (percentage of the 

population) 

WDI (World Bank, 2019) 

lnPatentit Patent applications filed by residents and nonresidents 

in each country.  

WIPO (World 

Intellectual Property, 

2020) 

lnR&Dit Public expenditure in Research and development as a 

percentage of GDP. 

United Nation 

Educational, Science and 

Cultural Organization 

(UNESCO, 2019), 

Organization for 

Economic Co-operation 

and Development 

(OECD, 2019) 

lnTFPit Total factor of productivity index Penn World Table data1 

lnScien_techit These are scientific articles. They include research 

published in the following field: energy, physics, 

chemistry, biology, mathematics, earth and space 

sciences, biomedical research, engineering, and 

technology.  

WDI (World Bank, 2019) 

lnEXPit Exports in 2010 constant US$ term WDI (World Bank, 2019) 

lnPOPit Population density per square kilometres WDI (World Bank, 2019) 

 

Note: all variables are in natural log. 

 

 

 

                                                           
1 Dataset of various economic indicators developed by The Groningen Growth and Development Centre (GGDC). 

The GGDC provides comparative trends in the world economy in the form of datasets, which can be used to analyze 

productivity, structural change, and economic growth across countries. 
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Table 2. Diagnostic test: serial correlation, heteroskedasticity, cross-sectional dependence, time 

fixed effect, and panel effect. 

 Model (2a) Model (2b) Model (2c) Model (2d) Model (2e) Model 

(2f) 

 Statistic Statistic Statistic Statistic Statistic Statistic 

 

Serial correlation 38.928 

0.000*** 

37.689 

0.000*** 

45.313 

0.000*** 

30.120 

0.000*** 

32.275 

0.000*** 

32.504 

0.000*** 

Heteroskedasticity 33726 

0.000*** 

35457.92 

0.000*** 

50829.81 

0.000*** 

25997.66 

0.000*** 

33066.23 

0.000*** 

39646.84 

0.000*** 

Pesaran CD 15.174 

0.000*** 

20.912 

0.000*** 

26.409 

0.000*** 

21.337 

0.000*** 

20.152 

0.000*** 

20.450 

0.000*** 

Time fixed effect 0.882 

0.637 

1.697* 

0.096 

0.822 

0.721 

1.218 

0.208 

0.690 

0.796 

0.700 

0.867 

Panel effect 538.24 

0.000*** 

518.16 

0.000*** 

495.54 

0.000*** 

464.47 

0.000*** 

477.84 

0.000*** 

447.20 

0.000*** 

 

Notes: *(**) [***] indicate rejection of the null hypothesis at a 10(5)[1] % level 

 

 

 

Table 3. IPS unit root tests. 

Variables IPS 

Specification without trend Specification trend 

ln CEit 3.7398 (0.999) 3.3439 (0.999) 

lnGDPit 2.1258 (0.983) 1.7564 (0.874) 

lnECONSit 6.2513 (1.000) 7.9012 (1.000) 

lnR&Dit 0.3586 (0.640) 3.4411 (0.999) 

lnPatentit -1.5039 (0.066) * -1.6513 (0.049) * 

lnMob_celit -2.4299 (0.007) *** -2.9685 (0.001) *** 

lnInternetit -3.9694 (0.000) *** -11.759 (0.000) *** 

lnScien_techit 5.6321 (1.000) 1.6940 (0.954) 

lnTFPit -2.0377 (0.020) ** -1.1386 (0.127) 

lnPOPit 9.3182 (1.000) 4.3708 (1.000) 

lnEXPit 0.8517 (0.802) 2.4186 (0.992) 

 

Notes: P-values are in parenthesis. *(**) [***] indicate rejection of the null hypothesis of a unit root at a 

10(5)[1] % level. 
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Table 4. Test for cointegration for sub-models 2(a)-2(f) 

 Model 2(a) Model 2(b) Model 2(c) Model 2(d) Model 2(e) Model 2(f) 

