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Abstract

The choice of a continuity concept in decision theoretic models has behavioral

meaning because it pins down how the decision maker perceives the similarity of

random variables. This paper analyzes the preferences of a decision maker who

perceives similarity in accordance with the topology of convergence in measure.

As our main insight we show that this decision maker cannot be globally risk-

or ambiguity averse whenever her preferences are lower-semicontinuous and com-

plete on a rich set of random variables. Real life decision makers who perceive the

similarity of random variables in accordance with convergence in measure might

thus account for violations of global convexity as observed in empirical studies.

Similarly, the non-convex risk measure value-at-risk might be popular among de-

cision makers because it represents preferences that are lower-semicontinuous in

measure.
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1 Introduction

1.1 Continuity and perception of similarity

Continuity of preferences is the fundamental behavioral principle according to which

decision makers evaluate similar random variables in a similar way. To be precise, let X

and Y be two random variables such that the decision maker strictly prefers Y over X,

denoted X � Y . Upper-semicontinuity below Y implies that Xn � Y for any random

variablesXn that the decision maker perceives as �su¢ ciently similar�toX. On the other

hand, lower-semicontinuity aboveX impliesX � Yn for any Yn �su¢ ciently similar�to Y .
If the decision maker�s choice set is changed from fX; Y; :::g to fXn; Yn; :::g, upper- and
lower-semicontinuity combined ensure that Xn � Yn whenever these new alternatives

are su¢ ciently similar to the original ones.

The perception of similarity, however, is a subjective notion which might be di¤erent

for di¤erent decision makers. To formally describe similarity perceptions for random

variables, we �x throughout this paper the probability space (
;B; �) such that 
 =
(0; 1), B is the Borel-sigma algebra on the Euclidean interval (0; 1), and � is the Lebesgue
measure. Random variables are functions that map this probability space into the real

line. The following example illustrates how similarity of random variables might be

perceived di¤erently by di¤erent decision makers.

Example 1. Fix the constant random variable X which gives zero in all

states of the world, i.e.,

X (!) = 0 for all ! 2 (0; 1) .

Consider three di¤erent sequences of random variables,
n
X

A

n

o
,
�
XB
n

	
, andn

X
C

n

o
, which are, respectively, de�ned for n � 1 as follows:

XA
n (!) =

(
1
n

if ! 2
�
0; 1

n

�
i.e., with prob. 1

n

0 if ! 2
�
1
n
; 1
�

i.e., with prob. 1� 1
n

XB
n (!) =

(
1 if ! 2

�
0; 1

n

�
i.e., with prob. 1

n

0 if ! 2
�
1
n
; 1
�
i.e., with prob. 1� 1

n

XC
n (!) =

(
n if ! 2

�
0; 1

n

�
i.e., with prob. 1

n

0 if ! 2
�
1
n
; 1
�

i.e., with prob. 1� 1
n

Arguably, all decision makers would agree that the XA
n become increasingly

similar to X with increasing n: the probability of a non-zero outcome con-

verges to zero whereby this non-zero outcome converges itself to zero. There
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will also be many�but not all�decision makers for whom the XB
n converge to

X since the probability of the (�xed) non-zero outcome converges to zero.

Finally, it is also plausible that some decision makers perceive the XC
n as

increasingly similar to X because the probability of the (unboundedly in-

creasing) non-zero outcome converges to zero.�

In mathematical decision theory the similarity of random variables is formally pinned

down through the choice of some topology.1 More speci�cally, metric topologies capture

the similarity between two random variables through a distance function (i.e., metric).

Example 1 revisited. Consider the following three alternative distance
functions

d0 (X;Xn) =

Z



jX �Xnj
1 + jX �Xnj

d�,

d1 (X;Xn) =

Z



jX �Xnj d�,

d1 (X;Xn) = inf f� 2 [0;1) j � (jX �Xnj > �) = 0g ,

generating the topologies of convergence (i) in measure, (ii) in mean, and

(iii) in the supremum norm, respectively. The sequence
n
X

A

n

o
but not the

sequences
�
XB
n

	
and

n
X

C

n

o
converges in the supremum norm to X. The

sequences
n
X

A

n

o
and

�
XB
n

	
but not the sequence

n
X

C

n

o
converge in mean

to X. All three sequences
n
X

A

n

o
,
�
XB
n

	
, and

n
X

C

n

o
converge in measure to

X.�

Continuity of preferences is a relative concept that is based on the decision maker�s

perception of similarity. All three distance functions in the above example correspond to

di¤erent similarity perceptions that could plausibly be held by di¤erent decision makers.

If we want to model the continuous preferences of a decision maker for whom all three

sequences
n
X

A

n

o
,
�
XB
n

	
, and

n
X

C

n

o
converge to X, we can do so in the topology of

convergence in measure but not in the topologies of convergence in the supremum norm

or in mean, respectively. The choice of a continuity concept in a decision theoretic

1A topology imposed on some universal set is the collection of all open subsets of this universal

set. A random variable Yn is su¢ ciently similar to the random variable Y with respect to the chosen

topology if Yn belongs to some su¢ ciently small open set around Y .
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model has thus behavioral meaning because it comes with an assumption about how

the decision maker perceives similarity of random variables. Consider for example the

following de�nition of continuous preferences which is standard in axiomatic decision

theory.

Standard Continuity Axiom. For all Z;Z 0; X; Y , the sets

f� 2 [0; 1] j �Z + (1� �)Z 0 � Y g and f� 2 [0; 1] j X � �Z + (1� �)Z 0g (1)

are open subsets of the Euclidean unit interval.

There is nothing wrong with this standard continuity axiom as long as we are aware

that (1) only captures continuity of preferences for a decision maker who perceives the

similarity of random variables in accordance with the topology of pointwise convergence.

More precisely, let X � Y and note that, by (1), the only converging sequences fYng
that are needed for establishing the lower-semicontinuity of preferences above X are

sequences that converge pointwise, i.e.,2

fYng ! Y if and only if lim
n!1

Yn (!)! Y (!) for every ! 2 
.

Since the sequences
�
XB
n

	
and

n
X

C

n

o
from Example 1 do not converge pointwise, any

decision theoretic model that characterizes continuity of preferences through (1) would,

in general, exclude decision makers who have continuous preferences but perceive the

similarity of random variables in accordance with, e.g., the convergence in measure or

in mean.

1.2 Complete preferences over rich sets

This paper considers a decision maker who perceives similarity of random variables in

accordance with the topology of convergence in measure. Whereas our decision maker

will, e.g., always satisfy continuity in the topology of pointwise convergence (thereby

satisfying the standard continuity axiom) or in the topology of convergence in mean, the

converse statement is not true whenever her preferences are complete over some rich set

of random variables. As a general rule, continuity of preferences over random variables is

the harder to establish the more sequences of random variables converge. The analytical

2To see this, note that all converging sequences fYng ! Y which determine whether the strictly

better set at X is open are, by (1), of the form

Yn = � (n)Y + (1� � (n))Z 0

such that limn!1 � (n) = 1.
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role of a rich set is to allow us the construction of suitable sequences of random variables

that converge in measure but not in these alternative topologies.

To be precise, consider the sequence of canonical partitions of the state space 
 into

intervals of equal length, denoted f�ng, such that

�n = f
1n ; :::;
nng =
��
0;
1

n

�
;

�
1

n
;
2

n

�
; :::;

�
n� 1
n

; 1

��
.

