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 Abstract: We employ the nonlinear unit-root test recently developed by Omay et al. (2018), as 

well as other linear and nonlinear tests, to examine the stationarity of five multi-century 
historical U.K. series of real output compiled by the Bank of England (Thomas and Dimsdale, 
2017). Three series span 1270 to 2016 and two series span 1700 to 2016. These datasets 
represent the longest span of historical real output data available and, thus, provide the 
environment for which unit-root tests are most powerful. A key feature of the Omay et al. (2018) 
test is its simulataneous allowance for two types of nonlinearity: time-dependent (structural 
breaks) nonlinearity and state-dependent (asymmetric adjustment) nonlinearity. The key 
finding of the test, contrary to what other more popular nonlinear unit-root tests suggest, 
provides strong evidence that the main structure of the five series is stationary with a sharp 
trend break and an asymmetric nonlinear adjustment. This finding is highly significant from the 
perspective of current macroeconomic debate because it refutes, for the historical U.K. series 
at least, the most stylized fact that real output follows a non-stationary process. 
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1. Introduction 
In their seminal paper, Nelson and Plosser (1982) claimed that U.S. real GDP contains a unit 
root, that is, stochastic trend dominates its movements. This finding has important 
macroeconomic implications, as it proves inconsistent with the traditional view of the business 
cycle. Most importantly, it suggests that real factors such as technology shocks play an 
important role in economic fluctuations, supporting the hypotheses of the real business cycle 
theory (Christopoulos, 2006).  

Prior to Nelson and Plosser (1982), the prevailing view argued that real GDP exhibited 
a stationary process around a deterministic trend (Barro, 1976; Blanchard, 1981; Kydland and 
Prescott, 1980). Distinct practical differences exist between trend-stationary and unit-root 
processes. First, the deterministic trend provides the optimal forecast for a trend stationary 
process, while the current value provides the optimal forecast for a unit-root process. Second, 
a finite zone bounds the MSE of a trend stationary forecast whereas the MSE of a unit-root 
forecast grows linearly and, thus, becomes less precise the longer the forecast horizon. Third, 
the effect of a shock to a trend stationary process will eventually disappear, or put differently, 
a trend stationary process exhibits only a limited memory of its past behavior, whereas the effect 
of a shock on a unit-root process does not decay over time, implying a permanent effect. 

Almost four decades since Nelson and Plosser (1982), the question of deterministic 
versus stochastic trend in real GDP remains unresolved. Following Nelson and Plosser (1982), 
a large body of empirical work failed to reject the hypothesis of unit root for real GNP, leading 
Stock and Watson (1999) to conclude that the unit-root econometric literature supports the 
contention of Nelson and Plosser (1982). Empirical studies by Wasserfallen (1986), Perron and 
Phillips (1987), Campbell and Mankiw (1987), Evans (1989), Papell and Prodan (2004), Ben-
David and Papell (1995), Cheung and Chinn (1996), and most recently, Murray and Nelson 
(2000), among many others, reach the conclusion that U.S. real GDP is nonstationary. That is, 
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no evidence exists that the economy self-corrects, in the sense that output never returns to its 
previous trend. Walton (1988) reaches a similar conclusion for the United Kingdom. Moreover, 
Kormendi and Meguire (1990), Cogley (1990), Fleissing and Strauss (1999), and Rapach 
(2002) provide international evidence supporting the null of a unit root in real GDP for OECD 
economies.  

These results, however, are far from conclusive. Other papers since Stock and Watson 
(1999), using several modifications and extensions, reject the unit-root hypothesis. Ben-David 
et al. (2003), Papell and Prodan (2004), Vougas (2007), Beechey and Österholm (2008), Cook 
(2008), and Shelley and Wallace (2011) find empirical evidence to reject the unit-root 
hypothesis in real GDP.  

The power of the tests lies at the heart of the issue. The power of the standard unit-root 
tests depends on the specification of the alternative hypothesis. Structural breaks and 
nonlinearities cause undersized standard unit-root tests, resulting in a reduction of statistical 
power (Habimana et al., 2018). Perron (1989) first notes that stationary processes with structural 
breaks are too often mistakenly interpreted as a unit-root processes. Perron (1989) suggests that 
standard unit-root tests such as the standard ADF test probably cannot distinguish the behavior 
of a unit-root process from that of a stationary process with structural breaks. Kapetanios et al. 
(2003), in turn, maintain that the standard unit-root tests suffer from a power problem when 
applied to data characterized by a nonlinear DGP.  

