
  
University of Pretoria 

Department of Economics Working Paper Series 
 Forecasting State- and MSA-Level Housing Returns of the US: The Role of 
Mortgage Default Risks Christos Bouras 
University of Piraeus Christina Christou 
Open University of Cyprus Rangan Gupta  
University of Pretoria Keagile Lesame 
University of Pretoria 
Working Paper: 2020-37 
May 2020 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__________________________________________________________ 
Department of Economics 
University of Pretoria 
0002, Pretoria 
South Africa 
Tel: +27 12 420 2413 



1 

 

Forecasting State- and MSA-Level Housing Returns of the US: The Role of Mortgage 

Default Risks 

Christos Bouras
*
, Christina Christou

**
, Rangan Gupta

***
 and Keagile Lesame

****
 

Abstract 

We analyze the ability of an index of mortgage default risks (MDRI) for 43 states and 20 MSAs 

of the US derived from Google search queries, in predicting (in- and out-of-sample) housing 

returns of the corresponding states and MSAs, based on various panel data and time-series 

approaches. In general, our results tend to prefer the panel data model based on common 

correlated effects estimation. We highlight that growth in MDRI negatively impacts housing 

returns within-sample, with predictive gains primarily concentrated beyond a year. These results 

are robust to alternative out-of-sample periods and econometric frameworks. Given the role of 

house prices as a leading indicators, our results are of value to policymakers, especially at the 

longer-run. 
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1. Introduction 

As observed during the global financial crisis of 2007-2008, elevated mortgage delinquencies 

and defaults can dampen future house prices,
1
raise pessimism among consumers and investors, 

and wreak havoc on the macroeconomy and financial markets. Naturally, the financial concerns 

of homeowners are of paramount importance to the economy of the United States (US). While 

aggregate financial risk has been captured by an array of generalized market indices (such as the 
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Indeed, Lambie-Hanson (2015) finds that seriously delinquent homeowners neglect housing maintenance, sub- 

sequently depressing neighboring property values (Gerardi et al., 2015) and leading to further increases in mortgage 

defaults (Chan et al., 2013). Anenberg and Kung (2014) also find that higher levels of foreclosures can increase 

housing supply and thus depress property values. 



2 

 

Volatility Index (VIX) of the Chicago Board Options Exchange (CBOE), for instance), none of 

these measures provided timely insights that are specific to mortgage default risks during run-up 

to the crisis. In addition, the few available measures of mortgage default risks only captured 

information known to lenders or financial market participants and thus neglected potentially 

sensitive information on mortgage distress emanating directly from households. Given this, 

Chauvet et al., (2016) use Google search query data to develop broad-based and real-time index 

of mortgage default risk (MDRI) for the US. Unlike the existing indicators, the MDRI developed 

by these authors directly reflect households’concerns regarding their risk of mortgage default. 

More importantly, the MDRI is shown to predict national-level housing returns, mortgage 

delinquency indicators, and subprime credit default swaps, both within and out-of-samples, and 

across various (daily, monthly, weekly) data frequencies. 

The finding that MDRI can provide information on the future path of housing returns, is of 

paramount importance to policymakers, given that house prices are historically known to be a 

leading indicator for both output and inflation of the aggregate US economy (Stock and Watson, 

2003; Balcilar et al., 2014; Leamer, 2015; Nyakabawo et al., 2015). The role of regional house 

prices in predicting regional output of the US has also been highlighted by the work of 

Emirmahmutoglu et al., (2016). Against this backdrop, the objective of our analysis is to check 

whether MDRIs available for 43 states and 20 major Metropolitan Statistical Areas (MSAs), as 

developed by Chauvet et al., (2016) using Google search query data), can be used to forecast the 

housing returns of the corresponding states and MSAs. Note that, Chauvet et al., (2016) did 

provide in-sample evidence of predictability of housing returns for the 20 MSAs using the 

MDRIs for these metros. However, as pointed out by Campbell (2008),the ultimate test of any 

predictive model (in terms of the econometric methodologies and the predictors used) is in its 
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out-of-sample performance, and hence, we analyze the importance of MDRI by relying primarily 

on a full-fledged forecasting exercise for not only 20 MSAs, but also 43 states of the US 

economy. Further, the ability of the MDRI to forecast aggregate housing returns, does not 

necessarily guarantee that the same will continue to hold at the regional-level, since local factors, 

over and above a national housing factor, could play important role in explaining the variability 

of housing returns at the MSA and state-levels (Del Negro and Otrok, 2007; Fairchild et al., 

2015). Moreover, with regional business cycles not necessarily aligned with the aggregate 

business cycle (Gupta et al., 2018), accurate forecasting of housing returns for MSAs and states 

are of tremendous value to policy authorities. 

To the best of our knowledge, this is the first attempt to predict (in- and out-of-sample) housing 

returns at the MSA- and state-levels based on the information content of corresponding 

information on risks associated with mortgage default risks. In the process, our paper adds to the 

large existing literature
2
on forecasting regional house price (returns) in the US, which in turn has 

looked into various types of econometric frameworks ranging from univariate to multivariate, 

linear to nonlinear, and a wide array of predictors involving just lagged values of house prices 

(returns) to macroeconomic, financial and behavioral aspects.   

As far as our econometric modeling is concerned in forecasting regional housing returns, we first 

use a baseline framework of stationary augmented lag panel models with heterogeneous 

constants and slope coefficients as proposed by Chudik and Pesaran (2015) estimated at different 

prediction time horizons. The forecasting performance of these models is assessed not only by 

simple forecasting accuracy measures (such as the root mean square forecast error), but also via 

                                                           
2
See for example, Rapach and Strauss (2009), Das et al., (2010), Gupta and Das (2010), Gupta et al., (2011), Gupta 

and Miller (2012a, 2012b), Gupta (2013),  Balcilar et al., (2015), Bork and Møller (2015, 2019). 
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statistical tests of forecast encompassing. Several researchers have shown that if cross-sectional 

heterogeneity in the estimated parameter coefficient estimates is left unaccounted for, it will 

possibly result in inefficient and inconsistent estimates of the panel data coefficient parameters, 

along with biased standard errors. Pesaran and Smith (1995) show that the pooled estimator 

becomes inconsistent for a dynamic panel data model if the model slope coefficients exhibit 

heterogeneity. Recent econometric advances highlight the importance of estimating panel 

regression models which account for possible cross-sectional dependence in the error process.   

One approach that has become popular in the literature involves estimating dynamic panels 

under cross sectional error dependence with a fixed number of unobserved and observed 

common factors, namely the common correlated effects estimation (CCE) approach originally 

introduced by Pesaran (2006). This approach involves approximating the unobserved common 

factors by the cross section averages of the dependent and the independent variables and using 

them as regressors in the main model specification. Chudik et al., (2011) show that the CCE 

approach exhibits robustness to the presence of an unknown number of unobserved common 

factors, as well as, to serial correlation of unknown form in the error respectively. Kapetanios et 

al., (2011) show the implementation of the CCE approach does not require the unobserved 

common factors to be stationary, integrated of an arbitrary order, or cointegrated of an arbitrary 

order. Given these points, we rely on dynamic panel data models with CCE over the monthly 

period of 2004:01 to 2017:12 for our analysis. The remainder of the paper is organized as 

follows: Section 2 discusses the data and methodology, Section 3 presents the in- and out-of-

sample results, with Section 4 concluding the paper. 
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2. Data and econometric methodology 

2.1. Data 

Our analysis covers the monthly period of 2004:01 to 2017:12, with the start and end dates being 

driven purely by the availability of data on the MDRI, at the time of writing this paper. Monthly 

data of MDRI for 43 states and 20 MSAs are obtained from MDRI database developed by 

Chauvet et al., (2016).
3
 These authors using Google search query data, collect sensitive 

information directly from individuals seeking assistance via internet search on issues of 

mortgage default and home foreclosure. Specifically, Chauvet et al. (2016) aggregate Google 

search queries for terms like “foreclosure help” and “government mortgage help” to compile a 

novel MDRI in real-time. The corresponding seasonally adjusted nominal house price data for 

the 43 states
4
 and 20 MSAs

5
 are derived from the Freddie Mac,

6
 with the indices based on an 

ever-expanding database of loans purchased by either Freddie Mac or Fannie Mae. For the states, 

we use the non-farm employment (NFE) as a control obtained from the US Bureau of Economic 

Analysis (BEA), while for the MSAs, we use the monthly economic activity indices as 

developed by Arias et al., (2016) and available for download from the FRED database of the 

Federal Reserve Bank of St. Louis. These authors derived each of these indices from a Dynamic 

Factor Model (DFM) based on twelve underlying variables capturing various aspects of metro 

area economic activity. Seven (five) of the variables are monthly (quarterly). The variables 

                                                           
3
The data can be accessed from: https://chandlerlutz.shinyapps.io/mdri-app/. 

4
The sates considered are: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Florida, Georgia, 

Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, 

Minnesota, Mississippi, Missouri, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North 

Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Utah, Virginia, 

Washington, West Virginia, and Wisconsin 
5
The MSAs considered are: Atlanta, Boston, Charlotte, Chicago, Cleveland, Dallas, Denver, Detroit, Las Vegas, Los 

Angeles, Miami, Minneapolis, New York, Phoenix, Portland, San Diego, San Francisco, Seattle, Tampa, and 

Washington DC. 
6
http://www.freddiemac.com/research/indices/house-price-index.page. 

https://chandlerlutz.shinyapps.io/mdri-app/
http://www.freddiemac.com/research/indices/house-price-index.page


6 

 

include seven labor-market measures(average weekly hours worked, unemployment rate, private 

sector goods-producing employment, private sector services-producing employment, government 

sector employment, real average hourly earnings, real average quarterly wages), building 

permits, real personal income per capita, and three financial metrics (return on average assets, 

net interest margin, loan loss reserve ratio). Arias et al., (2016) estimate the DFM by using a 

maximum likelihood approach that allows for arbitrary patterns of missing data to accommodate 

mixed-frequency and differences in publication lags. These indices are stationary by design and 

hence, we use them directly in our panel data-based models without any further transformations, 

but we use returns of housing prices (HPR) and growth rates of the MDRI (MDRIR) and NFE 

(NFER) to ensure that these variables have no unit root issues. 

2.2. Methodology 

In this section we briefly describe the methodology that is implemented for the analysis of the 

relation between the regional housing returns of the US based on MDRI, given additional 

controls of non-firm employment at the state-level and economic activity index of the MSAs. 

Our baseline model is a long horizon heterogeneous stationary panel data regression with 

common correlated effects. Our model falls in the category of the stationary autoregressive 

distributed lagged (ARDL) panel data models introduced by Chudik and Pesaran (2015), where a 

mean group-type estimator is used to account for cross-sectional heterogeneity of the model 

parameter coefficients.  
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2.2.1. Dynamic panel models with common correlated effects 

Let   tNttti HPRHPRHPRHPR ,,2,1, ,...,,  be a vector of housing price returns for t=1,2,…,T, i 

=1,2,…,N, where T and N represent the number of monthly observations and states, respectively. 

