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The Role of Oil and Risk Shocks in the High-Frequency Movements of the Term 
Structure of Interest Rates of the United States   

Rangan Gupta*, Syed Jawad Hussain Shahzad**, Xin Sheng*** and Sowmya Subramaniam****  
Abstract 

We use daily data for the period 5 January 2000 to 31 October 2018 to analyse the impact of 
structural oil supply, oil demand and financial market risk shocks on the level, slope and 
curvature factors derived from the term structure of interest rates of the United States covering 
maturities of 1 to 30 years. Linear causality tests detect no evidence of predictability of these 
shocks on the three latent factors. However, statistical tests performed on the linear model 
provide evidence of nonlinearity and structural breaks, and hence indicate that the Granger 
causality test results are based on a misspecified framework, and cannot be relied upon. Given 
this, we use a nonparametric causality in-quantiles test to reconsider the predictive ability of 
the three shocks on the three latent factors, with this model being robust to misspecification 
due to nonlinearity and regime change, as it is a data-driven approach. Moreover, this 
framework allows us to model the entire conditional distribution of the level, slope and 
curvature factors, and hence can accommodate, via the lower quantiles, the zero lower bound 
situation seen in our sample period. Using this robust model, we find overwhelming evidence 
of causality from the two oil shocks and the risk shock for the entire conditional distribution of 
the three factors, suggesting the predictability of the entire US term structure based on 
information contained in oil and financial market innovations. Our results have important 
implications for academics, investors and policymakers.   
Keywords: Yield Curve Factors, Oil Supply and Demand Shocks, Risk Shock, Causality-in-
Quantiles Test  
JEL Codes: E43, C22, C32, G12, Q41  

1. Introduction 
The existing literature on the impact and oil market price, returns, volatility, and shocks on the 
moments of equity market of the United States (US), is huge, to say the least (see, for example, 
Balcilar et al. (2015, 2017), or Gupta and Wohar (2017) for detailed reviews in this regard). 
Interestingly, despite the US bond market capitalization of $40.7 trillion being higher than the 
corresponding value of $30 trillion associated with the stock market and basically representing 
nearly two-thirds of value of the global bond market (Securities Industry and Financial Markets 
Association (SIFMA)), the literature examining the linkages between the US government bond 
and oil markets is negligible, and limited to the published works of Kang et al. (2014), Ioannidis 
and Ka (2018), Balcilar et al. (2020), Demirer et al. (2020), Nazlioglu et al. (2020), and Nguyen 
et al. (2020). This is not only surprising because of the importance of the bond market in 
comparison to the stock market, but also since the US government bond market is often viewed 
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as a safe-haven (Hager, 2017), and the fact that the entire yield curve is considered a predictor 
of economic activity (Hillebrand et al., 2018). Naturally, the impact of oil shocks on bond 
market movements (of various maturities) is an important question from the perspectives of 
both investors and policymakers. 
Getting back to studies relating to the government bond and oil markets of the US, one of the 
early works by Kang et al. (2014) utilized a structural vector autoregressive (SVAR) model to 
investigate how the demand and supply shocks driving the global crude oil market affect real 
bond returns of the US at monthly frequency. The authors found that a positive oil market-
specific demand shock is associated with significant decreases in real returns of an aggregate 
bond index. More recently, Demirer et al. (2020) using daily data, among other results, found 
that not only demand, but also supply shocks in the oil market, tend to negatively impact the 
10-year bond returns of the US, but the financial market risk shock increases the long-term 
bond returns. Nguyen et al. (2020) used a heteroscedasticity-based event study approach and 
instrument for changes in oil prices with exogenous shocks that mainly affect oil supply, to 
show, as in Demirer et al. (2020), that oil price increases reduce returns on a 20 plus-year (long-
term) Treasury bond index (as well as that of investment grade bonds, but increases returns on 
high-yield bonds). Ioannidis and Ka (2018) used the SVAR model of Kang et al. (2014), but 
studied the impact of oil price shocks in the global crude oil market on the dynamics of the 
entire yield curve of the US (and Canada, Norway, and South Korea), as captured by the three 
factors of level, slope and curvature, derived from maturities of 1 to 10 years. They find that 
oil market-specific demand shocks result in increases of the level factor, oil supply disruptions 
have short-lived negative responses on the slope factor, while demand side shocks lead to a 
slope increase, and decline in curvature. Unlike the aforementioned three papers, Balcilar et al. 
(2020) and Nazlioglu et al. (2020) concentrated on causal linkages between the bond and oil 
market-related variables rather than analysing the impact of (structural) oil shocks on bond 
returns. Specifically, Balcilar et al. (2020) analysed causality between oil market uncertainty 
and bond premia of the US Treasury, based on a nonparametric causality-in-quantiles 
framework to account for misspecification due to uncaptured nonlinearity and structural 
breaks. They found that oil uncertainty predicts an increase in US bond premia of various 
maturities (2 to 5 years relative to 1 year), with a stronger impact observed at longer-term 
maturities. Nazlioglu et al. (2020), using daily data and accounting for structural shifts as a 
smooth process found, inter alia, that the causality between bond and oil prices in the US runs 
only in one direction, from the bond market to the oil price, and not the other way.1, 2  
Against this backdrop, we aim to add to this sparse literature by examining the effects of oil 
price shocks on the term structure of interest rates for the US. In this regard, given the 
suggestion of Kilian (2009) that “not all oil price shocks are alike”, we first disentangle the oil 
price movement due to demand, supply and financial risk shocks. Then, as in Ioannidis and Ka 
(2018), we relate these shocks to the term structure of interest rates, using the well-established 
framework of Nelson and Siegel (1987, NS) from the finance literature. This model 
summarizes the entire term structure into three latent yield factors of level, slope, and curvature, 
                                                             