A growing literature, starting with Enders and Granger (1998), relaxes the assumption 
of linearity implicit in the standard unit-root tests and develops tests that can distinguish linear 
nonstationary processes from nonlinear stationary processes. These tests examine the unit-root 
hypothesis against the alternative of a nonlinear stationary process. In this context, the literature 
analyzes two sources of nonlinearity: state-dependent (regime-wise) nonlinearity (i.e., 
nonlinearity in the speed of mean reversion) and time-dependent (structural breaks) nonlinearity 
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(i.e., nonlinearity in the deterministic components). Kapetanios et al. (2003) and Sollis (2009) 
implement state-dependent nonlinear tests. The two tests differ on the dynamics of the speed of 
adjustment towards equilibrium. Kapetanios et al. (2003) employ the exponential smooth 
transition autoregressive (ESTAR) model while Sollis (2009) employs the asymmetric 
exponential smooth transition autoregressive (AESTAR) model. Leybourne et al. (1998), Omay 
(2015), and Çorakcı et al. (2017) develop nonlinear structural break unit-root tests. Leybourne 
et al. (1998) consider a single permanent sharp break; Omay (2015) considers multiple smooth 
breaks; and Çorakcı et al. (2017) consider a single temporary break. Christopoulos and Leon-
Ledesma (2010), Omay and Yıldırım (2014), and Omay et al. (2018) implement tests that 
incorporate both structural break(s) and state-dependent nonlinearity simultaneously. The 
Omay et al. (2018) test provides the most comprehensive nonlinear unit-root test as it combines 
the time-dependent nonlinearity of the unit-root test of Leybourne et al. (1998) with the state-
dependent nonlinearity of the unit-root test of Sollis (2009). Thus, while the Christopulous and 
Leon-Ledesma (2010) and Omay and Yildirim (2014) tests impose a symmetric (ESTAR) 
nonlinear adjustment, the Omay et al. (2018) test allows for asymmetric (AESTAR) nonlinear 
adjustment. The Omay et al. (2018) test considers two alternative specifications of the trend 
function, the logistic transition function, which models a single smooth break, and the Fourier 
series (Becker et al., 2004; Becker et al., 2006; Enders and Lee, 2012; Rodrigues and Taylor, 
2012), which models multiple smooth breaks. In contrast, the Omay and Yildirim (2014) test 
can deal only with a single smooth break, and the Christopulous and Leon-Ledesma (2010) test 
can deal only with multiple smooth breaks.  

We employ the Omay et al. (2018) test, as well as a battery of other linear and nonlinear 
tests, to investigate the stationarity properties of five historical U.K. real output series that the 
Bank of England recentlty compiled in the database A Millennium of Macroeconomic Data 
maintained at https://www.bankofengland.co.uk/statistics/research-datasets. Three series span 
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1270 to 2016, and two series span 1700 to 2016. These datasets represent the largest span of 
historical real output data available and, thus, provide the environment for which unit-root tests 
are most powerful.  

The main result of the Omay et al. (2018) tests are strong and powerful. The tests reject 
the unit-root hypothesis in each of the five historical U.K. real output series and provides strong 
evidence that the main structure of the data is stationary with a sharp trend break and an 
asymmetric nonlinear adjustment. Although we view the findings of the Omay et al. (2018) 
tests as our main results, for completeness, we also consider several other linear and nonlinear 
unit-root tests that are popular in the econometric literature. They include two standard linear 
unit-root tests (the augmented Dickey-Fuller (ADF 1979) and Ng and Perron (2001) tests), and 
seven nonlinear unit-root tests (the Leybourne et al. (1998), Çorakcı et al. (2017), Kapetanios 
et al. (2003), Sollis (2009), Omay and Yildirim (2014), Christopoulos and Leon-Ledesma 
(2010), and Omay (2015) tests). With the exception of Omay (2015), the other nonlinear tests 
nest in the Omay et al. (2018) tests.  