Next �x a family F of reference random variables with the interpretation that we will

analyze the semicontinuity of preferences only locally at the reference random variables

in F . De�ne for any pair X; Y 2 F the following random variables for all 
in 2 �n and
all n � 1:

Yin (!) =

(
Y (!) ! 2 
n
in
Y (!) + n (X (!)� Y (!)) ! 2 
in.

(2)

That is, a random variable Yin might di¤er from Y only on the partition cell 
in which

has probability � (
in) =
1
n
.

A set R (F) of random variables is a rich set generated by F if it consists, for any

pair X; Y 2 F , of all the Yin de�ned by (2). Examples of rich sets that are generated
by themselves are all standard vectors space of random variables including, e.g., all Lp,

0 � p � 1, as well as the vector space of all simple random variables. But much smaller
sets than these standard vector spaces of random variables can be rich sets as shown in

the following example.

Example 2. Let F = fX; Y g such that X (!) = 0 and Y (!) = 1 for all
! 2 
. The constant reference random variables X and Y generate the rich

set R (F) which consists of X, Y and of all Xin, Yin, n � 2, such that

Xin (!) =

(
0 if ! 2 
n
in i.e., with prob. 1� 1

n

n if ! 2 
in i.e., with prob. 1
n

and

Yin (!) =

(
1 if ! 2 
n
in i.e., with prob. 1� 1

n

1� n if ! 2 
in i.e., with prob. 1
n

�

Central to our analysis will be the assumption that the decision maker has complete

preferences over some rich set of random variables such as, e.g., the rich set of Example

2.
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1.3 Main results

The crucial feature of rich sets is that the Yin converge in measure to Y while X results,

for every n, from a convex combination of the Yin, in 2 f1; :::; ng. Based on this feature
we derive the following fundamental incompatibility results.

Incompatibility results for preferences. Suppose that a decision maker has com-
plete preferences over a rich set of random variables R (F) such that X � Y for

some X; Y 2 F .

(i) Preferences which are upper-semicontinuous in measure � below Y 2 F violate con-

vexity of the strictly worse set at Y .

(ii) Preferences which are lower-semicontinuous in measure � above X 2 F violate

convexity of the strictly better set at X.

Convexity of strictly better sets is central to standard characterizations of global risk

aversion or global uncertainty (i.e., ambiguity) aversion. Cerreira-Vioglio et al. (2011,

p.1276) write:

�Convexity re�ects a basic negative attitude of decision makers toward

the presence of uncertainty in their choices, an attitude arguably shared by

most decision makers and modelled through a preference for hedging/randomization.�

Our incompatibility result implies that decision makers who have continuous prefer-

ences over a rich set of random variables and who perceive similarity of random variables

in accordance with convergence in measure cannot globally share such negative attitude

towards uncertainty because their preferences must violate convexity of some strictly

better set.

Familiar utility speci�cations that come with the convexity of strictly better sets are,

for example, risk averse expected utility decision makers, rank dependent utility decision

makers who are strongly risk averse in the sense of Chew et al. (1985) or Chateauneuf

et al. (2005), as well as Choquet expected utility (Gilboa 1987; Schmeidler 1989) and

multiple priors decision makers (Gilboa and Schmeidler 1989) who are (simply speaking)

jointly risk- and ambiguity averse. Our incompatibility results for preferences imply the

following incompatibility results for these familiar utility representations.3

3For a general class of utility representations with convex strictly better sets�including the variational

preferences of Maccheroni et al. (2006)�see Cerreira-Vioglio et al. (2011).
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Incompatibility results for utility representations. Consider a non-trivial utility
representation

X � Y , U (X) � U (Y )

for preferences over a rich set of random variables. Suppose that the represented

preferences are lower-semicontinuous in measure �. Then the following incompat-

ibility results apply.

(i) Expected utility. If

U (Z) =

Z



u (Z) d�

for an arbitrary additive probability measure � on (
;B), then the Bernoulli utility
function u cannot be concave.

(ii) Choquet expected utility. If

U (Z) =

Z Choquet




u (Z) d�

for an arbitrary non-additive probability measure � on (
;B), then u cannot be
concave while � is convex.

(iii) Maxmin expected utility. If

U (Z) = min
�2P

Z



u (Z) d�

for an arbitrary set P of additive probability measures on (
;B), then u cannot
be concave.

The above incompatibility results concern standard economic modeling choices for

economic applications because non-convex maximization problems are di¢ cult to work

with. Experimental studies within the prospect theory framework, however, typically

elicit S-shaped Bernoulli utility (i.e., value) functions de�ned over gains and losses and

inversely S-shaped non-additive probability measures (for an overview on this huge liter-

ature see Wakker 2010). This empirical evidence from prospect theory would be consis-

tent with the situation that a relevant proportion of the experimental subjects resembled

the present paper�s decision maker, i.e., a decision maker with continuous preferences

who perceives similarity of random variables in accordance with convergence in mea-

sure. Although we do not want to overstretch the empirical relevance of our speci�c

decision maker, we would conjecture that empirically observed deviations from convex

preferences might partially be explained through decision makers who do not perceive
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the similarity of random variables in accordance with, e.g., pointwise convergence or

convergence in mean.

Next turn to the concept of risk measures which aim to pin down the riskiness of

a random variable through some risk number. Let us consider a decision maker who

strictly prefers random variables that are strictly less risky in terms of some �xed risk

measure �. Then our analysis implies the following incompatibility result for continuity

in measure versus convexity of risk measures.

Incompatibility result for risk measures. Consider a non-trivial risk measure rep-
resentation

X � Y , � (Y ) � � (X)

for preferences over a rich set of random variables. If � is a convex risk measure,

then these preferences cannot be lower-semicontinuous in measure �.

The most popular risk measure is value-at-risk which ranks random variables in ac-

cordance with their loss quantile at a �xed con�dence level. Because value-at-risk is

not a convex risk measure it has been heavily criticized in the axiomatic risk measure

literature which imposes convexity as a desirable axiom (cf., Artzner et al. 1997, 1998;

Föllmer and Schied 2002, 2010; Delbaen 2007, 2009). This literature argues from a

normative perspective according to which any risk measure which is used as a regula-

tory or/and portfolio management criterion should always reward the diversi�cation of

portfolios. Our own descriptive perspective on value-at-risk is very di¤erent because we

o¤er a possible explanation for the popularity of value-at-risk without any normative

judgment. We argue that value-at-risk violates convexity exactly because it represents

preferences which are lower-semicontinuous in measure. Decision makers with continu-

ous preferences over rich sets who perceive similarity in accordance with convergence in

measure might therefore feel more comfortable with a lower-semicontinuous risk mea-

sure like value-at-risk than with some convex (or coherent) risk-measure that violates

lower-semicontinuity. We are not saying that it is necessarily �good�when banking regu-

lators ignore tail risks by choosing value-at-risk as regulatory criterion for Basel capital

requirement regulation. But we consider it as plausible that this choice simply re�ects

the preferences of such regulators because they really don�t care about any tail risks.

The remainder of our analysis proceeds as follows. Section 2 reviews and intro-

duces relevant mathematical concepts. While Section 3 analyzes the incompatibility of
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continuity in measure and convexity for preferences, Section 4 does so for utility repre-

sentations. Section 5 discusses implications for risk measures. Section 6 concludes. All

formal proofs are relegated to the Mathematical Appendix.

