Growth Dynamics, Multiple Equilibria, and Local Indeterminacy in an Endogenous Growth Model of Money, Banking and Inflation Targeting

Rangan Gupta
University of Pretoria
Philton Makena
University of Pretoria
August 2019
Growth Dynamics, Multiple Equilibria, and Local Indeterminacy in an Endogenous Growth Model of Money, Banking and Inflation Targeting

Rangan Gupta∗ Philton Makena†

August 6, 2019

Abstract

We develop an overlapping generations monetary endogenous growth (generated by productive public expenditures) model with inflation targeting, characterized by relocation shocks for young agents, which in turn generates a role for money (even in the presence of the return-dominating physical capital) and financial intermediaries. Based on this model, we show that two distinct growth paths emerge conditional on a threshold value of the share of physical capital in the production function. Along one path, we find convergence to a single stable equilibrium, and on the other path, we find multiple equilibria: a stable low-growth and an unstable high-growth, with the stable low-growth equilibrium found to be locally indeterminate. Since, government expenditure is productive in our model, a higher inflation-target would translate into higher growth, but under multiple equilibria, this is not necessarily always the case.

JEL Classification: C62, O41, O42
Keywords: Endogenous Growth, Inflation targeting, Growth Dynamics

∗To whom correspondence should be addressed. Department of Economics, University of Pretoria, Pretoria, 0002, South Africa. Email: rangan.gupta@up.ac.za.
†Department of Economics, University of Pretoria, Pretoria, 0002, South Africa. Email: philton.makena@gmail.com.
1 Introduction

Introducing (non-interest bearing) money in general equilibrium models with single or multiple assets that yield non-negative nominal interest rate is, understandably, not straightforward. In this regard, multiple modelling approaches exist to motivate the role of money in such models; for example, money in the production function, money in the utility, cash-in-advance, shopping time, money search, mandatory cash reserve requirements (see Walsh (2017) for a detailed discussion of these models). Following Diamond and Dybvig (1983), an alternative approach to create a role of currency for transactions in general equilibrium models, even if money is dominated in the rate of return, is based on spatial separation and limited communication. In this context, economic agents are subject to random relocation (liquidity preference) shocks, and fiat money is the only asset available to relocating agents for smoothing consumption at the new location, since they would have given up their claims on returns to capital that they held at their old location.

By modelling money in this manner, a number of recent studies have analyzed the effects of traditional monetary policies, i.e., money growth rate and cash-reserve requirements (which the financial intermediaries in the model are subjected to), and fiscal policy on growth, inflation and welfare in endogenous growth models (see for example, Espinosa-Vega and Yip (1996, 1999, 2002), Gupta (2007), Bose et al. (2007), Ghosh and Neanidis (2017)). Against this backdrop, our paper aims to build on this line of theoretical set-up of incorporating money, by introducing, for the first time in this literature, a monetary authority that targets the inflation rate rather than the money growth rate, given the growing importance of inflation-targeting across the world.\footnote{At the time the paper was being written, there were as many as central banks targeting inflation.}

Specifically speaking, we develop an overlapping generations (OLG) monetary endogenous growth (due to public expenditures in the firms’ production function) model with inflation-targeting, characterized by relocation shocks for young agents, which in turn generates a role for money (even in the presence of the return-dominating physical capital) and financial intermediaries. Given this model, we show that two distinct growth paths emerge conditional on a threshold value of the the share of physical capital in the production function. In particular, we obtain one path with convergence to a single stable equilibrium, and the other a path that produces multiple equilibria: one stable low-growth and the other unstable high-growth. In addition, under the case of multiple equilibria, the stable low-growth equilibrium is found to be locally indeterminate. Since, government expenditure is productive in our model, a higher inflation-target would translate into higher growth, but under multiple equilibria, an increase in the inflation-target is not necessarily going to be growth-enhancing at the high-growth unstable equilibrium.

Our paper, in the process, also adds to the recent literature of monetary endogenous growth OLG models with money being modelled either through the cash-in-advance constraint or cash-reserve requirements of banks, that has shown the existence of growth dynamics, multiple equilibria (with possibility of chaos), and local indeterminacy (see for example, Gupta and Vermeulen (2010), Gupta (2011), Kudoh (2013), Gupta and Stander...
However, unlike these papers, which rely on an ad hoc approach of modelling financial intermediaries, we are able to provide a solid reasoning of the existence of banks based on the liquidity shock characterizing our model. Further, in our framework, we are also able to analyze growth dynamics and the impact of changes in the inflation-target by accommodating for the existence of unofficial financial markets, which are widely witnessed within the financial system of many developing economies (see Gupta (2008, 2009), Goswami and Gupta (2009), and references cited therein for detailed discussion in this regard).