The rest of the paper is organized as follows. Section 2 provides a brief outline of the 
two versions of Omay et al. (2018) unit-root test. Section 3 presents the findings of the Omay 
et al. (2018) unit-root tests and the results of nine other tests. Section 4 comments and 
concludes. 
2. The Omay et al. (2018) unit-root test  
The Omay et al. (2018) tests are the newest and most comprehensive nonlinear unit-root tests. 
We offer the second application of the tests. Omay et al. (2018) first applied the procedure to 
test the purchasing power parity (PPP) hypothesis using both trade-weighted REER series 
(Bahmani-Oskooee, et al. 2007) and bilateral real exchange rates. The key findings of the tests 
suggest that the PPP holds in the majority of the countries in the sample, which details the 
importance of employing highly complex models in the analysis and tests of aggregate data. 
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The Omay et al. (2018) unit-root tests consider two alternative specifications of the trend 
function, the logistic transition function and the Fourier function. The former can only model a 
single smooth break, while the latter accommodates multiple smooth breaks. 

The first specification of the test combines the time-dependent (time-varying) 
nonlinearity of Leybourne et al. (1998) and the state-dependent (regime-wise) nonlinearity of 
the AESTAR model of Sollis (2009). Omay et al. (2018) utilize the following equation for 
modeling the deterministic and stochastic components of an observed time series ݕ௧: 

௧ݕ = (ݐ)߶ +  ௧,        (1)ݑ
where ߶(ݐ) is the deterministic nonlinear trend function and ݑ௧ is the stochastic deviation from 
the trend. Omay et al. (2018) consider two approaches to model the nonlinear deterministic 
trend function of Eq. (1). The first version of the test uses the logistic smooth transition function 
under three alternative models: 

Model A: ݕ௧ = ଵߙ + ,ߛ)ଶܵ௧ߙ ߬) +  ௧,     (2a)ߝ
Model B: ݕ௧ = ଵߙ + ݐଵߚ + ,ߛ)ଶܵ௧ߙ ߬) +  ௧, and    (2b)ߝ
Model C: ݕ௧ = ଵߙ + ݐଵߚ + ,ߛ)ଶܵ௧ߙ ߬) + ,ߛ)ଶܵ௧ߚ ݐ(߬ +  ௧,   (2c)ߝ

where t=1,2,....,T, ߝ௧ is a zero mean process, and ܵ௧(ߛ, ߬) is the logistic smooth transition 
function with a sample size of T. That is,  

ܵ௧(ߛ, ߬) = ሾ1 + ݐ)ߛ−ሼ݌ݔ݁ − ߬ܶ)ሽሿିଵ.     (3) 
In this framework, a smooth transition process between different regimes governs 

structural change as in Leybourne et al. (1998), rather than an instantaneous structural break as 
in Lumdaine and Papell (1997) and Lee and Strazicich (2003). This reflects the now prevailing 
view in the current literature that the cyclical behavior of real GDP is best represented by a 
nonlinear model rather than a linear model with structural breaks (Beechey and Österholm, 
2008). That is, real GDP movements between peaks and troughs occur gradually and not 
instantaneously. The model in Eqs. (1)-(3) captures a regime-switching model with two regimes 
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associated with the extreme values of the transition function ܵ௧(ߛ, ߬) = 0   and ܵ௧(ߛ, ߬)=1, 
where the the transition from one regime to the other occurs gradually. ܵ௧(ߛ, ߬)  is a continuous 
function, and the parameters ߛ and ߬ determine the smoothness or speed of transition and 
location between the two regimes, respectively. Since the value of ܵ௧(ߛ, ߬)  depends on the 
value of the parameter ߛ, the transition between the two regimes occurs slowly for small values 
of ߛ whereas the transition between the regimes becomes almost instantaneous at time ݐ = ߬ܶ 
for large values of ߛ. When ߛ = 0, then ܵ௧(ߛ, ߬) = 0.5 for all values of t. Therefore, in Model 
A [Eq. (2a)], ݕ௧ is stationary around a mean that changes from ߙଵ to ߙଵ +  .ଶ.  Model B [Eqߙ
(2b)] allows for a fixed slope term 1 , whereas the intercept term changes from ߙଵ to ߙଵ +  .ଶߙ
Model C [Eq. (2c)] allows, in addition to the similar changes in the intercept, the slope changes 
from ߚଵ to ߚଵ +  ଶ at the same time. See, for further details, Leybourne, et al. (1998). Theߚ
logistic smooth transition function given in Eq. (3), however, can capture only one gradual 
structural break.  