2 Mathematical preliminaries

2.1 Convergence in measure

Fix the probability space (
;B; �) such that 
 = (0; 1), B is the Borel �-algebra on
(0; 1), and � is the Lebesgue measure. A random variable de�ned on (
;B; �) is a
Borel-measurable function Z : 
! R, i.e., for all A 2 B (R),

Z�1 (A) 2 B

where B (R) denotes the Borel �-algebra on R. We apply the following identity conven-
tion for random variables

X = Y if X (!) = Y (!) , �-a.e.

That is, we treat two random variables as identical objects if their outcomes coincide

except in states belonging to some subset of 
 with Lebesgue measure zero.

Denote by L0 the set of all random variables de�ned on the probability space (
;B; �).
The results of this paper will be derived for the random variables in some set L � L0

with the informal interpretation that the random variables in L are somehow �relevant�

to our decision maker.4 A sequence of random variables fZng � L converges to Z 2 L
in measure �, denoted Zn !� Z, if and only if, for all � > 0,

lim
n!1

� (f! 2 
 j jZn (!)� Z (!)j > �g) = 0.

The topology of convergence in measure is generated by the d0-metric such that for all

X; Y 2 L
d0 (X; Y ) =

Z



jX � Y j
1 + jX � Y jd�

(cf. Lemma 13.40 in Aliprantis and Border 2006). That is, we have

Zn !� Z if and only if d0 (Zn; Z)! 0.

In what follows we denote by (L; d0) our default metric space such that L is endowed

with the topology of convergence in measure.
4Our preferred interpretation is that the decision maker is �aware�of the random variables in L. At

this point, we do not even require the decision maker to have complete preferences over all random

variables in L.
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2.2 Vector spaces of random variables and metric topologies

Denote by Lp with 0 < p <1 the vector space of all random variables on (
;B; �) for
which the Lebesgue integral Z




jXjp d�

is �nite. The vector space Lp with p = 1; 2; 3; ::: thus consists of all random variables for

which the 1st, 2nd, 3rd,... moment exists. Further denote by L1 the vector space of all

bounded random variables and by LS the vector space of all simple random variables.

The following strict set-inclusions apply

LS � Lp � Lp0 for 0 � p0 < p � 1.

Fix a pair of random variables and suppose that the alternative distances between

X and Y , indexed by p, exist:

dp (X; Y ) =

8>>>><>>>>:

R



jX�Y j
1+jX�Y jd� p = 0R



jX � Y jp d� 0 < p < 1�R


jX � Y jp d�

� 1
p for 1 � p <1

inf f� 2 [0;1) j � (jX � Y j > �) = 0 a.e.g for p =1

The function dp : Lp
0 � Lp0 ! [0;1) with 0 � p � 1 is a well-de�ned metric for any

subset L of the vector space Lp
0
whenever p � p0 (cf. Corollary 13.3 in Aliprantis and

Border 2006). That is, we can endow any set of random variables L � Lp0 with dp such
that p � p0 to obtain the metric topology (L; dp). In particular, the d0-metric is well

de�ned for all subsets L of random variables including the vector space L0 of all random

variables itself.

Because

p0 < p implies dp0 (X; Y ) � dp (X; Y )

whenever dp (X; Y ) is well-de�ned (cf. Corollary 13.3 in Aliprantis and Border 2006),

we have the following fact.

Fact 1. Let 0 � p0 < p � 1. If a sequence of random variables fZng converges to Z
in the dq-metric, then it also converges in the dp0-metric. In particular, we have

for any dp-metric

dp (Zn; Z)! 0 implies d0 (Zn; Z)! 0.

The converse statement is not necessarily true (cf. Example 1).
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Semicontinuity of preferences is harder to establish on a metric space with more

converging sequences than on a metric space with less converging sequences. Prefer-

ences that are semicontinuous in our chosen topology (L; d0) must therefore also be

semicontinuous on any metric space (L; dp) such that p > 0.

2.3 Rich sets

Fix a set of references random variables F whereby we assume that X 6= Y for some

X; Y 2 F . Recall from the introduction the formal de�nition of the sequence f�ng of
canonical partitions of 
 = (0; 1) such that, for n � 1,

�n = f
1n ; :::;
nng =
��
0;
1

n

�
;

�
1

n
;
2

n

�
; :::;

�
n� 1
n

; 1

��
.

Denote by 1
in the indicator function of partition cell 
in, i.e.,

1
in =

(
1 ! 2 
in
0 else.

De�nition. Rich sets. We say that R (F) is the rich set generated by F if and only

if it consists, for any pair X; Y 2 F , of all

Yin = Y + n (X � Y ) 1
in

such that 
in 2 �n for n � 1.

Let n = 1 in the above de�nition to see that Y11 = X and X11 = Y so that it always

holds that F � R (F). The following fact provides a simple criterion for identifying rich
sets that are generated by themselves.

Fact 2. Suppose that L with F � L is a vector space of random variables such that

Z � 1
in 2 L for all Z 2 F and all 
in 2 �n with n � 1. Then L is a rich set

generated by itself, i.e., L = R (F) = F .

Fact 2 follows because Y + n (X � Y ) 1
in 2 L can be constructed from a repeated

application of the vector operations addition and scalar multiplication whenever

X; Y;X � 1
in ; Y � 1
in 2 L.
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As a consequence of Fact 2, the standard normed vector spaces Lp, 0 � p � 1, as well
as LS of random variables are rich sets generated by themselves because Z 2 Lp implies
Z � 1
in 2 Lp for all 
in 2 �n, n � 1. The same holds for the vector space of all simple
random variables, i.e., all random variables with �nite support. On the other hand, the

vector space of all constant random variables is not a rich set because any rich set must

contain some random variables with at least two di¤erent outcomes in their supports.

Also any set of random variables whose support is on the same bounded subset of the

reals cannot be a rich set.

For an example of a �small�rich set that is not a vector space recall Example 2 from

the Introduction where the set of reference random variables consists of two constant

random variables. The rich set of Example 2 is not even convex and it only contains

random variables with at most two di¤erent outcomes in their support.

Remark. In Assa and Zimper (2018) we have considered a decision maker who
has complete preferences over the set L0 of all random variables. Ouf of all the dp-

metrics with 0 � p � 1 only the d0-metric is well-de�ned for all random variables

in L0. We thought it therefore natural to conduct the continuity analysis in Assa and

Zimper (2018) within the topology of convergence in measure (i.e., for the metric space

(L0; d0)). To assume complete preferences over all random variables, however, is a strong

requirement (cf., e.g., Danan et al. (2015) and references therein for arguments in favor of

incomplete preferences). In the present paper we only assume that the decision maker

has complete preferences over an arbitrary rich set. Moreover, we now focus on the

topology of convergence in measure for the behavioral reason that our decision maker

perceives similarity of random variables in accordance with this topology�even in case

that other dp-metrics with p > 0 are well-de�ned for the rich set in question.

2.4 A key mathematical result

A set A � L0 is convex if and only if

Y1; :::; Yn 2 A implies �1Y1 + :::+ �nYn 2 A for all �i � 0 s.t.
nX
i=1

�i = 1.

The following Lemma states the key mathematical result that we will use to prove our

incompatibility results.

