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Abstract

In this paper, we first obtain a time-varying measure of volatility connectedness involving fifteen

major cryptocurrencies based on a dynamic conditional correlation-generalized autoregressive condi-

tional heteroscedasticity (DCC-GARCH) model, and then analyze the role of investor sentiment in

explaining the movement of the connectedness metric within a quantile-on-quantile framework. Our

findings show that lower quantiles of investor happiness, built on Twitter feed data as a proxy for

investor sentiment, is positively associated with the entire conditional distribution of connectedness,

but the opposite is observed at higher values of investor happiness. In addition, when we look at

the effect of sentiment on the common market volatility, we are able to deduce that as investors

become exceedingly unhappy, overall market volatility increases and this is associated with high mar-

ket connectedness. The heightened volatility possibly due to higher trading, seems to suggest that

cryptocurrencies are used for hedging when investor sentiment is weak, with evidence in favor of

this behavior being relatively stronger than the possible speculative motive associated with happy

investors, as low total connectedness is coupled with high common volatility. Our results tend to sug-

gest that, relatively more diversification opportunities are available when investors are happy rather

than when sentiment is weak.

Keywords: Cryptocurrency Market, DCC-GARCH, Volatility Connectedness, Investor Happiness,

Quantile-on-Quantile Regression

JEL codes: C22, C32, G10.



1 Introduction

Volatility is the single most and fundamentally important concept in the discipline of finance and is syn-

onymous with the measure of risk. Hence, uncovering volatility linkages among markets or assets helps

market participants and academic researchers in making important inferences on the overall dynamics of

the risk in the financial system. For example, the transmission of second moments of the return distribu-

tion among assets and markets can be used to understand how volatility shocks in one asset or market

can predict the volatility in another asset or market. Furthermore, the identity and role of exogenous

factors that can affect the dynamics of volatility linkages are of paramount importance. The above issues

have been broadly applied to conventional financial markets (e.g., stocks, bonds, commodities) and their

implications cover asset allocation, risk management, derivative pricing, and regulatory formulation (see

for example, Chang et al. (2018), Tiwari et al. (2018), Baur and Hoang (2019) for detailed reviews of

this literature). However, they remain largely understudied in the cryptocurrency markets that continue

to attract debate and attention from the media and the financial community. The cryptocurrency mar-

kets constitute an investment vehicle for many investors, and they notably exhibit high price volatility.

The associated market participants are in general not well informed about volatility transmission among

leading cryptocurrencies and the exogenous variables that can affect the dynamics of volatility spillovers.

Against this backdrop, the objective of this paper is to analyze, daily volatility spillover across fifteen

major cryptocurrencies using a full-fledge time-varying framework, as recently developed by Gabauer

(2020), based on the underlying dynamic conditional correlation-generalized autoregressive conditional

heteroscedasticity (DCC-GARCH) model originally proposed by Engle (2002). In addition, given con-

flicting role of cryptocurrencies as hedge (Bouri et al., 2017a,b; Shahzad et al., 2019) and purely used

for speculation (Baur et al., 2018; Klein et al., 2018), and hence the importance of investor sentiment,

we also aim to provide a possible explanation of the total volatility connectedness and common market

volatility across the major cryptocurrencies using a social media-based investor happiness index built on

Twitter feed data. An advantage of the happiness index used in our study is that it is global in nature,

given the dominance of Twitter users in the ten countries serving as major players in the world financial

system, thus allowing us to capture investor sentiment at a broader level. The idea is to understand

whether the connectedness in the market is actually driven by speculation (likely to be associated with

strong investor sentiment), or due to the possible hedging role of cryptocurrencies (during periods of weak

investor sentiment), with both these features discussed in great detail in the abovementioned literature.

The empirical analysis to examine the link between investor happiness and volatility spillovers across

the major cryptocurrencies via the total connectedness index (TCI) and common market volatility is

based on the quantile-on-quantile (QQ) approach recently developed by Sim and Zhou (2015). The QQ

model, as a generalization of the standard quantile regression allowing us to examine how the conditional

quantiles (states) of the TCI relate to the quantiles (levels) of the happiness index.

Intuitively, if investor sentiment is high, and there is more trading in cryptocurrencies, the volatil-
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ity connectedness associated with the resulting higher volatility can be positively related with investor

sentiment, and hence suggest that cryptcurrencies are driven by possible speculation, especially if the

underlying market volatility is not found to increase during periods of weak sentiment. But if investor

sentiment is low, and there is still more trading in cryptocurrencies causing the volatility to increase,

and the connectedness in this phase is found to be positively related to sentiment, then cryptocurren-

cies can indeed be considered as a hedge against risks (that might have created low sentiments in the

first place), even if volatility increases, remains unaffected or decreases during episodes of high investor

sentiment. In other words, volatility connectedness can be associated with both increases or decreases

of overall market volatility. Naturally, to get a clear understanding of how the TCI is related to the

common cryptocurrency market volatility, and hence, determine whether cryptocurrencies actually acts

as a hedge or are purely driven by market speculation, we need an underlying measure of overall market

volatility. We achieve this by using the framework of Barigozzi and Hallin (2016), which allows us to

to decompose cryptocurrency returns volatility into both common and idiosyncratic components using

an entirely non-parametric and model-free two-step general dynamic factor approach. Then we use the

QQ approach again to relate investor happiness with the common market volatility associated with the

fifteen cryptocurrencies.