1 Wan and Kao (2015) found that positive shocks in oil prices decrease the spreads between the AAA and BAA 
rated bonds, and hence, provided early evidence of the relationship between the oil market and investment bonds. 
In this regard, Gormus et al. (2018) too detected significant causality from the oil market to the high-yield bond 
market in terms of both price and volatility. 
2 A working paper that must be mentioned is the work of Coronado et al. (2020). These authors used historical 
monthly data from the US over the period 1859:10 to 2019:03 to detect time-varying evidence of bi-directional 
spillovers between oil and 10-year government bond returns, which is robust to the inclusion of stock returns as a 
control variable in the model. They detected time-varying causality-in-volatility between sovereign bond and oil 
markets, as well as spillovers in returns and volatility from the oil market to corporate bonds. 
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which in turn are considered the only relevant factors that characterise the yield curve 
(Litterman and Scheinkman, 1991). The factor model of the term structure involving interest 
rates associated with US Treasury securities of maturities 1 to 30 years in combination with 
the decomposition of oil price movements due to various causes, enables us to characterize the 
responses of the yield curve to various shocks and calculate the entire yield curve movement 
in the wake of these shocks.  
Specifically, we rely on high-frequency, i.e. daily, data for the period 5 January 2000 to 31 
October 2018 to obtain estimates of oil shocks from a SVAR model proposed by Ready (2018), 
and relate them to the corresponding daily movements of the level, slope and curvature of the 
yield curve using the causality-in-quantiles framework of Jeong et al. (2012). Ready (2018) 
proposed a novel methodology of disentangling oil price shocks based on information on traded 
asset prices using return data on a global stock price index of oil producing firms. Taking 
advantage of the forward looking nature of traded financial asset prices, this model overcomes 
two main weaknesses of the widely-used standard decomposition technique of Kilian (2009), 
which are too much weight given to oil-specific demand shocks to the detriment of supply 
shocks, and the application of the model being limited to a monthly frequency and not able to 
be estimated at higher frequencies. At the same time, the nonparametric causality-in-quantiles 
framework of Jeong et al. (2012) allows us to test for predictability emanating from oil shocks 
over the entire conditional distribution of the level, slope and curvature of the yield curve by 
controlling for misspecification due to uncaptured nonlinearity and regime changes (both of 
which we show to exist in a formal statistical fashion in the results section of the paper). Given 
that the period of study involves the zero lower bound (ZLB) situation of the interest rates in 
the US in the wake of the “Great Recession”, the simultaneous use of a quantiles-based 
framework makes perfect sense, since different quantiles (without having to specify an explicit 
number of regimes like in a Markov-switching model) can capture the various phases of the 3 
latent factors accurately, with the lower, median, and upper quantiles corresponding to low, 
normal, and high interest rates, respectively. Understandably, high-frequency prediction of the 
term structure of interest rates would allow for the timely design of optimal portfolios involving 
US government bonds by investors, and also allow policymakers to gauge where the low-
frequency real and nominal variables in the economy are headed by feeding the information 
into mixed-frequency models (Caldeira et al., forthcoming). 
Note that, theoretically, high oil prices increase inflation expectations and hence, increase 
nominal bond yields. Moreover, higher oil prices, especially originating from supply 
disruptions, are historically known to have a recessionary impact on the US economy 
(Hamilton, 2013), which is likely to increase demand for government bonds due to their safe-
haven characteristics, and hence push up bond prices, and reduce yields. But, if the increase in 
oil price is due to aggregate demand resulting from global expansion, the yields will increase. 
Moreover, following the “US Shale Revolution”, and the US becoming the leading exporter of 
refined oil products, higher oil prices generate increased domestic income and can result in 
higher demand for investment in the financial asset market, including bonds, and hence produce 
higher asset prices or returns on bonds, to cause a reduction ininterest rates on the bonds. In 
addition, Degiannakis et al. (2018) highlighted how oil supply shocks increase macroeconomic 
uncertainty, while demand shocks reduce the same. Given this, oil price increases, depending 
on the source of supply or demand shocks, can increase or decrease, respectively, demand for 
US government bonds as safe assets, producing a corresponding reduction or hike in yield. 
Finally, an increase in oil price due to risk in the equity market, resulting from the underlying 
financialization of the overall commodity market (Bonato, 2019), is likely to be associated with 
higher bond prices and declining yields.  
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To the best of our knowledge, this is the first paper to study the predictability of disentangled 
oil demand, oil supply and financial market risk shocks at daily frequency on the entire 
conditional distribution of the level, slope and curvature factors characterizing the complete 
term structure of interest rates of the US. Given this, our paper is a reconsideration of the work 
of Ioannidis and Ka (2018) at high frequency based on daily oil shocks which better depicts oil 
price movements as in Demirer et al. (2020) and Nguyen et al. (2020), but, unlike the latter two 
papers we study the entire term structure of US interest rates. Moreover, our paper can be 
considered an extension of these three papers, as we go beyond conditional mean-based 
analyses, and study the entire conditional distribution of the three factors summarizing the US 
yield curve. The remainder of the paper is organized as follows: Section 2 discusses the data, 
along with the outlines of the three methodologies associated with the NS model, the SVAR to 
get the oil shocks, and the causality-in-quantiles approach. Section 3 presents the results, with 
Section 4 concluding the paper. 