Lemma 1. Suppose that R (F) � L for some rich set R (F). If Y 2 F belongs to an

arbitrary convex and open subset A � (L; d0), then all X 2 F must also belong to

A.
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Let F = R (F) = L be some vector space of random variables. Then Lemma 1

states equivalently that the topological vector space (L; d0) is locally non-convex in the

sense that all open balls B" (Y ; d0), Y 2 L, must be non-convex sets. It is well-known in
functional analysis that the null-functional is the only continuous linear functional on a

locally non-convex vector space (cf. Theorem 1 in Day 1940). Because the expectation

operator is a linear functional, it cannot be continuous on any locally non-convex topo-

logical vector space. In particular, we have that the expectation operator is continuous

on (L; dp) for any dp-metric with 1 � p but discontinuous for any dp-metric with p < 1
(cf. Section 1.47 in Rudin 1991).5

As a generalization of the scope of these familiar results for topological vector spaces,

Lemma 1 states that any topological space (L; d0) is locally non-convex whenever L

happens to be some rich set R (F). When we are going to describe in Example 3 a
risk-neutral expected utility decision maker with complete preferences over the rich set

of Example 2, we will show that these preferences are not continuous as the expectation

operator is discontinuous in measure on this rich set.

Remark. In Assa and Zimper (2018) we proved the following result: The only

convex subset of (L0; d0) with non-empty interior is the set (L0; d0) itself. Note that

this previous result obtains as a special case of Lemma 1 if we specify the set of reference

random variables as the whole set all random variables itself, i.e., if we set F = R (F) =
L0.

3 Incompatibility results for preferences

We consider a preference relation over random variables in L � L0 with the usual

interpretations and conventions. X � Y (weak preference) means: either X � Y (strict
preference) or X � Y (indi¤erence). The strict preference relation � is asymmetric, i.e.,
X � Y implies not Y � X. The indi¤erence relation is symmetric, i.e., X � Y implies
Y � X, as well as re�exive, i.e., X � X. For the results of this section we do not require
transitivity of �. We also do not require completeness of � on L but only on some rich
set R (F) � L.

5It is possible to extend our incompatibility analysis from (L; d0) to (L; dp) spaces with 0 < p < 1,

which are also locally non-convex. However, such extension would require sequences that are generated

by di¤erent partitions of 
 than just the canonical partitions that we are using for the construction of

rich sets.
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Introduce the strictly better set at X

S� (X) = fZ 2 LjX � Zg .

as well as the strictly worse set at Y

s�(Y ) = fZ 2 LjZ � Y g .

De�nitions. Semicontinuity of � in measure �

(i) � is lower-semicontinous in measure � above X if and only if the strictly better set

S� (X) is open in (L; d0).

(ii) � is upper-semicontinuous in measure � below Y if and only if the strictly worse

set s� (Y ) is open in (L; d0).

Let us give behavioral interpretations of both concepts of semicontinuous preferences

whereby we �xX � Y . Upper-semicontinuity in measure � below Y means thatXn � Y
for su¢ ciently large n whenever the Xn converge in measure � to X. A decision maker

with upper-semicontinuous preferences will thus keep preferring Y over the Xn whenever

the Xn are su¢ ciently similar to X whereby we pin down similarity by convergence in

measure. Conversely, a violation of upper-semicontinuity in measure � below Y implies

the existence of some sequence fXng that converges in measure � to X such that

X � Y � Xn

for all n �M with M being su¢ ciently large.

Analogously, lower-semicontinuity in measure � above X means that X � Yn for

su¢ ciently large n whenever the Yn converge in measure � to Y . A decision maker with

lower-semicontinuous preferences will keep preferring the Yn over X whenever the Yn are

su¢ ciently similar in measure � to Y . A violation of lower-semicontinuity in measure �

above X implies the existence of some sequence fYng that converges in measure � to Y
such that

Yn � X � Y

for all n �M with M being su¢ ciently large.

Theorem 1. Consider a preference relation � on L which is complete on some rich

set R (F) � L such that X � Y for some X; Y 2 F .

14



(i) If � is lower-semicontinuous in measure � above X, the strictly better set S� (X)

cannot be convex.

(ii) If � is upper-semicontinuous in measure � below Y , the strictly worse set s� (Y )

cannot be convex.

Sketch of the proof. Based on a straightforward application of Lemma 1 we for-
mally prove Theorem 1 in the Appendix. To see the intuition behind these fundamental

incompatibility results, let us brie�y sketch the basic proof idea of Theorem 1. We use

two facts about the

Yin = Y + n (X � Y ) 1
in .

Firstly, the Yin converge in measure to Y whereby for any " > 0 there is some large

enough n such that d0 (Yin ; Y ) < " for all in 2 f1; :::; ng. Secondly, by construction,

1

n

nX
in=1

Yin = X for all n.

Consequently, by lower-semicontinuity above X, we have X � Yin for all Yin that are

su¢ ciently similar to Y in the topology of convergence in measure. If the strictly better

set S� (X) was convex, we would then obtain for large enough n the contradiction

X � 1

n

nX
in=1

Yin = X.

This proves part (i).

Part (ii) follows because upper-semicontinuity below Y implies Xin � Y for all Xin

for su¢ ciently large n. If the strictly worse set at Y was convex, we would then obtain

the contradiction

Y =
1

n

nX
in=1

Xin � Y .

�

4 Incompatibility results for utility representations

Suppose now that there exists an utility representation for given preferences. That is,

there exists some U : L! R such that, for all X; Y 2 L,

X � Y , U (X) < U (Y ) ;

X � Y , U (X) = U (Y ) .
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The utility function U is continuous in measure � at Z 2 L if and only if, for every
" > 0, there exists some � > 0 such that

Zn 2 B� (Z; d0) implies jU (Z)� U (Zn)j < ".

The corresponding de�nitions of upper- and lower-semicontinuity of U are given as

follows.

De�nition: Lower- and upper-semicontinuity of U .

(i) U is lower-semicontinuous in measure � at Y if and only if, for every " > 0, there

exists some � > 0 such that

Yn 2 B� (Y ; d0) implies U (Yn) > U (Y )� ". (3)

(ii) U is upper-semicontinuous in measure � at X if and only if, for every " > 0, there

exists some � > 0 such that

Xn 2 B� (X; d0) implies U (Xn) < U (X) + ".

We say that U is lower-semicontinuous (resp. upper-semicontinuous) whenever U

is lower-semicontinuous (resp. upper-semicontinuous) at all Z 2 L. The following

proposition (proved in the Appendix) establishes that any utility representation U which

is lower-semicontinuous (resp. upper-semicontinuous) must represent preferences that

are lower-semicontinuous above all Z 2 L (resp. upper-semicontinuous below all Z 2 L).

Proposition 1.

(i) Suppose that � violates lower-semicontinuity in measure � above X. Then U vio-

lates lower-semicontinuity in measure � at some Y such that X � Y .6

(ii) Suppose that � violates upper-semicontinuity in measure � below some Y . Then

U violates upper-semicontinuity in measure � at some X such that X � Y .
6The converse statement is, in general, not true. A violation of lower-semicontinuity of U at some

Y 2 L implies that the strictly better set S� (c) = fZ 2 L j c < U (Z)g cannot be open for some c 2 R
(cf., Theorem 1, p.76 in Berge 1996). However, we do not always have that c = U (X) for some X 2 F .
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Next we extend the familiar de�nitions of concave versus convex functions whose

domains are convex subsets of the real line to utility functions whose domains are convex

sets of random variables.

De�nitions: Concavity versus convexity of U . Let L be a convex set.

(i) U is concave on L if and only if, for all X;Y 2 L and all � 2 (0; 1),

U (�X + (1� �)Y ) � �U (X) + (1� �)U (Y ) .