 Statistic Statistic Statistic Statistic Statistic Statistic 

Kao test   

       

Modified Dickey-

Fuller t 

-4.5932*** -5.5177*** -2.7559*** -3.1239*** 1.3568* -3.1634*** 

Dickey-Fuller t -2.4074*** -4.4601*** -1.5457* -2.5187*** 2.3198** -2.1672** 

Augmented Dickey-

Fuller t 

-2.8838*** -1.2235  0.0121  0.7206 3.0841*** -0.0776 

Unadjusted modified 

Dickey-Fuller t 

-4.8990*** -5.6122*** -4.6171*** -5.4236*** -0.3210 -5.3256*** 

Unadjusted Dickey-

Fuller t 

-2.5512*** -4.4999*** -2.5344*** -3.6819*** 0.9489 -3.2439*** 

       

Westerlund test for cointegration   

 Statistic Statistic Statistic Statistic Statistic Statistic 

Variance ratio -3.3849*** -2.9680*** -3.1875*** -4.8331*** -2.7905*** -3.7546*** 

       

Pedroni test for cointegration   

 Statistic Statistic Statistic Statistic Statistic Statistic 

Modified Phillips-

Perron 

 1.6462*  2.4351*** 1.904** -0.3152*  7.2719***  1.5503* 

Phillips-Perron t -7.0753*** -12.90*** -8.472*** -11.607*** -10.077*** -11.493*** 

Augmented Dickey-

Fuller t 

-5.3472*** -9.3053*** -8.687*** -10.445*** -9.7140*** -9.3530*** 

       

 

*(**) [***] indicate rejection of the null hypothesis of no cointegration at a 10(5) [1] % level. 
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Table 5. Full sample results with all explanatory variables included: 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 

 

  

Dependent variable:  CO2 emissions 

 model (2a) model (2b) model (2c) model (2d) model (2e) model (2f) 

lnMob_celit -.01686*** 

(-8.44) 

     

lnInternetit  -.01896*** 

(-5.80) 

    

lnPatentit   .009291 

(0.78) 

   

lnR&Dit    -.021502 

(0.86) 

  

lnTFPit     .14493** 

(2.60) 

 

lnScien_techit      -.03740** 

(-2.61) 

       

lnGDPit .154921** 

(2.34) 

.16373*** 

(2.85) 

.19216*** 

(17.66) 

.15954** 

(2.56) 

.118187* 

(1.70) 

.07730* 

(1.68) 

lnECONSit .933625*** 

(22.67) 

.91670*** 

(27.46) 

.86201*** 

(17.66) 

.93984*** 

(20.37) 

.90441*** 

(25.28) 

1.0339*** 

(30.37) 

lnPOPit .471601*** 

(10.46) 

.63268*** 

(10.14) 

.30051*** 

(4.85) 

.43019*** 

(6.48) 

.41710*** 

(10.72) 

.42035*** 

(6.48) 

lnEXPit .037715 

(1.42) 

.02572* 

(0.81) 

-.003307 

(-0.11) 

-.02504 

(0.64) 

-.01068  

(-0.35) 

.08263** 

(3.58) 

       

Constant -11.688*** 

(-78.85) 

-10.464*** 

(-18.97) 

-8.2919*** 

(-25.34) 

-12.969*** 

(-60.57) 

-7.7284*** 

(-19.73) 

-10.861*** 

(-19.78) 

       

F-test 1600.09 

(0.000) 

1868.35 

(0.000) 

1507.26 

(0.000) 

425.25 

(0.000) 

1571.14 

(0.000) 

220.06 

(0.000) 

Observations 1800 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 60 
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Table 6. Panel model (3) 

 

Notes: Standard errors in parentheses. *(**) [***] indicate level of significance at a 10 (5) [1] % 

 

  

Dependent variable:  CO2 emissions 

 model (3a) model (3b) model (3c) model (3d) model (3e) model (3f) 

ln CEit−1 .772628*** 

(253.56) 