2. Data and Econometric Methodologies 
In this section we present the data and the basics of the three methodologies used for our 
empirical analyses. 

2.1. Data 
We collect daily zero coupon yields of Treasury securities with maturities from 1 year to 30 
years to estimate the yield curve factors for the US. The zero coupon bond yields are based on 
the work of Gürkaynak et al. (2007), and are retrieved from the Federal Reserve Board at: 
https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html. This paper makes 
available to researchers and practitioners a long history of high-frequency yield curve estimates 
of the Federal Reserve Board at a daily frequency. The authors use a well-known and simple 
smoothing method that is shown to fit the data very well, with the resulting estimates used to 
compute yields for any horizon. 
In order to compute oil price demand/supply as well as risk shocks, following Ready (2018) 
we collect daily price data for the world integrated oil and gas producer index,3 the nearest 
maturity NYMEX crude-light sweet oil futures contract, and the Chicago Board Options 
Exchange (CBOE) volatility index (VIX). These data are all derived from the Datastream 
database as maintained by Thomson Reuters.  We use the first nearest maturity NYMEX crude-
light sweet oil futures contract as a proxy for the price of crude oil. Finally, we use the 
innovations in VIX, obtained as the residuals from an ARMA (1,1) model estimated for the 
VIX index, to capture shocks related to changes in the market discount rate that tend to co-vary 
with attitudes towards risk. Our analysis covers the daily period from 5 January 2000 to 31 
October 2018, with the start and end dates governed by data availability.  
 

2.2. Methodologies 
 

2.2.1. Extraction of the Yield Curve Factors 
The dynamic Nelson-Siegel three-factor model of Diebold and Li (2006) (DNS, hereafter) is 
applied in this study to fit the yield curve of zero coupon US Treasury securities. The yield 
                                                             
3 The world integrated oil and gas producer index represents the stock prices of global oil producer companies 
and includes large publicly traded oil producing firms (i.e., BP, Chevron, Exxon, Petrobras or Repsol), but not 
nationalized oil producers (such as ADNOC or Saudi Aramco). 
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curve is decomposed into three latent factors using the Nelson and Siegel (1987) representation 
in a dynamic form. The DNS with time-varying parameters is represented as follows:  
(߬)௧ݎ = ௧ܮ  + ܵ௧  ቀଵି௘ షഊഓ

ఒఛ ቁ + ௧(ଵି௘௫௣షഊഓܥ
ఒఛ −  ఒఛ)      (1)ି݌ݔ݁ 

where ݎ௧ represents the yield rate at time t and ߬ is the time to maturity. The factor loading of ܮ௧  is 1 and loads equally for all maturities. A change in ܮ௧ changes all yields equally, hence ܮ௧ is the level factor, which represents the movements of long-term yields.  The loading of ܵ௧ 
starts at 1 and monotonically decays to zero. ܵ௧  changes the slope of the yield curve, and hence 
is the slope factor, which mimics the movements of short-term yields. The loading for ܥ௧ starts 
at 0 and decays to zero, with a hump in the middle. An increase in ܥ௧ increases the yield curve 
curvature, hence it is the curvature factor, which mimics medium-term yield movements. The 
DNS model follows a VAR process and is modelled in state-space form using the Kalman 
filter. The measurement equation relating the yields and latent factors is: 

 ൮
௥೟(ఛభ)
௥೟(ఛమ)......ݎ௧(߬௡)

൲ =

ۉ
ۈۈ
ۇۈ

1 ቀଵି௘௫௣షഓభഊ
ఛభఒ ቁ ቀଵି௘௫௣షഓభഊ

ఛభఒ − ఛభఒቁି݌ݔ݁
1 ቀଵି௘௫௣షഓమഊ

ఛమఒ ቁ ቀଵି௘௫௣షഓమഊ
ఛమఒ − ఛమఒቁି݌ݔ݁

⋮ ⋮ ⋮
1 ቀଵି௘௫௣షഓ೙ഊ

ఛ೙ఒ ቁ ቀଵି௘௫௣షഓ೙ഊ
ఛ೙ఒ − یఛ೙ఒቁି݌ݔ݁

ۋۋ
ۊۋ

ᇱ

௧݂ +
ۉ
௨೟(ఛభ)ۇ

௨೟(ఛమ)....௨೟(ఛభ)ی
ۊ , ௧ݑ   ∼ ܰ(0, ܴ)   (2)