(ii) U is convex on L if and only if, for all X; Y 2 L and all � 2 (0; 1),

U (�X + (1� �)Y ) � �U (X) + (1� �)U (Y ) .

Proposition 2. Let L be a convex set.

(i) If U is concave on L, then the strictly better set S� (Z) is convex for all Z 2 L.

(ii) If U is convex on L, then the strictly worse set s� (Z) is convex for all Z 2 L.

Combining Theorem 1 with Propositions 1 and 2 gives us the following incompati-

bility results for utility representations.

Theorem 2. Consider a preference relation � on a convex set L which is complete on
some rich set R (F) � L such that X � Y for some X; Y 2 F .

(i) Suppose that U is concave on L. Then U cannot be lower-semicontinuous in measure
� at Y . More precisely, there must exist some sequence fYing !� Y on F such

that

lim
n!1

U (Yin) � U (X) < U (Y ) .

(ii) Suppose that U is convex on L. Then U cannot be upper-semicontinuous in measure
� at X. More precisely, there must exist some sequence fXing !� X on F such

that

lim
n!1

U (Xin) � U (Y ) > U (X) .
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4.1 Operators for utility random variables

Fix some increasing Bernoulli utility function u : R ! R. Recall that u is concave if
and only if, for all x; y 2 R and all � 2 (0; 1),

u (�x+ (1� �) y) � �u (x) + (1� �)u (y) . (4)

For convex u the inequality in (4) is reversed.

Let Z 2 L and note that u (Z) : 
! R such that

u (Z) (!) = u (Z (!))

is itself a random variable de�ned on (
;B). We refer to u (Z) as utility random variable.
For a given set L of random variables, introduce the following set of utility random

variables

Lu = fu (Z) j Z 2 Lg

and denote by co (Lu) the convex hull of Lu, i.e., the set of all utility random variables

that are convex combinations of the utility random variables in Lu.

An operator on co (Lu), denoted I, is a mapping I : co (Lu) ! R. The operator I
satis�es monotonicity on co (Lu) if and only if, for all u (Z) ; u (Z 0) 2 co (Lu),

u (Z (!)) � u (Z 0 (!)) for all ! implies I (u (Z)) � I (u (Z 0)) .

De�nitions: Concavity and convexity of I.

(i) I is concave on co (Lu) if and only if, for all X; Y 2 L and all � 2 (0; 1),

I (�u (X) + (1� �)u (Y )) � �I (u (X)) + (1� �) I (u (Y )) .

(ii) I is convex on co (Lu) if and only if, for all X; Y 2 L and all � 2 (0; 1),

I (�u (X) + (1� �)u (Y )) � �I (u (X)) + (1� �) I (u (Y )) .

Proposition 3. Let L be a convex set and assume that, for all Z 2 L,

U (Z) = I (u (Z)) (5)

for some operator I on co (Lu).
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(i) Suppose that u is concave, I satis�es monotonicity and concavity on co (Lu). Then U
is concave on L.

(ii) Suppose that u is convex, I satis�es monotonicity and convexity on co (Lu). Then U
is convex on L.

Combining Theorem 2 with Proposition 3 gives us the following results.

Theorem 3. Consider a preference relation � on a convex set L which is complete

on some rich set R (F) � L such that X � Y for some X; Y 2 F . Suppose that
these preferences have a utility representation which is of the operator form (5).

(i) If u is concave, I satis�es monotonicity and concavity on co (Lu), then U cannot

be lower-semicontinuous in measure � at Y .

(ii) If u is convex, I satis�es monotonicity and convexity on co (Lu), then U cannot be
upper-semicontinuous in measure � at X.

The next subsection applies Theorem 3 to the standard utility representations ex-

pected utility, Choquet expected utility, and multiple priors expected utility, respectively.

4.2 Standard utility representations

Suppose now that I is an operator de�ned on an arbitrary vector space V . The operator

I is called superlinear on V if it satis�es the following two properties:

(i) Positive Homogeneity: for all � � 0 and all v 2 V ,

I (av) = aI (v) ,

(ii) Superadditivity: for all v; v0 2 V ,

I (v + v0) � I (v) + I (v0) .

The operator I is sublinear on V if superadditivity is replaced with subadditivity

(i.e., for all v; v0 2 V , I (v + v0) � I (v) + I (v0)).
Standard utility representations for preferences over random variables are of the

form (5) such that I stands for a speci�c concept of an expectation operator de�ned
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on a suitable vector space of utility random variables V that includes co (Lu). In what

follows, we derive a string of corollaries to Theorem 3 under the assumption that the

operator I in (5) takes on speci�c functional forms discussed in the literature. All these

corollaries assume complete preferences on an arbitrary rich set R (F) such that X � Y
for some X; Y 2 F ; (in particular, we rule out trivial preferences according to which
X � Y for all X; Y 2 F).
Suppose, at �rst, that I is the standard expectations operator with respect to some

additive probability measure �. Because the expectation operator satis�es monotonicity

and is super- as well as sublinear (i.e. linear), we obtain the following result.

Corollary 1. Suppose that U is of the expected utility form, i.e., for all Z 2 L,

U (Z) = I (u (Z)) =

Z



u (Z) d�

for an arbitrary additive probability measure � de�ned on (
;B).

(i) If U is lower-semicontinuous in measure �, the Bernoulli utility function u cannot
be concave.

(ii) If U is upper-semicontinuous in measure �, the Bernoulli utility function u cannot
be convex.

(iii) If U is continuous in measure �, the Bernoulli utility function u cannot be linear.

Let us illustrate Corollary 1 for the simplest example of a rich set we can think of.

Example 3. Consider the rich set R (F) of Example 2 which consists of
X = 0, Y = 1 and of all Xin, Yin, n � 2, such that

Xin (!) =

(
0 if ! 2 
n
in i.e., with prob. 1� 1

n

n if ! 2 
in i.e., with prob. 1
n

and

Yin (!) =

(
1 if ! 2 
n
in i.e., with prob. 1� 1

n

1� n if ! 2 
in i.e., with prob. 1
n

If the Bernoulli utility function u was concave, U cannot be lower-semicontinuous

in measure � at Y ; that is, for some converging sequence fYing !� Y we

must have that

lim
n!1

Z



u (Yin) d� �
Z



u (X) d� <

Z



u (Y ) d�.
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Conversely, for a convex u there must exist some converging sequence fXing !�

X such that

lim
n!1

Z



u (Xin) d� �
Z



u (Y ) d� >

Z



u (X) d�.

To see this for the special case u (x) = x and � = �, observe that for all

converging sequences

lim
n!1

Z



Yind� = 0 and lim
n!1

Z



Xind� = 1

while Z



Xd� = 0 and
Z



Y d� = 1.

�

An immediate consequence of Corollary 1 is that there cannot exist a risk-neutral

expected utility decision maker whose preferences are continuous in measure � on some

rich set of random variables (cf. Example 3 where u (x) = x is equivalent to risk-

neutrality). Next recall that a sequence of random variables fZng converges to Z in

distribution7, denoted �Zn ! �Z , if and only ifZ
R

u (x) d�Zn !
Z
R

u (x) d�Z

for all bounded and �-almost everywhere continuous functions u : R! R (cf. Theorem
25.8. in Billingsley 1996). Because convergence in measure of the expected utility repre-

sentation implies convergence in distribution for this utility representation, a Bernoulli

utility function that is bounded from above and from below (�-almost everywhere) guar-

antees that expected utility preferences are continuous in measure. In other words, a

bounded Bernoulli utility function, which takes on an S-shape over the real line, is

thus always a su¢ cient condition for continuity in measure � of the expected utility

representation of complete preferences on a rich set.