The second specification of the test utilizes the Fourier series (Enders and Lee, 2012; 
Omay, 2015) to approximate multiple smooth structural breaks: 

(ݐ)߶  = ଴ߙ + ݐߜ + ∑ ܽ௞sin (ଶగ௞௧
் )௡௞ୀଵ + ∑ ܾ௞cos (ଶగ௞௧

் )௡௞ୀଵ +  ௧,    (4)ݑ
where / 2n T  represents the number of frequencies, k is the selected frequency in the 
approximation process, and ܽ௜ and ܾ௜ are the measurements for the amplitude and displacement 
of the sinusodial components of the function. As stated in Omay et al. (2018), the Fourier series 
with an appropriate lag order in most cases can approximate any function with unknown 
numbers of breaks of unknown forms. Under the assumption of ܽ௜  = ௜ܾ = 0 for all i, the Fourier 
function becomes a linear model without a structural break. As a result, rejecting the null of ܽ௜ 
= ܾ௜ = 0 implies a structural break in the series. If Eq. (4) allows for a structural break, the 
minimum frequency component must equal at least one. 
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To model the stochastic component, Omay et al. (2018) utilize the asymmetric 
exponential smooth transition autoregressive (AESTAR) model of Sollis (2009), which 
captures the nonlinear asymmetric adjustment process toward equilibrium. The AESTAR 
model considers both a logistic function and an exponential function as follows: 

௧ݑ∆ = ,ଵߠ)௧ܩ ,ଶߠ)௧ܨ௧ିଵ)൛ݑ ଵߩ(௧ିଵݑ + ൫1 − ,ଶߠ)௧ܨ ௧ିଵݑଶൟߩ௧ିଵ)൯ݑ + ߳௧, (5) 
,ଵߠ)௧ܩ (௧ିଵݑ = 1 − exp൫−ߠଵ(ݑ௧ିଵଶ )൯,                                ߠଵ > 0, and (6) 
,ଶߠ)௧ܨ (௧ିଵݑ = ൣ1 + exp൫−ߠଶ(ݑ௧ିଵ)൯  ൧ିଵ,                        ߠଶ > 0,  (7) 

where ߳௧~݅݅݀(0, ,ଶߠ)௧ܨ .(ଶߪ  ,௧ିଵ) is the logistic transition function for two regimesݑ
determined by the positive and negative deviations from the equilibrium of ݑ௧ (i.e., the sign of 
disequilibrium). ܩ௧(ߠଵ,  ,௧ିଵ) is the U-shaped symmetric exponential transition functionݑ
defined over the range from 0 and 1, determined by the small and large deviations from the 
equilibrium in absolute terms. 

The AESTAR function implies a globally stationary process, which requires ߠଵ > 0, 
ଵߩ < 0, and ߩଶ < 0 as stated in Sollis (2009). If ߩଵ ≠  ଶ, the adjustment process captures notߩ
only sign but also size adjustment to the equilibrium. On the other hand, if ߩଵ =  ଶ, theߩ
adjustment to the equilibrium becomes a symmetric exponential smooth transition 
autoregressive (ESTAR) process.  

We can test the null hypothesis of a linear unit root against the alternative hypothesis of 
a globally stationary AESTAR process. The hypotheses are as follows: 

଴ܪ = ଵߠ = 0    (unit root),       (8) 
ଵܪ = ଵߠ > 0.         (9) 

Testing the null hypothesis proves problematic, since ߩଵ, ߩଶ, and ߠଶ are unidentified nuisance 
parameters under the null. To overcome this problem, Sollis (2009) applies a first-order Taylor 
expansion and derives the following auxiliary equation:  

௧ݑ∆ = ߮ଵݑ௧ିଵଷ + ߮ଶݑ௧ିଵସ + ߱௧.      (10)  
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Under Eq. (10), the null hypothesis in Eq. (8) becomes 0 1 2: 0H    . Eq. (5) assumes a 
serially uncorrelated error term. To allow for serial correlation, we augment the regression 
equation as follows: 

௧ݑ∆ = ,ଵߠ)௧ܩ ,ଶߠ)௧ܨ௧ିଵ)൛ݑ ଵߩ(௧ିଵݑ + ൫1 − ,ଶߠ)௧ܨ  ௧ିଵݑଶൟߩ௧ିଵ)൯ݑ
+ ∑ ௧ି௝௣௝ୀଵݑ∆௝ߜ + ߳௧,   (11) 

where ߳௧~݅݅݀(0,  ଶ). Therefore, we use the following auxiliary regression to test the nullߪ
hypothesis ܪ଴: ߮ଵ = ߮ଶ = 0: 