To the best of our knowledge, this is the first paper to derive time-varying connectedness of volatility

spillover, and then relate this connectedness and underlying market volatility with investor sentiment

to provide an understanding of whether variances in returns (i.e., volatility) of cryptocurrencies can be

associated with hedging or speculation. The remainder of this paper is organised as follows. We present

a review of the literature associated with spillovers in the cryptocurrency market in Section 2, then in

Section 3, we describe the data. After that in Section 4, we and set out the empirical methods employed

in the study, followed by the discussion of the findings of the study in In Section 5. Finally, Section 6

summarizes the key results and the associated investment implications.

2 Literature Review

The network of connectedness and shock spillovers in the cryptocurrency market continue to induce

considerable debate in the academic literature. This is mainly driven by the complexity of the system

of connectedness in this controversial and highly volatile market. Existing studies consider multiple

methodologies, including GARCH models and Granger causality tests. Katsiampa et al. (2019) use

bivariate GARCH models to examine the conditional volatility dynamics and conditional correlations

across Bitcoin, Ethereum and Litecoin. They show that the future volatility of returns is shaped by their

own current shocks and current volatility. They indicate the presence of two-way return flows between

Bitcoin and both Ether and Litecoin, and a one-way flow from Ether to Litecoin. Katsiampa et al. (2019)

report evidence of two-way volatility flows between all the pairs of cryptocurrencies under study, and

that the pairwise conditional correlations are positive and vary with time. Bouri et al. (2019a) apply a
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Granger causality approach in the frequency domain and find that Bitcoin is not the only transmitter

of volatility, highlighting the importance of other large cryptocurrencies to the network of volatility

spillovers. In another study, Bouri et al. (2019b) apply a jump-analysis to the price process of 12 leading

cryptocurrencies based on GARCH models. They show evidence of jumps and co-jumps, with Bitcoin

and other large cryptocurrencies playing central roles.

Other studies apply the connectedness measures of Diebold and Yilmaz (2012) and Diebold and

Yilmaz (2014). Considering 18 large cryptocurrencies, Koutmos (2018) finds that the spillovers are time-

varying and points to the growing interdependence among cryptocurrencies, which reflects a higher degree

of contagion risk. The author also reveals the central role played by Bitcoin in the network of return

and volatility spillovers. Corbet et al. (2018) focus on the return and volatility spillovers among three

large cryptocurrencies (Bitcoin, Ripple, and Litecoin). Using time domain connectedness measures, they

find that Bitcoin returns have a significant impact on the returns of Ripple and Litecoin, whereas the

feedback impact is marginal. This result indicates the dominance of Bitcoin in the network of return

connectedness. However, the authors show results for volatility spillovers that are different from those of

Koutmos (2018). They find that Litecoin and Ripple influence Bitcoin, while the latter has a marginal

impact on Litecoin and Ripple. Furthermore, Ripple and Litecoin are strongly interconnected through

both return and volatility channels. Corbet et al. (2018) also show that the three digital assets are

segmented from conventional assets, pointing to their potential ability to act as diversifiers. Yi et al.

(2018) study the volatility of leading cryptocurrencies to make inferences about whether Bitcoin is the

dominant volatility transmitter among cryptocurrencies. Their results show that volatility spillovers are

tight and vary with time, and that Bitcoin is the only influential cryptocurrency. Ji et al. (2019) focus

on the return and volatility series of six large cryptocurrencies. They indicate that Litecoin and Bitcoin

are clear leaders in the network of returns. In contrast to the results of Corbet et al. (2018) and in line

with Koutmos (2018), they show that Bitcoin is central in the network of volatility spillovers. Further

results show that Dash has a very marginal role, which points to its ability to act as a diversifier.

While the above literature reveals important aspects of the network of volatility spillovers across

leading cryptocurrencies, it is silent about the role of sentiment in driving the total connectedness, and

the underlying behavior of overall market volatility in relation to sentiment – analyses of which can provide

conclusive evidence on the hedging and/or speculative roles of cryptocurrencies. This void is what our

paper aims to fill. A paper that can be somewhat related to our work, in terms of associating what

drives market connectedness, is that by Antonakakis et al. (2019). While it concentrates on the spillover

effects of returns, rather than volatility like us, among leading cryptocurrencies via the application of a

time-varying parameter factor augmented vector autoregressive (TVP-FAVAR) model, they show that

total connectedness of returns is positively related to higher periods of volatility in the cryptocurrencies.

Our paper differs from Antonakakis et al. (2019) not only in the methodology used and its focus on

volatility connectedness but also how volatility connectedness is related to sentiment as reflected in the

happiness index.
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3 Data

The daily data used in this study are extracted from: https://coinmarketcap.com/, and cover the

period of 7th August, 2015 to 11th March, 2020 (i.e., 1679 observations), which include booms and

busts in the cryptocurrency markets. Fifteen leading and liquid cryptocurrencies are involved in this

study, namely Bitcoin, Ethereum, Ripple, Litecoin, Stellar, Monero, Dash, NEM, Dogecoin, MonaCoin,

Bytecoin, Siacoin, DigiByte, BitShares, and Verge. These represent more than 80% of the total market

capitalization of all cryptocurrencies. As the raw series are non-stationary according to the ERS (Elliott

et al., 1996) unit-root test we decide to take the first differences of the natural logarithmic values of these

series, which can then be interpreted as the daily percentage changes, or log-returns to be precise. The

resulting series, along with the happiness index which we describe below, are illustrated in Figure 1.

[Insert Figure 1 around here]

The findings indicate that the series are significantly non-normally distributed (D’Agostino, 1970;

Anscombe and Glynn, 1983; Jarque and Bera, 1980) and stationary at 1% significance level. Notably,

we find pronounced autocorrelation in the squared series (Fisher and Gallagher, 2012) implying that

modelling time-varying variance-covariance structure is appropriate.

