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Abstract

We consider preferences over all random variables on a given nonatomic prob-

ability space. We show that non-trivial and complete preferences cannot simulta-

neously satisfy the two fundamental principles of convexity and continuity. As an

implication of this incompatibility result there cannot exist any non-trivial contin-

uous utility representations over all random variables that are either quasi-concave

or quasi-convex. This rules out risk-averse (or seeking) expected utility represen-

tations and, more generally, risk- and uncertainty-averse (or seeking) Choquet

expected utility representations for this large space of random variables.
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1 Introduction

Fix an arbitrary nonatomic probability space (
;�; �). The set of all random variables

de�ned over this space, denoted L0 (�), consists of all �-measurable functions X : 
!
R. Most of the literature on preferences over random variables restricts attention to

rather small subsets of random variables such as, e.g., random variables with �nite

support. Whenever larger classes of random variables are considered they typically

belong to a technically convenient space Lp (�) � L0 (�), with 1 � p � 1, such that
X 2 Lp (�) with p <1 if, and only if, the integralZ




jXjp d� (1)

exists. For example, L1 (�) collects all random variables with �nite expected value;

L2 (�) collects all random variables with �nite variance; and L1 (�) denotes the set of

all bounded random variables.

This paper takes an extreme stand and considers preferences over ALL random vari-

ables whereby we endow L0 (�) with the metric topology of convergence in probability.1

For this large space we establish that continuity and convexity cannot be simultaneously

satis�ed for non-trivial and complete preferences (Theorem 1). If we want to model non-

trivial preferences over the random variables in L0 (�), we must thus give up at least

one of the three fundamental principles of continuity, convexity, or completeness, re-

spectively. Under the additional assumption of transitivity, Theorem 2 establishes that

continuity is neither compatible with quasi-concave nor with quasi-convex preferences.

It is also not compatible with preference for diversi�cation (Theorem 3).

For standard utility representations our incompatibility results imply the following

restrictions:2

� Any non-trivial expected utility representation withZ



u (X) d� (2)

for all X 2 L0 (�) is neither compatible with a concave nor with a convex utility
function u.

� Any non-trivial Choquet expected utility representation withZ C




u (X) d� (3)

1Our analytical �ndings can be analogously derived for the �smaller�Lp (�) spaces with 0 < p < 1

(cf. Remark 3).
2The �rst restriction is a special case of the second one. For the formal de�nition of Choquet

integration with respect to the non-additive probability measure (=capacity) � see Section 4.
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for all X 2 L0 (�) is neither compatible with (i) a concave utility function u com-
bined with a convex capacity � nor with (ii) a convex utility function u combined

with a concave capacity �.

Consequently, there cannot exist any expected utility representation over all random

variables that expresses global risk-aversion (or global risk-seeking, for that matter).

Neither can there exist a Choquet expected utility representation over all random vari-

ables which expresses global risk-aversion combined with global ambiguity/uncertainty

aversion (or global risk-seeking combined with global ambiguity/uncertainty seeking).3

One possible way of dealing with this incompatibility result is to give up on continu-

ous utility representations altogether and consider complete preferences over all random

variables that are convex but not continuous (cf. Examples 4 and 5 in Section 5). From

an applicational point of view, however, the lack of a continuous utility representation

is not very attractive.

In case one wants to keep continuous utility representations, there are two alternative

approaches for getting around the incompatibility between convexity and continuity. The

�rst approach is to give up complete preferences on L0 (�). By restricting attention to

suitable subsets of random variables, continuity and convexity may become compatible

for preferences that are complete for these subsets only (cf. Examples 2 and 3 in Section

5). A straightforward example for this approach would be preferences on L1 (�) that are

represented by the random variables�expected values. These preferences are (weakly)

convex and continuous as well as complete on L1 (�) (but not on L0 (�)!) because,

by de�nition, every random variable in L1 (�) comes with an expected value. For an

example of convex and continuous preferences that are complete for the non-negative

random variables in L1 (�), let us quote from Nielsen (1984):

�The conclusion of an exchange between Ryan (1974) and Arrow (1974)

was that if u is a concave and increasing function on the non-negative real

line, and if Z is a random variable on the non-negative real line with �nite

expected value, then the expected value of u (Z) is �nite.�(p.202)

The second approach is to give up on convex preferences by restricting attention

to utility functions u that are bounded and therefore neither concave nor convex (cf.