.75296*** 

(96.58) 

.781399*** 

(48.42) 

.79162*** 

(195.84) 

.74646*** 

(32.85) 

.747742*** 

(26.15) 

lnMob_celit -.00194*** 

(-29.49) 

     

lnInternetit  -.0053*** 

(-4.86) 

    

lnPatentit   .0019081 

(0.24) 

   

lnR&Dit    -.031062* 

(-1.70) 

  

lnScien_techit     -.020659** 

(-2.00) 

 

lnTFPit      .042138** 

(2.11) 

       

lnGDPit .018423** 

(2.42) 

.046714 

(0.77) 

.054716** 

(2.29) 

.046240 

(1.16) 

-.026234 

(-0.42) 

.031559*** 

(6.91) 

lnECONSit .21007*** 

(9.69) 

.214531*** 

(4.07) 

.144765*** 

(4.12) 

.237714*** 

(17.06) 

.337586*** 

(5.25) 

.194748*** 

(40.35) 

lnPOPit .066015** 

(1.96) 

.164314*** 

(11.02) 

.079287 

(1.51) 

.121199*** 

(1.40) 

.152597*** 

(5.48) 

.11602*** 

(6.73) 

lnEXPit .019070** 

(2.38) 

.014434 

(1.50) 

.010548* 

(1.64) 

.007011 

(0.66) 

.031492 

(1.17) 

.0057858 

(0.60) 

       

Groups 60 60 60 60 60 60 
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Table 7. Panel model 4 

Dependent variable: CO2 emissions 

 model (4a) model (4b) model (4c) model (4d) model (4e) model (4f) 

lnCons_Mob_celit -

.00347*** 

(-8.96) 

     

lnCons_Internetit  -

.00330*** 

(-5.23) 

    

lnCons_Patentit   .0019081 

(0.24) 

   

lnCons_R&Dit    .031062 

(-1.70) 

  

lnCons_Scien_techit     -.01026** 

(-4.92) 

 

lnCons_TFPit      .042138** 

(2.11) 

       

lnGDPit .19498*** 

(3.19) 

.20044*** 

(2.97) 

.19520*** 

(2.81) 

.25097*** 

(3.89) 

.13454** 

(2.54) 

.09640* 

(1.75) 

lnECONSit .91984*** 

(27.06) 

.92606*** 

(23.71) 

.91086*** 

(15.51) 

1.2233*** 

(14.35) 

1.1475*** 

(25.92) 

.90785*** 

(25.95) 

lnPOPit .62861*** 

(11.82) 

.51605*** 

(12.94) 

.32821*** 

(5.38) 

.48670*** 

(8.42) 

.47934*** 

(6.70) 

.41688*** 

(10.83) 

lnEXPit .03314 

(1.05) 

.04892* 

(1.82) 

-.00239 

(-0.08) 

-.02848 

(-0.76) 

.07737*** 

(3.62) 

-.01208 

(-0.41) 

       

Constant -

10.905*** 

(-17.41) 

-

10.851*** 

(-29.08) 

-

8.6363*** 

(-22.54) 

-

9.7125*** 

(-11.81) 

-

11.970*** 

(-17.17) 

-

7.8264*** 

(-21.59) 

       

F-test 2687.42 

(0.000) 

1389.52 

(0.000) 

1595.99 

(0.000) 

518.80 

(0.000) 

242.93 

(0.000) 

1356.37 

(0.000) 

Observations 1800 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 60 

       

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate level of significance at a 

10 (5) [1] % 
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Table 8. Subsample regressions results 

 Technology – Patent Technology – R&D 

 Sub-group 

1 

Sub-group 

2 

Sub-group 3 Sub-group 

4 

Sub-group 

1 

Sub-group 

2 

Sub-group 

3 

Sub-group 

4 

lnTECHit .03200* 

(1.91) 

-.00183 

(-0.24) 

.04766** 

(2.07) 

.06031** 

(2.09) 

.0176199 

(0.37) 