The remainder of the paper proceeds as follows: Section 2 outlines the economic environment. Section 3 develops the benchmark version of the monetary endogenous growth OLG model, while Section 4 provides several extensions of benchmark model, with which we analyze growth dynamics, as well as, impact of the changes in the inflation target. Section 5 offers some concluding remarks.

2 The Economic Environment

The economy has four principal agents, namely two-period lived overlapping generations consumers, financial intermediaries (banks), firms and an infinitely-lived government. There exists an infinite sequence of two-period-lived overlapping generations, besides, an initial old generation. At each date $t = 0, 1, 2, \ldots$, young agents are assigned to one of two symmetric locations (indexed by $j = 1, 2$). Without loss of generality, each location is assumed to contain a continuum of young agents with unit mass. In each location, an individual firm produces a perishable consumption good (y_t) by employing physical capital (k_t), labour (n_t) and a publicly-provided intermediate input (g_t). Formally, the production function is as follows:

$$y_t = A k_t^\alpha (n_t g_t)^{1-\alpha}$$ \hspace{1cm} (1)

where $A > 0$ is a technology parameter, $0 < \alpha (1 - \alpha) < 1$ is the elasticity of output with respect to capital and labour or productive government expenditure, respectively. The firms’ unit of capital at time $t + 1$ is acquired out of forgoing a unit of the consumption good at time t. Note that (1) is subject to constant returns to scale in k and n whereas there are increasing returns to scale in all the three inputs, k, n and g. As in Bencivenga and Smith (1991, 1992), we assume that there are no retail markets for capital such that each firm uses only its own capital in production. Following Barro (1990), we assume that g is non-rival and non-excludable and that each firm takes the level of g as given while solving its own optimization problem. As such, (1) exhibits private diminishing returns. We also assume that except for the initial old, agents have no endowment of capital or consumption goods.

We assume that all young agents are ex ante identical and are endowed with one unit of labour which they supply inelastically in time t and earn a real wage, w_t. They retire when old and only care about old-age consumption and as such they save all of the time t wage income. We have that c_{it} is the age i consumption of a representative agent of
generation time t such that the life-time utility is defined by a preference function of the form

$$U(c_{1t}, c_{2t}) = \log(c_{2t})$$

(2)

As pointed out above, young agents are assigned to two symmetric locations (indexed by $j = 1, 2$) at each time period, t. At the beginning of each period, agents are completely separated by location and all transactions in goods, labour and assets are conducted in autarky within each location. The source of differences among young agents emanate from their locations ex post. In each of the two locations, a fraction $0 < \sigma < 1$ of young agents are randomly relocated to the other location. The probability of relocation σ, is constant across periods, identically and independently distributed (i.i.d) across agents and is known to all agents.

The economy is populated by a finite number of banks that are regarded as being cooperative entities set up by an alliance of young-age consumers. By design, banks can exploit the law of large numbers whereas individuals cannot. Hence, if banks exist then all savings will be intermediated, as detailed in Diamond and Dybvig (1983). Banks accept deposits, D_t from young-age consumers at each time period t and use them to acquire two primary assets available in the economy: fiat money, M_t, and capital, K_t. These two assets are created in order to maximize young-age consumers’ lifetime utility given by (2). Similar to the spatial separation form of overlapping generation models of Townsend (1987), Champ et al. (1996), Espinosa-Vega and Yip (1996) and Gupta (2007), our model set up implies that the stock of nominal money, M_t, is the only asset available to relocating young agents for consumption at the new location as they would have given up their claims on returns to their capital.

The government, which is assumed to be infinitely-lived and made up of only the inflation-targeting monetary wing for the sake of simplicity and without loss of generality, purchases g_t units of consumption goods. Government expenditure is assumed to be a productive factor in the firms’ production function. Government’s productive consumption expenditure is wholly financed by seigniorage (inflation tax).

3 The Benchmark Model

Below we present the optimized solutions of the various agents in the economy, with details of the derivation provided in Appendix A.

3.1 Factor Markets

If we take the real wage, w_t, real rental of capital, r_t and public capital g_t to be parametric, then the firms’ profit maximization implies that factors are rewarded according to their respective marginal productivities. Formally,

$$n_t : w_t = (1 - \alpha)A\left(\frac{k_t}{n_t}\right)^{\alpha} g_t^{1-\alpha}$$

(3)
(3) represents the optimal hiring decision for a firm. The firm will hire labour up to a point whereby the marginal product of labour is equal to the real wage and

\[k_t : r_t = \alpha A k_t^{a-1} (n_t g_t)^{1-a} \]

(4)

3.2 Financial Intermediaries

Since all the wage income earned in period \(t \) is saved and deposited with the bank, bank deposits, in real terms, are represented by

\[d_t = w_t \]

(5)

and banks choose \(q_t \), the fraction of deposits to hold as capital, such that the evolution of capital stock is governed by

\[k_{t+1} = q_t w_t \]

(6)

and a fraction, \(1 - q_t \) to hold as fiat money, in real terms, expressed as

\[\frac{M_t}{p_t} = m_t = (1 - q_t) w_t \]

(7)

On one hand, banks receive a gross real return \(\frac{p_t}{p_{t+1}} = \frac{1}{\Pi_{t+1}} \equiv R_t^m \) on their holdings of fiat money, where \(\Pi_{t+1} \) is the gross rate of inflation. Banks also receive \(r_{t+1} \) on their capital investment. On the other hand, banks pay individual depositors moving to another location a gross real return, \(R_t^a \) and also pay \(R_t^s \) to those depositors remaining at the original location.