   
The transition equation relating the dynamics of the latent factors is:    
  ሚ݂௧ = ߁ ሚ݂௧ିଵ + ௧ߟ  ௧ߟ ∼ ܰ(0,  (3)                          (ܩ
where ݎ௧(߬) and ݑ௧ are ݉ × 1 dimensional vectors for yield rates with given maturities (in our 
case 1 year to 30 years) and the error terms, respectively. The coefficient matrix in the 
measurement equation follows the structure introduced by Nelson and Siegel (1987), ௧݂ ,௧ܮ]= ܵ௧, ௧] is a 3ܥ × 1 dimensional vector and comprises the yield rate shape parameters which 
vary over time. Continuing with the transition equation: ሚ݂௧ = ௧݂ − ݂ is the demeaned time-
varying shape parameter matrix, ߁ illustrates the dynamic relationship across shape parameters, ߟ௧ is a 3 × 1 dimensional error vector which is assumed to be independent of ݑ௧, ܩ is a ݉ × ݉ 
dimensional diagonal matrix and ܴ is a 3 × 3 dimensional variance-covariance matrix, 
allowing the latent factors to be correlated.4 

2.2.2. SVAR Model for Disentangling Oil Price Shocks 
Ready (2018) defines demand shocks as the proportion of returns of a global stock index of oil 
producing firms that is orthogonal to the innovations of the VIX. The innovations to the VIX 
control for aggregate changes in market discount rates that affect stock returns of oil producing 
companies and are used as a proxy for risk shocks. Supply shocks, in turn, are represented by 
the residual component of oil-price changes that is orthogonal to both demand shocks and risk 
shocks. To be more specific, the decomposition model by Ready (2018) takes the following 
matrix form: 

                                                             
4 Details of the estimation procedure are beyond the scope of this study, and interested readers are referred to 
Diebold and Li (2006). Complete details of the parameter estimates of the model are available upon request from 
the authors. 
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௧ܹ =  ௧      (4)ܼܣ
where ௧ܹ = ൣΔ݈݅݋௧, ܴ௧௉௥௢ௗ ,  ௧ denotes the change in oil price in݈݅݋௏ூ௑,௧൧ᇱ is a 31 vector, Δߦ
period t, ܴ௧௉௥௢ௗ is the return on the global stock index of oil producing firms, and ߦ௏ூ௑,௧ stands 
for innovation of the VIX, based on an ARMA(1,1) specification. Our focus is ܼ௧ ,௧ݏݏ]= ௧ݏ݀ ,  ,௧ݏݏ ௧]ᇱ, which is a 31 vector of oil supply, demand and risk shocks represented byݏݎ
 :is a 33 matrix of coefficients defined as ܣ ,௧, respectively. Finallyݏݎ ௧ andݏ݀

ܣ = ൥
1 1 10 ܽଶଶ ܽଶଷ0 0 ܽଷଷ

൩      (5) 
Ready (2018) imposes the following condition to achieve orthogonality among the three types 
of shocks as follows: 

்(ଵିܣ)ଵΣௐିܣ = ቎
௦௦ଶߪ 0 0
0 ௗ௦ଶߪ 0
0 0 ௥௦ଶߪ

቏     (6) 

where Σௐ denotes the covariance matrix of the variables in ௧ܹ, while ߪ௦௦ଶ ௗ௦ଶߪ ,  and ߪ௥௦ଶ  are the 
variance of the supply, demand and risk shocks, respectively. The specification in Eq. (6) 
represents a renormalization of the standard orthogonalization applied to construct structural 
shocks in a SVAR model. Note that the volatility of oil-price shocks is not normalized to one, 
but, instead, the sum of the three shocks has to be, by their very construction, equal to the total 
variation in the oil price. This method of decomposing oil-price shocks defines an oil supply 
shock as the component of oil-price fluctuations that cannot be explained by changes in global 
aggregate demand and changes in financial-market uncertainty.5 

2.2.3. Causality-in-Quantiles Model 
Finally, we describe the nonparametric causality-in-quantiles approach of Jeong et al. (2012). 
Let ݕ௧ denote Lt, St or Ct and ݔ௧ correspond to sst, dst or rst, considered in turn in a bivariate 
set-up. Further, let ௧ܻିଵ ≡ ,௧ିଵݕ) … , ௧ି௣), ܺ௧ିଵݕ ≡ ,௧ିଵݔ) … , ௧ି௣), ܼ௧ݔ = (ܺ௧, ௧ܻ), and 
|௧ݕ)∙|௬೟ܨ •) denote the conditional distribution of ݕ௧ given •.  Defining ܳఏ(ܼ௧ିଵ) ≡
ܳఏ(ݕ௧|ܼ௧ିଵ) and ܳఏ( ௧ܻିଵ) ≡ ܳఏ(ݕ௧| ௧ܻିଵ), we have  ܨ௬೟|௓೟షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} =  with  ߠ
probability one. The (non)causality in the q -th quantile hypotheses to be tested are: 
)௬೟|௓೟షభ{ܳఏܨ଴:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ = 1                                                                                         (7) 
)௬೟|௓೟షభ{ܳఏܨଵ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ < 1                                                                                         (8) 
Jeong et al. (2012) show that the feasible kernel-based test statistics has the following format: 
መ்ܬ                = 1