.00259 

(0.09) 

.05523* 

(1.77) 

.00990 

(0.27) 

lnGDPit .19035** 

(2.59) 

.01961 

(1.30) 

-.02650 

(-0.24) 

.79436*** 

(6.50) 

.148569* 

(1.87) 

.08021*** 

(3.03) 

.12814 

(0.92) 

.78957*** 

(6.37) 

lnECONSit .95866*** 

(22.47) 

1.0561*** 

(28.82) 

.95445*** 

(11.46) 

1.0624*** 

(3.92) 

.97276*** 

(27.86) 

.97069*** 

(27.17) 

1.0206*** 

(17.07) 

1.6470*** 

(8.33) 

lnPOPit -.00118 

(-0.05) 

-.05520 

(-1.53) 

.12896** 

(1.99) 

.17980 

(0.88) 

-.007788 

(-0.07) 

-.03803 

(-0.84) 

-.14929 

(-0.93) 

-.26542* 

(-1.92) 

lnEXPit -.14761*** -.01930** .12222*** -.04810 -.13368*** -.04402** .05821 .08102 

Dependent variable:  CO2 emissions 

 Technology – Mobile - cell Technology – Internet 

 Sub-group 

1 

Sub-group 

2 

Sub-group 3 Sub-group 

4 

Sub-group 

1 

Sub-group 

2 

Sub-group 

3 

Sub-group 4 

lnTECHit -.01144*** 

(-3.87) 

-.01074*** 

(-4.90) 

-.01309** 

(-2.06) 

-.05697*** 

(-5.12) 

-.00748*** 

(-3.35) 

-.00622* 

(-1.88) 

-.00368* 

(-1.92) 

-.03378** 

(-2.67) 

lnGDPit .15863** 

(2.13) 

.05808* 

(1.93) 

.04536 

(0.37) 

1.0664*** 

(8.31) 

.15497** 

(2.16) 

.024814 

(0.51) 

.10644 

(0.85) 

.78996*** 

(6.18) 

lnECONSit .98442*** 

(24.52) 

1.0167*** 

(27.76) 

1.0747*** 

(20.25) 

1.4445*** 

(6.35) 

1.0037*** 

(23.98) 

1.0320*** 

(23.07) 

1.0700*** 

(23.28) 

1.1955*** 

(5.27) 

lnPOPit .0938974 

(0.73) 

.0276064 

(1.05) 

.32013** 

(2.17) 

.56710* 

(1.83) 

.048451 

(0.41) 

-.00014 

(-0.05) 

.17147 

(1.15) 

.55098** 

(2.11) 

lnEXPit -.09221*** 

(-3.71) 

.02159 

(1.45) 

.12829** 

(2.62) 

.07072 

(1.24) 

-.09389*** 

(-3.54) 

.00382 

(0.28) 

.05449 

(1.49) 

.05399 

(0.73) 

Constant -5.5115*** 

(-11.17) 

-7.1692*** 

(-18.05) 

-11.689*** 

(-10.13) 

-20.845*** 

(-14.06) 

-5.4119*** 

(-12.40) 

-6.4642*** 

(-22.73) 

-9.6474*** 

(-15.03) 

-17.265*** 

(-8.97) 

         

F-test 466.80 

(0.000) 

1782.00 

(0.000) 

139.62 

(0.000) 

139.62 

(0.000) 

1011.85 

(0.000) 

2052.96 

(0.000) 

892.18 

(0.000) 

32.71 

(0.000) 

Observations 450 450 450 450 450 450 450 450 

Groups 15 15 15 15 15 15 15 15 
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(-7.25) (-2.17) (3.21) (-0.62) (-7.61) (-2.67) (1.50) (0.99) 

Constant -4.0776*** 

(-13.85) 

-5.7985*** 

(-17.98) 

-9.686*** 

(-36.03) 

-13.024*** 

(-6.24) 

-4.2226*** 

(-12.70) 

-5.2001*** 

(-19.92) 