Banks choose \(q_t \) to maximize the expected lifetime utility of the representative young-age depositor

\[\max_{0 \leq q_t \leq 1} V = \ln(d_t) + \sigma \ln [R_t^a] + (1 - \sigma) \ln [R_t^s] \]

(8)

subject to

\[\sigma R_t^a = \frac{(1 - q_t)}{\Pi_{t+1}} \]

(9)

and

\[(1 - \sigma)R_t^s = q_t r_{t+1} \]

(10)

(9) represents a condition that should hold for relocated young agents who are to be given fiat money by the bank and whose return to each unit is \(\frac{1}{\Pi_{t+1}} \). (10) entails that young agents staying at the same location should be repaid from the bank’s investment returns earned from deposits made in time \(t \), hence \(R_t^s \) must satisfy the second constraint (10). The solution to maximizing problem (8) subject to (9) and (10) is given by

\[q_t = q = (1 - \sigma) \]

(11)
3.3 Government

The government’s budget constraint at time t, in real per-capita terms, is:

$$g_t = \frac{M_t - M_{t-1}}{p_t}$$

(12)

where p_t denotes the economy’s price level. We deliberately ignore taxes to keep our model simple without affecting the main results. The government coordinates operations of the central bank, which serves the government’s interests. The government, through the central bank, conducts an inflation targeting framework with a goal to maintain price stability.

With Ω_t defined as the period t gross growth rate of the economy at time t, and Π_t is the time t gross inflation and that in this model’s monetary regime, the government targets inflation such that $\Pi_t = \bar{\Pi}$, the government’s budget constraint, in real terms, can be expressed as

$$g_t = m_t \left(1 - \frac{1}{\Omega_t \bar{\Pi}}\right)$$

(13)

3.4 Household’s Portfolio Decisions

The portfolio optimization problem of the young-age consumer is as follows: the entire wage earnings, w_t, are saved by way of being deposited into the bank in the form of d_t. From (5), (6) and (7), let $d_t = \psi_1$, $m_t = \psi_2$ and $k_t = (1 - \psi_1 - \psi_2)$ such that the young-age consumer solves the following problem

$$\max_{\psi_1, \psi_2} \ln[w_t] + \sigma \ln[\psi_1 R^s_t + \psi_2 R^m_t] + (1 - \sigma) \ln[\psi_1 R^f_t + \psi_2 R^m_t + (1 - \psi_1 - \psi_2) r_{t+1}]$$

(14)

Assuming that capital returns dominate real balances such that $r_{t+1} > R^m_t$ and hence $\psi_2 = 0$, solving (14) under this assumption gives us the optimality solution for ψ_1, which is

$$\psi_1 = \frac{\sigma (r_{t+1})}{r_{t+1} - R^s_t}$$

(15)

with $r_{t+1} \geq R^s_t$. Since the upper limit of R^s_t is r_{t+1}, it implies that when $r_{t+1} = R^s_t$, $\psi_1 = 1$.

3.5 Equilibrium

- Given w_t, R^s_t, R^m_t, Π_{t+1} and r_t, a bank chooses q_t to maximize expected lifetime utility of the depositor, (8), subject to (9) and (10).

- Given w_t, R^s_t, R^m_t, Π_{t+1} and r_{t+1}, young agents maximize their utility (2), by choosing ψ_1 with $\psi_2 = 0$.

- Given g_t, w_t and r_{t+1}, firms maximize profits and (3) and (4) holds.
• Money market equilibrium conditions: \(\frac{M_t}{p_t} = m_t = (1 - q_t)w_t \) is satisfied for all \(t \geq 0 \).

• The loanable funds market equilibrium condition: \(k_t = q_t w_t \) is satisfied for all \(t \geq 0 \).

• The good market equilibrium condition requires: \(c_{2t} + k_t + g_t = Ak_t^\alpha (g_t n_t)^{(1-\alpha)} \) is satisfied for all \(t \geq 0 \).

• The labour market equilibrium condition: \(n_t = 1 \) for all \(t \geq 0 \).

• The government budget constraint (12) is balanced on a period by period basis.

• \(d_t, r_{t+1} \) and \(p_t \) must be positive at all dates with \(r_{t+1} > R^{m}_t \).