The following covariance stationary ARDL model is used to deal with heterogeneous slopes: 
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where tiMDRIR , are the growth rates of mortgage default risks, tf represents a vector of  

unobserved common factors , 𝑋𝑖,𝑡 is an observed control variable, i and i  are heterogeneous 

factor loadings of tf and tiX , respectively, 0i is the intercept for each cross-section unit,

ijijij  ,, are the parameter coefficients, q is the lag order and  ,0~, IIDe ti across i and t. The 

errors tie , may be allowed to be spatially correlated, whereas the roots of 

  ti

q

iqi HPRLL ,1 ...1   must lie inside the unit circle. We assume that the heterogeneous 

parameter coefficients of model (1) are randomly distributed around a common mean: 

ii zgg  , i = 1,2,.., N         (3) 

where   ijijijii a  ,,,0g ,   jjja  ,,,0g and  gi IID ,0~z  is a   Nj  *41 matrix of 

identically and independently distributed error terms with zero mean and positive definite 

covariance matrix g . 
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Pesaran (2006) filters out parametrically the unobserved cross-sectional dependence in 

the error term by including cross-sectional averages of the dependent and the explanatory 

variables in the main specification model. The new estimator, denoted hereafter as CCE, requires 

only that a relatively large cross-sectional sample is available, i.e., that N  .His simulation 

results indicate that the use of the CCE estimator ensures an enhanced finite sample 

performance.  

Furthermore, Chudik et al., (2011) show that the CCE estimator performs well even 

under the presence of multiple unobserved factors in the error process. It is also shown that the 

number of the multiple unobserved factors, which in practical situations is unknown, does not 

have to be smaller than the number of the cross-sectional averages. Moreover, the theoretical and 

simulation results of Kapetanios et al., (2011) indicate that the integration properties of the 

unobserved common factors do not affect the efficiency of the CCE estimation approach. 

Therefore, tf may represent multiple unobserved stationary (or possibly non-stationary) common 

factors, which in turn can be approximated by the following cross-sectional means: 
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The following dynamic specification is estimated by OLS for each individual cross-sectional unit  

i= 1,2, …, N: 
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where   tttt wwww 321 ,, . 
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Then, the CCE group mean estimator is calculated as the arithmetic average of the OLS 

estimates   iijijijijii  ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ
0 taken from (5): 





N

i

iGM
N 1

ˆ
1

ˆ            (6)                                         

Pesaran (2006) shows that the CCE-group mean estimator is consistent and asymptotically 

distributed as normal in the context of a static panel model framework where the included 

explanatory variables are dependent to unobserved factors. However, Chudik and Pesaran (2015) 

argue that the CCE-group mean estimator becomes inconsistent for dynamic panels where the 

lagged dependent variable is included in the right-hand side of the model, even when N is large. 

According to Chudik and Pesaran (2015), consistency of the mean group estimator is ensured 

when equation (5) is augmented by a number of  3 TqT   lagged cross-sectional mean terms, 

with  .  denoting the integer function. Since our sample consists of 168 monthly observations for 

each cross-section, we will add six lagged of cross-sectional averages of the dependent and 

independent variables. They also prove that the dynamic CCE group mean estimator is 

asymptotically distributed as normal. Their Monte Carlo simulation experiments show that the 

new approach enjoys good finite sample properties under the condition that we have a relatively 

large time dimension. 

2.2.2. Predictive panel regressions 

Multi-horizon versions of equation (5) are used to examine whether MDRIs have predictive 

power for forecasting housing pricing returns at short and long forecast periods. Our approach 

regresses a multi-period ahead value of the housing price returns on lagged values of the housing 
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price returns and the growth rates of the default risks. This approach is very popular in the 

literature of financial time series econometrics, referred to as the direct multistep forecast 

approach (see, Marcellino et al., (2006)).The main model specification that we consider is: 
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where  ,log ,,, tihtihti HPHPHPR    while h represents the forecast horizon. The estimation 

procedure described in equations (1)-(6) is adopted here: individual specific regressions of the 

form presented in (7) are estimated by means of least squares and then the N estimates of the 

parameters coefficients are averaged. The original CCE estimation framework requires that the 

right hand side of the regression (7) is augmented by the cross-sectional average of the 

dependent variable. Since our main goal in this investigation is to use the estimated parameter 

coefficients of this regression to generate forecasts of housing prices at future h periods ahead, 

we are restricted to use data up to period t and not period t + h. Therefore, we do not include 

cross section averages of htiHPR , as a regressor in equation (7); instead, we use the cross-section 

average of tiHPR , as a proxy for the cross-section of the dependent variable.  

Due to overlapping observations, the residuals htiu , evolve as a moving average (MA) process of 

order (h-1). Therefore, we calculate autocorrelation and heteroscedasticity consistent (HAC) 

standard errors of the CCE group estimators following Newey and West (1987). The bandwidth 

parameter of the HAC estimator is selected to be equal to h -1.  These standard errors are robust 

to temporal dependence.   

 

 



11 

 

3. Empirical Results 

This section describes the results of the in-sample and out-of-sample analyses of housing returns 

with respect  to the growth of MDRI for both the states and the MSAs, by controlling for growth 

of non-fam employment and the economic activity index respectively. 

3.1. In-sample predictability  

First we estimate our baseline ARDL-CCE specification given in Eq.7 with 𝑋𝑖𝑡 ≡ 𝑁𝐹𝐸𝑅𝑖𝑡 : 
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            (8) 

where tiNFER , are the non-farm employment growth rates. 

For comparison purposes, we also report the estimates the following ARDL fixed effects 

(ARDL-FE) panel regression model: 
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Table 1 demonstrates the estimated coefficients and the corresponding p-values in parentheses of 

the dynamic panel models (8) and (9) at the state-level. The dynamic ARDL-CCE model is 

estimated as described in the previous section, while the ARDL-FE model is estimated by using 

the(cross-sectional) dummy variables least squares method on the pooled data. Panel A reports 

the estimated coefficients of HPR, MDRIR and NFER , while Panel B reports the parameter 

coefficient estimates s of the lagged cross-sectional means of the MDRI growth rate variable.
7
 

                                                           
7
 We do not report the coefficient estimates of the cross-sectional averages of the other explanatory variables due to 

limited space. 
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Both ARDL-CCE and ARDL-FE models are fitted for forecast horizons 1, 3, 6, 12, and 24 

months ahead. The standard errors of the estimated parameter coefficients of both models are 

computed by implementing the HAC estimator. 

Examining the findings in Panel A, we see that the ARDL-CCE coefficients for the MDRIR are 

insignificant at all forecast horizons. However, moving to Panel B, we observe that the 

coefficients of the MDRI cross-sectional averages parameters are highly statistically significant 

particularly for horizons larger than three months-ahead.  For three months-ahead period, three 

coefficients of lagged tw2 are statistically significant at level 5%, whereas for twelve and 24 

months-ahead, all six coefficients are significant at 1% level. Thus, although there is no evidence 

of predictability from the MDRI variable, the cross-sectional averages of MDRIs are significant 

predictors at long horizons. The sign of all MDRI coefficients is negative, highlighting the 

negative reaction of individual housing prices to aggregate default risk movements. The values 

of the lagged MDRI and cross sectional MDRI averages coefficients range from -0,003 to -0,000 

and -0.032 to -0.000, respectively.  

The results of the ARDL-FE models reveal different predictability patterns.  In particular, all 

lagged MDRI coefficients are negative and  statistically significant over the range of 1 to 24 

months ahead. Furthermore, they are similar in magnitude with the corresponding, ARDL-CCE 

coefficients. Hence, evidence from the ARDL_FE suggests that MDRIs have predictive housing 

price returns at both short and long-time horizons at the state-level. 

The findings from both models indicate that non-farm employment growth rates induce a 

significant positive effect on housing price returns at all forecast periods. Interestingly, we 

document that all lagged NFER coefficients in both ARDL-CCE and ARDL-FE dynamic 
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specifications are highly statistically significant when we consider a forecast horizon of 24 

months-ahead. Thus, there is some evidence in favor of long-horizon predictability of non-farm 

employment for housing price returns. Examining the autoregressive coefficient estimates of 

both dynamic models, we observe that housing prices returns display mostly significant positive 

and weak persistence at all forecast horizons.  

[INSERT TABLE 1] 

Table 2 demonstratesthe estimation results for the MSA data. In this case, we estimate similar 

ARDL-CCE and ARDL-FE model specifications with the state data, and replacing non-farm 

employment with economic activity (EA): 

,,1

6

1

3

1

,

3

1

,

3

1

,0, htiti

j

jtij

j

jtiij

j

jtiij

j

jtiijihti uwwEAMDRIRHPRaHPR 















    (10) 

.,

3

1

,

3

1

,

3

1

,0, hti

j

jtij

j

jtij

j

jtijihti uEAMDRIRHPRaHPR 











       (11) 

 

 

Table 2 reports the estimation results from models (10) and (11). We begin our analysis by 

focusing on the coefficients of the MDRI parameters of the models which account for common 

correlated effects. For forecast horizons up to six months ahead, there is no evidence of 

predictability since all coefficients are statistically not different from zero.  On the other hand, 

for forecasting horizons h equal to 12 and 24 months-ahead, all MDRI parameter coefficients are 

statistically significant.   Results reported in Panel B suggest that the predictive ability of the 

MDRI cross-sectional averages is enhanced when we consider longer forecast horizons. For 

horizons  1 to 3 months-ahead, we document three statistically significant coefficients, while, for  
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horizons   6 to 24 months-ahead all coefficients are highly significant. Overall, compared to the 

results at the state level reported in Table 1, in the case of the MSA data we document stronger 

evidence of long horizon predictability. Our findings are supported by the results of the ARDL-

FE model which suggest that MDRI is a significant predictor of housing price returns at horizons 

larger than six months-ahead. The sign of the statistically significant MDRI coefficients is 

negative as in Table 1.  

However, looking at the magnitude of the MDRI coefficient estimates, we document substantial 

differences between the values of the two models at large horizons. For instance, at h =12, the 

coefficients of the ARDL-FE model are 6, to 10 times the corresponding values of the CCE-

based model. We draw a similar picture at h = 24; the coefficients of the ARDL-FE model are 10 

to  19 times the corresponding estimates of the ARDL-CCE model. These differences can be 

attributed to the presence of significant cross-sectional dependence in processes under study. As 

we can see from the ARDL-CCE estimation results, at these horizons, the estimated coefficients 

of the MDRI cross-sectional average terms are large in magnitude and statistically significant, 

which is clearly an  evidence of the presence of cross-sectional dependence in our data.This 

suggests that the error term in  fixed effects (FE) models is cross-sectionally dependent. 

Consequently, FE models may suffer from heterogeneous slope coefficient bias which inflates 

the marginal impact of MDRI on housing price returns.  