[Insert Table 1 around here]

Next, we turn to the description of our metric of investor sentiment, which we aim to relate to total

volatility connectedness and common market volatility of the fifteen cryptocurrencies. Investor sentiment

is not directly measurable or observable, and hence traditionally, two routes have been taken to measure

investor sentiment namely, market- and survey-based metrics (see Bathia and Bredin (2013), and Bathia

et al. (2016) for more details). Given the shortcomings associated with the market- and survey-based

approaches to measure investment sentiment as discussed in detail by Da et al. (2015),1 we utilize the daily

happiness index, obtained from Hedonometer.org, as our proxy for investor sentiment.2 The raw daily

happiness scores are derived from a natural language processing technique based on a random sampling of

about 10% (50 million) of all messages posted in Twitter’s Gardenhose feed. To quantify the happiness

of the atoms of language, Hedonometer.org merge the 5,000 most frequent words from a collection of

four corpora: Google Books, New York Times articles, Music Lyrics and Twitter messages, resulting

in a composite set of roughly 10,000 unique words. Then, using Amazon’s Mechanical Turk service,

Hedonometer.org scores each of these words on a nine point scale of happiness, with 1 corresponding to

“sad” and 9 to “happy”. Words in messages written in English (containing roughly 100 million words

per day) are assigned a happiness score based on the average happiness score of the words contained in

the messages.

1Da et al. (2015) internet-based measures of investor sentiment are generally more transparent relative to the other
alternatives that adopt market and survey-based approaches. This is because the market-based method captures the
equilibrium outcome of many economic forces other than investor sentiment, while the survey-based method is more likely
to be prone to measurement errors as it inquires about attitudes. Another disadvantage of these traditional approaches to
capture investor sentiment is that they tend to produce metrics at lower (monthly or quarterly) frequencies.

2The data is available for download from: https://hedonometer.org/api.html.
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4 Methodologies

In this section, we outline each of our three methods that we use in our study to derive our empirical

results, starting with the DCC-GARCH-based total connectedness index, the common and idiosyncratic

components of volatility, and the QQ regression model.

4.1 DCC-GARCH Based Connectedness Approach

We start this section by introducing the DCC-GARCH based volatility connectedness approach of

Gabauer (2020) which can be seen as an alternative to the VAR based connectedness approach of Diebold

and Yilmaz (2012, 2014). One advantage of this approach is that no arbitrarily chosen window size has

to be selected to retrieve dynamic connectedness measures. Another one is that contrary to Antonakakis

(2012); Beirne et al. (2013) and Hoesli and Reka (2013) only one instead of two models are needed to

estimate the conditional volatility transmission mechanism.

The DCC-GARCH model in the spirit of Engle (2002) estimates the time-varying conditional variances

and covariances in a system of multiple time series which can be written as follows:

xt =µt + εt εt ∼ N(0,Ht) (1)

ε =H
1/2
t εt ut ∼ N(0, I) (2)

Ht =DtRtDt (3)

where µt, and ut are m × 1 dimensional vectors representing the conditional mean and standardized

error term, respectively. Furthermore, Rt and Dt = diag(h
1/2
11t , ..., h

1/2
mmt) are m×m dimensional matrices,

illustrating the dynamic conditional correlations and the time-varying conditional variances. The elements

in Dt are estimated by Bollerslev (1986) GARCH models for each series. Based on the study of Hansen

and Lunde (2005) one shock and one persistency parameter is assumed:

hii,t =ω + αε2i,t−1 + βhii,t−1. (4)

In the second stage, the dynamic conditional correlations are computed as follows:

Rt =diag(q
−1/2
iit , ..., q

−1/2
mmt )Qtdiag(q

−1/2
iit , ..., q

−1/2
mmt ), (5)

Qt =(1− a− b)Q̄+ aut−1u
′
t−1 + bQt−1, (6)

where Qt, and Q̄ are m×m dimensional positive-definite matrices which represent the conditional and

unconditional standardized residuals’ variance-covariance matrices, respectively. a (α) and b (β) are non-

negative shock and persistency parameters satisfying, a + b < 1 (α + β ≤ 1). As long as a + b < 1 is

fulfilled Qt and hence Rt are varying over time otherwise this model would converge to the CCC-GARCH

model (Bollerslev, 1990) where Rt is constant over time.
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In the same spirit as the GIRF, the VIRF represents the impact of a shock in variable i on variable

j’s conditional volatilities, which can be written by,

Ψg
j,t(J) = V IRF (J, δj,t,Ft−1) = E(Ht+J |εj,t = δj,t,Ft−1)− E(Ht+J |Ft−1). (7)

Forecasting the conditional variance-covariances using the DCC-GARCH model (Engle and Sheppard,

2001) lies at the heart of the VIRF and can be accomplished iteratively in three steps. First, the univariate

GARCH(1,1) will forecast the conditional volatilities (Dt+h|Ft) by,

E(hii,t+1|Ft) =ω + αδ21,t + βhii,t h = 1 (8)

E(hii,t+h|Ft) =

h−1∑
i=0

ω(α+ β)i + (α+ β)h−1E(hii,t+h−1|Ft) h > 1 (9)

whereas in a second step, E(Qt+h|Ft) is predicted according to,

E(Qt+1|Ft) =(1− a− b)Q̄+ autu
′
t + bQt h = 1 (10)

E(Qt+h|Ft) =(1− a− b)Q̄+ aE(ut+h−1u
′
t+h−1|Ft) + bE(Qt+h−1|Ft) h > 1 (11)

where E(ut+h−1u
′
t+h−1|Ft) ≈ E(Qt+h−1|Ft) (see, Engle and Sheppard, 2001) which helps to forecast

the dynamic conditional correlations and finally the conditional variance-covariances:

E(Rt+h|Ft) ≈diag(E(q
−1/2
iit+h|Ft), ..., E(q

−1/2
mmt+h|Ft))E(Qt+h)diag(E(q

−1/2
iit+h|Ft), ..., E(q

−1/2
mt+h|Ft)) (12)

E(Ht+h|Ft) ≈E(Dt+h|Ft)E(Rt+h|Ft)E(Dt+h|Ft). (13)

After the construction of GIRFs and VIRFs, we focus on the computation of the dynamic connectedness

measures.