ܶ(ܶ − 1)ℎଶ௣ ෍ ෍ ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ
ℎ ൰  ௦̂ߝ௧̂ߝ

்

௦ୀ௣ାଵ,௦ஷ௧
                      

்

௧ୀ௣ାଵ
                         (9) 

where ܭ(•) is the kernel function with bandwidth ℎ, ܶ is the sample size, ݌ is the lag order, 
and ߝ௧̂ = ૚{ݕ௧ ≤ ෠ܳఏ( ௧ܻିଵ)} − )is the regression error, where ෠ܳఏ ߠ ௧ܻିଵ) is an estimate of the ߠ-th conditional quantile and ૚{•} is the indicator function. The Nadarya-Watson kernel 
estimator of ෠ܳఏ( ௧ܻିଵ) is given by: 

                                                             
5 In a sense, one can argue that supply shocks in this framework relate to region-specific or event-specific 
information that cannot be accounted for by stock-market related pricing effects.  
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෠ܳఏ( ௧ܻିଵ) = ∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ  ૚{ݕ௦ ≤ ௧}௦்ୀ௣ାଵ,௦ஷ௧ݕ
∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ௦்ୀ௣ାଵ,௦ஷ௧

                                                                      (10) 
with ܮ(•) denoting the kernel function.  
The empirical implementation of causality testing via quantiles entails specifying three key 
parameters: the bandwidth (h), the lag order (p), and the kernel types for ܭ(∙) and ܮ(∙). We use 
a lag order of 1 based on the Schwarz Information Criterion (SIC). We determine ℎ by the 
leave-one-out least-squares cross validation. Finally, for ܭ(∙) and  ܮ(∙), we use Gaussian 
kernels. 
 

3. Empirical Results  
3.1. Preliminary Analyses 

The data for the three yield curve factors of level, slope and curvature, and three shocks, i.e., 
oil supply, oil demand and financial market risks are summarized in Table A1, and plotted in 
Figure A1 in the Appendix to the paper. Among the dependent variables, the average value of 
the slope factor is negative, indicating that, on average, yields increase along with maturities. 
The curvature associated with medium-term maturities has a higher average value than the 
level factor, which corresponds to long-term yields. This result is in line with Kim and Park 
(2013) who also used daily bond yields of the US, and is indicative of liquidity issues for bonds 
with very long maturities. The curvature factor is also the most volatile among the three factors, 
followed by the slope and level factors. The supply shock has the highest positive mean value, 
with negative average values for the risk and demand shocks. Unsurprisingly, the risk shock is 
most volatile, with the variance of the supply shock being greater than that of the demand 
shock. Due to the overwhelming rejection of the null hypothesis of normality under the Jarque-
Bera test, all variables are non-normal, and this result, particularly for Lt, St, and Ct, provides 
preliminary motivation to look into a quantiles-based approach, to analyse the influence of 
shocks on these variables.  
 
Before we discuss the findings from the causality-in-quantiles tests, for the sake of 
completeness and comparability, we conducted the standard linear Granger causality test, with 
a lag-length of 1, as determined by the SIC. The resulting 2(1) statistics involving the causality 
running from sst, dst or rst to Lt, St, and Ct are reported in Table A2 in the Appendix to the 
paper. The null hypothesis, that the three oil shocks do not Granger cause the three latent factors 
of the yield curve considered in turn in a bivariate set-up, cannot be rejected at the conventional 
5% level of significance, with only the demand shocks shown to weakly (at the 10% level) 
predict the slope component. Therefore, based on the standard linear test, we conclude no 
significant oil and risk shock-related effects on the level, slope or curvature of the US yield 
curve. 
 
Given the insignificant results obtained from the linear causality tests, we statistically examined 
the presence of nonlinearity and structural breaks in the relationship between the three latent 
factors of the term structure with the three shocks. Nonlinearity and regime changes, if present, 
would motivate the use of the nonparametric quantiles-in-causality approach, as the quantiles-
based test would formally address nonlinearity and structural breaks in the relationship between 
the variables under investigation in a bivariate set-up. For this purpose, we apply the Brock et 
al. (1996) (BDS) test on the residuals from the Lt, St, and Ct equations involving one lag of the 
three factors and sst, dst or rst. Table A3 in the Appendix presents the results of the BDS test 
of nonlinearity. As shown in this table, we find strong evidence, at the highest level of 
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significance, for the rejection of the null hypothesis of i.i.d. residuals at various embedded 
dimensions (m), which, in turn, is indicative of nonlinearity in the relationship between the 
factors and the shocks. To further motivate the causality-in-quantiles approach, we next used 
the powerful UDmax and WDmax tests of Bai and Perron (2003), to detect 1 to M structural 
breaks in the relationship between Lt, St, and Ct with sst, dst or rst, allowing for heterogenous 
error distributions across the breaks. When we applied these tests again to the Lt, St, and Ct equations involving one lag of the three factors and the three shocks in a bivariate structure, 
we were able to detect as many as five breaks under all nine cases, as reported in Table A3. 
The regime changes were found to correspond to sharp increases in global demand and 
speculative bubbles in the early 2000s, the global financial and European sovereign debt crises, 
and the oil price shock of mid-2014 which lasted until the first quarter of 2015.  
 