Turn now to the concept of Choquet expected utility for which I in (5) becomes the

Choquet expectation operator with respect to some non-additive probability measure �

7The distribution �Z of random variable Z is the probability measure on (R;B (R)) such that

�Z (A) = � (f! 2 
 j Z (!) 2 Ag) for all A 2 B (R) .
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(Schmeidler 1989). The Choquet expectation operator satis�es monotonicity. Moreover,

it is superlinear for any convex �, i.e., for any � such that, for all A;B 2 B,

� (A [B) + � (A \B) � � (A) + � (B) (6)

(cf. Corollary and Proposition 3 in Schmeidler 1986). In contrast, it is sublinear for any

concave � (i.e., for any � such that inequality (6) is reversed).

Corollary 2. Suppose that U is of the Choquet expected utility form, i.e., for all Z 2 L,

U (Z) = I (u (Z)) =

Z Choquet




u (Z) d�

=

Z 1

0

� (u (Z) � x) dx�
Z 0

�1
(1� � (u (Z) � x)) dx

for an arbitrary non-additive probability measure � de�ned on (
;B).

(i) If U is lower-semicontinuous in measure �, we cannot simultaneously have that u

is concave while � is convex.

(ii) If U is upper-semicontinuous in measure �, we cannot simultaneously have that u
is convex while � is concave.

Choquet expected utility (CEU) theory uses convex non-additive probability mea-

sures to describe ambiguity averse decision makers. To express a behavioral relevant

combination of ambiguity aversion with (standard) risk aversion, the typical modeling

choice for an CEU decision maker combines a convex non-additive probability measure

with a concave Bernoulli utility function. By Corollary 2(i) such CEU decision maker

cannot have non-trivial preferences on a rich set of random variables that are lower-

semicontinuous in measure �.

Finally, turn to the concept of multiple priors expected utility where the expectation

operator I is de�ned with respect to a set of additive probability measures (i.e., multiple

priors). Recall that I satis�es monotonicity and superlinearity if I is the minimal ex-

pectation operator whereas I satis�es monotonicity and sublinearity if I is the maximal

expectation operator (cf. Lemma 3.3. in Gilboa and Schmeidler 1989).
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Corollary 3.

(i) Suppose that U is of the maxmin expected utility form, i.e., for all Z 2 L,

U (Z) = I (u (Z)) = min
�2P

Z



u (Z) d�

for some set P of additive probability measures on (
;B). If U is lower-semicontinuous
in measure �, the Bernoulli utility function u cannot be concave.

(ii) Suppose that U is of the maxmax expected utility form, i.e., for all Z 2 L,

U (Z) = I (u (Z)) = max
�2P

Z



u (Z) d�

for some set P of additive probability measures on (
;B). If U is upper-semicontinuous
in measure �, the Bernoulli utility function u cannot be convex.

Multiple priors models express ambiguity aversion through maxmin expected utility.8

By Corollary 3(i), the typical modeling choice, which combines maxmin expected utility

with a concave Bernoulli utility function, cannot describe a decision maker have non-

trivial preferences on a rich set of random variables that are lower-semicontinuous in

measure �.

5 Incompatibility results for risk measures

This section considers a decision maker who ranks random variables in accordance with

some risk measure � : L! R such that

X � Y , � (Y ) < � (X) , (7)

X � Y , � (Y ) = � (X) .

The interpretation is that the decision maker prefers less risky to more risky random

variables perceives whereby she perceives the riskiness of random variables in accordance

with �. Whenever (7) holds for some risk measure �, we will speak of a decision maker

with �-preferences.

8To see the formal relationship between the CEU- and the mutliple priors representation of ambiguity

aversion, observe that for a convex �Z Choquet




u (Z) d� = min
�2P

Z



u (Z) d�

where P is de�ned as the core of �.
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The most fundamental property that any risk measure should satisfy is monotonicity,

i.e., for all Z;Z 0 2 L,

Z (!) � Z 0 (!) for all ! implies � (Z) � � (Z 0) .

The axiomatic literature on risk measures additionally imposes convexity as another

fundamental property to ensure that the diversi�cation of a portfolio can never increase

risk.9

De�nition: Convexity of risk measures. Let L be a convex set. The risk measure
� is convex on L if and only if, for all X;Y 2 L and all � 2 (0; 1),

� (�X + (1� �)Y ) � �� (X) + (1� �) � (Y ) .

Obviously, any �-preferences (7) could be equivalently represented by the utility

function U : L! R such that, for all Z 2 L,

U (Z) = �� (Z) . (8)

Because of (8) our incompatibility analysis for utility representations carries immediately

over to convex risk measures.10

Theorem 4. Assume that L is a convex set that contains an arbitrary rich set R (F)
such that X � Y for some X; Y 2 F . If � is convex on L, �-preferences cannot
be lower-semicontinuous in measure � at Y . More precisely, there must exist some

sequence fYing !� Y on F such that

lim
n!1

� (Yin) � � (X) > � (Y ) . (9)

The most prominent risk measure used by �nancial practitioners is the value-at-risk

criterion which happens to violate convexity. In what follows, we argue that the value-

at-risk criterion must violate convexity on rich sets because it represents preferences that

are lower-semicontinuous in measure.
9Coherent risk measures, de�ned on some vector space L � L0, have to satisfy positive homogeneity

and subadditivity which implies convexity.
10Note that lower-semicontinuity of U becomes, by (8), upper-semicontinuity of �.
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5.1 Value-at-risk

The value-at-risk of random variable Z 2 L0 at con�dence level � is an �-quantile of Z.
Recall that the �-quantiles of Z are the members of the interval�

q�Z (�) ; q
+
Z (�)

�
(10)

such that

q�Z (�) = sup fx 2 R j � (Z < x) < �g ,
q+Z (�) = sup fx 2 R j � (Z < x) � �g .

For interpretational reasons it is convenient to de�ne the value-at-risk of Z in terms of

the distribution function of the corresponding loss random variable �Z (whose positive
outcomes stand for the losses of Z).

De�nitions. Value-at-risk. Consider the following two alternative de�nitions for the
value-at-risk of random variable Z at con�dence level � 2 (0; 1).

(i)

VaR<� (Z) = �q�Z (�)
= inf fx 2 R j � (x < �Z) < �g
= inf fx 2 R j F�Z (x) > 1� �g .

(ii)

VaR�� (Z) = �q+Z (�)
= inf fx 2 R j � (x < �Z) � �g
= min fx 2 R j F�Z (x) � 1� �g .

For any Z with a continuous distribution function both value-at-risk de�nitions co-

incide, i.e.,

VaR<� (Z) = VaR�� (Z) = min fx 2 R j F�Z (x) � 1� �g . (11)

In general, (11) holds for any given Z for almost all con�dence levels � 2 (0; 1) because
there are at most countably many discontinuity points in the distribution function at
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which the quantile interval (10) might not reduce to a single value (cf. Lemma A.19. in

Föllmer and Schiedt 2016). Whenever the equality (11) holds for a random variable Z,

both value-at-risk de�nitions VaR<� and VaR�� are continuous in measure � at Z. If

(11) is violated at some Z, however, VaR<� will result for some converging sequences in

an �upward jump�whereas VaR�� will result for some sequences in a �downward jump�at

Z. The following example illustrates these possible discontinuities for both value-at-risk

de�nitions for the non-generic case in which (11) is violated.