We find mixed evidence on the predictive ability of economic activity for forecasting future 

housing price returns. The economic activity coefficients of the CCE-models are statistically 

different from zero at the 1, 6 and 24 month horizons for 5% significance level. The CCE-based 

regressions deliver positive and relatively large coefficients (smaller than one) except for the 24-

month horizon, where we document an estimateof -1,231. The FE models yield more clear-cut 
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evidence of long horizon predictability; the coefficients are always positive and statistically 

significant at the 5% level for horizons h = 12, 24. 

[INSERT TABLE 2] 

3.2. Out-of-sample forecasting 

The above results suggest that the growth rates of MDRIs have predictive power for forecasting 

housing prices returns mainly at long time horizons. Therefore, an issue that arises is whether the 

models presented earlier can provide improved forecasting performance for housing price returns 

over different alternative predictors.  

In this section we conduct two out-of-sample forecasting exercises in order to investigate the 

predictive ability of MDRI growth rates for forecasting housing price returns at multiple time 

horizons, at the state- and MSA- levels. Different nested dynamic panel and time series model 

specifications are used as competing forecast models.  The forecasting performance of the 

models is examined by means of the root mean squared forecast error criterion, an accuracy 

measure of the forecasted direction of change, and statistical tests of forecast encompassing. In 

this paper, the predictive accuracy of the models is compared on the aggregate level, i.e., two 

alternative forecasts are tested to be equally accurate when averaged both over the cross-

sectional and the time dimension. 

3.2.1 Out-of-sample forecasting within the baseline ARDL-CCE framework 

We use three competing models to generate the forecasts of housing prices at the state level and 

MSA level which are described by the following equations: 
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In the case of the state level data we set 𝑋𝑖,𝑡 ≡ 𝑁𝐹𝐸𝑅𝑖 ,𝑡 , while in the case of MSA data 𝑋𝑖,𝑡 ≡ 𝐸𝐴𝑖,𝑡 . 

Cross-sectional mean variables 𝑤 1𝑡 , 𝑤 2𝑡 , and 𝑤 3𝑡 ,  are defined in Eq.4. 

Forecasting equations (12) and (13)-(14) correspond to the ARDL-CCE baseline model given in 

Eq.7 and nested models, respectively.The coefficients  ,,,,,0 jjjja   represent the ARDL-

CCE estimates of the corresponding parameters iijijijijia  ,,,,,0  in the baseline model.  

The forecasting exercise is conducted by splitting the sample into an estimation sample, used for 

parameter estimation, and a test sample, used for evaluation of the forecast performance. Three 

estimation windows are considered; the first window includes approximately the first half of our 

sample (80 monthly periods, beginning at 2010:08), the second window consists is a   5 year 

period  (60 observations, beginning at 2008:12 which corresponds to the peak of the recent 

European sovereign debt crisis) and the third  includes approximately 30% of the observations of 

our sample (50 monthly periods, starting in 2008:02 which corresponds to the peak of the recent 

global financial crisis. A rolling window of fixed length is implemented to estimate the 
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coefficients of the models and then h-step-ahead forecasts are generated recursively for each 

cross-sectional unit using the estimated coefficients. Our approach removes one observation 

from the beginning of the estimation sample and adds one new observation at the end of it. 

Therefore, each forecast adjusts as the forecasting equation is successively updated by re-

estimating the model parameters with the addition of one data point to the estimation sample.    

 

 

3.2.2 Measures and tests of forecast accuracy 

Let us denote the actualaggregate housing returns by ,
1
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, tihtihti HPHPHPR   and R is the length of the estimation sample. Denote 

the forecasted aggregate housing prices by ,ˆ1ˆ
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step-ahead forecastsgenerated recursively by any of the equations described in equations (12)-

(14).   

A selection of measures and statistical tests is used to evaluate the forecast performance of the 

models. Let the pseudo-out-of-sample forecast error be hththt PRHHPRe   ˆ . The root mean 

squared forecast error criterion (RMSFE) is calculated as 
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The accuracy of the forecasted direction of change is estimated as 
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S .I is an indicator function that assigns the 

value one when the condition inside the brackets is satisfied and zero otherwise.  

Along with the metrics mentioned above, it is important to apply a formal statistical evaluation 

of the accuracy of two alternative forecasts, which in turn have been generated by nested 

prediction models. A popular approach in the literature is to evaluate the predictive performance 

of nested modelsby testing for forecasting encompassing (see Nelson (1972), Granger and 

Newbold (1973), Chong and Hendry (1986), Fair and Shiller (1989), Harvey et al. (1998)). 

Denote by   ,,..,,ˆ
1 hTRtPRH ht  and   ,,ˆ

2 htPRH  two series of competing forecasts, whereas 

let ,1 hte  and  ,2 hte  be the corresponding pseudo-out-of-sample forecast errors, respectively. 

Suppose we want to test whether we cannot improve the accuracy of the first series of forecasts 

through linear combination with the second series of forecasts, in other words, that htPRH 1
ˆ

encompasses  htPRH 2
ˆ . Define the loss differential series as 

 tttt eeed 211            (17) 

According to Harvey, et al., (1998), the null hypothesis of forecast encompassing can be 

expressed in terms of the loss differential series: 

 

  0:0 tdEH            (18) 
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They suggest that a Diebold and Mariano (1995)-type test can be used to test null hypothesis 

(18). In particular, they propose the following test: 

 

ENCT=
V

d
P

ˆ

2/1
          (19) 

WhereP and d are the length and average of the loss differential series, respectively, while V̂ is 

the long-run variance of 
td which is estimated by using a HAC estimator.The test statistic is 

asymptotically distributed under the null hypothesis as standard normal.  It is assumed that the 

combination weightsare positive, which implies that the alternative hypothesis is always 

  0tdE . Hence, the test statistic in (19) is one-sided to the right. The loss differential series 

exhibits correlation ofMA(h – 1) form, and therefore the bandwidth parameter used in the HAC 

estimation is set to be equal to h – 1. For the calculation of the HAC estimator, we use the 

quadratic spectral kernel.  

Clark (1999) argues that there are situations where the HAC estimator yields a negative value of 

the long-run variance, especially when evaluating the predictive accuracy of long horizon 

forecasts. A straightforward consequence of a negative long-run variance estimate is that the test 

statistic (19) cannot be computed. Several solutions to this problem have been proposed in the 

literature. We followed a rather conservative approach by setting the ENCT test to be zero 

whenever the HAC estimate is negative, as in Harvey et al., (2016).   

 

3.2.3. Out-of-sample forecasting results 

Tables 3 and 4 report the results of the out-of-sample forecasting exercise using state- and MSA-

level data, respectively.  Specifically, the tables report the RMSFEs, sign measures and forecast 
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encompassing test results for forecast horizons 1, 3, 6, 12, 18 and 24 months.  Panels A,  B and C 

present the results for estimation windows of 50, 60 and 80 monthly observations, respectively.  

Forecast encompassing tests are applied in order to examine whether linear combinations of 

forecasts generated from dynamic models that include growth rates of MDRI and/or NFER can 

yield more accurate forecasts than alternative models. Encompassing test (ENCT) results are also 

reported along with the corresponding p-values. 

[INSERT TABLE 3] 

Results for the state- and MSA-level data reported in Tables 3 and 4, respectively, suggest only 

minor differences in RMSFEs across different forecasting models and different estimation 

windows. As expected, RMSFE is an increasing function of the forecast horizon for all models.  

However, our results clearly suggest that ARDL-CCE specifications with MDRI as regressor are 

superior according to the RMSFE metric for horizons larger than 12 months-ahead. The 

forecasting encompassing test results are in line with this finding. Specifically, when we consider 

a forecast horizon h = 18 or 24 months-ahead, the null hypothesis that the forecasts from the 

ARDL-CCE specification with NFER and MDRI (Eq.12) are encompassed by the forecasts from 

the ARDL-CCE specification with NFER alone (Eq.13) is rejected at the 5%  significance level 

for all estimation windows. Furthermore, our results indicate that the 18 and 24 months ahead 

forecasts from the simple ARDL-CCE model (Eq.14) fail to encompass the forecasts the 

specification with MDRI (Eq.12) at level of statistical significance 5%. Therefore, the use of 

MDRI improves the forecasting accuracy of the dynamic CCE model at long forecast horizons. 

We also observe that the MDRI specifications always predict more accurately the direction of 

change in housing price returns at long forecast periods. In the case of state data, estimation 

window of 80 andh = 24 the sign metric of ARDL-CCE models with MDRI is 83.1%, while for 
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the ARDL-CCE with and without NFER is 75.3% and 72%, respectively.  The same regularities 

hold for the case of the MSA data; when a forecast horizon of two years and estimation window 

of 80 are considered, forecasting equation with MDRI (Eq.12) generates a sign value of 87.9% 

while forecasting equations with and without EA (Eq.13 and Eq.14) yield 74% and 70.2%, 

respectively. 

 

[INSERT TABLE 4] 

 

3.2.4 Robustness Analysis 

In order to examine the robustness of the results, we repeat the forecasting analysis within two 

alternative frameworks, the ARDL-FE framework and the time series ARDL framework. 

Following the analysis reported in the previous subsection, we consider three competing 

forecasting models within the ARDL-FE framework: 
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Models (20), (21) and (22)  are estimated using the dummy variables least squares method. Time 

series ARDL framework consists of the time series versions of the previous forecast models: 
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Equations (23)-(25) are estimated using least squares for each cross-sectional unit. In the case of 

the state-level data we set 𝑋𝑖,𝑡 ≡ 𝑁𝐹𝐸𝑅𝑖,𝑡 , while in the case of MSA data 𝑋𝑖,𝑡 ≡ 𝐸𝐴𝑖,𝑡 .  

Tables 5 and6 report the results of the out-of-sample forecasting exercise when ARDL-FE 

models are applied at the state and MSA-level, respectively.  Tables 7 and 8 report the results of 

the out-of-sample forecasting exercise when ARDL time series models are applied at the state 

and MSA-level, respectively.  For every forecasting model we demonstrate the results for 

estimation windows of 50, 60 and 80 monthly observations. The analysis done within the ARDL-

CCE framework and reported in the previous sub-section is repeated for FE and time series 

ARDL frameworks. Consequently, in each table we report RMSFE and sign forecast accuracy 

metrics, as well as the encompassing tests results, for forecast horizons 1, 3, 6, 12, 18 and 24 

months-ahead.  

[INSERT TABLE 5] 

 

From the inspection of Tables 5 and 6, it is evident that FE specifications with MDRI 

growth rates generate superior forecasts in terms of the RMSFEs and the sign metrics for 

horizons greater than one year-ahead. The evidence from the forecasting encompassing tests 

support this finding. In the case of state- (MSA-) level data, for forecast horizons  24 and 18 

months-ahead, the null hypothesis that the forecasts from the ARDL-FE specification with 

NFER (EA) and MDRI are encompassed by the forecasts from the ARDL-FE specification with 
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NFER (EA) alone is rejected at 5% and 10% levels of statistical significance, respectively. 