3.6 Steady-state Growth

Assuming that there are no legal restrictions on the financial intermediaries, then \(\psi_1 = 1 \) in equilibrium and all primary asset holdings are intermediated such that

\[
k_{t+1} = q_t w_t
\]

Substituting (12) into (3) and using the money market equilibrium, the government budget constraint and \(q = 1 - \sigma \), we obtain the gross growth rate of the economy to be

\[
\Omega_{t+1} = \frac{k_{t+1}}{k_t} = (1 - \sigma)(A(1 - \alpha))^{\frac{\alpha}{\alpha}} \left[\sigma \left(1 - \frac{1}{\Omega_t^\ast \Pi} \right) \right]^{\frac{1-\alpha}{\alpha}}
\]

Going by (17), the economy’s growth rate at time \(t + 1 \), i.e., \(\Omega_{t+1} \) is a function of the same at time \(t \), i.e., \(\Omega_t \), and hence, this economy will have transitional dynamics. Note if the monetary authority followed a traditional money growth-rule, i.e., say \(M_t = \mu_t M_{t-1} \), with \(\mu \) being the gross growth rate of nominal money balances, then the growth path would be: \(\Omega_{t+1} = \frac{k_{t+1}}{k_t} = (1 - \sigma)(A(1 - \alpha))^{\frac{\alpha}{\alpha}} \left[\sigma \left(1 - \frac{1}{\mu_t} \right) \right]^{\frac{1-\alpha}{\alpha}} \), i.e., there would be no growth dynamics. In other words, the inflation-targeting behaviour of the central bank is what produces the growth dynamics in our model.

4 The Model with Compulsory Reserve Requirements

In this section, we subject banks to compulsory cash reserve requirements that are administered by the government. We follow Bencivenga and Smith (1992), Espinosa-Vega and Yip (1996) and Gupta (2007) in setting out the obligatory reserve requirement as a cap on the portion of banks’ portfolio that can be held as capital. This implies that we restrict (11) to \(\bar{q} < (1 - \sigma) \), where \(\bar{q} \) represents the obligatory reserve requirement.

In an environment with binding reserve requirements, banks are limited to set the fraction of their portfolio held as capital to \(0 \leq \bar{q} \leq (1 - \sigma) \). In this set up, (15), which
equates ψ_1 to 1, may not hold. The implication of this is that banks will not be in a position to intermediate all the primary assets. The mandatory reserve requirements can be so severe to the extent that $\psi_1 < 1$. In this case, some investments would have to be financed internally. In the face of obligatory reserve requirements, the benchmark model resource constraints given by (9) and (10) change to

$$\sigma R_t^a = \frac{(1 - \bar{q})}{\bar{\Pi}_{t+1}} > \frac{1}{\bar{\Pi}_{t+1}}$$ \hspace{1cm} (18)

$$(1 - \sigma) R_t^s = \bar{q} r_{t+1} < r_{t+1}$$ \hspace{1cm} (19)

Even though banks are subjected to a repressive financial sector in the form of binding reserve requirements, from (15) and (19) we can establish the interval within which the government can facilitate that all agents be able to intermediate their entire savings through banks. Specifically, we can have $\psi_1 = 1$ if and only if $(1 - \sigma)^2 \leq \bar{q} \leq (1 - \sigma)$.

In the case whereby banks are restricted to invest a fraction, \bar{q} of their deposits into capital, the economy’s time $t + 1$ gross growth rate (Ω_{t+1}) is given by

$$\Omega_{t+1} = \bar{q}(A(1 - \alpha))^{\frac{1}{\alpha}} \left[(1 - \bar{q}) \left(1 - \frac{1}{\Omega_t \bar{\Pi}} \right) \right]^{\frac{1-\alpha}{\alpha}}$$ \hspace{1cm} (20)

We proceed to analyse the growth dynamics of the model with compulsory reserve requirements. According to (20), the economy’s growth dynamics are centred on the relationship between Ω_{t+1} and Ω_t, in that $\Omega_{t+1} = f(\Omega_t)$. There is a positive relationship between Ω_{t+1} and Ω_t in that an increase in Ω_t leads to an increase in the reserve-augmented seigniorage revenue for the government. This increases the ratio of real government expenditure to the real wage, $\frac{q_t}{w_t} = (1 - q_t) \left(1 - \frac{1}{\Omega_t \bar{\Pi}} \right)$, and hence a higher gross growth rate, Ω_{t+1} emanating from higher government productive expenditure. The model’s possible growth path(s), including the position and equilibrium, is (are) dependent on the values of parameters A, \bar{q}, α and $\bar{\Pi}$, give Ω_t. The relationship between Ω_{t+1} and Ω_t can be inferred from the first derivative of Ω_{t+1} with respect to (w.r.t) Ω_t and is

$$\frac{\partial \Omega_{t+1}}{\partial \Omega_t} = \bar{q}(1 - \bar{q})^{\frac{1-\alpha}{\alpha}} A^{\frac{1}{\alpha}} (1 - \alpha)^{\frac{1+\alpha}{\alpha}} \left(1 - \frac{1}{\Omega_t \bar{\Pi}} \right)^{\frac{1-2\alpha}{\alpha}}$$ \hspace{1cm} (21)