Example 4. Consider Z such that

Z (!) =

(
�1 if ! 2 (0; �] i.e., with prob. �

0 if ! 2 (�; 1) i.e., with prob. 1� �

and the following two sequences fZ+n g, fZ�n g such that

Z+n (!) =

(
�1 if ! 2

�
0; �+ 1

n

�
i.e., with prob. �+ 1

n

0 if ! 2
�
�+ 1

n
; 1
�
i.e., with prob. 1�

�
�+ 1

n

�
Z�n (!) =

(
�1 if ! 2

�
0; �� 1

n

�
i.e., with prob. �� 1

n

0 if ! 2
�
�� 1

n
; 1
�
i.e., with prob. 1�

�
�� 1

n

�
Both sequences fZ+n g and fZ�n g converge in measure � to Z. Note that

VaR<� (Z) = 1 and VaR�� (Z) = 0

while, for all n,

VaR<�
�
Z+n
�
= VaR��

�
Z+n
�
= 1,

VaR<�
�
Z�n
�
= VaR��

�
Z�n
�
= 0,

implying

lim
n!1

VaR<�
�
Z�n
�
< VaR<� (Z) ,

lim
n!1

VaR��
�
Z+n
�
> VaR�� (Z) .

�

In the non-generic case that (11) is violated for a given Z, VaR<� is an upper-

semicontinuous function in measure � at Z whereas VaR�� is a lower-semicontinuous

function in measure � at Z. Because an upper-(lower)semicontinuous risk measure
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function corresponds, by (8), to a lower-(upper)semicontinuous utility representation,

VaR<�-preferences are lower-semicontinuous at every Z whereas VaR��-preferences are

lower-semicontinuous at Z if and only if the generic case (11) holds for Z.

Proposition 4. Consider a rich set R (F) such that X � Y for some X;Y 2 F .

(i) If the decision maker has complete VaR<� preferences over R (F), then the strictly
better set at X cannot be convex.

(ii) If the decision maker has complete VaR�� preferences over R (F) such that the
generic case

VaR<� (Y ) = VaR�� (Y )

holds, then the strictly better set at X cannot be convex.

We illustrate Proposition 4 through a simple example.11

Example 5. Let X = �1 and Y = 0, i.e., X gives a constant loss of

one while Y gives a constant loss of zero. The rich set R (F) generated by
F = fX;Y g consists of X, Y and of all Xin and Yin, n � 2, such that

Xin (!) =

(
�1 if ! 2 
n
in i.e., with prob. 1� 1

n

n� 1 if ! 2 
in i.e., with prob. 1
n

and

Yin (!) =

(
0 if ! 2 
n
in i.e., with prob. 1� 1

n

�n if ! 2 
in i.e., with prob. 1
n

Fix some � 2 (0; 1) and observe that

VaR� (X) = 1 and VaR� (Y ) = 0

as well as

VaR� (Yin) =

(
0 if n > 1

�

n if n � 1
�

In accordance with Proposition 4, these VaR�-preferences must satisfy lower-

semicontinuity in measure � aboveX. To see this, note that, for all fYing !�

Y ,

VaR� (Yin) = VaR� (Y ) = 0 for n >
1

�
.

11We write VaR� (Z) whenever (11) holds for Z.
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Consequently, the strictly better set at X cannot be convex. To verify this

directly, observe that convexity of the strictly better set at X would result,

by

VaR� (X) > VaR� (Yin)

,
X � Yin

for all in 2 f1; :::; ng with n > 1
�
, in the contradiction

X �
 
1

n

nX
in=1

Yin

!
= X.

�

Following Dekel (1989) we say that transitive preferences on L �exhibit diversi�cation�

if

Z1 � � � � � Zn

implies

Z1 �
nX
i=1

�iZ
i for all �i � 0 such that

nX
in=1

�i = 1.

Let us revisit Example 5 to illustrate how value-at-risk preferences may result in the

choice of non-diversi�ed portfolios.

Example 6. Portfolio choice. Consider a portfolio manager with

VaR�-preferences over the rich set from Example 4. For any m 2 N such

that

� <
m

n
� 1

construct the mixed portfolio 1
m

mX
i=1

Yin and observe that

VaR�

 
1

m

mX
i=1

Yin

!
= n.

On the other hand, we have for all n > 1
�
that

VaR� (Yin) = 0 for all i,
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implying

VaR� (Yin) < VaR�

 
1

m

mX
i=1

Yin

!
for all i.

These VaR�-preferences do not �exhibit diversi�cation� to the e¤ect that

the portfolio manager would always choose any non-diversi�ed Yin over the

diversi�ed portfolio 1
m

mX
i=1

Yin.�

5.2 Discussion

By Proposition 4, value-at-risk cannot be a convex risk measure on any rich set because

it represents preferences that are (generically) lower-semicontinuous in measure �. In

Example 5 this lower-semicontinuity of VaR�-preferences is expressed through the de-

cision maker�s indi¤erence between all Yin for su¢ ciently large n since we have for all

Yin

Yin � Y if n >
1

�
. (12)

What happens here is that the decision maker with VaR�-preferences ignores the di¤er-

ence between the tail of the Yin, for which the bad loss of n happens with probability

strictly smaller than �, and the tail of Y , for which no loss happens at all. On the

one hand, this decision maker still perceives some di¤erence between the Yin and the Y

because their distance in the d0-metric, i.e.,

d0 (Yin ; Y ) =
1

1 + n
,

is never zero. On the other hand, these random variables have become so similar in

the d0-metric for su¢ ciently large n that the decision maker who perceives similarity

in accordance with convergence in measure stops caring about these di¤erences in the

sense that she becomes indi¤erent between these random variables.

For the same reason this decision maker does not like to diversify her portfolio in Ex-

ample 6. By combining the Yin, i = 1; :::;m, through the convex combination
1
m

mX
i=1

Yin,

the decision maker starts to care about the prospect of some non-zero loss because the

probability of such loss has been lifted over the likelihood threshold (i.e., the con�dence

level �) for which losses matter to her.

Do such VaR�-preferences plausibly describe some decision makers? We would like

to argue �yes�because the popularity of value-at-risk amounts to indirect evidence that

value-at-risk resembles the preferences of some people pretty well. Recall that the Basel

value-at-risk regulation for bank capital requires banks to absorb losses with a 99:9 per
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cent probability which corresponds to a con�dence level of � = :001. Some decision

makers might then be indi¤erent between a random variable giving always a zero loss

and a random variable that gives a zero loss with probability 1000
1001

and a substantial loss

with probability 1
1001

. These decision maker would be, e.g., the regulating policy makers

who �xed the con�dence level at � = :001 for exactly the reason that they do not care

about a bad outcome that only happens with a chance of 1
1001

.

The critique of the axiomatic risk measure literature against the use of the value-at-

risk criterion for banking regulation is normative in nature in that it demands that policy

makers (or risk managers) should actually care about catastrophic events regardless

of the fact that they are highly unlikely! This paper looks at preferences exclusively

from a descriptive perspective which takes a decision maker�s preferences as a primitive.

This descriptive perspective o¤ers a possible explanation for the popularity of value-at-

risk. Namely, value-at-risk may work for decision maker pretty well who (i) perceive

the similarity of random variables in accordance with the topology of convergence in

measure and (ii) who have lower-continuous preferences on some rich set. In contrast,

such decision makers might feel uncomfortable with convex risk measures because these

measures must violate, by Theorem 4, the lower-semicontinuity of their preferences.