Furthermore, for h = 24 (18) the forecasts from the simple ARDL-FE model do not encompass 

the forecasts from MDRI specification again at the 5% (10%) level of significance. Additionally, 

FE specifications with MDRI tend to predict more accurately the direction of change in housing 

price returns especially at long forecast periods. Therefore, there is much to be gained by using 

MDRI growth rates in a dynamic model for forecasting housing returns at long horizons. These 

results hold for all estimation window lengths.   

 

[INSERT TABLE 6] 

 

Next, we repeat the out-of-sample forecasting analysis in a time series context. The 

forecasting regularities observed in the ARDL-CCE and ARDL-FE frameworks are also present 

in the time series framework. Results reported in Tables 7 and 8 for state- and MSA-level, 

respectively, show that forecast accuracy measures support the superiority of the MDRI based 

models for long horizon forecasting. Furthermore, forecasting encompassing tests reject the null 

hypothesis that the forecasts from the time series specification with NFER (EA) and MDRI are 

encompassed by the forecasts from the time series specification with NFER (EA) for all 

forecasting horizons at the 10% significance level.  Furthermore, the ENCT test results suggest 

that for forecasting horizons greater than one year, the simple ARDL model (Eq.25) fail to 

encompass the forecasts from competing time series specifications at the 5% level of 

significance. Additionally, time series specifications with MDRI tend to predict more accurately 

the direction of change in housing price returns especially at long forecast periods. Therefore, 
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there is much to be gained by using MDRI growth rates in a dynamic model for forecasting 

housing returns at long horizons.  

[INSERT TABLES 7 and 8] 

 

Overall, the examination of the  ARDL-FE and time series ARDL forecasting results 

shown in Tables 5-8, reveals similar patterns to those documented for the ARDL-CCE baseline 

framework (Tables 3 and 4). Specifically, all specifications with MDRI growth rates generate 

superior forecasts in terms of the RMSFEs and the sign metrics for horizons greater than one 

year-ahead compared to their corresponding specifications without MDRI as regressor. As in the 

case of the baseline forecasting model, the evidence from the forecasting encompassing tests 

supports this finding. Encompassing tests results suggest that forecasts from specifications with 

MDRI as regressor are not encompassed by the forecasts of competing specifications which do 

not include MDRI. Therefore, there is much to be gained by using MDRI growth rates in a 

dynamic model for forecasting housing returns at long horizons. These results are not sensitive to 

the selection of the estimation window. 

 

 

3.2.5 Sensitivity analysis: estimation bias reduction 

The purpose of this sub-section is twofold. First, we want to investigate the sensitivity of 

our results to the possible presence of small time dimension bias in the least squares estimator of 

the panel data models. To the extent that there is bias in the estimated parameter coefficients, the 

generated forecasts will be inaccurate, while the forecast encompassing test statistics will result 

in misleading inference. Nickel (1981) shows that the within group estimator delivers biased 
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coefficient estimates of a dynamic panel model when a small T sample is available. Second, 

since our evaluation so far has shown that the CCE and the fixed effects models dominate in 

terms of forecasting accuracy (the first at the MSA-level data and the second at the state level 

data), we find of great interest to compare their forecasting performance after we apply small-

sample bias corrections tothe parameter coefficient estimates. Contrasting the CCE and FE 

models, a small T bias is expected to cause a stronger effect in the coefficient estimates of the 

former, and as a consequence to its forecasting performance. For example, consider that when 

we forecast housing price returns at the state level based on an estimation window of 80 monthly 

observations, 80 observations are used to estimate the 29 unknown parameters of the state-

specific ARDL-CCE model with MDRI and NFER. Then, these coefficients are averaged on the 

cross-sectional dimension. On the other hand, 34404380  observations will be used to 

estimate the 52 parameters of the corresponding ARDL-fixed effects model. Thus, compared to 

the fixed effects models, the CCE models appear to be possibly more prone to small T bias, since 

they use a much smaller number of time observations to estimate a relatively large number of 

parameters. 

Small T bias correction is performed by estimating the panel data models via the 

jackknife bias reduction method of Chudik and Pesaran (2015). Their method first, splits the 

estimation sample into two sample windows of equal length, and then uses the two generated 

sample windows to re-estimate the model parameter coefficients. The new parameter coefficient 

estimates are denoted )(ˆ A

GM and  )(ˆ B

GM , respectively. Finally, the parameter coefficient estimates 

are adjusted by applying the following transformation: )()(* ˆ*5.0ˆ*5.0ˆ2ˆ B

GM

A

GMGMGM   . The 

same method is also applied to the parameter coefficients of the fixed effects panel regressions.  
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The results of the estimations are presented at columns (1)-(12) of Table 5. The analysis 

is based on an estimation window of 80-monthly observations. The differences in p-values are 

comparatively minor with only exception being the larger p-values for h =18 at the state-

level.The net result is strong long horizon predictability of the MDRI specifications at both 

datasets. Thus, we draw similar conclusions with our prior analysis. Compared to Table 3, we 

observe a sizable reduction in the magnitude of the RMSFEs of the CCE models. We document 

that the CCE method outperforms the FE models in terms of forecast accuracy at both the state 

and MSA-level. There is much to be gained also in terms of the accuracy of the forecasted 

direction of change by using the bias-corrected CCE models. At long horizons, the 

implementation of the jackknife bias reduction on the CCE models yields much higher sign 

values when compared to those of the fixed effects panel regressions. 

[INSERT TABLE 9] 

 

4. Conclusions 

In this paper we analyze the ability of an index of mortgage default risks (MDRI) for 43 states 

and 20 MSAs of the US derived from Google search queries, in predicting (in- and out-of-

sample) housing returns of the corresponding states and MSAs, based on various panel data 

approaches. The in-sample analysis of the dynamic models with common correlated effects 

(CCE) based on state-level- data reveals that the MDRI growth rates do not predict housing 

prices returns over any forecast horizons. However, we document evidence of long-horizon 

predictability of the cross-section averages of the MDRI growth rates. The sign of the MDRI and 

the corresponding cross-sectional averages coefficients is negative highlighting the negative 

relation of individual housing prices to aggregate default risk movements. The estimation results 
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of the dynamic fixed effects panel regressions draw a very different picture of predictability. In 

particular, changes in MDRI growth rates are found to cause a negative impact on housing price 

returns at both short and long-time horizons. However, the parameter coefficient estimates of 

these models appear to be severely inflated possibly due to the presence of cross-sectional 

dependence in the error term. As a consequence, this raises a reasonable amount of uncertainty 

about the reliability of the statistical inference.   

On the other hand, the in-sample results of the dynamic models with common correlated effects 

based on the MSA-level data indicate the MDRIs induce a significant and negative effect on 

housing price returns at long forecast horizons.  Again, the coefficient estimates of the fixed 

effects panel regressions appear to be biased. 

The out-of-sample forecasting analysis based on the state-level data confirms the evidence on the 

long horizon predictability of the MDRIs. We summarize our main findings as follows: First, 

specifications which include MDRI growth rates outperform the competing models at forecast 

horizons larger than 12 months-ahead in terms of the RMSFEs and the accuracy of the predicted 

direction of change.  Second, the forecast encompassing tests show that at long forecasts 

horizons the accuracy of forecasts is improved when the growth rates of MDRI and non-farm 

employment are combined in a single dynamic forecast model. Third, this finding is robust with 

respect to the estimation method (dynamic model with CCE, fixed effects panel regressions, and 

time-series based-models), as well as to the length of the estimation sample. Fourth, along with 

the use of the jackknife bias reduction, the CCE models are found to dominate across the forecast 

models in terms of predictive accuracy.   

The out-of-sample forecasting analysis of the MSA-level data reveals stronger evidence on the 

long horizon predictability of the MDRIs. The comparison of the forecast accuracy measures 
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shows that the MDRI based specifications have superior performance over the competing 

specification at long horizons. The inferential analysis indicates that there is much to be gained 

by generating forecasts of housing prices based on a specification that uses MDRI growth rates. 

This finding holds for different modeling approaches and estimation sample lengths.  The CCE 

approach is found again to be the dominant forecast model. 

From the perspective of a policymaker, trying to utilize the information on regional housing 

returns for predicting regional business cycles, our results imply that, information on mortgage 

default risks can be utilized in a statistically significant manner primarily in the long-run, i.e., 

from one-year onwards, in forecasting the future path and the direction of the growth of housing 

prices. As part of future research, it would be interesting to extend our analysis to studying the 

predictability of regional housing market volatility using a panel-Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) approach, as shown to exist for the national-level 

housing returns by Bouri et al., (forthcoming) using time-series based approaches. 
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Table 1: In-sample predictability of housing price returns at the state level  

 

Panel A: estimates of the main parameter coefficients of the models 
 

 h = 1  h = 3  h = 6  h = 12  h = 24 

 ARDL-

CCE 
 

ARDL-

FE 
 

 ARDL-

CCE 
 

ARDL-

FE 
 

 ARDL-

CCE 
 

ARDL-

FE 
 

 ARDL-

CCE 
 

ARDL-FE 

 

 ARDL-

CCE 
 

ARDL-FE 

 

Constant 0.001 0.001  0.005 0.004  0.010 0.007  0.016 0.034  0.028 0.120 

 (0.148) (0.653)  (0.116) (0.664)  (0.013) (0.701)  (0.235) (0.314)  (0.518) (0.140) 

1, tiHPR  
0.060 0.103  0.101 0.249 

 
0.150 0.440 

 
0.251 0.805 

 
0.295 1.192 

 (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) 

2, tiHPR
 -0.041 -0.048  -0.073 -0.102 

 
-0.074 -0.149 

 
-0.104 -0.261 

 
-0.134 -0.343 

 (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) 

3, tiHPR
 0.023 0.034  0.067 0.104 

 
0.122 0.177 

 
0.139 0.226 

 
0.131 0.022 

 (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.024) (0.000)  (0.159) (0.768) 

1, tiNFER

 
0.004 -0.000 

 
0.010 -0.008 

 
0.022 -0.016 

 
0.037 0.000 

 
0.091 0.264 

 (0.099) (0.738)  (0.213) (0.071)  (0.259) (0.129)  (0.195) (0.986)  (0.000) (0.000) 

2, tiNFER
 0.004 -0.003  0.016 -0.007 

 
0.030 -0.011 

 
0.060 0.027 

 
0.153 0.292 

 (0.055) (0.020)  (0.036) (0.136)  (0.128) (0.348)  (0.087) (0.264)  (0.000) (0.000) 

3, tiNFER
 0.005 0.000  0.017 0.004 

 
0.039 0.011 

 
0.090 0.084 

 
0.182 0.323 

 (0.009) (0.904)  (0.006) (0.407)  (0.023) (0.320)  (0.002) (0.000)  (0.000) (0.000) 

1, tiMDRIR  
-0.000 -0.000  -0.000 -0.000 

 
-0.000 -0.001 

 
-0.001 -0.002 

 
-0.002 -0.008 

 (0.570) (0.000)  (0.369) (0.000)  (0.208) (0.000)  (0.318) (0.000)  (0.310) (0.000) 