-9.1747*** 

(-31.63) 

-17.585*** 

(-9.04) 

         

F-test 321 

(0.000) 

779.98 

(0.000) 

2186.24 

(0.000) 

32.71 

(0.000) 

409 

(0.000) 

1176.74 

(0.000) 

4383.35 

(0.000) 

47.03 

(0.000) 

Observations 450 450 450 450 450 450 450 450 

Groups 15 15 15 15 15 15 15 15 

 Technology – Articles Technology – TFP 

 Sub-group 1 Sub-group 

2 

Sub-group 3 Sub-group 

4 

Sub-group 

1 

Sub-group 

2 

Sub-group 

3 

Sub-group 4 

lnTECHit -.19050*** 

(-5.01) 

-.01291* 

(-1.90) 

.01789 

(0.60) 

.14772 

(1.22) 

.06825 

(1.31) 

.04891** 

(-2.69) 

.22824*** 

(4.22) 

.02029 

(0.18) 

lnGDPit .43937*** 

(4.01) 

.16310*** 

(5.74) 

-.06271 

(-0.79) 

.59554*** 

(4.15) 

.13375* 

(1.79) 

.02723 

(1.23) 

.20652* 

(-2.10) 

.74166*** 

(6.98) 

lnECONSit 1.0057*** 

(17.01) 

.93735*** 

(30.22) 

1.0620*** 

(14.36) 

1.7362*** 

(7.68) 

.96974*** 

(22.57) 

1.0521*** 

(28.43) 

1.1403*** 

(23.07) 

1.8970*** 

(7.73) 

lnPOPit .42653* 

(2.05) 

.05574* 

(1.72) 

.04524 

(0.26) 

-.75502** 

(-2.68) 

.085676 

(0.79) 

.06385* 

(1.74) 

.22742** 

(2.20) 

.96544*** 

(5.60) 

lnEXPit -.06086** 

(-2.46) 

-.08416*** 

(-7.25) 

.10041*** 

(3.17) 

.19568*** 

(3.12) 

-.12700*** 

(-6.31) 

-.01920* 

(-1.74) 

.12104*** 

(3.49) 

.23041*** 

(3.05) 

Constant -8.9548*** 

(-9.89) 

-4.8398*** 

(-17.46) 

-8.9752*** 

(-13.59) 

-17.917*** 

(-10.33) 

-4.1999*** 

(-12.18) 

-5.8452*** 

(-18.34) 

-9.5029*** 

(-28.35) 

-16.212*** 

(-8.11) 

         

F-test 1045 

(0.000) 

3136.36 

(0.000) 

2622.34 

(0.000) 

130.62 

(0.000) 

274.72 

(0.000) 

1220.88 

(0.000) 

492.04 

(0.000) 

90.73 

(0.000) 

Observations 450 450 450 450 450 450 450 450 

Groups 15 15 15 15 15 15 15 15 

 
Notes: Driscoll and Kraay robust standard errors in parentheses. * (**) [***] indicate the level of significance at 10 (5) and [ 

 



45 

 

Appendix 

Table A. Sampled countries (1989-2018) 

High-income  Upper-middle income Lower-middle income Lower-income 

60 countries 

Germany China Angola Benin 

France Argentina Bangladesh Ethiopia 

United Kingdom Brazil Cote d’Ivoire Mozambique 

United States Mexico Egypt Nepal 

Italy Iran Indonesia Tajikistan 

Canada Russia India Yemen 

Spain Turkey Kenya Tanzania 

Japan South Africa Morocco Burkina Faso 

Saudi Arabia Thailand Nigeria Rwanda 

South Korea Algeria Pakistan Congo Rep. 