According to (21), $\frac{\partial \Omega_{t+1}}{\partial \Omega_t} > 0$. This confirms that (20) is an increasing function in that an increase in Ω_t is associated with an increase in Ω_{t+1}. The curvature of the gross growth path represented by (20) is dependent on the value of the parameter α. To show this, we proceed to compute the second derivative of Ω_{t+1} w.r.t Ω_t and is given by

$$\frac{\partial^2 \Omega_{t+1}}{\partial^2 \Omega_t} = \bar{q}(1 - \bar{q})^{\frac{1-\alpha}{\alpha}} A^{\frac{1}{\alpha}} (1 - \alpha)^{\frac{1+\alpha}{\alpha}} \left(1 - \frac{1}{\Omega_t \bar{\Pi}} \right)^{\frac{1-3\alpha}{\alpha}} \left[\frac{1}{\alpha \Omega_t \bar{\Pi}} - 2 \right]$$ \hspace{1cm} (22)

From (22), the curvature of (20) is dependent on the value of α that can be derived from the last part of the right-hand-side of (22) in square-brackets, which is $\left[\frac{1}{\alpha \Omega_t \bar{\Pi}} - 2 \right]$.

8
For values of $\alpha > \frac{1}{2\Omega_t \Pi}$, (22) is negative, implying that the slope of the tangent line to (20) is decreasing as Ω_t increases. Figure 1(a) plots the resultant growth path for Ω_{t+1} as a function of Ω_t. Understandably, Figure 1(a)'s equilibrium at E_0 is stable under perfect foresight, since the f loci intersects the 45 degree line from above, at E_0. Note that, when Ω_t is equal one, i.e., zero net growth, Ω_{t+1} will be non-zero, with the positive vertical intercept of the f locus being $\bar{q}(A(1-\alpha))^{\frac{1}{\alpha}} \left[(1-\bar{q}) \left(1 - \frac{1}{\Pi} \right) \right]^{\frac{1-\alpha}{\alpha}}$.

Figure 1: Growth Dynamics with Compulsory Reserve Requirements

![Figure 1](image)

(a) Convergent Growth Path (b) Divergent Growth Path with multiple equilibria

Next, for $\alpha < \frac{1}{2\Omega_t \Pi}$, (22) is positive, thus the slope of the tangent line to (20) increases as Ω_t increases. As depicted in Figure 1(b), multiple equilibria emerges in this case. E'_0 is a stable low-growth equilibrium while E'_1 is an unstable high-growth equilibrium, with deviation from it taking the system away or towards E'_0, since the f loci intersects the 45 degree line from above and below respectively. Furthermore, although k_{t-1} is a state variable and cannot jump, $\Omega_t \neq \frac{k_t}{k_{t-1}}$ is not a state variable and, hence, can jump. This resultant jump then implies that there is infinitely many rational expectations paths to the low-growth and stable equilibrium from any initial given value for k_1. Hence, the stable equilibrium in this economy at E'_0 suffers from local indeterminacy, as there is still asymptotic convergence to the balanced growth path.

Finally note that, depending on whether the level of the reserve requirement is $(1-\sigma)$ or $(1-\sigma)^2$, there are two alternative gross growth paths for Ω_{t+1}:

$$
\Omega_{t+1}^1 = (1-\sigma)^2 \left(A(1-\alpha) \right)^{\frac{1}{\alpha}} \left[(1 - (1-\sigma)^2) \left(1 - \frac{1}{\Omega_t \Pi} \right) \right]^{\frac{1-\alpha}{\alpha}}
$$

and

$$
\Omega_{t+1}^2 = (1-\sigma) \left(A(1-\alpha) \right)^{\frac{1}{\alpha}} \left[\frac{1}{\Omega_t \Pi} \left(1 - \frac{1}{\Omega_t \Pi} \right) \right]^{\frac{1-\alpha}{\alpha}}
$$

We can show that for $\sigma^2 - 3\sigma + 2 \geq 1$, or alternatively, for $\sigma \geq \frac{3+\sqrt{5}}{2}$, we have $\Omega_{t+1}^2 \geq \Omega_{t+1}^1$. The other root of σ is obtained from $\sigma^2 - 3\sigma + 2 = 1$ or $\sigma^2 - 3\sigma + 1 = 0$ and $\frac{3+\sqrt{5}}{2} > 1$, hence implausible.
4.1 The Model with Different Inflation Targets