2, tiMDRIR  
-0.000 -0.000  -0.000 -0.000 

 
-0.000 -0.001 

 
-0.001 -0.003 

 
-0.003 -0.010 

 (0.371) (0.000)  (0.180) (0.000)  (0.222) (0.000)  (0.269) (0.000)  (0.250) (0.000) 

3, tiMDRIR
 -0.000 -0.000  -0.000 -0.000 

 
-0.000 -0.001 

 
-0.001 -0.002 

 
-0.003 -0.007 

 (0.112) (0.013)  (0.073) (0.000)  (0.268) (0.000)  (0.226) (0.000)  (0.236) (0.000) 

               

Panel B: estimates of the coefficients of the MDRI cross-sectional averages  

12 tw  0.000   0.000  
 

-0.001  
 

-0.007  
 

-0.021  
 (0.813)   (0.986)   (0.000)   (0.000)   (0.000)  

22 tw  0.000   0.000  
 

-0.002  
 

-0.009  
 

-0.026  

 (0.083)   (0.182)   (0.000)   (0.000)   (0.000)  

32 tw  0.000   -0.001  
 

-0.004  
 

-0.012  
 

-0.032  
 (0.872)   (0.020)   (0.000)   (0.000)   (0.000)  

42 tw  -0.000   -0.001  
 

-0.004  
 

-0.013  
 

-0.030  

 (0.120)   (0.001)   (0.000)   (0.000)   (0.000)  

52 tw  -0.000   -0.001  
 

-0.002  
 

-0.009  
 

-0.020  

 (0.296)   (0.012)   (0.000)   (0.000)   (0.000)  

62 tw  0.000   -0.000  
 

-0.000  
 

-0.005  
 

-0.012  
 (0.665)   (0.601)   (0.138)   (0.000)   (0.000)  

Notes: This table presents the estimation results for the dynamic models ARDL-CCE and ARDL-FE, described in Equations (8)-(9),  at various 

monthly forecast periods h. The  panel data consist of 43 cross-sectional units spanning the period 1/1/2004- 1/12/2017. Panels A and B present 
the findings for the main parameter coefficients of the models and the cross-sectional averages of MDRI, respectively. The specifications of the 

ARDL-CCE and the ARDL-FE  model are given in equations (8) and (9), respectively. The estimation procedure for the ARDL-CCE models is 

described in Equations (1)-(6). The ARDL-FE models are estimated by using the cross-sectional dummy variables least squares method.  tiHPR ,

are the state-specific housing price returns for month t, tiMDRIR ,  are the state-specific growth rates of Mortgage default risks for month t, and

tiNFER , are the growth rates of non-farm employment for month t. p-values are in parentheses.  
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Table 2: In-sample predictability of housing price returns at the MSA level  

 

Panel A: estimates of the main parameter coefficients of the models 

 h = 1  h = 3  h = 6  h = 12  h = 24 

 ARDL-

CCE 
 

ARDL-

fixed 
effects 

 

 ARDL-

CCE 
 

ARDL-

fixed 
effects 

 

 ARDL-

CCE 
 

ARDL-

fixed 
effects 

 

 ARDL-

CCE 
 

ARDL-

fixed 
effects 

 

 ARDL-

CCE 
 

ARDL-

fixed 
effects 

 

Constant 0.000 0.000  0.000 0.000  0.000 -0.001  -0.007 -0.008  -0.045 -0.035 
 (0.726) (0.774)  (0.942) (0.778)  (0.774) (0.729)  (0.001) (0.476)  (0.000) (0.295) 

1, tiHPR
 0.552 1.110  1.219 3.078 

 
1.947 5.905 

 
2.787 10.752 

 
2.765 15.066 

 (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) 

2, tiHPR
 -0.213 -0.383  -0.328 -0.847 

 
-0.278 -1.536 

 
-0.385 -2.757 

 
-0.222 -3.588 

 (0.002) (0.000)  (0.047) (0.000)  (0.157) (0.000)  (0.080) (0.000)  (0.472) (0.000) 

3, tiHPR
 0.258 0.174  0.666 0.311 

 
1.027 0.235 

 
1.135 -1.027 

 
1.905 -5.476 

 (0.000) (0.000)  (0.000) (0.005)  (0.004) (0.377)  (0.117) (0.080)  (0.004) (0.000) 

1, tiEA
 0.014 0.011 

 
0.040 0.027 

 
0.268 0.030 

 
0.589 -0.032 

 
1.740 0.750 

 (0.516) (0.169)  (0.552) (0.311)  (0.045) (0.607)  (0.210) (0.796)  (0.053) (0.021) 

2, tiEA
 -0.017 -0.008  0.046 -0.023 

 
0.003 -0.037 

 
0.316 -0.012 

 
0.087 0.200 

 (0.567) (0.454)  (0.633) (0.409)  (0.974) (0.472)  (0.080) (0.913)  (0.477) (0.333) 

3, tiEA
 0.054 -0.001  0.082 0.007 

 
0.101 0.054 

 
-0.126 0.389 

 
-1.231 0.632 

 (0.011) (0.874)  (0.331) (0.798)  (0.642) (0.348)  (0.624) (0.020)  (0.000) (0.002) 

1, tiMDRIR  
0.000 -0.001  0.000 -0.004 

 
0.001 -0.015 

 
-0.008 -0.053 

 
-0.017 -0.169 

 (0.472) (0.023)  (0.754) (0.014)  (0.703) (0.000)  (0.001) (0.000)  (0.000) (0.000) 

2, tiMDRIR  
0.001 -0.001  0.001 -0.003 

 
0.002 -0.016 

 
-0.006 -0.061 

 
-0.012 -0.199 

 (0.250) (0.297)  (0.651) (0.098)  (0.162) (0.001)  (0.000) (0.000)  (0.001) (0.000) 

3, tiMDRIR
 0.000 0.000  0.000 -0.003 

 
0.001 -0.013 

 
-0.005 -0.050 

 
-0.008 -0.154 

 (0.524) (0.656)  (0.757) (0.083)  (0.526) (0.001)  (0.020) (0.000)  (0.059) (0.000) 
               

Panel B: estimates of the coefficients of the MDRI cross-sectional averages  
               

12 tw  -0.002   -0.003  
 

-0.025  
 

-0.097  
 

-0.348  
 (0.080)   (0.388)   (0.025)   (0.000)   (0.000)  

22 tw  0.000   -0.005  
 

-0.038  
 

-0.158  
 

-0.448  

 (0.934)   (0.372)   (0.020)   (0.000)   (0.000)  

32 tw  -0.004   -0.023  
 

-0.076  
 

-0.251  
 

-0.613  

 (0.019)   (0.007)   (0.002)   (0.000)   (0.000)  

42 tw  -0.004   -0.022  
 

-0.068  
 

-0.246  
 

-0.540  
 (0.030)   (0.006)   (0.001)   (0.000)   (0.000)  

52 tw  -0.003   -0.015  
 

-0.041  
 

-0.168  
 

-0.355  

 (0.034)   (0.017)   (0.003)   (0.000)   (0.000)  

62 tw  -0.001   -0.002  
 

-0.015  
 

-0.104  
 

-0.205  

 (0.384)   (0.469)   (0.006)   (0.000)   (0.000)  
               

Notes: This table presents the estimation results for the dynamic models described in Equations (10)-(11) at various monthly forecast periods h. 

The panel data consist of 20 cross-sectional units spanning the period 1/1/2004- 1/12/2017. Panels A and B present the findings for the main 
parameter coefficients of the models and the cross-sectional averages of MDRI, respectively. The specifications of the ARDL-CCE and the 

ARDL-fixed effects model are given in equations (10) and (11), respectively. The estimation procedure for the ARDL-CCE models is described 

in Equations (1)-(6). The ARDL-fixed effects models are estimated by using the cross-sectional dummy variables least squares method.  tiHPR ,

are the MSA-specific housing price returns for month t, tiMDRIR ,  are the MSA-specific growth rates of Mortgage default risks for month t, and

tiEA , denote the MSA-specific economic activity for month t. p-values are in parentheses.  
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Table 3: Out-of-sample forecasting results of housing prices at the state level within the 

ARDL-CCE framework 

Estimation 

window 

80  60  50 

models ARDL 

– CCE 
 

ARDL- 

CCE with 
NFER 

ARDL-

CCE 
with 

NFER, 

MDRI 

 ARDL – 

CCE 
 

ARDL- 

CCE 
with 

NFER 

ARDL-

CCE 
with 

NFER, 

MDRI 

 ARDL 

– CCE 
 

ARDL- 

CCE 
with 

NFER 

ARDL-

CCE with 
NFER, 

MDRI 

 (1) (2) (3)  (1) (2) (3)  (1) (2) (3) 

Comparing 

models : 

(1)-(2) (2)-(3) (1)-(3)  (1)-(2) (2)-(3) (1)-(3)  (1)-(2) (2)-(3) (1)-(3) 

 Forecast Horizon h = 1 

RMSFE 0.001 0.001 0.001  0.001 0.001 0.001  0.001 0.001 0.001 

Sign 0.884 0.888 0.881  0.871 0.869 0.864  0.872 0.867 0.861 
ENCT test 0.000 0.000 0.000  1.216 0.399 1.164  0.963 0.808 1.368 

 (0.500) (0.500) (0.500)  (0.112) (0.345) (0.122)  (0.168) (0.210) (0.086) 

 Forecast Horizon h = 3 

RMSFE 0.005 0.006 0.006  0.007 0.007 0.007  0.007 0.007 0.007 

Sign 0.901 0.903 0.899  0.878 0.877 0.874  0.876 0.876 0.873 

ENCT test 0.000 0.000 0.000  1.066 0.209 0.949  0.469 0.000 0.231 
 (0.500) (0.500) (0.500)  (0.143) (0.417) (0.171)  (0.319) (0.500) (0.409) 

 Forecast Horizon h = 6 

RMSFE 0.015 0.016 0.016  0.018 0.018 0.017  0.018 0.018 0.018 
Sign 0.907 0.908 0.908  0.888 0.887 0.888  0.892 0.892 0.889 

ENCT test 0.000 1.368 0.000  0.766 1.534 1.049  0.654 0.144 0.619 

 (0.500) (0.086) (0.500)  (0.222) (0.062) (0.147)  (0.256) (0.443) (0.268) 
 Forecast Horizon h = 12 

RMSFE 0.048 0.051 0.049  0.045 0.049 0.048  0.047 0.049 0.048 

Sign 0.867 0.864 0.876  0.863 0.853 0.861  0.882 0.862 0.866 
ENCT test 0.000 2.131 0.000  0.000 1.150 0.042  0.065 1.166 0.563 

 (0.500) (0.017) (0.500)  (0.500) (0.125) (0.483)  (0.474) (0.122) (0.287) 