Examples 6 and 7 in Section 5). Peter Wakker (1993) already re�ects on these two

alternative approaches while exploring the role of bounded utility in Savage�s (1954)

subjective expected utility theory:

3We adopt here Schmeidler�s (1989) interpretation of ambiguity/uncertainty aversion (resp. seeking)

of a CEU decision maker in terms of a convex (resp. concave) capacity.

3



�Ever since, the extension of Savage�s theorem to unbounded utility has

been an open question, and with that the question "what is wrong with

Savage�s axioms?". [:::] I think that "what is wrong with Savage�s axioms",

is primarily his requirement of completeness of the preference relation on the

set of all (alternatives=) acts [:::].�(p.448)

The main insight from our analysis is that the con�ict between the three fundamental

principles of (i) continuity, (ii) convexity, and (iii) completeness is not speci�c to any

given utility representation such as, e.g., expected or, more generally, Choquet expected

utility. Instead, this con�ict is a mathematical necessity that a¤ects any model of

preferences over random variables.4

The remainder of this paper is organized as follows. Section 2 introduces our formal

framework. Section 3 derives our main incompatibility results whose implications for

utility representations are discussed in Section 4. Section 5 presents several examples

which illustrate our analytical �ndings. Finally, in Section 6 we argue in favor of our

topological choice compared to alternative topologies whose de�nitions of continuity

would be compatible with convexity. All formal proofs are relegated to the Appendix.

2 Our topological space of all random variables

We endow the set of all random variables L0 (�) with the topology of convergence in

probability (cf. Chapters 13.10 and 13.11 in Aliprantis and Border 2006). This topology

is generated by the translation-invariant metric d0 : L0 (�)� L0 (�)! [0; 1) such that5

d0 (X; Y ) =

Z



jX � Y j
1 + jX � Y jd�. (4)

That is, for any sequence of random variables fXng1n=1 we have that

d0 (Xn; X)! 0 i¤ 8� > 0, � (jXn �Xj > �)! 0. (5)

In Section 6 we will come back to our topology of choice and compare it to alternative

topologies in the light of our analytical results.

4Another example for this con�ict are risk measures from the mathematical �nance literature. By

our incompatibility result, there cannot exist risk measures de�ned over all random variables that are

simultaneously convex and continuous (cf. Example 7 in Section 5).
5The distance between any two random variables is obviously zero under this (essential) metric when-

ever both random variables coincide �-almost everywhere; that is, we distinguish between equivalence

classes of �-measurable functions rather than between functions themselves.
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Note that L0 (�) is a vector space because the operations of addition and scalar

multiplication for all its members are well de�ned. To state the obvious, Z = �X +

(1� �)Y means
Z (!) = �X (!) + (1� �)Y (!) , �-a.e. (6)

so that the �mixture operation�on L0 (�) is an �averaging�of real-valued outcomes in a

given state.6

Recall that a subset of random variables L � L0 (�) is convex if, and only if,

Y1; :::; Yn 2 L implies �1Y1 + :::+ �nYn 2 L for all �i � 0 s.t.
nX
i=1

�i = 1. (7)

Next recall that the interior of a given subset of a topological space is the largest (in

the sense of set-inclusion) open set included in this subset. The following proposition

will be crucial for deriving our subsequent incompatibility result.

Proposition 1. The only convex subset of L0 (�) with non-empty interior is the set
L0 (�) itself.

Sketch of the proof (for details see the Appendix): If there exists some Y in the

interior of a convex subset of L0 (�), denoted L, we can (for an atomless �) �nd for any

given Z 2 L0 (�) a collection of Yi, i = 1; ::; n, such that (i) all Yi are su¢ ciently close to Y
with respect to the d0-metric, implying Yi 2 L for all i, and (ii) Y +Z = 1

n
Y1+ :::+

1
n
Yn.