To compute all dynamic connectedness measures five steps are required.

Step I: The generalized forecast error variance decomposition (GFEVD, ψ̃gij,t(K)), that represents

the pairwise directional connectedness from j to i, can be based either on the GIRFs or on the VIRFs.

In more details, the GFEVD explains the impact a shock in variable j has on variable i in term of its

forecast error variance share. This is calculated by:

ψ̃gij,t(J) =

∑J−1
t=1 Ψ2,g

ij,t∑N
j=1

∑J−1
t=1 Ψ2,g

ij,t

(14)

where
∑N
j=1 ψ̃

g
ij,t(J) = 1 and

∑N
i,j=1 ψ̃

g
ij,t(J) = m. The numerator represents the cumulative effect of the

ith shock while the denominator represents the aggregate cumulative effect of all the shocks.

Step II: The total directional connectedness TO others measures how much of a shock in variable i is
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transmitted to all other variables j:

Cgi→j,t(K) =

∑m
j=1,i6=j ψ̃

g
ji,t(K)∑m

j=1 ψ̃
g
ji,t(K)

(15)

Step III: The total directional connectedness FROM others measures how much variable i is receiving

from shocks in all other variables j:

Cgi←j,t(K) =

∑m
j=1,i6=j ψ̃

g
ij,t(K)∑m

i=1 ψ̃
g
ij,t(K)

(16)

Step IV: The net total directional connectedness represents the difference between the total directional

connectedness TO others and the total directional connectedness FROM others, which can be interpreted

as the influence variable i has on the analyzed network.

Cgi,t = Cgi→j,t(K)− Cgi←j,t(K) (17)

If the Cgi,t > 0 (Cgi,t < 0) variable i is considered as a net transmitter (receiver) since it is influencing all

others more (less) than being influenced by them.

Step V: Traditionally, the total connectedness index (TCI) expresses the average amount of one vari-

able’s forecast error variance share explained by all other variables or in other words how much a shock

in one variable influences all others on average. This can be expressed by:

Cgt (K) =

∑m
i,j=1,i6=j ψ̃

g
ij,t(K)

m
. (18)

A high (low) TCI suggests a high (low) degree of volatility shock spillovers.

4.2 Decomposing Common and Idiosyncratic Components of Volatility

Consider a high-dimensional vector of stationary time series {Yit, i ∈ N, t ∈ Z}, which can be decomposed

into a common part Xit and an idiosyncratic part Zit such as:

Yit = Xit + Zit =:

Q∑
k=1

bik(L)ukt + Zit, i ∈ N, t ∈ Z, (19)

where u = (u1, u2, ..., uQ)′ is Q-dimensional orthogonal white noise; L is the lag operator; and bik(L) are

one-sided square-summable filters. The common component {Xit; i = 1, ..., N ; t = 1, ..., T} is driven by

pervasive factors; the Q-th eigenvalue of its spectral density matrix diverges, as N → ∞ for almost all

frequencies in the range [−π, π]. However, the idiosyncratic component {Zit; i = 1, ..., N ; t = 1, ..., T} is

stationary and possibly autocorrelated, though only mildly cross-correlated; that is, the eigenvalues of

its spectral density matrix are uniformly bounded as N →∞.
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For any n, since Yn decomposes into two components Xn and Zn, where Xn is driven by “common”,

that is, “market” shocks, and Zn is orthogonal to the same, two distinct sources of volatility can be to

be expected. And they are the volatility originating in the shocks driving the level-common components

Xn (volatility of level-common components), and the volatility originating in the shocks driving the

level-idiosyncratic components Zn (volatility of level-idiosyncratic components). One can call “market

volatility” the volatility of the level-common components, and “idiosyncratic” the volatility of the level-

idiosyncratic ones.

4.3 Quantile-on-Quantile (QQ) Model

After obtaining the TCI and common market volatility series, we next use the QQ approach to examine

the effect of investor sentiment proxied by the investor happiness index on the TCI and common volatility.

The QQ model is built on the following nonparametric quantile regression framework, specific to our case

Vt = βθ(Sentimentt) + uθt (20)

where Vt, and Sentimentt are the total connectedness index or common market volatility of cryptocur-

rency returns and the investor sentiment index in period t respectively, θ is the θ-th quantile of the

conditional distribution of the Vt and uθt is a quantile error term whose conditional θ-th quantile is equal

to zero. In this framework, the term βθ(·) is assumed to be an unknown functional form, which is to be

determined from the data.

The standard quantile regression model in equation (20) allows the effect of investor sentiment index

to vary across the different quantiles of the Vt; however, this model is unable to capture the dependence

in its entirety as the term βθ(·) is indexed on the Vt quantile θ only and not the investor sentiment

quantile. Therefore, in order to get a comprehensive insight on the effect of sentiment on Vt, we focus on

the relationship between the θ-th quantile of Vt and the τ -th quantile of the sentiment, denoted by P τ .