 Forecast Horizon h = 18 

RMSFE 0.082 0.082 0.075  0.079 0.078 0.074  0.077 0.073 0.068 

Sign 0.816 0.794 0.854  0.848 0.835 0.851  0.864 0.883 0.876 

ENCT test 0.098 3.746 2.499  1.042 1.636 1.905  2.099 1.969 2.799 
 (0.461) (0.000) (0.006)  (0.149) (0.051) (0.028)  (0.018) (0.024) (0.003) 

 Forecast Horizon h = 24 

RMSFE 0.111 0.108 0.096  0.117 0.109 0.104  0.116 0.101 0.095 
Sign 0.720 0.753 0.831  0.802 0.836 0.880  0.852 0.897 0.912 

ENCT test 0.651 8.224 2.962  2.591 1.907 2.894  2.819 2.125 2.924 

 (0.258) (0.000) (0.002)  (0.005) (0.028) (0.002)  (0.002) (0.017) (0.002) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of monthly housing prices based on a 

panel of 43 cross-sectional units spanning the period 1/1/2004- 1/12/2017.  We report the results of the root mean squared 

forecast errors (RMSFE) and the accuracy measure of the predicted direction of the housing price returns (sign) for forecast 

horizons 1, 3, 6, 12, 18, and 24 months-ahead. Panels A, B and C report the results when an estimation window of length equal to 

80 (approximately half of the time observations),60 (5 years) and 50 monthly (approximately 30% of the time observations) 

periods is used, respectively. The model specifications in columns (1) to (9) are described in equations (12)-(14). ENCT denote 

the Harvey, at al. (1998) forecast encompassing test described in equations (23)-(25). The p-values of the ENCT test statistics are 

in parentheses. The test results of the null hypothesis that the forecasts from an autoregressive specification encompass the 

forecasts from an autoregressive specification with NFER are presented at columns (1), (4) and (7).  The test results of the null 

hypothesis that the forecasts from an autoregressive specification with NFER encompass the forecasts from an autoregressive 

specification with NFER and MDRI growth rates are presented at columns (2), (5) and (8).  The test results of the null hypothesis 

that the forecasts from an autoregressive specification encompass the forecasts from an autoregressive specification with NFER 

and MDRI growth rates are presented at columns (3), (6) and (9).   
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Table 4: out-of-sample forecasting results of housing prices at the MSA-level within the 

ARDL-CCE framework 

 

Estimation 

window 

80  60  50 

models ARDL – 

CCE 

 

ARDL- 

CCE with 

EA 

ARDL-

CCE 

with 
EA, 

MDRI 

 ARDL 

– CCE 

 

ARDL- 

CCE 

with EA 

ARDL-

CCE 

with 
EA, 

MDRI 

 ARDL 

– CCE 

 

ARDL- 

CCE 

with EA 

ARDL-

CCE with 

EA, 
MDRI 

 (1) (2) (3)  (1) (2) (3)  (1) (2) (3) 

Comparing 
models : 

(1)-(2) (2)-(3) (1)-(3)  (1)-(2) (2)-(3) (1)-(3)  (1)-(2) (2)-(3) (1)-(3) 

 Forecast Horizon h = 1 

RMSFE 0.002 0.002 0.002  0.002 0.002 0.002  0.002 0.002 0.002 

sign 0.944 0.946 0.949  0.921 0.917 0.915  0.923 0.911 0.910 

ENCT test 0.000 1.556 0.165  0.289 1.931 1.408  2.701 2.697 3.578 

 (0.500) (0.060) (0.434)  (0.386) (0.027) (0.080)  (0.003) (0.003) (0.000) 
 Forecast Horizon h = 3 

RMSFE 0.008 0.009 0.009  0.011 0.011 0.011  0.011 0.010 0.010 

sign 0.945 0.941 0.943  0.917 0.904 0.900  0.923 0.913 0.912 
ENCT test 0.000 2.174 0.000  0.912 1.162 1.227  1.997 1.008 2.080 

 (0.500) (0.015) (0.500)  (0.181) (0.123) (0.110)  (0.023) (0.157) (0.019) 

 Forecast Horizon h = 6 

RMSFE 0.026 0.028 0.027  0.030 0.029 0.028  0.034 0.030 0.029 

sign 0.928 0.913 0.918  0.905 0.881 0.885  0.908 0.900 0.893 

ENCT test 0.000 1.968 0.000  0.792 1.522 1.132  1.401 1.294 1.498 
 (0.500) (0.025) (0.500)  (0.214) (0.064) (0.129)  (0.081) (0.098) (0.067) 

 Forecast Horizon h = 12 

RMSFE 0.081 0.084 0.076  0.081 0.080 0.072  0.097 0.083 0.079 
sign 0.871 0.861 0.901  0.869 0.864 0.872  0.876 0.899 0.896 

ENCT test 0.000 1.621 1.207  1.255 1.671 1.846  1.727 1.503 2.001 
 (0.500) (0.052) (0.114)  (0.105) (0.047) (0.032)  (0.042) (0.066) (0.023) 

 Forecast Horizon h = 18 

RMSFE 0.130 0.127 0.108  0.144 0.136 0.121  0.153 0.127 0.114 
sign 0.801 0.832 0.915  0.834 0.869 0.909  0.869 0.905 0.922 

ENCT test 0.814 2.176 1.871  1.926 1.778 2.270  2.002 1.716 2.406 

 (0.208) (0.015) (0.031)  (0.027) (0.038) (0.012)  (0.023) (0.043) (0.008) 
 Forecast Horizon h = 24 

RMSFE 0.168 0.156 0.128  0.216 0.190 0.175  0.228 0.176 0.162 

sign 0.702 0.740 0.879  0.787 0.834 0.894  0.874 0.883 0.900 
ENCT test 1.269 5.815 2.507  2.257 2.104 3.103  1.960 1.981 2.316 

 (0.102) (0.000) (0.006)  (0.012) (0.018) (0.001)  (0.025) (0.024) (0.010) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of monthly housing prices based on a 

panel of 20 cross-sectional units spanning the period 1/1/2004- 1/12/2017.  We report the results of the root mean squared 

forecast errors (RMSFE) and the accuracy measure of the predicted direction of the housing price returns (sign) for forecast 

horizons 1, 3, 6, 12, 18, and 24 months-ahead. Panels A, B and C report the results when an estimation window of length equal to 

80 (approximately half of the time observations), 60 (5 years)   and 50 monthly (approximately 30% of the time observations) 

periods is used, respectively. The model specifications in columns (1) to (9) are described in equations (12)-(14), with EA 

replacing the NFER terms. ENCT denote the Harvey, at al. (1998) forecast encompassing test described in equations (23)-(25). 

The p-values of the ENCT test statistics are in parentheses. The test results of the null hypothesis that the forecasts from an 

autoregressive specification encompass the forecasts from an autoregressive specification with EA are presented at columns (1), 

(4) and (7).  The test results of the null hypothesis that the forecasts from an autoregressive specification with EA encompass the 

forecasts from an autoregressive specification with EA and MDRI growth rates are presented at columns (2), (5) and (8).  The 

test results of the null hypothesis that the forecasts from an autoregressive specification encompass the forecasts from an 

autoregressive specification with EA and MDRI growth rates are presented at columns (3), (6) and (9).   
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Table 5: Out-of-sample forecasting results of housing prices at the state level within the 

ARDL-FE framework  

Estimation 

Window 

80  60  50 

models ARDL 

 
 

ARDL 

with 
NFER 

ARDL 

with 
NFER, 

MDRI 

 ARDL 

 
 

ARDL 

with 
NFER 

ARDL 

with 
NFER, 

MDRI 

 ARDL 

 
 

ARDL 

with 
NFER 

ARDL 

with 
NFER, 

MDRI 

 (4) (5) (6)  (4) (5) (6)  (4) (5) (6) 

Comparing 

models : 

(4)-(5) (5)-(6) (4)-(6)  (4)-(5) (5)-(6) (4)-(6)  (4)-(5) (5)-(6) (4)-(6) 

 Forecast Horizon h = 1 

RMSFE 0.001 0.001 0.001  0.002 0.002 0.002  0.002 0.002 0.002 

Sign 0.858 0.859 0.854  0.848 0.850 0.842  0.852 0.855 0.850 

ENCT test 0.000 1.702 0.000  1.041 2.174 1.599  1.010 1.242 1.304 
 (0.500) (0.044) (0.500)  (0.149) (0.015) (0.055)  (0.156) (0.107) (0.096) 

 Forecast Horizon h = 3 

RMSFE 0.006 0.006 0.006  0.008 0.008 0.008  0.008 0.008 0.008 
sign 0.871 0.870 0.868  0.853 0.857 0.853  0.861 0.864 0.861 

ENCT test 0.000 2.448 0.000  0.234 2.757 0.924  0.147 2.046 0.622 

 (0.500) (0.007) (0.500)  (0.407) (0.003) (0.178)  (0.442) (0.020) (0.267) 
 Forecast Horizon h = 6 

RMSFE 0.016 0.016 0.016  0.019 0.020 0.019  0.019 0.020 0.019 

sign 0.879 0.875 0.875  0.855 0.852 0.853  0.868 0.864 0.863 
ENCT test 0.000 1.679 0.000  0.000 1.743 0.268  0.000 1.341 0.000 

 (0.500) (0.047) (0.500)  (0.500) (0.041) (0.394)  (0.500) (0.090) (0.500) 

 Forecast Horizon h = 12 

RMSFE 0.046 0.046 0.046  0.039 0.041 0.040  0.039 0.042 0.041 

sign 0.849 0.851 0.856  0.827 0.816 0.826  0.849 0.838 0.838 

ENCT test 0.000 2.012 0.198  0.000 1.332 0.210  0.000 1.172 0.000 
 (0.500) (0.022) (0.422)  (0.500) (0.091) (0.417)  (0.500) (0.121) (0.500) 

 Forecast Horizon h = 18 

RMSFE 0.074 0.073 0.071  0.064 0.062 0.059  0.058 0.058 0.055 
sign 0.819 0.830 0.844  0.811 0.812 0.829  0.841 0.836 0.837 

ENCT test 1.112 2.838 4.817  1.132 1.564 3.089  0.631 1.410 2.716 

 (0.133) (0.002) (0.000)  (0.129) (0.059) (0.001)  (0.264) (0.079) (0.003) 
 Forecast Horizon h = 24 

RMSFE 0.094 0.092 0.087  0.097 0.092 0.087  0.090 0.084 0.080 

sign 0.780 0.808 0.826  0.781 0.809 0.833  0.823 0.828 0.845 
ENCT test 2.913 15.059 6.219  2.589 2.357 4.076  6.901 1.929 4.601 

 (0.002) (0.000) (0.000)  (0.005) (0.009) (0.000)  (0.000) (0.027) (0.000) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of monthly housing prices based on a 

panel of 43 cross-sectional units spanning the period 1/1/2004- 1/12/2017.  We report the results of the root mean squared 

forecast errors (RMSFE) and the accuracy measure of the predicted direction of the housing price returns (sign) for forecast 

horizons 1, 3, 6, 12, 18, and 24 months-ahead. Panels A, B and C report the results when an estimation window of length equal to 