Australia Colombia Philippines Guinea 

Belgium Jordan Tunisia The Gambia 

Netherland Kazakhstan Uzbekistan Madagascar 

Poland Malaysia Venezuela Mali 

Chile Romania Vietnam Uganda 

 

 

 

 

Table B. Descriptive statistic: full sample 

Variables Observations Mean Stand dev Min Max 

CO2 emissions 1753 4.333644 4.751069 .0335559 20.17875 

GDP per capita 1798 10849.17 15133.8 164.3366 56842.3 

Energy cons 1517 1.917049 1.911527 0.1188983 8.455547 

Population 1729 124.0924 167.6538 2.18872 1239.579 

Export/GDP 1683 28.79679 18.17593 5 108 

Mobile cell 1664 48.30433 49.57067 0 191.0315 

Internet 1592 21.97556 27.69128 0 96.02286 

Patents 1767 14259.04 53650.86 1 606956 

R&D 1471 1.034388 .9593146 .0000862 5.108209 

TFP 1559 .6288156 .2452978 .1254694 1.22886 

Science article 1140 26540.41 65870.67 3.14 528263.3 
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Table C. Descriptive statistic: Sub-sample 

 

 Observations Mean value Standard 

deviation 

Minimum 

value 

Maximum 

value 

CO2 emissions 

High-income 450 10.08686 4.192539 2.321076 20.17875 

Upper-middle 

income 

427 5.231199 3.316332 1.308847 17.42437 

Lower-middle 

income 

450 1.602891 1.642865 .133613 7.701744 

Lower-income 426 .2412384 .2613759 .0335559 1.697945 

GDP capita 

High-income 449 33700.83 13617.77 5510.662 56842.3 

Upper-middle 

income 

449 6682.485 2793.98 712.1154 15068.98 

Lower-middle 

income 

450 2469.366 2871.945 398.8521 14920.45 

Lower-income 450 585.5048 236.4174 164.3366 1334.785 

Energy consumption 

High-income 404 4.351784 1.75897 1.00411 8.455547 

Upper-middle 

income 

391 1.856053 1.11506 0.61606 5.928661 

Lower-middle 

income 

386 0.711106 0.55271 0.11889 2.545027 

Lower-income 336 0.445947 0.118864 0.211177 0.100453 

Population 

High-income 439 179.0955 165.0725 2.18872 529.6521 

Upper-middle 

income 

450 54.81616 41.2086 5.503698 148.3488 

Lower-middle 

income 

450 190.0089 249.634 9.188078 1239.579 

Lower-income 390 66.05524 54.03424 6.799691 225.3065 

Exports 

High-income 433 .3257275 .1817291 .07 .88 

Upper-middle 

income 

448 .3341493 .1994115 0 .9818581 

Lower-middle 

income 

408 28.68873 18.60527 3 128 

Lower-income 394 .195079 .106577 .02 .5949994 
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R&D expenditure 

High-income 423 1.997422 .9313076 .477058 5.108209 

Upper-middle 

income 

369 1.095182 .8507465 .0008862 4.872204 

Lower-middle 

income 

334 .561821 .3235109 .0328966 1.258751 

Lower-income 345 .2460996 .0928364 .01465 .72657 

Patents 

High-income 450 42260.74 98495.01 70 606956 

Upper-middle 

income 

450 11071.12 21211.33 72 148187 

Lower-middle 

income 

432 2742.065 7236.495 10 50055 

Lower-income 435 26.85517 24.2772 1 193 

Mobile cell 

High-income 449 65.90508 51.41677 0.9 191.0315 

Upper-middle 

income 

435 54.49689 54.49927 .0002027 180.4934 

Lower-middle 

income 

414 39.7524 44.62241 .0002315 164.4406 

Lower-income 366 29.02564 35.82879 .0006089 139.529 

Internet 

High-income 426 44.21311 34.01286 0.8 96.02286 

Upper-middle 

income 

406 22.78703 24.16181 0.5 81.20105 

Lower-middle 

income 

370 13.70277 17.96182 .0001113 74 

Lower-income 390 4.689112 7.177908 .0000175 38 

TFP 

High-income 450 .8612446 .1484321 .508876 1.22886 

Upper-middle 

income 

440 .6324319 .1964714 .2530827 1.143904 

Lower-middle 

income 

434 .5423953 .2005938 .1254694 1.10942 

Lower-income 235 .3365696 .0890791 .1556337 .5653373 

Science and technology publications 

High-income 285 70037.76 91813.01 1557.36 433192.3 

Upper-middle 

income 

285 29719.91 74960.12 190.17 528263.3 

Lower-middle 

income 

285 6238.554 18231.27 5.89 135787.8 

Lower-income 285 165.4247 234.6959 3.14 1994.44 
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Table D. Full sample detailed regression results panel model 1a. 