௧ݑ∆ = ߮ଵݑ௧ିଵଷ + ߮ଶݑ௧ିଵସ + ∑ ௧ି௝ݑ∆௝ߜ +௣௝ୀଵ ௧ߴ .           (12) 
The testing procedure in Omay et al. (2018) consists of two steps (see, also, Kapitanios 

et al., 2003; Leybourne et al., 1998; Sollis, 2009). First, Omay et al. (2018) estimate (a) the 
Fourier model (by OLS) for the frequency k over the range 1 ≤ ݇ ≤ ݇௠௔௫ and obtain the 
optimal k that minimizes RSS through a grid search over the interval 1 ≤ ݇ ≤ ݇௠௔௫ or (b) the 
logistic model (by NLS). Second, using the residuals from (a) or (b), Omay et al (2018) estimate 
Eq. (12) (by OLS) and test the null hypothesis ܪ଴: ߮ଵ = ߮ଶ = 0 , using a conventional F-test. 
The F-test statistic is denoted by ܨ௅஻஺ா, if the logistic transition function is utilized to model a 
single gradual break, and by ܨிௌ஺ா, if the Fourier function is employed to model multiple 
smooth breaks. Omay et al. (2018) obtain the critical values of ܨ௅஻஺ா and ܨிௌ஺ா via stochastic 
simulation and show that the tests possess satisfactory size and power small-sample properties.  
3. Empirical results 
The dataset contains five historical annual output series compiled by the Bank of England. We 
use Version 3.1 of the dataset, updated to 2016. For detailed information about the historical 
sources of the data, see Thomas and Dimsdale (2017). The five series are defined as follows: 
(a) Series 1: Real U.K. GDP at market prices (1700-2016), geographically-consistent estimate 
based on post-1922 borders, million of British pounds, chained volume measure, 2013 prices; 
(b) Series 2: Real U.K. GDP at factor cost (1700-2016), geographically-consistent estimate 
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based on post-1922 borders, million of British pounds, chained volume measure, 2013 prices; 
(c) Series 3: Real GDP of England at market prices (1270-2016), million of British pounds, 
chained volume measure, 2013 prices; (d) Series 4: Real GDP of England at factor cost (1270-
2016), million of British pounds, chained volume measure, 2013 prices; and (e) Series 5: 
Composite Estimate of English and (geographically-consistent) U.K. real GDP at factor cost 
(1270-2016), 2013=100. 

We report the constant and the constant and trend versions for the ADF, Kapitanios et 
al. (2003), Sollis (2009), Omay (2015), and the Fourier version of Omay et al. (2018). For 
economy of space, we only report the constant and trend version of the Ng and Perron (2001) 
tests. We also report Models A, B, and C for the Leybourne et al. (1998) test and the logistic 
version of Omay et al. (2018) test. Given the length of the data, however, we find more 
appropriate to emphasize Model C or the constant and trend versions.  

As a preliminary step, we apply two sets of standard linear unit-root tests: The 
Augmented Dickey-Fuller (ADF 1979) test (constant, and constant and linear trend) and the 
four versions of the Ng and Perron (2001) test (constant and linear trend). The Ng and Perron 
(2001) procedure yields substantial power gains over the standard unit-root test. Significant 
modifications of existing unit-root tests improve their power and size. The MZa and MZt tests 
modify the Phillips (1987) and Phillips and Perron (1988) Za and Zt tests, respectively; the 
MSB test relates to the Bhargava (1986) R1 test; and the MPT test modifies the Elliott et al. 
(1996) point optimal test. Tables 1 and 2 report the results of applying these tests. We choose 
the proper lag length by the SIC criterion from a maximum of 12 lags. We cannot reject the null 
hypothesis of a unit root for any of the five series. As mentioned above, linear unit-root tests 
can suffer from power problems in the presence of nonlinearities in the data leading to a bias 
towards the non-rejection of the null hypothesis.  
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We next consider the results of two tests that allow for state-dependent nonlinearity. 
That is, the tests allow for symmetric nonlinearity (Kapetanios et al., 2003) and asymmetric 
nonlinearity (Sollis, 2009), but ignore the possibility of structural breaks. Tables 3 and 4 
tabulate the results of the Kapetanios et al. (2003) unit-root tests of a symmetric ESTAR model 
and of the Sollis (2099) tests of an asymmetric ESTAR (AESTAR) model. The Kapetanios et 
al. (2003) test rejects the null of a unit root in only one series (Series 5), for the constant, and 
constant and trend cases. Conversely, the Sollis (2009) unit-root test rejects the null of unit root 
in four series (Series 2, 3, 4, and 5) in the constant case, and in three series (Series 3, 4, and 5) 
in the constant and trend case. This provides some evidence that asymmetric adjustment proves 
an important characteristic of state-dependent nonlinearity.1  