80 (approximately half of the time observations),60 (5 years) and 50 monthly (approximately 30% of the time observations) 

periods is used, respectively. The model specifications in columns (1) to (9) are described in equations (15)-(17). ENCT denote 

the Harvey, at al. (1998) forecast encompassing test described in equations (23)-(25). The p-values of the ENCT test statistics are 

in parentheses. The test results of the null hypothesis that the forecasts from an autoregressive specification encompass the 

forecasts from an autoregressive specification with NFER are presented at columns (1), (4) and (7).  The test results of the null 

hypothesis that the forecasts from an autoregressive specification with NFER encompass the forecasts from an autoregressive 

specification with NFER and MDRI growth rates are presented at columns (2), (5) and (8).  The test results of the null hypothesis 

that the forecasts from an autoregressive specification encompass the forecasts from an autoregressive specification with NFER 

and MDRI growth rates are presented at columns (3), (6) and (9).   
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Table 6: out-of-sample forecasting results of housing prices at the MSA-level within ARDL-

FE framework 

 

Estimation 

window 

80  60  50 

models ARDL 

 

 

ARDL 

with EA 

ARDL 

with 

EA, 
MDRI 

 ARDL 

 

 

ARDL 

with EA 

ARDL 

with 

EA, 
MDRI 

 ARDL 

 

 

ARDL 

with EA 

ARDL 

with EA, 

MDRI 

 (4) (5) (6)  (4) (5) (6)  (4) (5) (6) 

Comparing 

models : 

(4)-(5) (5)-(6) (4)-(6)  (4)-(5) (5)-(6) (4)-(6)  (4)-(5) (5)-(6) (4)-(6) 

 Forecast Horizon h = 1 

RMSFE 0.002 0.002 0.002  0.003 0.003 0.003  0.003 0.003 0.003 

Sign 0.923 0.923 0.922  0.909 0.910 0.908  0.911 0.913 0.912 

ENCT test 0.000 0.608 0.000  1.096 2.700 1.436  0.789 3.431 1.199 

 (0.500) (0.272) (0.500)  (0.136) (0.003) (0.076)  (0.215) (0.000) (0.115) 

 Forecast Horizon h = 3 

RMSFE 0.010 0.010 0.010  0.013 0.013 0.013  0.012 0.013 0.013 

Sign 0.917 0.917 0.918  0.905 0.900 0.900  0.908 0.905 0.907 

ENCT test 0.000 1.332 0.000  0.402 2.769 0.843  0.128 2.622 0.468 
 (0.500) (0.091) (0.500)  (0.344) (0.003) (0.200)  (0.449) (0.004) (0.320) 

 Forecast Horizon h = 6 

RMSFE 0.029 0.030 0.030  0.032 0.033 0.033  0.034 0.037 0.036 
Sign 0.908 0.899 0.908  0.894 0.880 0.885  0.897 0.900 0.902 

ENCT test 0.000 1.383 0.000  0.000 1.853 0.390  0.000 1.797 0.000 

 (0.500) (0.083) (0.500)  (0.500) (0.032) (0.348)  (0.500) (0.036) (0.500) 
 Forecast Horizon h = 12 

RMSFE 0.082 0.085 0.083  0.077 0.081 0.078  0.091 0.096 0.092 

Sign 0.853 0.852 0.863  0.862 0.836 0.838  0.875 0.887 0.889 
ENCT test 0.000 1.505 0.000  0.000 1.332 0.919  0.000 1.381 0.411 

 (0.500) (0.066) (0.500)  (0.500) (0.091) (0.179)  (0.500) (0.084) (0.341) 
 Forecast Horizon h = 18 

RMSFE 0.128 0.129 0.124  0.134 0.131 0.125  0.151 0.146 0.138 

Sign 0.785 0.804 0.819  0.831 0.818 0.824  0.853 0.872 0.883 
ENCT test 0.000 1.734 1.499  0.928 1.427 2.352  1.088 1.430 2.440 

 (0.500) (0.041) (0.067)  (0.177) (0.077) (0.009)  (0.138) (0.076) (0.007) 

 Forecast Horizon h = 24 

RMSFE 0.162 0.158 0.150  0.201 0.187 0.180  0.232 0.205 0.196 

Sign 0.707 0.756 0.770  0.796 0.797 0.827  0.835 0.858 0.874 

ENCT test 1.273 3.148 2.753  1.475 1.998 2.346  2.055 1.732 2.573 
 (0.102) (0.001) (0.003)  (0.070) (0.023) (0.009)  (0.020) (0.042) (0.005) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of monthly housing prices based on a 

panel of 20 cross-sectional units spanning the period 1/1/2004- 1/12/2017.  We report the results of the root mean squared 

forecast errors (RMSFE) and the accuracy measure of the predicted direction of the housing price returns (sign) for forecast 

horizons 1, 3, 6, 12, 18, and 24 months-ahead. Panels A, B and C report the results when an estimation window of length equal to 

80 (approximately half of the time observations), 60 (5 years)   and 50 monthly (approximately 30% of the time observations) 

periods is used, respectively. The model specifications in columns (1) to (9) are described in equations (15)-(17), with EA 

replacing the NFER terms. ENCT denote the Harvey, at al. (1998) forecast encompassing test described in equations (23)-(25). 

The p-values of the ENCT test statistics are in parentheses. The test results of the null hypothesis that the forecasts from an 

autoregressive specification encompass the forecasts from an autoregressive specification with EA are presented at columns (1), 

(4) and (7).  The test results of the null hypothesis that the forecasts from an autoregressive specification with EA encompass the 

forecasts from an autoregressive specification with EA and MDRI growth rates are presented at columns (2), (5) and (8).  The 

test results of the null hypothesis that the forecasts from an autoregressive specification encompass the forecasts from an 

autoregressive specification with EA and MDRI growth rates are presented at columns (3), (6) and (9).   
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Table 7: Out-of-sample forecasting results of housing prices at the state level within the 

time series ARDL framework 

 

Estimation 

window 

80  60  50 

Models ARDL ARDL 

with 

NFER 

ARDL 

with 

NFER, 
MDRI 

 

 ARDL ARDL 

with 

NFER 

ARDL 

with 

NFER, 
MDRI 

 

 ARDL ARDL 

with 

NFER 

ARDL 

with 

NFER, 
MDRI 

 

 (7) (8) (9)  (7) (8) (9)  (7) (8) (9) 

Comparing 
models : 

(7)-(8) (8)-(9) (7)-(9)  (7)-(8) (8)-(9) (7)-(9)  (7)-(8) (8)-(9) (7)-(9) 

 Forecast Horizon h = 1 

RMSFE 0.002 0.002 0.002  0.002 0.002 0.002  0.002 0.002 0.002 

Sign 0.852 0.851 0.850  0.841 0.846 0.844  0.851 0.860 0.858 

ENCT test 0.000 2.950 0.226  1.051 3.435 1.807  1.292 3.390 2.074 

 (0.500) (0.002) (0.411)  (0.147) (0.000) (0.035)  (0.098) (0.000) (0.019) 
 Forecast Horizon h = 3 

RMSFE 0.006 0.007 0.006  0.008 0.008 0.008  0.008 0.008 0.008 

Sign 0.850 0.851 0.853  0.835 0.839 0.846  0.851 0.856 0.859 
ENCT test 0.000 3.599 0.086  0.385 3.748 1.088  0.374 3.111 0.943 

 (0.500) (0.000) (0.466)  (0.350) (0.000) (0.138)  (0.354) (0.001) (0.173) 

 Forecast Horizon h = 6 

RMSFE 0.018 0.019 0.018  0.021 0.021 0.021  0.020 0.021 0.021 

Sign 0.844 0.846 0.851  0.827 0.833 0.836  0.851 0.858 0.862 

ENCT test 0.000 2.315 0.000  0.009 2.248 0.571  0.000 1.898 0.352 
 (0.500) (0.010) (0.500)  (0.496) (0.012) (0.284)  (0.500) (0.029) (0.363) 

 Forecast Horizon h = 12 

RMSFE 0.053 0.054 0.053  0.050 0.052 0.050  0.050 0.053 0.051 
Sign 0.790 0.797 0.806  0.802 0.802 0.807  0.837 0.838 0.843 

ENCT test 0.000 1.991 0.145  0.000 1.538 0.822  0.000 1.512 0.699 
 (0.500) (0.023) (0.442)  (0.500) (0.062) (0.206)  (0.500) (0.065) (0.242) 

 Forecast Horizon h = 18 

RMSFE 0.090 0.090 0.086  0.090 0.087 0.082  0.086 0.083 0.078 
Sign 0.724 0.740 0.752  0.788 0.793 0.801  0.828 0.838 0.842 

ENCT test 1.116 2.010 2.918  1.207 1.598 2.626  1.432 1.601 2.640 

 (0.132) (0.022) (0.002)  (0.114) (0.055) (0.004)  (0.076) (0.055) (0.004) 
 Forecast Horizon h = 24 

RMSFE 0.125 0.121 0.114  0.140 0.131 0.124  0.136 0.126 0.120 

Sign 0.646 0.668 0.688  0.753 0.769 0.782  0.803 0.824 0.836 
ENCT test 2.219 3.518 2.949  1.780 2.052 2.680  2.251 1.989 2.730 

 (0.013) (0.000) (0.002)  (0.038) (0.020) (0.004)  (0.012) (0.023) (0.003) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of monthly housing prices based on a 

panel of 43 cross-sectional units spanning the period 1/1/2004- 1/12/2017.  We report the results of the root mean squared 

forecast errors (RMSFE) and the accuracy measure of the predicted direction of the housing price returns (sign) for forecast 

horizons 1, 3, 6, 12, 18, and 24 months-ahead. Panels A, B and C report the results when an estimation window of length equal to 

80 (approximately half of the time observations),60 (5 years) and 50 monthly (approximately 30% of the time observations) 

periods is used, respectively. The model specifications in columns (1) to (9) are described in equations (18)-(20). ENCT denote 

the Harvey, at al. (1998) forecast encompassing test described in equations (23)-(25). The p-values of the ENCT test statistics are 

in parentheses. The test results of the null hypothesis that the forecasts from an autoregressive specification encompass the 

forecasts from an autoregressive specification with NFER are presented at columns (1), (4) and (7).  The test results of the null 

hypothesis that the forecasts from an autoregressive specification with NFER encompass the forecasts from an autoregressive 

specification with NFER and MDRI growth rates are presented at columns (2), (5) and (8).  The test results of the null hypothesis 

that the forecasts from an autoregressive specification encompass the forecasts from an autoregressive specification with NFER 

and MDRI growth rates are presented at columns (3), (6) and (9).   
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Table 8: out-of-sample forecasting results of housing prices at the MSA-level within the 

time series ARDL framework  

 

Estimation 

window 

80  60  50 

Models ARDL ARDL 

with EA 

ARDL 

with 
EA, 

MDRI 

 