Next we analyze the growth dynamics with binding reserve requirements and different inflation targets, focusing on the relationship between Ω_{t+1} and $\hat{\Pi}$ as given by (20). The target inflation, $\hat{\Pi}$, determines the position of gross growth path. Going by (20), the impact of increasing (lowering) $\hat{\Pi}$ is to move the $t+1$ gross growth curve up (down), which is understandable, given that seigniorage-financed government expenditure is productive. Formally, we infer the relationship between Ω_{t+1} and $\hat{\Pi}$ from the first derivative of Ω_{t+1} w.r.t $\hat{\Pi}$ and is

$$\frac{\partial \Omega_{t+1}}{\partial \hat{\Pi}} = \bar{q}(1 - \bar{q})^{\frac{1-\alpha}{\alpha}} \frac{(1 - \alpha)^{\frac{1+\alpha}{\alpha}}}{\alpha \Omega_t \hat{\Pi}^2} \left(1 - \frac{1}{\Omega_t \hat{\Pi}}\right)^{\frac{1-2\alpha}{\alpha}} \tag{25}$$

According to (25), $\frac{\partial \Omega_{t+1}}{\partial \hat{\Pi}} > 0$, and hence an increasing function of $\hat{\Pi}$. The resulting upward movement in the growth paths following an increase in the inflation-target are illustrated in Figure 2 below by the black-dashed curves.²

Figure 2: Growth Dynamics with Different Inflation Targets

(a) Convergent Growth Path (b) Divergent Growth Path with multiple equilibria

The policy implication of this result is that even if seigniorage-financed government expenditure is productively used, an increase in the inflation-target might not yield growth-enhancing effects, with the outcome being conditional on the threshold value of α, i.e., $\frac{1}{2\Omega_t \hat{\Pi}}$. If α, i.e., the elasticity of per capita output with respect to per capita capital stock falls below the threshold, multiple equilibria will emerge, and a higher inflation-target will not increase growth in the high-growth equilibrium. Put differently, too much weight on productive public input (i.e., higher value of $(1 - \alpha)$) at the cost of private capital, is likely to yield multiple equilibria, local indeterminacy, along with a

²Understandably, the movement is not going to be parallel, since $\frac{\partial \Omega_{t+1}}{\partial \hat{\Pi}}$ is dependent on Ω_t, with the shift actually declining at higher levels of Ω_t, since $\frac{\partial \Omega_{t+1}}{\partial \hat{\Pi}}$ will tend towards zero as Ω_t approaches ∞.

10
possible growth-reducing impact of an increase in productive public expenditure derived from higher seigniorage associated with a higher inflation-target.

4.2 The Model with an Unofficial Financial Market (UFM)

Most developing economies’ financial markets are largely shallow, not organized and characterized by active and competitive unofficial financial markets (UFMs), as discussed in Gupta (2008, 2009), Goswami and Gupta (2009).3 These UFMs play a greater financial intermediation role in developing economies, compared to the official banking system. This is so since UFMs are not subjected to reserve requirement policies. In cases where banks are subjected to stringent reserve requirement policies, then only a part of the capital formation is done through the official banking system, i.e., we have $\psi_1 < 1$, indicating high reserve requirements, in particular, whenever $\bar{q} < (1-\sigma)^2$. When reserve requirements are very high, young agents will only save $\psi_1 = \frac{\sigma r_{t+1}}{1 + k_{t+1} - R_s}$ with banks and the remaining in the UFM. This can be considered a rational decision considering that UFMs are free of any reserve requirements. Given that UFMs exist in developing economies, we analyse the growth dynamics in this context. Using (11) and (15), we have

$$\psi_1 = \frac{\sigma(1-\sigma)}{1-\sigma-\bar{q}}$$

where $\bar{q} \in (0, (1-\sigma)^2)$. In the presence of UFMs, the size of investment in physical capital stock is given by

$$k_{t+1} = [(1-\sigma)(1-\psi_1) + \psi_1 \bar{q}] w_t$$

The first term on the right-hand-side of the expression represents the size of the self-financed capital investment while the second term gives the investment by the financial intermediaries. Using (3), (12), (26) and (27) and the fact that only market equilibrium and government budget constraint hold, we can derive the expression for the gross rate of growth as follows:

$$\Omega_{t+1} = (1-\sigma)^2 (A(1-\alpha))^{\frac{\alpha}{1-\alpha}} \left[(1-\bar{q}) \left(1 - \frac{1}{\Omega_t \Pi} \right) \right]^{\frac{1-\alpha}{\alpha}}$$

Comparing with (20) when no UFM exists, the economy’s growth path with UFM will yield similar growth dynamics contingent on the value of α being $> \alpha < \frac{1}{2\Omega_t \Pi}$. In other words, our theoretical results tend to carry over, and are robust to whether we are analyzing a developed inflation-targeting economy or an underdeveloped one, with the latter characterized by UFM.