To illustrate this last point, let us look at average value-at-risk as an example of

a convex risk measure that is based on the value-at-risk criterion (whereby we can

equivalently use VaR�� or VaR<� in the following de�nition).

De�nition. Average value-at-risk. Fix some � 2 (0; 1]. The average value-at-risk
of the random variable Z for the con�dence level interval (0; �) is

AVaR� (Z) =
1

�

�Z
0

VaR�� (Z) d�.

That is, the average value-at-risk of a random variable is the average of the random

variable�s value-at-risk over the con�dence levels in (0; �).12 In contrast to value-at-risk,

a decision maker with AVaR�-preferences therefore also takes all tail losses into account.

Because average value-at-risk is a convex risk measure, AVaR�-preferences must violate

lower-semicontinuity in measure on rich sets.

12Our formal de�nition of the average value-at-risk also appears in the literature as the de�nition

of the �conditional value-at-risk� or of the �expected shortfall�. We follow here Föllmer and Schiedt

(2016, p.233) who argue that the notion of the average over the interval (0; �) is more precise as it

clari�es that the conditional distribution in question is the uniform distribution.
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Example 7. Average value-at-risk. Consider the rich set R (F) of
Example 5. Fix any � 2 (0; 1]. The average value-at-risk of the two constant
random variables is trivially given as

AVaR� (X) = 1 and AVaR� (Y ) = 0.

Focus now on the Yin and observe that, for n >
1
�
,

AVaR� (Yin) =
1

�

0B@
1
nZ
0

nd� +

�Z
1
n

0d�

1CA =
1

�
,

implying

lim
n!1

AVaR� (Yin) � AVaR� (X) > AVaR� (Y )

in accordance with (9). Consequently, AVaR�-preferences violate lower-

semicontinuity in measure � above X on this rich set because we have for

su¢ ciently large n that

Yn � X � Y .

�

6 Concluding remarks and outlook

Continuity and convexity of preferences are both fundamental behavioral principles

whereby continuity is a relative concept which depends on how a decision maker perceives

similarity. This paper considers a decision maker who perceives similarity of random

variables in accordance with the topology of convergence in measure. We introduce the

notion of a rich set which encompasses any standard vector space of random variables

but also much smaller sets containing only random variables with at most two di¤erent

outcomes in their support. If our decision maker has complete preferences over a rich

set of random variables, lower-semicontinuity of preferences becomes incompatible with

the convexity of strictly better sets. As one implication, utility representations that ex-

press risk- or ambiguity aversion cannot describe decision makers whose preferences are

lower-semicontinuous in measure. As another implication, value-at-risk is a non-convex

risk measure exactly because it represents preferences that are lower-semicontinuous in

measure.

Empirical evidence from experimental studies within the prospect theory framework

suggest the prevalence of S-shaped value functions and inverse S-shaped non-additive

probability measures. These �ndings stand for violations of global convexity. This
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paper�s incompatibility analysis shows that lower-semicontinuity of preferences in the

topology of convergence in measure would require such shapes whenever Choquet ex-

pected utility decision makers have complete preferences over some rich set of random

variables. That is, the reason for this empirical evidence might be real life decision mak-

ers who have continuous preferences whereby their perceptions of similarity between

random variables are well described by the topology of convergence of measure. Under

the behavioral assumption of continuous preferences, our analysis predicts that such de-

cision makers will tend to violate convexity in more choice situations than, e.g., decision

makers who perceive similarity of random variables in accordance with convergence in

mean. To investigate the empirical relevance of this paper�s theoretical analysis, future

empirical research should therefore look into the relationship between di¤erent similarity

perceptions of random variables, on the one hand, and non-convexity of preferences, on

the other hand.
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Appendix: Formal proofs

Proof of Lemma 1. Step 1. Fix Y 2 F and consider an arbitrary X 2 F . Since
R (F) is rich, we have

Yin = Y + n (X � Y ) 1
in 2 R (F)

for n � 1. Next note that

d0 (Y; Yin) =

Z



jY � Yinj
1 + jY � Yinj

d� =

Z



��n(X � Yin)1
in ��
1 +

��n(X � Yin)1
in ��d�
=

Z



jn(X � Y )j
1 + jn(X � Y )j1
ind�

<

Z



1
ind� =
1

n
.

Consequently, we have for all Yin, in 2 f1; :::; ng, that

Yin 2 B" (Y ; d0) for " �
1

n

where B" (Y ; d0) denotes an open ball around Y in (L; d0) with radius ":

Step 2. Fix any open set A � (L; d0) such that Y 2 A. By de�nition, there must
exist some su¢ ciently small " > 0 such that

B" (Y ; d0) � A

so that, by Step 1, Yin 2 A for all in 2 f1; :::; ng with n � 1
"
.

Step 3. Finally, note that convexity of A implies

1

n

nX
in=1

Yin =
1

n

nX
in=1

Y + n (X � Y ) 1
in

= Y +
nX

in=1

(X � Y )1
in

= Y +X � Y = X,

which gives the desired result X 2 A.��

Proof of Theorem 1. Ad (i). Assume that S� (X) is convex. Because of X �
Y , we have Y 2 S� (X). If S� (X) was open, Lemma 1 implies that X 2 S� (X), a
contradiction. Consequently, � cannot be lower-semicontinuous in measure above X. �
Ad (ii). Assume now that s� (Y ) is convex. Because of X � Y , we have X 2 s� (Y ).

An open s� (Y ) would, by Lemma 1, imply the contradiction Y 2 s� (Y ). Consequently,
� cannot be upper-semicontinuous in measure below Y . ��
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Proof of Proposition 1. If � is not lower-semicontinuous above X, the strictly

better set S� (X) is not open. That is, there must exist some Y 2 S� (X) which is not
an interior point of S� (X), i.e., for all � > 0, there are Z such that

Z 2 B� (Y ; d0) but Z =2 S� (X) . (13)

Let �n = 1
n
and pick Yn 2 B�n (Y ; d0) such that Yn =2 S� (X). By (13), such Yn exist

for all n � 1. This constructs a converging sequence fYng, d0 (Yn; Y ) ! 0, such that

Yn =2 S� (X) for all n, implying

U (Yn) � U (X) for all n whereas U (X) < U (Y ) .

Let

" = U (Y )� U (X) > 0
to see that, for all n,

U (Yn) � U (Y )� ".
But this violates (3) so that U is not lower-semicontinuous at Y . The argument for

upper-semicontinuity proceeds analogously.��

Proof of Proposition 2. If S� (X) is empty, the result obtains trivially. Suppose
therefore that Y; Z 2 S� (X) so that U (X) < U (Y ) as well as U (X) < U (Z). If U is
concave on a convex L, we have for any � 2 (0; 1)

U (�Y + (1� �)Z) � �U (Y ) + (1� �)U (Z)
> U (X) ,

implying

�Y + (1� �)Z 2 S� (X) .
��

Proof of Proposition 3. If u is concave we have, for all !,

u (�X (!) + (1� �)Y (!)) � �u (X (!)) + (1� �)u (Y (!)) .

Next observe that

U (�X + (1� �)Y ) = I (u (�X + (1� �)Y ))
� I (�u (X) + (1� �)u (Y )) , by monotonicity
� �I (u (X)) + (1� �) I (u (Y )) , by concavity
= �U (X) + (1� �)U (Y ) ,

which proves part (i). Part (ii) is proved analogously.��
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