3.2. Causality-in-Quantiles Results 
Given the strong evidence of nonlinearity and structural breaks in the relationship between the 
latent factors and shocks, we turn our attention to the causality-in-quantiles test, which is robust 
to misspecification due to its nonparametric (i.e., data-driven) approach. As seen in Figure 1, 
which reports the results of this test for the quantile range 0.05 to 0.95, the null hypothesis that 
sst, dst or rst do not Granger cause Lt, St, and Ct is overwhelmingly rejected at the 5% level of 
significance (given the critical value of 1.96) over the entire conditional distribution. In fact, 
the null hypothesis is rejected at the 1% level of significance (given the critical value of 2.575) 
over the quantile range 0.10 to 0.90 in all cases, and also at the lowest quantile of 0.05 for all 
the shocks affecting the level, and risk and supply shocks for slope and curvature. In other 
words, when we account for nonlinearity and structural breaks using a nonparametric approach, 
we are able to find strong evidence of predictability emanating from all the shocks onto the 
three factors characterizing the US term structure of interest rates, with the highest impact at 
the median for Lt and Ct, and at the quantile of 0.55 for St, unlike the complete lack of causality 
observed under the linear framework. To put it another way, the oil and risk shocks can predict 
the yield curve factors, irrespective of the magnitude of these factors as captured by the various 
quantiles of the conditional distribution of Lt, St, and Ct. The importance of all these shocks is 
in line with the findings of Demirer et al. (2020), and Nguyen et al. (2020) in terms of the 
supply shock, but now we show that these shocks actually affect the entire yield curve over all 
their phases rather than just the bonds with maturities of 10 years and 20-plus years, 
respectively, at their conditional means. Moreover, while Ioannidis and Ka (2018) pointed out 
that oil supply and demand shocks only impact the slope, we are able to show that oil shocks 
can actually predict all three yield curve factors based on a data-driven model. The strongest 
evidence of predictability at and around the median, which corresponds to the normal state of 
the yield factors, is in line with the findings of Ioannidis and Ka (2018), who, based on a pre-
global financial crisis sub-sample found that oil market disturbances cause relatively stronger 
impacts on interest rates, compared to when the rates are extremely low under the ZLB 
situation, which in our case is characterized by the lower quantiles of the conditional 
distributions of Lt, St, and Ct. 
We now dig deeper into our results, in terms of the strength of each of these shocks in predicting 
the three factors, which we are able to do, given that we standardized the shocks to have unit 
variance, by dividing the oil supply and demand, and risk shocks by their respective standard 
deviations. While, in general, the predictive ability of these shocks is quite similar for the 
factors, we find that the risk shocks are associated with a relatively stronger impact on the slope 
(see Figure 1(b)), and the oil supply shock on the curvature (see Figure 1(c)). As far as the level 
factor is concerned, the results are quantile-specific with demand shocks having a stronger 
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influence at the lower quantiles, risk shocks around the median, and supply shocks at the 
moderately high upper quantiles (see Figure 1(a)). In general, monetary policy, i.e., the slope 
factor, is shown to respond strongly to financial market risks, i.e., uncertainty (a result in line 
with Çekin et al. (2020)), while higher inflation expectations arising from the negative supply 
shocks tend to drive the medium-term interest rates, especially around the conditional median 
of the curvature – something also observed to some degree by Ioannidis and Ka (2018) for the 
pre-crisis sub-sample. 
Although robust predictive inference is derived based on the causality-in-quantiles test, it is 
also interesting to estimate the sign of the effects of the oil shocks on the level, slope and 
curvature at various quantiles. However, in a nonparametric framework, this is not 
straightforward, as we need to employ the first-order partial derivatives. Estimation of the 
partial derivatives for nonparametric models can have complications, because nonparametric 
methods exhibit slow convergence rates, due to the dimensionality and smoothness of the 
underlying conditional expectation function. However, one can look at a statistic that 
summarizes the overall effect or the global curvature (i.e., the global sign and magnitude), but 
not the entire derivative curve. In this regard, a natural measure of the global curvature is the 
average derivative (AD) using the conditional pivotal quantile, based on approximation or the 
coupling approach of Belloni et al. (2019), which allows us to estimate the partial ADs. The 
pivotal coupling approach can also approximate the distribution of AD using Monte Carlo 
simulation. These results are reported in Figure 2, and the signs of the impacts of the shocks 
are quantile-specific. 
As shown in Figure 2(a), demand shocks tend to positively impact the level factors associated 
with long-term yields, which could be due to higher inflation expectations, but could also signal 
lower demand for safe assets in the wake of a growing economy, and hence lower 
macroeconomic uncertainty. The impact of supply shocks is generally positive at the upper 
quantiles associated with higher inflation expectations, as observed by Nguyen et al. (2020) for 
long-term Treasury bonds. But, the effect is negative at lower quantiles, to around the median, 
which could suggest that, in the wake of supply disruption causing economic slowdown and 
heightened uncertainty, agents would want to invest in a safe haven, i.e., government bonds, 
due to its high returns corresponding to the lower quantiles of long-term yields. Higher 
financial market risk shocks also show a similar impact on the level factor. While the negative 
sign at the lower quantiles can be explained by the flight-to-safety channel, at upper quantiles 
of the long-term yields the positive sign could suggest that higher risks cause agents to look 
beyond bonds with low returns, and possibly invest in other types of safe haven such as 
commodities (e.g., gold) and currencies (e.g., Swiss francs). As far as the impact of these 
shocks on the slope is concerned, Figure 2(a) shows that, generally, oil and risk shocks are 
associated with a negative impact on the slope, suggesting a loose monetary policy to revive 
the economy due to the negative impact of the supply (as in Ioannidis and Ka (2018)) and risk 
shocks, and keeping the economy growing following a positive oil demand shock, especially 
given the current role of the US as a major exporter of refined oil products. Indeed, a positive 
impact on the upper end of the conditional distribution of the slope due to higher inflation 
expectations is observed. The slope also increases to risk shocks, at some moderately low 
quantiles to possibly prevent the bond market from getting overheated, and at extreme upper 
quantiles of short-term yields, which, in turn, might be due to investment in alternative safe 
assets with higher returns. In terms of the impact on curvature, as shown in Figure 2(c), supply 
shocks have a positive impact on medium-term yields due to higher inflation expectations, 
which is in line with the observations of Demirer et al. (2020) for US Treasury securities with 
a maturity of 10 years. Demand shock reduces medium-term yields as in Ioannidis and Ka 
(2018), and could be associated with a growing economy, which increases the demand for 
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medium-term bonds. The risk shock also negatively impacts medium-term yields at lower 
quantiles, possibly due to higher demand for bonds of these maturities as they have higher 
returns – a finding similar to Demirer et al. (2020). However, at quantiles beyond 0.25 of the 
curvature, risk shocks have a positive impact, suggesting declining returns, with possible 
diversification by investors into other less risky assets, which might pay higher returns at that 
moment. Although we cannot provide a one-to-one correspondence of our results with the 
literature as we used a quantiles-based approach rather than conditional mean-based models, 
overall our results highlight the importance of using the former framework which is more 
informative than the latter, as it allows us to identify the various channels of the oil and risk 
shocks that are at work affecting the three latent factors conditional on their initial states. 
Moreover, we use daily data on all available maturities of US Treasury securities, i.e., 1 to 30 
years, rather than the 1 to 10 years used in existing studies. 