This is done by examining equation (20) in the neighborhood of P τ via a local linear regression. As βθ(·)

is unknown, this function is approximated through a first-order Taylor expansion around a quantile P τ ,

such that

βθ(Pt) ≈ βθ(P τ ) + βθ
′
(P τ )(Pt − P τ ) (21)

where βθ
′

is the partial derivative of βθ(Pt) with respect to P (also called the marginal effect or response)

and is similar in interpretation to the coefficient (slope) in a linear regression model. Next, renaming

βθ(P τ ) and βθ
′
(P τ ) as β0(θ, τ) and β1(θ, τ) respectively, we rewrite equation (21) as

βθ(Pt) ≈ β0(θ, τ) + β1(θ, τ)(Pt − P τ ). (22)
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Next, substituting equation (22) in equation (20), we obtain

St = β0(θ, τ) + β1(θ, τ)(Pt − P τ )︸ ︷︷ ︸
(∗)

+uθt (23)

where the term (∗) is the θ-th conditional quantile of Vt. Unlike the standard conditional quantile

function, equation (23) captures the overall dependence structure between the θ-th quantile of Vt and the

τ -th quantile of sentiment as the parameters β0 and β1 are doubly indexed in θ and τ . In the estimation

of equation (23), P̂t and P̂ τ , respectively and the local linear regression estimates of the parameters β̂0

and β̂1 are obtained by solving:

min
b0,b1

=

n∑
i=1

ρθ

[
St − β̂ − β̂1(P̂t − P̂ τ )

]
K

(
Fn(P̂t − τ)

h

)
(24)

where ρ(u) is the quantile loss function, defined as ρ(u) = u(θ − I(u < 0)) and I is the indicator

function. K(·) denotes the kernel function and h is the bandwidth parameter of the kernel. Because

of its computational simplicity and efficiency, the Gaussian kernel is used to weight the observations in

the neighborhood of P τ . Specifically, in our analysis, these weights are inversely related to the distance

between the empirical distribution function of P̂t, denoted by Fn(P̂t) = 1
n

∑n
k=1 I(P̂k < P̂t), and the

value of the distribution function that corresponds with the quantile P τ , denoted by τ . The bandwidth

parameter h is selected using the cross-validation regression approach with a local linear regression.

5 Empirical Results and Discussion

5.1 Average and Dynamic Total Connectedness Measures

Table 2 demonstrates the averaged dynamic connectedness measures and provides an overview of the

cryptocurrency transmission mechanism. The results indicate that on average 55.3% of a shock in one

cryptocurrency spills over to all others. This means in turn that on average 44.7% of the shock affects

itself in the upcoming periods and represent a highly interconnected market.

Moreover, the findings reveal that the main transmitters of shocks are Dash and Bitcoin by transmit-

ting on average 85.6% and 84.8% of its shock, respectively whereas the least transmitting cryptocurrency

is Bytecoin by transmitting on average 21.8% of its shock. This demonstrates which cryptocurrencies are

increasingly contributing to the market interconnectedness and which are contributing less. Thus, Dash

and Bitcoin are driving the market risk, which is not surprising given the importance of Bitcoin and Dash

as leading cryptocurrencies.

The net total directional connectedness measures illustrate the power of one cryptocurrency as it is

the difference between how much of a shock in one specific cryptocurrency is spilled over to all others

and how much of a shock in all others is spilled over to one cryptocurrency. The results imply that Dash
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(32.9%) and Bitcoin (19.9%) are the main net transmitter of shocks and hence influence others more than

being influenced by them whereby Ripple (-29.2%) and Litecoin (-23.5%) has been the main receiver of

shocks. Thus, Dash and Bitcoin are driving the market whereas Ripple and Litecoin are driven by the

market.

In addition, this metric is of major importance for portfolio and risk management as it reveals the

relative shock spillovers across cryptocurrencies. For instance, portfolio managers are more interested

in cryptocurrencies that are driving the market than being driven by it, since an cryptocurrency that is

influenced by a lot of others would be exposed to many more risk sources compared to cryptocurrencies

that are mainly affected by their own past shocks and thus are exposed to a lower number of risk sources.

[Insert Table 2 around here]

Figure 2 shows the evolution of the dynamic total connectedness and hence the comovement of the

cryptocurrency market risk. We find that the market interconnectedness decreased from the beginning

of the sample period until mid 2016. This low lasts almost one year until it steadily increased until the

end of 2017 when the price of Bitcoin dropped substantially which also affected the interrelatedness of

the cryptocurrency market that dropped to less than 40%. After this drop, the cryptocurrency market

became more interrelated and continuously increased until it reached the all-time high of around 75% in

the beginning of 2019. Since then, the market risk decreased persistently but at a slow rate until the end

of the sample period where it reaches around 65%. It should be noted that the cryptocurrency market

integration increased considerably since the beginning of the sample period. As the cryptocurrency market

is still young, the low interconnectedness values prior the Bitcoin downfall of 2017, can be explained by

the fact that back then cryptocurrency price movements have been rather random, highly volatile, and

unaffected by price changes of other cryptocurrencies. This pattern changed afterwards as shown by

the substantial increase in the market integration which further reflects the importance of the obtained

results for investors.3

[Insert Figure 2 around here]

5.2 Net Total Directional Connectedness

We continue with the dynamics of the net total directional connectedness measures as those give us an

overview of how persistently cryptocurrencies are net transmitters or net receivers of shocks. From a

portfolio perspective, a cryptocurrency that is throughout the sample period a net transmitter of shocks

has a lower number of potential risk sources and hence is more interesting for investors.