Dependent variable: CO2 

 emissions 

 

 regression 1 regression 2 regression 3 regression 4 regression 5 

lnMob_celit . .04720*** 

(9.22) 

.00925*** 

(-2.61) 

.000304 

(0.13) 

-.02094*** 

(-7.02) 

-.01686*** 

(-8.44) 

lnGDPit  .617113*** 

(20.97) 

.256743*** 

(6.83) 

.319516*** 

(7.48) 

.154921** 

(2.34) 

lnECONSit   .903223*** 

(25.32) 

.829385*** 

(20.71) 

.933625*** 

(22.67) 

lnPOPit    .586699*** 

(11.06) 

.471601*** 

(10.46) 

lnEXPit     .037715 

(1.42) 

Constant .543195*** 

(33.66) 

-4.5273*** 

(-18.87) 

-7.8918*** 

(-50.65) 

-10.284*** 

(-35.18) 

-11.688*** 

(-78.85) 

      

F-test 85.04 

(0.000) 

1199.12 

(0.000) 

1393.64 

(0.000) 

1716.98 

(0.000) 

1600.09 

(0.000) 

Observations 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 
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Table E. Full sample detailed regression results panel model 1b. 

Dependent variable: CO2 emissions 

      

 regression 1 regression 2 regression 3 regression 4 regression 5 

lnInternetit .042476*** 

(6.61) 

.010519  

(4.22) 

.001194  

(0.66) 

-.01817*** 

(-5.46) 

-.01896*** 

(-5.80) 

lnGDPit  .55238*** 

(11.20) 

.25492*** 

(5.05) 

.26636*** 

(5.53) 

.16373*** 

(2.85) 

lnECONSit   .88767*** 

(22.71) 

.84047*** 

(24.14) 

.91670*** 

(27.46) 

lnPOPit    .61974*** 

(10.66) 

.63268*** 

(10.14) 

lnEXPit     .02572* 

(0.81) 

Constant .544153*** 

(26.04) 

-4.0128*** 

(-9.68) 

7.79863*** 

(-29.66) 

-10.120*** 

(-26.54) 

-10.464*** 

(-18.97) 

      

 43.75 

(0.000) 

114.93 

(0.000) 

865.41 

(0.000) 

1237.07 

(0.000) 

1868.35 

(0.000) 

Observations 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 
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Table F. Full sample detailed regression results panel model 1c. 

Dependent variable: CO2 emissions 

      

 regression 1 regression 2 regression 3 regression 4 regression 5 

lnPatentit .23240*** 

(7.96) 

.10479*** 

(4.92) 

.03328** 

(2.39) 

.00697 

(0.63) 

.009291 

(0.78) 

lnGDPit  .59308*** 

(15.08) 

.29664*** 

(9.35) 

.25080*** 

(7.29) 

.19216*** 

(17.66) 

lnECONSit   .84149*** 

(19.86) 

.83445*** 

(16.81) 

.86201*** 

(17.66) 

lnPOPit    .25193*** 

(5.50) 

.30051*** 

(4.85) 

lnEXPit     -.003307 

(-0.11) 

Constant -1.0462*** 

(-5.70) 

-5.0638*** 

(-22.90) 

-8.0452*** 

(-41.15) 

-8.4744*** 

(-33.21) 

-8.2919*** 

(-25.34) 

      

 63.40 

(0.000) 

568.15 

(0.000) 

1269.24 

(0.000) 

1304.06 

(0.000) 

1507.26 

(0.000) 

Observations 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 
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Table G. Full sample detailed regression results panel model 1d. 