4. Conclusion 
Against the backdrop of sparse literature on the impact of oil shocks on the government bond 
market of the US, we analyse the impact of oil supply, oil demand and financial market risk 
shocks, derived from a SVAR, on the entire term structure of interest rates, by obtaining three 
latent factors, level, slope and curvature. Based on daily data covering the period 5 January 
2000 to 31 October 2018, we find that standard linear tests of causality fail to detect any 
evidence of predictability running from the shocks to the three yield curve factors. However, 
we show that the linear model is misspecified due to nonlinearity and structural breaks. Given 
this, we use a nonparametric causality-in-quantiles framework to reconsider the impact of the 
three shocks on the three factors, with this econometric model allowing us to test for 
predictability over the entire conditional distribution of level, slope and curvature, while 
simultaneously being a data-driven approach robust to misspecification due to nonlinearity and 
regime changes associated with the linear model. Note that, with our sample period including 
the zero lower bound, the lower quantiles of the level, slope and curvature allow us to capture 
this situation without carrying out a sub-sample analysis involving pre- and post-global 
financial crisis data. Using the causality-in-quantiles test, we find overwhelming evidence of 
predictability emanating from all three shocks over the entire conditional distributions of the 
three factors of the US term structure, with the strongest impact observed around the 
conditional median. In other words, our results highlight the importance of controlling for 
model misspecification to obtain correct inferences when analysing the impact of oil and risk 
shocks on the US term structure, with our findings providing evidence that such shocks are 
important drivers of the entire yield curve, irrespective of its alternative phases.  
Understandably, our findings at high-frequency, i.e., daily data, have multi-dimensional 
implications. The observation that oil and risk shocks contain predictive information over the 
evolution of future interest rates in a nonparametric set-up can help policymakers fine-tune 
their monetary policy models, given that these shocks affect the slope factor of the yield curve, 
which captures movements of short-term interest rates. Moreover, bond investors can improve 
their investment strategies by exploiting the role of oil and risk shocks in their interest-rate 
prediction models, while risk managers can develop asset allocation decisions conditional on 
the level of these shocks. Finally, researchers may utilize our findings to explain deviations 
from asset-pricing models by embedding oil supply and demand, and financial market risk 
shocks in their pricing kernels, which, however, need to be nonlinear. 
While we concentrate on US Treasury securities given their global dominance in the sovereign 
bond market, as part of future research, it would be interesting to extend our analysis to the 
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term structure factors associated with the government bond markets of other developed and 
emerging countries. 
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Figure 1. Causality-in-Quantiles Test Results for the US Term Structure Factors due to 
Oil Supply, Oil Demand and Financial Market Risk Shocks 
1(a). Level Factor 

 
 
1(b). Slope Factor 
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1(c). Curvature Factor 

 
Note: The horizontal axis represents the quantiles, while the vertical axis presents the causality-in-quantiles test 
statistic indicating the rejection or non-rejection of the null hypothesis that a particular shock does not Granger 
cause a specific term structure factor at a specific quantile, if the statistic is above or below the critical values.  
 