Figure 3 shows that Dash is nearly a permanent net transmitter of shocks and moreover increases its

net transmission ability over time as well which makes Dash an attractive asset for portfolio managers.

3We also estimated the TCI of returns from a full-fledged time-varying version of the approaches of Diebold and Yilmaz
(2012) and Diebold and Yilmaz (2014), as proposed based on a TVP-VAR by Antonakakis et al. (2020). We found that
the pattern of movement of the volatility and returns-based TCIs were similar, and hence are in-line with the findings
of Antonakakis et al. (2019), that return connectedness is positively correlated with cryptocurrency market uncertainty.
Complete details of these results are available upon request from the authors.
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On the contrary, Ripple is a permanent net receiver of shocks and hence driven by the market which

makes it less attractive for investors. Bitcoin - which is seen since the beginning of cryptocurrencies seen

as the ’cryptocurrency’ - is the second highest net transmitter of shocks and besides a short period of time

a persistent net transmitter of shocks throughout the period of analysis. It is also noteworthy that besides

Dash and Bitcoin there are other cryptocurrencies with a prolonged period of a net transmission history,

such as NEM, Monero, Verge, and Dogecoin. Dogecoin has become a net receiver of shocks after mid

2018 whereas Ethereum has been an important net transmitter of shocks during the time when Bitcoin

has been at its lowest transmission level. Our results are in-line with previous findings that generally

indicate the centrality of large and leading cryptocurrencies in the system of volatility spillovers (e.g.,

Koutmos, 2018; Corbet et al., 2018; Bouri et al., 2019a; Ji et al., 2019).

[Insert Table 3 around here]

5.3 Total Volatility Connectedness, Common Market Volatility and Investor

Happiness

We now turn our attention to how investor sentiment, as proxied by the index of happiness relates to the

TCI of cryptocurrency volatilities, and then in turn, also analyze how investor sentiment, affects common

market volatility - with both being analyzed using the QQ model.

As a preliminary check, we first estimated a standard ordinary least squares (OLS) regression to exam-

ine the response of the TCI to the investor happiness index. The standard linear regressions yielded the

conditional mean-based estimate of −0.5079, with the coefficient being significant at the 0.1% significance

level. Therefore, the preliminary checks provide the initial evidence of a significant negative investor senti-

ment effect on connectedness patterns in the cryptocurrency market volatility. In other words, as market

sentiment improves, the comovement of volatility amongst the fifteen cryptcourrencies decline. While

the OLS result is informative, it fails to provide the complete picture of the relationship conditional on

the normal and extreme states of TCI and the investor sentiment index, and the QQ approach discussed

earlier allows us to assess this at the quantile level. Figure 4 present the QQ model result that relate the

TCI of volatility with the happiness index. Specifically, we plot the estimates of the impact of the various

quantiles of the happiness index on the quantiles of the TCI, i.e., β1(θ, tau), described in equation (22).

As explained earlier, these estimates are similar to the slope term in a linear regression model, reflecting

the sensitivity of the TCI to investor sentiment. However, given that β1(θ, tau) is doubly indexed in θ

and τ , the estimates reported in the figure measure the relationship between the θ-th quantile of the

TCI and the τ -th quantile of the happiness index. The plots are color-coded in such a way that the

color represents the degree of sensitivity, with the TCI quantiles placed on the y-axis and the sentiment

quantiles on the x-axis.

We observe that, while the results are generally consistent with the findings obtained from the OLS

regressions, the relationship between sentiment and connectedness displays quantile specific patterns in
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terms of the strength of the sentiment effect to the extent that the sign of the effect can change direction

at extreme low quantiles of investor happiness over the entire conditional distribution of the TCI, and

also immediately around, i.e., above or below the median.4 Very strong negative impact is observed

from the quantile of 0.75 and above for sentiment over the entire quantile coverage of the TCI. In sum,

starting from the median of the sentiment, if we increase or decrease investor happiness, then TCI tends

to increase, irrespective of its initial level. While this relationship turns negative as we move further

away from the median, with the effect being quite strong in particular as investor sentiment improves

(but declines slightly at upper quantiles), it tends to turn positive as sentiment reaches very low levels.

An important question for us is then what do these results translate into in terms of the cryptocur-

rencies being possibly acting as hedge or used purely for speculative purposes. For this, we turn to the

common market volatility (which is plotted in Figure 5),5 and its relatingship with investor happiness

using the QQ model in Figure 6. As can be seen from the figure, in general the relationship is pri-

marily negative, with the strongest effects found over similar quantile ranges where TCI was found to

be negatively related with sentiment, i.e., from around the quantiles of 0.75 to 0.90 of the sentiment

index. In addition, in the neighbourhood of above or below the median of sentiment, common market

volatility seems to move in the same direction as sentiment. Combining with the relationship observed

with TCI and the sentiment index, we can say that, over the quantile ranges of 0.75 to 0.95, increases

in sentiment was associated with declines in total connectedness, which in turn resulted from a decline

in overall market volatility, possibly due to a decline in trading in cryptocurrencies in this region. At

the same time, around the median, using the same logic, sentiment increases connectedness which is

accompanied by higher market volatility, suggesting higher trading. This positive, but relatively weaker

in strength, relationship also seems to hold at the extreme very high quantiles of the sentiment, indicative

of higher trading, but associated with low connectedness. While this could be indicative of speculation,

but the low corresponding connectedness of the market in general in this region might be suggesting that

not necessarily all cryptocurrencies are used for such risk-taking activities when investors are extremely

happy. Now, when we look at quantiles of sentiments below 0.25, a negative relationship with overall

market volatility is observed. When we merge this information, with positive relationship between con-

nectedness and sentiment in the similar region, we can safely say, that as investors become exceedingly

unhappy, market connectedness increases and is associated with high overall volatility. The heightened

volatility likely due to higher trading, seems to suggest that cryptocurrencies are used for hedging when

investor sentiment is weak, and more importantly, evidence in favor of this behavior is relatively stronger

than the speculative motive when investors are exceptionally happy. At the same time, our results also

4Following Tiwari et al. (2020), we also applied the two Gamma and two Exponential Random Variables Copulas model
(GGEE), and the Pareto Mixture Copulas model (PPPP) on the AR(1)-exponential GARCH (EGARCH) marginal models
of TCI and the investor sentiment to get an understanding of the tail dependence between these two variables. Consistent
with the QQ results, these copula models provided strong evidence of positive lower tail dependence. Complete details of
these results are available upon request from the authors.