5 Conclusion

In this paper, we develop an overlapping generations monetary endogenous growth model with an inflation-targeting central banker. Growth is endogenized by incorporating government expenditure into the production function, while relocation shocks on young agents generate a role for money, even in the presence of the return-dominating asset of physical capital, and financial intermediaries. Given this framework, we show that growth dynamics arise, with two distinct growth paths emerging conditional on a threshold value of the the share of physical capital in the production function. In particular, we obtain one path with convergence to a single stable equilibrium, while under the other a path multiple equilibria are produced. In the latter case, we specifically have one stable low-growth equilibrium and the other an unstable high-growth equilibrium. In addition, the stable low-growth equilibrium is found to be locally indeterminate. Since, government expenditure is productive in our model, a higher inflation-target would translate into higher growth, but under multiple equilibria, an increase in the inflation target is not necessarily found to be growth-enhancing at the high-growth unstable equilibrium. Finally, realizing that developing economies are characterized by unofficial financial markets, we also account for this feature in our model as an extension. We find that even under this augmentation of the model, our basic results continue to be robust.
References

A Appendix

A.1 Optimization Solution for Young-age Consumer

Bank deposits, in real terms, are represented by

\[d_t = w_t \] \hspace{1cm} (A.1)

Young-age consumers choose \(q_t \), the fraction of the banks’ deposits to hold as capital, that is

\[k_t = q_t w_t \] \hspace{1cm} (A.2)

and a fraction, \(1 - q_t \) as fiat money, expressed as

\[\frac{M_t}{P_t} = m_t = (1 - q_t)w_t \] \hspace{1cm} (A.3)

The capital stock evolves according to the following

\[k_{t+1} = q_t w_t \] \hspace{1cm} (A.4)

A.2 Optimization Solution for Banks

Banks choose \(q_t \) to maximize the expected lifetime utility of the representative young-age depositor

\[\max_{0 \leq q_t \leq 1} V = \ln(d_t) + \sigma \ln[R^a_t] + (1 - \sigma) \ln[R^s_t] \] \hspace{1cm} (A.5)

subject to

\[\sigma R^a_t = (1 - q_t)R^m_t \] \hspace{1cm} (A.6)

\[(1 - \sigma)R^s_t = q_t r_{t+1} \] \hspace{1cm} (A.7)

Given (B.6) and (B.7), we can then re-write (A.5) as follows

\[\max_{0 \leq q_t \leq 1} V = \ln(w_t) + \sigma \ln \left[\frac{(1 - q_t)R^m_t}{\sigma} \right] + (1 - \sigma) \ln \left[\frac{q_tr_{t+1}}{(1 - \sigma)} \right] \] \hspace{1cm} (A.8)

where \(R^m_t \) and \(r_{t+1} \) are taken to be given. The solution to this problem is given by

\[R^a_t : \lambda_t = -\frac{\sigma}{1 - q_t} \]

\[R^s_t : \lambda_t = -\frac{1 - \sigma}{q_t} \]

Hence,

\[q_t = q = (1 - \sigma) \] \hspace{1cm} (A.9)
A.3 Optimization solutions for Young-age Consumer

The portfolio optimization problem of the young-age consumer is as follows: The entire period \(t \) wage, \(w_t \), is saved by way of being deposited into the bank in the form of \(d_t, k_t \) and \(m_t \) are created in order to maximize young agents’ lifetime utility given by (2). From (5), (6) and (7), let \(d_t = \psi_1, m_t = \psi_2 \) and \(k_t = (1 - \psi_1 - \psi_2) \) such that the young-age consumer solves the following problem

\[
\max_{\psi_1, \psi_2} \left[\ln w_t + \sigma \ln \left(\psi_1 R_t^\alpha + \psi_2 R_t^{m} \right) + (1 - \sigma) \ln \left(\psi_1 R_t^s + \psi_2 R_t^{m} + (1 - \psi_1 - \psi_2) r_{t+1} \right) \right] \quad (A.10)
\]

Assuming that capital returns dominate real balances such that \(r_{t+1} > R_t^m \) and hence \(\psi_2 = 0 \), solving B.10 under this assumption gives the optimality solution for \(\psi_1 \) as

\[
\sigma \psi_1 + \frac{(1 - \sigma)(R_t^s - r_{t+1})}{\psi_1 R_t^s + (r_{t+1})(1 - \psi_1)} = 0
\]

\[
\sigma [\psi_1 R_t^s + (r_{t+1})(1 - \psi_1)] + \psi_1 [(1 - \sigma)(R_t^s - r_{t+1})] = 0
\]

\[
\sigma \psi_1 R_t^s + \sigma r_{t+1} - \sigma \psi_1 r_{t+1} + \psi_1 R_t^s - \sigma \psi_1 R_t^s - \psi_1 r_{t+1} + \sigma \psi_1 r_{t+1} = 0
\]

\[
\sigma r_{t+1} + \psi_1 R_t^s - \psi_1 r_{t+1} = 0
\]

\[
\psi_1 = \frac{\sigma(r_{t+1})}{r_{t+1} - R_t^s}
\]

(A.11)

with \(r_{t+1} \geq R_t^s \). Since the upper limit of \(R_t^s \) is \(r_{t+1} \), it implies that when \(r_{t+1} = R_t^s \), \(\psi_1 = 1 \).