Table 5 presents the Leybourne et al. (1998) unit-root test results. The test results show 
that allowing for a sharp permanent break causes a more frequent rejection of the null 
hypothesis than the Omay (2015) and Çorakcı et al. (2017) tests presented in Table 6 and 7. 
The Omay (2015) test models multiple smooth structural breaks using the fractional version of 
the Fourier function, while the Çorakcı et al. (2017) test models temporary structural breaks. 
The Omay (2015) and Çorakcı et al. (2017) tests never reject the null. In contrast, the Leybourne 
et al. (1998) unit-root test, and in particular Model C, rejects the unit-root hypothesis in four of 
the five series (Series 2, 3, 4, and 5). Weaker evidence of rejection appears for Model A, which 
rejects the null only in three of the five series (Series 3, 4, and 5), while Model B cannot reject 
the unit-root hypothesis in four of the five series (Series 1, 3, 4, and 5). These findings, however, 
provide some evidence that the structure of the historical series does not include a single 
temporary break or multiple smooth breaks. 

                                                             
1 Following Camacho (2011), we also applied the regime-switching in the conditional mean of the unit root model 
with trend to the five series of real GDP under consideration, but the test could not reject the null of unit root in 
any of the cases. This result possibly highlights the importance of modelling breaks in not only the mean, but also 
the trend. Complete details of these results are available upon request from the authors. 
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Table 8 reports the Omay and Yildirim (2014) test results. The test statistics for Model 
A reject the null of a unit root at the 1-percent level in Series 1, 2, 4, 5 and at the 5-percent level 
in Series 3. The test statistics for Model C reject the null of unit root at the 1-percent level in 
all five series. These results provide some evidence that favours a permanent structural break 
and of nonlinear symmetric adjustment for the five historical real output series. Some 
ambivalence exists, however, since the results of Model B indicate failure to reject the null for 
all series.  

Table 9 reports the Christopoulos and Leon-Ledesma (2010) test results. The test 
statistics for the constant, and constant and trend cannot reject the null of a unit root for all five 
series. This suggests that a model with multiple smooth breaks and symmetric adjustment does 
not adequately support the hypothesis of stationarity. The critival values for the constant only 
test statistic come from Christopoulos and Leon-Ledesma (Table 2). The critical values for the 
constant and trend test statistic are not available from Christopoulos and Leon Ledesma (2010) 
and are obtained by our Monte Carlo simulation for T=500 and k = 1.2 

Finally, Tables 10 and 11 report the results of two versions of the Omay et al. (2018) 
unit-root tests, the logistic function version with single permanent break and the Fourier 
function version with multiple smooth breaks. Table 10 reports the ܨ௅஻஺ா of the logistic 
transition function for Model A, B, and C. The test results of single break version of the test are 
quite similar to those in Model A and Model C of Omay and Yıldırım (2014), reiterating the 
relevance of the single permanent structural break over the multiple smooth breaks. Table 11 
reports the ܨிௌ஺ா test statistic for the constant, and constant and trend. We find that the logistic 
version of the Omay et al. (2018) unit-root test is also preferred to the Fourier version, which 

                                                             
2 We also computed the critical values for T = 2500. We report them for additional information. They are, 
respectively, -4.42, -3.86, and -3.56 for the 1%, 5%, and 10% significance level, respectively. 
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allows for the possibility of multiple smooth breaks, since the logistic version rejects the null 
in all five series compared to the rejection of only three series in the Fourier function case.  

Figures 1-5 present in panels (a) and (b) the historical GDP series along with estimated 
nonlinear trend functions and the corresponding detrended data. Visual inspection of the series 
reveals the importance of taking account of gradual breaks when analysing these series.  
4.  Conclusions 
We employ the nonlinear unit-root test recently developed by Omay et al. (2018), as well as a 
battery of linear and nonlinear tests, to examine the stationarity of five multi-century historical 
U.K. series of real output compiled by the Bank of England (Thomas and Dimsdale, 2017). 
Three series span 1270 to 2016 and two series span 1700 to 2016. These datasets represent the 
longest span of historical real output data available and, thus, provide the environment for which 
unit-root tests are most powerful.  