5A simple correlation analysis revealed a positive and significant correlation between TCI and the common market
volatility, while common market volatility was found to possess a statistically significant negative relationship with the
happiness index. Complete details of these results are available upon request from the authors.
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tend to suggest that, diversification opportunities across the cryptocurrencies are limited due to high

connectedness when sentiment tends to decline from initially low levels, but it is indeed possible when it

is generally high.

Overall, our findings establish a strong link regarding the impact of investor sentiment on volatility

connectedness pattern, and also the overall common market volatility associated with fifteen major cryp-

tocurrencies. The sentiment effect is found to be asymmetric on connectedness and common volatility6,

with implications for portfolio diversification and the hedging ability of the market contingent on the

initial levels from which sentiment changes. These findings suggest that investors should factor into the

role of sentiment shocks when making portfolio decisions associated with cryptocurrencies. They add

to previous studies relating return spillovers with market uncertainty (e.g., Antonakakis et al., 2019; Ji

et al., 2019) and economic uncertainty (e.g., Ji et al., 2019) or those dealing with volatility spillovers

in the cryptocurrency without considering the exogenous factors driving volatility connectedness (e.g.,

Koutmos, 2018; Corbet et al., 2018).

6 Concluding Remarks

This paper contributes to the growing literature on volatility spillover across cryptocurrencies, by es-

timating for the first time a full-fledged time-varying model namely, the DCC-GARCH, to derive the

connectedness across fifteen major cryptocurrencies. This way, we go beyond the existing literature

which generally involves a rolling-window approach, for which results are known to be sensitive to the

window-size, to derive the total connectedness among few major cryptocurrencies. More importantly,

we depict the important role of investor happiness in explaining the volatility connectedness, within a

quantile-on-quantile framework, with the decision to use a behavioral variable like sentiment, driven by

the conflicting opinions about whether cryptocurrencies can serve as a hedge or are merely used for spec-

ulation. To obtain a solid answer to this debate, we also estimate the common market volatility using

an entirely non-parametric and model-free two-step general dynamic factor approach, and relate it to

sentiment also via the quantile-on-quantile method.

We show that volatility connectedness is indeed time-varying and the relationship between sentiment

and connectedness displays quantile specific patterns with sentiment shocks at ends of the quantiles of

the happiness index having distinctly different effects. In particular, the entire conditional distribution

of connectedness is found to be positively related to sentiment at its lower quantiles of sentiment, but

the opposite is observed at higher values of investor happiness. In addition, when we look at the effect of

sentiment on the common market volatility, we are able to deduce that that as investors become exceed-

ingly unhappy, overall market volatility increases and this is associated with high market connectedness.

The heightened volatility possibly being a sign of higher trading, seems to suggest that cryptocurrencies

6An asymmetric effect is found in the volatility spillovers among cryptocurrencies by prevoous studies (Ji et al., 2019, e.g.,)
although the asymmetric effect of sentiment (i.e., happiness index) on the volatility connectedness in the cryptocurrency
markets is new.
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are used for hedging when investor sentiment is weak. More importantly, evidence in favor of this be-

havior is relatively stronger than the speculative motive when investors are exceptionally happy, as total

connectedness is found to be low, even when there is some evidence of increased common volatility. This

latter observation, from the perspective of diversification within the cryptocurrencies, implies that more

such opportunities are available when investors are happy rather than when sentiment is weak.

As part of future research, it would be interesting to extend our analysis by considering alternative

asset classes involving equities, bonds, currencies, commodities, along with the major cryptocurrencies.
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Table 1: Summary Statistics

Sentiment Bitcoin Ethereum Ripple Litecoin Stellar Monero Dash NEM Dogecoin MonaCoin Bytecoin Siacoin DigiByte BitShares Verge

Mean 5.996 0.002 0.003 0.002 0.001 0.002 0.003 0.002 0.003 0.002 0.001 0.001 0.002 0.002 0.001 0.003
Variance 0.002 0.001 0.005 0.005 0.003 0.006 0.004 0.003 0.007 0.004 0.006 0.013 0.009 0.009 0.005 0.02
Skewness 0.021 -0.178∗∗∗ -3.451∗∗∗ 3.115∗∗∗ 1.152∗∗∗ 2.141∗∗∗ 0.993∗∗∗ 0.956∗∗∗ 2.025∗∗∗ 1.029∗∗∗ 3.027∗∗∗ 3.503∗∗∗ 1.076∗∗∗ 2.587∗∗∗ 0.747∗∗∗ 0.712∗∗∗