Dependent variable: CO2 emissions 

      

 regression 1 regression 2 regression 3 regression 4 regression 5 

lnR&Dit .21292*** 

(5.72) 

.072980** 

(2.12) 

.03230* 

(1.74) 

-.02387 

(0.90) 

-.021502 

(0.86) 

lnGDPit  .47588*** 

(5.66) 

.16714** 

(2.24) 

.17163** 

(2.35) 

.15954** 

(2.56) 

lnECONSit   .89438*** 

(15.58) 

.88262*** 

(15.59) 

.93984*** 

(20.37) 

lnPOPit    .36537*** 

(5.06) 

.43019*** 

(6.48) 

lnEXPit     -.02504 

(0.64) 

Constant -3.7978*** 

(-4.84) 

-4.8595*** 

(-11.96) 

-7.7772*** 

(-23.21) 

-8.079*** 

(-25.56) 

-12.969*** 

(-60.57) 

      

 32.73 

(0.000) 

97.94 

(0.000) 

345.29 

(0.000) 

302.64 

(0.000) 

425.25 

(0.000) 

Observations 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 
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Table H. Full sample detailed regression results panel model 1e. 

Dependent variable: CO2 emissions  

      

 regression 1 regression 2 regression 3 regression 4 regression 5 

lnTFPit .300593*** 

(3.63) 

.06347 

(1.23) 

.10896** 

(2.11) 

.12426** 

(2.67) 

.14493** 

(2.60) 

lnGDPit  .65009*** 

(29.14) 

.24276*** 

(11.24) 

.15027*** 

(7.19) 

.118187* 

(1.70) 

lnECONSit   .86363*** 

(33.15) 

.80085*** 

(27.40) 

.90441*** 

(25.28) 

lnPOPit    .36650*** 

(8.44) 

.41710*** 

(10.72) 

lnEXPit     -.01068  

(-0.35) 

Constant .944870*** 

(15.71) 

-4.6712*** 

(-22.19) 

-7.3215*** 

(-35.58) 

-7.592*** 

(-38.46) 

-7.7284*** 

(-19.73) 

 13.21 

(0.001) 

751.84 

(0.000) 

1113.00 

(0.000) 

996.27 

(0.000) 

1571.14 

(0.000) 

      

Observations 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 
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Table I. Full sample detailed regression results panel model 1f. 

Dependent variable: CO2 emissions  

      

 Model 1 Model 2 Model 3 Model 4 Model 5 

lnScien_artit .19999*** 

(24.13) 

.06719*** 

(5.06) 

.01136 

(0.83) 

-.03508* 

(-2.02) 

-.03740** 

(-2.61) 

lnGDPit  .56590*** 

(14.31) 

.31004*** 

(8.71) 

.27666*** 

(7.92) 

.07730* 

(1.68) 

lnECONSit   .90273*** 

(17.34) 

.92307*** 

(16.99) 

1.0339*** 

(30.37) 

lnPOPit    .40093*** 

(5.83) 

.42035*** 

(6.48) 

lnEXPit     .08263** 

(3.58) 

Constant -.96427*** 

(-15.04) 

-4.6475*** 

(-18.80) 

-8.4643*** 

(-20.71) 

-9.6562*** 

(-16.35) 

-10.861*** 

(-19.78) 

      

 582.08 

(0.000) 

772.42 

(0.000) 

204.51 

(0.000) 

309.27 

(0.000) 

220.06 (0.000) 

Observations 1800 1800 1800 1800 1800 

Groups 60 60 60 60 60 

 

Note: Driscoll and Kraay standard errors are in parentheses. *(**) [***] indicate the level of significance 

at a 10 (5) [1] % 

 


	Manuscript Tech final v2.pdf
	Tables and figures.pdf