Linear unit-root tests, such as the ADF and the Ng and Perron (2001) tests, 
systematically fail to reject the unit root in all five historical real output series.  

Nonlinear unit-root tests exhibit mixed success. Time-dependent tests, such as 
Leybourne et al. (1998), which impose on the structure of the data one permanent sharp break, 
reject the  unit-root hypothesis in four of the five real output series (Series 2, 3, 4, and 5). Oddly, 
state-dependent tests, such as Sollis (2009), which impose asymmetric adjustment, reject the 
null of unit root also in four of the five series (Series 2, 3, 4, and 5). This shows that time-
dependent nonlinearity in the form of a single structural break, and state-dependent nonlinearity 
in the form of asymmetric adjustment can imitate each other. That is, a sharp break in trend and 
intercept can also be modelled by an AESTAR type nonlinearity. In contrast, time-dependent 
tests such as Omay (2015) and Çorakcı et al. (2017), which impose multiple smooth breaks and 
one temporary break, respectively, consistently fail to reject the unit-root hypothesis. The 
results of the Christpoulos and Leon-Ledesma (2010) tests fail to reject the unit-root hypothesis, 
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confirming that the structure of the series is not inclusive of multiple smooth structural breaks. 
State-dependent tests with symmetric adjustment, such as Kapetanios et al. (2003), also fail to 
reject the null of a unit root. Thus, the above-mentioned tests are capable, on their own, of 
delivering some bits and pieces of empirical information about the structure of the five historical 
series. Applied to the first series, however, none of these tests provides evidence of stationarity. 