(0.771) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Kurtosis 1.581∗∗∗ 4.746∗∗∗ 72.875∗∗∗ 44.883∗∗∗ 11.712∗∗∗ 18.203∗∗∗ 8.250∗∗∗ 7.167∗∗∗ 19.410∗∗∗ 14.101∗∗∗ 24.972∗∗∗ 47.748∗∗∗ 7.122∗∗∗ 27.541∗∗∗ 8.991∗∗∗ 7.157∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
JB 119∗∗∗ 1583∗∗∗ 374637∗∗∗143561∗∗∗ 9961∗∗∗ 24448∗∗∗ 5034∗∗∗ 3846∗∗∗ 27487∗∗∗ 14197∗∗∗ 46162∗∗∗ 162834∗∗∗ 3869∗∗∗ 54902∗∗∗ 5808∗∗∗ 3723∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ERS -2.804∗∗∗ -4.048∗∗∗ -0.546 -10.616∗∗∗ -4.465∗∗∗ -16.472∗∗∗ -4.572∗∗∗ -6.480∗∗∗ -7.253∗∗∗ -7.362∗∗∗ -6.278∗∗∗ -6.697∗∗∗ -18.239∗∗∗ -8.136∗∗∗ -12.819∗∗∗ -12.012∗∗∗

(0.005) (0.000) (0.585) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Q2(20) 4632.607∗∗∗206.437∗∗∗29.581∗∗∗233.552∗∗∗112.717∗∗∗445.160∗∗∗190.946∗∗∗101.622∗∗∗65.866∗∗∗208.079∗∗∗233.690∗∗∗92.588∗∗∗300.052∗∗∗58.216∗∗∗151.854∗∗∗709.954∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: JB stands for the normality test introduced by Jarque and Bera (1980), ERS represents the unit-root test of Elliott et al. (1996) and
Q2(20) is the weighted Ljung-Box statistics with a lag length of 20 provided by Fisher and Gallagher (2012). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 2: Average Connectedness Table

Bitcoin Ethereum Ripple Litecoin Stellar Monero Dash NEM Dogecoin MonaCoin Bytecoin Siacoin DigiByte BitShares Verge FROM

Bitcoin 35.6 6.2 2.5 7.6 4.2 8.9 8.9 7.2 9.1 2.3 2.2 5.2 0.1 0.1 0.1 64.4
Ethereum 7.8 36.6 3.4 5.6 4.8 7.8 10.8 6.7 6.0 2.5 1.8 6.1 0.1 0.1 0.0 63.4
Ripple 5.7 6.1 35.4 3.8 10.6 6.3 6.5 8.1 8.1 2.2 2.2 4.7 0.1 0.0 0.3 64.6
Litecoin 14.5 7.4 2.8 20.1 4.6 8.2 9.5 9.4 12.3 2.1 2.7 6.3 0.1 0.0 0.1 79.9
Stellar 6.1 5.5 6.5 4.1 39.0 6.8 6.6 8.5 7.3 2.0 1.9 5.3 0.2 0.3 0.1 61.0
Monero 9.9 6.6 3.1 5.6 5.2 38.2 10.8 5.8 5.6 2.2 1.9 4.9 0.1 0.2 0.1 61.8
Dash 7.2 6.7 2.4 4.8 3.7 8.0 47.3 6.2 4.4 2.0 1.6 5.3 0.1 0.1 0.1 52.7
NEM 7.2 5.3 3.6 5.7 5.9 5.2 7.7 44.6 4.9 2.8 1.6 5.0 0.0 0.4 0.1 55.4
Dogecoin 10.1 5.3 3.8 7.7 5.8 5.9 6.4 5.6 40.7 1.4 1.3 5.5 0.2 0.2 0.2 59.3
MonaCoin 5.1 4.6 2.3 3.0 3.2 4.5 5.5 6.5 2.8 56.5 1.8 3.9 0.1 0.1 0.1 43.5
Bytecoin 3.5 2.4 1.7 3.1 2.2 2.9 3.0 2.8 1.6 1.3 72.4 2.5 0.2 0.2 0.2 27.6
Siacoin 6.6 6.3 2.7 5.1 4.8 5.8 8.7 6.6 6.2 2.2 2.0 42.8 0.0 0.1 0.1 57.2
DigiByte 0.2 0.1 0.1 0.1 0.4 0.2 0.3 0.1 0.5 0.2 0.2 0.1 75.8 10.0 11.7 24.2
BitShares 0.2 0.3 0.1 0.1 0.6 0.6 0.6 1.3 0.7 0.2 0.4 0.3 12.0 65.7 16.9 34.3
Verge 0.2 0.1 0.3 0.1 0.1 0.3 0.4 0.2 0.4 0.2 0.3 0.2 9.9 12.1 75.1 24.9

Contribution TO others 84.4 62.8 35.4 56.4 55.9 71.3 85.6 75.0 69.8 23.6 21.8 55.3 23.1 23.9 30.1 TCI
NET directional connectedness 19.9 -0.7 -29.2 -23.5 -5.0 9.5 32.9 19.6 10.5 -19.8 -5.9 -2.0 -1.1 -10.4 5.3 55.3

Notes: Results are based on a DCCH-GARCH(1,1) model and a 100-step-ahead generalized forecast error variance decomposition.
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Figure 1: Daily Percentage Changes

Figure 2: Dynamic Total Connectedness

Notes: Results are based on a DCCH-GARCH(1,1) model and a 100-step-ahead generalized forecast error variance decomposition.
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Figure 3: Dynamic Net Total Directional Connectedness

Notes: Results are based on a DCCH-GARCH(1,1) model and a 100-step-ahead generalized forecast error variance decomposition.

Figure 4: Quantile Slope Estimates of the Impact of Investor Happiness on Volatility Connectedness
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Figure 5: Common Market Volatility

Figure 6: Quantile Slope Estimates of the Impact of Investor Happiness on Common Market Volatility
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