 ARDL ARDL 

with EA 

ARDL 

with 
EA, 

MDRI 

 

 ARDL ARDL 

with EA 

ARDL 

with EA, 
MDRI 

 

 (7) (8) (9)  (7) (8) (9)  (7) (8) (9) 

Comparing 

models : 

(7)-(8) (8)-(9) (7)-(9)  (7)-(8) (8)-(9) (7)-(9)  (7)-(8) (8)-(9) (7)-(9) 

 Forecast Horizon h = 1 

RMSFE 0.002 0.002 0.002  0.003 0.003 0.003  0.003 0.003 0.003 

Sign 0.918 0.916 0.919  0.904 0.904 0.904  0.911 0.913 0.912 
ENCT test 0.000 2.653 0.000  0.882 3.370 1.196  0.789 3.431 1.199 

 (0.500) (0.004) (0.500)  (0.189) (0.000) (0.116)  (0.215) (0.000) (0.115) 

 Forecast Horizon h = 3 

RMSFE 0.010 0.010 0.010  0.013 0.013 0.013  0.012 0.013 0.013 

Sign 0.907 0.899 0.903  0.896 0.887 0.890  0.908 0.905 0.907 

ENCT test 0.000 2.199 0.000  0.312 3.070 0.686  0.128 2.622 0.468 
 (0.500) (0.014) (0.500)  (0.377) (0.001) (0.246)  (0.449) (0.004) (0.320) 

 Forecast Horizon h = 6 

RMSFE 0.029 0.032 0.031  0.033 0.035 0.033  0.034 0.037 0.036 
Sign 0.891 0.892 0.893  0.881 0.877 0.879  0.897 0.900 0.902 

ENCT test 0.000 1.796 0.000  0.000 2.381 0.340  0.000 1.797 0.000 

 (0.500) (0.036) (0.500)  (0.500) (0.009) (0.367)  (0.500) (0.036) (0.500) 
 Forecast Horizon h = 12 

RMSFE 0.084 0.090 0.086  0.083 0.089 0.085  0.091 0.096 0.092 

Sign 0.836 0.852 0.847  0.843 0.851 0.854  0.875 0.887 0.889 
ENCT test 0.000 1.563 0.000  0.000 1.531 0.382  0.000 1.381 0.411 

 (0.500) (0.059) (0.500)  (0.500) (0.063) (0.351)  (0.500) (0.084) (0.341) 

 Forecast Horizon h = 18 

RMSFE 0.135 0.136 0.128  0.148 0.147 0.138  0.151 0.146 0.138 

Sign 0.776 0.805 0.810  0.818 0.831 0.844  0.853 0.872 0.883 

ENCT test 0.000 1.706 1.994  0.599 1.510 2.079  1.088 1.430 2.440 
 (0.500) (0.044) (0.023)  (0.274) (0.066) (0.019)  (0.138) (0.076) (0.007) 

 Forecast Horizon h = 24 

RMSFE 0.175 0.167 0.155  0.227 0.204 0.193  0.232 0.205 0.196 
Sign 0.698 0.738 0.760  0.786 0.812 0.832  0.835 0.858 0.874 

ENCT test 1.986 3.002 2.478  1.664 1.960 2.464  2.055 1.732 2.573 

 (0.024) (0.001) (0.007)  (0.048) (0.025) (0.007)  (0.020) (0.042) (0.005) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of monthly housing prices based on a 

panel of 20 cross-sectional units spanning the period 1/1/2004- 1/12/2017.  We report the results of the root mean squared 

forecast errors (RMSFE) and the accuracy measure of the predicted direction of the housing price returns (sign) for forecast 

horizons 1, 3, 6, 12, 18, and 24 months-ahead. Panels A, B and C report the results when an estimation window of length equal to 

80 (approximately half of the time observations), 60 (5 years)   and 50 monthly (approximately 30% of the time observations) 

periods is used, respectively. The model specifications in columns (1) to (9) are described in equations (18)-(20), with EA 

replacing the NFER terms. ENCT denote the Harvey, at al. (1998) forecast encompassing test described in equations (23)-(25). 

The p-values of the ENCT test statistics are in parentheses. The test results of the null hypothesis that the forecasts from an 

autoregressive specification encompass the forecasts from an autoregressive specification with EA are presented at columns (1), 

(4) and (7).  The test results of the null hypothesis that the forecasts from an autoregressive specification with EA encompass the 

forecasts from an autoregressive specification with EA and MDRI growth rates are presented at columns (2), (5) and (8).  The 

test results of the null hypothesis that the forecasts from an autoregressive specification encompass the forecasts from an 

autoregressive specification with EA and MDRI growth rates are presented at columns (3), (6) and (9).   
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Table 9: forecasting results of panel ARDL models with jackknife bias reduction  

 

 State-level data  MSA-level data 

models ARDL 

– CCE 
 

ARDL- 

CCE 
with 

NFER 

ARDL-

CCE 
with 

NFER, 

MDRI 

ARDL-

FE 
 

ARDL-

FE 
with 

NFER 

ARDL-

FE 
with 

NFER, 

MDRI 

 ARDL – 

CCE 
 

ARDL- 

CCE 
with EA 

ARDL-

CCE 
with 

EA, 

MDRI 

ARDL-

FE 
 

ARDL-

FE with 
EA 

ARDL-

FE with 
EA, 

MDRI 

 (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) (11) (12) 

Comparing 

models : 

(1)-(2) (2)-(3) (1)-(3) (4)-(5) (5)-(6) (4)-(6)  (4)-(5) (5)-(6) (4)-(6) (10)-(11) (11)-

(12) 

(10)-

(12) 

 Forecast Horizon h = 1 
RMSFE 0.001 0.001 0.001 0.003 0.001 0.001  0.002 0.002 0.002 0.006 0.003 0.003 

sign 0.882 0.883 0.880 0.853 0.858 0.851  0.932 0.936 0.936 0.922 0.915 0.917 

ENCT test 0.034 1.397 0.826 5.763 0.000 5.807  0.000 1.816 0.000 7.393 0.000 7.469 

 (0.487) (0.081) (0.204) (0.000) (0.500) (0.000)  (0.500) (0.035) (0.500) (0.000) (0.500) (0.000) 

 Forecast Horizon h = 3 
RMSFE 0.005 0.005 0.005 0.010 0.006 0.006  0.007 0.009 0.009 0.019 0.011 0.011 
sign 0.895 0.903 0.906 0.864 0.865 0.864  0.938 0.928 0.936 0.919 0.906 0.911 

ENCT test 0.194 1.612 0.883 3.509 0.971 3.491  0.000 2.337 0.000 4.071 0.443 4.088 

 (0.423) (0.053) (0.189) (0.000) (0.166) (0.000)  (0.500) (0.010) (0.500) (0.000) (0.329) (0.000) 
 Forecast Horizon h = 6 
RMSFE 0.012 0.014 0.013 0.023 0.016 0.016  0.022 0.029 0.026 0.044 0.033 0.033 

sign 0.909 0.916 0.922 0.871 0.870 0.873  0.934 0.902 0.911 0.913 0.889 0.894 
ENCT test 0.000 2.257 0.000 2.387 0.559 2.413  0.000 2.048 0.000 1.927 0.803 1.991 

 (0.500) (0.012) (0.500) (0.008) (0.288) (0.008)  (0.500) (0.020) (0.500) (0.027) (0.211) (0.023) 
 Forecast Horizon h = 12 
RMSFE 0.034 0.040 0.036 0.059 0.045 0.044  0.063 0.080 0.066 0.102 0.092 0.089 

sign 0.898 0.899 0.915 0.844 0.846 0.858  0.891 0.869 0.907 0.868 0.841 0.856 
ENCT test 0.000 1.865 0.000 1.935 0.907 1.884  0.000 1.431 1.600 1.122 1.100 1.452 

 (0.500) (0.031) (0.500) (0.027) (0.182) (0.030)  (0.500) (0.076) (0.055) (0.131) (0.136) (0.073) 

 Forecast Horizon h = 18 
RMSFE 0.054 0.059 0.048 0.093 0.066 0.065  0.091 0.098 0.076 0.143 0.129 0.123 

sign 0.875 0.862 0.889 0.814 0.840 0.852  0.846 0.849 0.929 0.816 0.809 0.828 

ENCT test 0.000 2.900 1.638 1.417 1.432 1.420  0.158 1.753 1.916 2.173 1.100 4.403 
 (0.500) (0.002) (0.051) (0.078) (0.076) (0.078)  (0.437) (0.040) (0.028) (0.015) (0.136) (0.000) 

 Forecast Horizon h = 24 
RMSFE 0.072 0.075 0.057 0.112 0.077 0.073  0.111 0.091 0.077 0.169 0.147 0.137 
sign 0.873 0.864 0.888 0.775 0.827 0.849  0.828 0.868 0.934 0.752 0.776 0.812 

ENCT test 0.380 8.635 2.196 1.286 3.652 1.436  2.508 6.918 2.789 5.498 1.555 3.147 

 (0.352) (0.000) (0.014) (0.099) (0.000) (0.076)  (0.006) (0.000) (0.003) (0.000) (0.060) (0.001) 

Notes: the table demonstrates the results of the out-of-sample rolling window forecasts of housing prices based on ARDL models 

with common correlated effects and fixed effects panel regressions estimated by the jackknife bias reduction method of Chudik 

and Pesaran (2015).  We report the results of the root mean squared forecast errors (RMSFE) and the accuracy measure of the 

predicted direction of the housing price returns (sign) for forecast horizons 1, 3, 6, 12, 18, and 24 months-ahead. An estimation 

window of length equal to 80 (approximately half of the time observations) monthly periods is used. The model specifications in 

columns (1) to (3) are described in equations (12)-(14), whereas the model specifications in columns (4) to (6) are described in 

equations (20)-(22). The model specifications in columns (7) to (9) are described in equations (12)-(14), whereas the model 

specifications in columns (10) to (12) are described in equations (20)-(22), with EA replacing all relevant NFER terms (lagged 

NFER and cross-sectional averages). ENCT denote the Harvey, at al. (1998) forecast encompassing test described in equations 

(23)-(25). The p-values of the ENCT test statistics are in parentheses. The test results of the null hypothesis that the forecasts 

from an autoregressive specification encompass the forecasts from an autoregressive specification with NFER (EA) are presented 

at columns (1), (4), (7) and (10).  The test results of the null hypothesis that the forecasts from an autoregressive specification 

with NFER (EA) encompass the forecasts from an autoregressive specification with NFER (EA) and MDRI growth rates are 

presented at columns (2), (5), (8) and (11).  The test results of the null hypothesis that the forecasts from an autoregressive 

specification encompass the forecasts from an autoregressive specification with NFER (EA) and MDRI growth rates are 

presented at columns (3), (6), (9) and (12).  We present the results for the state-level data, a panel consisting of 43 cross-sectional 

units and 168 monthly observations, and the MSA-level data, a panel consisting of 20 cross-sectional units and 168 monthly 

observations. 

 

 