In contrast, the key findings of the Omay et al. (2018) unit-root test, Model C, provides 
strong evidence that the main structure of all the five series is stationary with a sharp trend 
break and an asymmetric nonlinear adjustment. This finding is highly significant from the 
perspective of current macroeconomic debate because it refutes, for the historical U.K. series 
at least, the most stylized fact that real output follows a non-stationary process. This result is 
highly at odds with the much more popular nonlinear tests that consider only one facet of the 
nonlinear process, such as the Kapetanios et al. (2003) unit-root test that allows for state-
dependent nonlinearity, but ignores structural breaks, or the Christopoulos and Leon-Ledesma 
(2010) unit-root test that allows for multiple smooth breaks but ignore asymmetric adjustments.  
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Table1. ADF unit-root test results 
Output Series Constant Constant and trend 
Series 1 7.791 5.348 
Series 2 7.293 4.676 
Series 3 11.426 10.927 
Series 4 12.197 11.713 
Series 5  11.740 11.231 
Test critical values:  
1% -3.438 -3.420 
5% -2.865 -2.910 
10% -2.568 -2.620 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 2. Ng and Perron (2001) unit-root test results 
Output Series MZa MZt MSB MPT 
Series 1 2.891 1.957 0.677 136.294 
Series 2 2.943 2.061 0.700 145.605 
Series 3 -5.623 -1.099 0.195 15.221 
Series 4 -6.181 -1.177 0.190 14.597 
Series 5 -6.275 -1.196 0.191 14.498 
Test critical values:    
1% -23.800 -3.420 0.143 4.030 
5% -17.300 -2.910 0.168 5.480 
10% -14.200 -2.620 0.185 6.670 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 3. Kapetanios, et al. (2003) unit-root test results 
Output Series Constant Constant and trend 
Series 1 -0.900 -1.513 
Series 2 -0.747 -1.379 
Series 3 -1.184 -1.758 
Series 4 -0.764 -1.306 
Series 5 -5.868*** -8.628*** 
Test critical values:  
1% -3.480 -3.970 
5% -2.930 -3.400 
10% -2.660 -3.130 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
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Table 4. Sollis (2009) unit-root test results 
Output series Constant ۱܌ܖ܍ܚܜ ܌ܖ܉ ܜܖ܉ܜܛܖܗ 
Series 1 1.638 2.412 
Series 2 8.292*** 2.140 
Series 3 29.473*** 20.859*** 
Series 4 25.062*** 15.647*** 
Series 5 17.421*** 50.774*** 
Test critical values:  
1% 6.883 8.531 
5% 4.954 6.463 
10% 4.157 5.460 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 5. Leybourne et al. (1998) unit-root test results 
Output Series Model A Model B Model C 
Series 1 -3.023 -3.447 -3.447 
Series 2 -3.186 -5.882*** -5.882*** 
Series 3 -6.699*** -0.579 -7.126*** 
Series 4 -7.320*** -0.543 -7.697*** 
Series 5 -7.130*** -0.451 -7.468*** 
Test critical values:   
1% -4.882 -5.479 -5.560 
5% -4.232 -4.771 -5.011 
10% -3.909 -4.427 -4.697 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 6. Omay (2015) unit-root test results 
Output Series Constant Constant and trend 
Series 1 1.238 -1.912 
Series 2 1.236 -1.945 
Series 3 11.005 6.943 
Series 4 11.365 7.985 
Series 5 10.957 7.661 
Test critical values:  
1% -4.31 -4.94 
5% -3.67 -4.35 
10% -3.33 -4.05 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
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Table 7. Çorakcı et al. (2017) unit-root test results 
Output Series Model A Model B Model C 
Series 1 -1.006 -1.649 -1.687 
Series 2 -0.932 -1.481 -2.056 
Series 3 -0.164 -0.787 -0.876 
Series 4 -0.010 -0.008 -0.698 
Series 5 -1.504 -2.997 -1.954 
Test critical values:   
1% -5.017 -5.544 -5.797 
5% -4.374 -4.900 -5.166 
10% -4.051 -4.572 -4.844 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 8. Results of Omay and Yıldırım (2014) unit-root tests 
Output Series Model A Model B Model C 
Series 1 -4.152** -3.865 -5.142*** 
Series 2 -4.506*** -3.701 -5.478*** 
Series 3 -5.051** -2.716 -5.174*** 
Series 4 -5.027*** -2.332 -5.120*** 
Series 5 -23.873*** -1.540 -26.669*** 
Test critical values:   
1% -4.443 -4.777 -5.041 
5% -3.821 -4.202 -4.411 
10% -3.509 -3.889 -4.090 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 9. Results of Christopoulos and Leon-Ledesma (2010) unit-root tests 
Output Series Constant Constant and trend 
Series 1 3.560 -0.442 
Series 2 3.712 -0.359 
Series 3 6.693 4.045 
Series 4 7.188 4.634 
Series 5 7.113 6.322 
Test critical values:  
1% -4.41 -4.44 
5% -3.86 -3.86 
10% -3.54 -3.57 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
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Table 10. Results of Omay et al. (2018) unit-root tests (logistic trend function version) 
Output Series Model A Model B Model C 
Series 1 10.720** 9.377* 18.759*** 
Series 2 12.230*** 9.651** 22.811*** 
Series 3 25.248*** 52.249*** 28.732*** 
Series 4 30.734*** 9.756** 34.318*** 
Series 5 386.214*** 42.540*** 433.129*** 
Test critical values:   
1% 10.756 12.681 13.621 
5% 8.110 9.642 10.617 
10% 7.101 8.339 9.209 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
 
Table 11. Results of Omay, et al. (2018) unit-root test (Fourier trend function version) 
Output Series Constant Constant and trend Series 1 21.346*** 4.867 
Series 2 21.805*** 4.726 
Series 3 73.806*** 40.620*** 
Series 4 70.126*** 37.119*** 
Series 5 47.809*** 35.947*** 
Test critical values:  
1% 8.68 10.61 
5% 6.36 7.93 
10% 5.31 6.75 

* denotes 10% significance level; **denotes 5% significance level; *** denotes 1% 
significance level. 
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Figure 1.  Series 1: Real U.K. GDP at market prices (1700-2016), geographically-
consistent estimate based on post-1922 borders; million of British pounds, 
chained volume measure, 2013 prices 
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Figure 2.  Series 2: Real U.K. GDP at factor cost (1700-2016), geographically-consistent 
estimate based on post-1922 borders; million of British pounds, chained volume 
measure, 2013 prices 
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Figure 3.  Series 3: Real GDP of England at market prices (1270-2016), million of British 
pounds, chained volume measure, 2013 prices. 
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Figure 4 Series 4: Real GDP of England at factor cost (1270-2016), million of British 
pounds, chained volume measure, 2013 prices. 
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Figure 5.  Series 5: Composite Estimate of English and (geographically-consistent) U.K. real 
GDP at factor cost (1270-2016), 2013=100. 
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