Figure 2. The Sign of the Impact on the US Term Structure Factors due to Oil Supply, 
Oil Demand and Financial Market Risk Shocks 
2(a). Level Factor 
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2(b). Slope Factor 

 
 
2(c). Curvature Factor 

 
Note: The figures plot the average derivative at each quantile of the three factors of the term structure due to the 
oil supply, oil demand and financial market risk shocks. 
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APPENDIX: 
Table A1. Summary Statistics 

 Variable 
Statistic Level Slope Curvature Supply Shock Demand Shock Risk Shock 
Mean 2.5351 -1.1521 8.2426 0.0024 -0.0004 -0.0056 

Median 2.6493 -1.5435 9.3066 0.0358 0.0232 -0.5744 
Maximum 6.1090 6.1745 27.2988 17.4887 9.4707 78.6970 
Minimum -6.1235 -4.8061 -4.2672 -17.7642 -8.9221 -31.9382 
Std. Dev. 1.6891 1.7062 5.3420 2.0846 1.1575 6.7924 
Skewness -1.5885 0.5813 -0.1545 -0.0644 -0.0609 1.1110 
Kurtosis 7.5039 2.8111 3.3143 8.4963 9.2568 10.6887 

Jarque-Bera 5964.3060# 272.3718# 38.1354# 5934.3570# 7688.7710# 12575.7600# 
Observations 4712 

Note: # indicates rejection of the null hypothesis of normality at 1% level of significance.  
 
Table A2. Linear Granger Causality Test Results 

 2(1) Statistic 
 Independent Variable 

Dependent 
Variable Demand Shock Supply Shock Risk Shock 

Level 2.3744 0.0114 0.0056 
Slope 3.7633* 8.00E-05 0.8565 

Curvature 1.0165 0.2773 0.0815 
Note: * indicates rejection of the null hypothesis of causality at 10% level of significance. 
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Table A3. Brock et al. (1996) (BDS) Test of Nonlinearity 
  Dimension (m) 

Dependent 
Variable 

Independent 
Variable 2 3 4 5 6 

Level 
Demand 
Shock 21.4110# 26.1543# 29.2440# 32.0890# 34.9449# 
Supply 
Shock 21.3531# 26.0730# 29.1570# 32.0114# 34.8799# 
Risk Shock 21.3315# 26.0138# 29.0911# 31.9104# 34.7450# 

Slope 
Demand 
Shock 20.8799# 24.9129# 27.7581# 31.2403# 34.6187# 
Supply 
Shock 20.8838# 24.9576# 27.8415# 31.2155# 34.4759# 
Risk Shock 20.8799# 24.8768# 27.7012# 31.1188# 34.3935# 

Curvature 
Demand 
Shock 20.2598# 24.5034# 27.5736# 30.3580# 33.1265# 
Supply 
Shock 20.0849# 24.3450# 27.4582# 30.2410# 33.0220# 
Risk Shock 20.0808# 24.3775# 27.4722# 30.2628# 33.0172# 

Note: Entries correspond to the z-statistic of the BDS test with the null hypothesis of i.i.d. residuals, with the test 
applied to the residuals recovered from the three yield curve factor equations with one lag each of level, slope and 
curvature, and demand, supply, and risk shocks; # indicates rejection of the null hypothesis at 1% level of 
significance. 
 
Table A4. Bai and Perron (2003) Test of Multiple Structural Breaks 

Dependent 
Variable 

Independent 
Variable Break Dates 

Level 
Demand 
Shock 11/07/2002 10/13/2005 12/16/2008 12/08/2011 10/06/2014 
Supply 
Shock 11/07/2002 10/13/2005 12/15/2008 10/27/2011 3/18/2015 

Risk Shock 11/07/2002 10/13/2005 12/16/2008 10/20/2011 3/16/2015 

Slope 
Demand 
Shock 12/17/2002 10/13/2005 10/15/2009 10/16/2012 8/25/2015 
Supply 
Shock 12/17/2002 10/13/2005 2/10/2009 1/05/2012 2/20/2015 

Risk Shock 12/17/2002 10/13/2005 10/15/2009 10/16/2012 8/17/2015 

Curvature 
Demand 
Shock 2/14/2003 3/20/2006 1/14/2009 1/09/2012 11/10/2014 
Supply 
Shock 2/14/2003 3/20/2006 1/14/2009 1/09/2012 3/18/2015 

Risk Shock 2/14/2003 3/20/2006 1/14/2009 1/09/2012 11/10/2014 
Note: Entries correspond to the break dates obtained from the three yield curve factor equations with one lag each 
of level, slope and curvature, and demand, supply, and risk shocks. 
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Figure A1. Data Plots 
 

-8
-4
0
4
8

1000 2000 3000 4000

Level

-6
-4
-2
0
2
4
6
8

1000 2000 3000 4000

Slope

-10
0

10
20
30

1000 2000 3000 4000

Curvature

-20
-10

0
10
20

1000 2000 3000 4000

Supply Shock

-10
-5
0
5

10

1000 2000 3000 4000

Demand Shock

-40
-20

0
20
40
60
80

1000 2000 3000 4000

Risk Shock

 
 