A.4 Steady-state Growth and Inflation

In the absence of any legal restrictions on the financial intermediaries, in equilibrium, \(\psi_1 = 1 \) and all primary asset holdings are intermediated. That is

\[
k_{t+1} = q_t w_t
\]

(A.12)

From (3), we have \(w_t = (1 - \alpha)A \left(\frac{k_t}{m_t} \right)^\alpha g_t^{1-\alpha} \) and the fact that \(q = 1 - \sigma \) and that in equilibrium \(n_t = 1 \) implies that

\[
k_{t+1} = (1 - \sigma)(1 - \alpha)Ak_t^\alpha g_t^{1-\alpha}
\]

(A.13)

From (13), we have \(g_t = m_t \left(1 - \frac{1}{\Omega_t \Pi} \right) \), and given the money market equilibrium \(\frac{M}{P_t} = m_t = (1 - q_t)w_t \), we can express \(g_t \) as

\[
g_t = (1 - q_t)w_t \left(1 - \frac{1}{\Omega_t \Pi} \right)
\]

\[
g_t = (1 - q_t)(1 - \alpha)Ak_t^\alpha g_t^{1-\alpha} \left(1 - \frac{1}{\Omega_t \Pi} \right)
\]

16
which simplifies to

\[g_t = \left[(1 - q_t)(1 - \alpha)A k_t^\alpha \left(1 - \frac{1}{\Omega_t \Pi_t} \right) \right]^{\frac{1}{\alpha}} \]

(A.14)

Plugging this expression for \(g_t \) back into (B.13), we have

\[k_{t+1} = (1 - \sigma)(1 - \alpha) A k_t^\alpha \left[\left((1 - q_t)(1 - \alpha) A k_t^\alpha \left(1 - \frac{1}{\Omega_t \Pi_t} \right) \right) \right]^{\frac{1}{\alpha}}^{1 - \alpha} \]

\[k_{t+1} = (1 - \sigma)(1 - \alpha) A k_t^\alpha (1 - q_t) \left((1 - \alpha) \right) \left(1 - \frac{1}{\Omega_t \Pi_t} \right) \left(1 - \frac{1}{\Omega_t \Pi_t} \right)^{\frac{1 - \alpha}{\alpha}} k_t^{\frac{1 - \alpha}{\alpha}} \]

and simplifying and dividing both sides by \(k_t \), we have

\[\Omega_{t+1} = \Omega = \frac{k_{t+1}}{k_t} = \sigma (A(1 - \alpha))^\frac{1}{\alpha} \left[\frac{1}{\Omega_t \Pi_t} \right]^{\frac{1 - \alpha}{\alpha}} \]

(A.15)

A.5 The Model with Compulsory Reserve Requirements

The obligatory reserve requirement is defined as a cap on the portion of banks’ portfolio that can be held as capital such that we restrict (11) to \(\bar{q} < (1 - \sigma) \), where \(\bar{q} \) represents the obligatory reserve requirement. In this case, banks are limited to set the fraction of their portfolio held as capital to \(0 \leq \bar{q} \leq (1 - \sigma) \). In this set up, (15) may not hold.

In the presence of obligatory reserve requirements, the benchmark model resource constrains given by (9) and (10) change to

\[\sigma R_t^a = \frac{1 - \bar{q}}{\Pi_{t+1}} \geq \frac{1}{\Pi_{t+1}} \]

(A.16)

\[(1 - \sigma) R_t^s = \bar{q} r_{t+1} < r_{t+1} \]

(A.17)

That the consolidated government can facilitate that all agents to intermediate all their savings through the banks in the presence of binding reserve requirements imply that we can have \(\psi_1 = 1 \) if and only if \((1 - \sigma)^2 \leq \bar{q} \leq (1 - \sigma) \).

In the case whereby banks are restricted to invest a fraction, \(\bar{q} \) of their deposits into capital, the economy’s gross growth rate \((\Omega_{t+1}) \) is given by

\[\Omega_{t+1} = \bar{q}(A(1 - \alpha))^\frac{1}{\alpha} \left[(1 - \bar{q}) \left(1 - \frac{1}{\Omega_t \Pi_t} \right) \right]^{\frac{1 - \alpha}{\alpha}} \]

(A.18)