By convexity of L, we have thus that Y + Z for an arbitrary Z 2 L0 (�) must also

belong to L, implying that the Y + Z 2 L generate for any Y the whole set L0 (�) so

that L0 (�) = L.

Remark 1. Our proof of Proposition 1 uses the whole space L0 (�) and it does
not necessarily go through for large subsets of L0 (�) (but see Remark 3). Consider for

example the subset of L0 (�) that only contains non-negative random variables

L0+ (�) �
�
X 2 L0 (�) j X (!) � 0 �-a.e.

	
(8)

endowed with (4). For an open, non-empty, convex subset L � L0+ (�) we only have that
Y +Z 2 L for all Z 2 L0+ (�) but not for non-positive Z 2 L0 (�). That is, for any Y 6= 0
the Y + Z 2 L do no longer generate the whole set L0+ (�) so that we cannot conclude
that L0+ (�) = L. Consequently, one cannot prove the statement of Proposition 1 if

6This mixture operation is di¤erent from the Anscombe-Aumann (1963) mixture operation which

�averages�in any given state over probability distributions de�ned as outcomes of Anscombe-Aumann

acts thereby resulting in a new distribution instead of a new real number.
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one substitutes L0+ (�) for L
0 (�). Our subsequent incompatibility results will therefore

not apply to preferences restricted to the non-negative random variables in L0+ (�) (cf.

Example 3 in Section 5).

Remark 2. Observe that Proposition 1 implies that L0 (�) is not locally convex
(Example 8.47 (3) in Aliprantis and Border 2006). This implies in turn that, except for

0, there does not exist any continuous functional f : L0 (�) ! R which is linear, i.e.,
that satis�es for all X; Y 2 L0 (�),

f (�X + �Y ) = �f (X) + �f (Y ) for all �; � 2 R. (9)

On the other hand, there exist non-zero continuous linear functionals which separate

points from closed convex subsets for the locally convex spaces Lp (�) with 1 � p � 1
(Corollary 5.80 in Aliprantis and Border 2006). Proposition 1 can thus not be extended

to Lp (�) spaces with 1 � p � 1. As a consequence, our incompatibility results will not
apply to these spaces.

Remark 3. Note that Lp (�) spaces with 0 < p < 1 endowed with the metric

dp (X; Y ) =

Z



jX � Y jp d� (10)

are also locally non-convex spaces on which only 0 exists as continuous linear functional

(Theorem 1 in Day 1940). The statement of Proposition 1 can be shown to hold also

for Lp (�) spaces with 0 < p < 1 (for a proof see paragraph 1.47 in Rudin 1991).

As a consequence, our subsequent incompatibility results obtained for L0 (�) can be

analogously derived for Lp (�) spaces with 0 < p < 1.

3 Main results

3.1 Incompatibility of convexity and continuity

Consider a binary preference relation � on L0 (�) whereby we treat random variables

as identical objects if they coincide �-almost everywhere. The standard interpretations

and notational conventions apply: X � Y means that Y is at least as desirable as X;

an agent is indi¤erent between X and Y , denoted X � Y , i¤ X � Y and Y � X; in

addition, we have strict preference, i.e., X � Y , whenever X � Y holds whereas Y � X
does not. We assume that � is asymmetric (i.e., for all X;Y 2 L0 (�), X � Y implies

not Y � X) and that � is re�exive (i.e., for all X 2 L0 (�), X � X). At this point, we
neither assume completeness nor transitivity of � on L0 (�) (see below).
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Let us introduce the super-level (=weakly better) set of X 2 L0 (�) which contains
all random variables that are at least as desirable as X:

S (X) �
�
Z 2 L0 (�) jX � Z

	
. (11)

Similarly, the sub-level (=weakly worse) set of X 2 L0 (�) contains all random variables
that are weakly less desirable than X:

s(X) �
�
Z 2 L0 (�) jZ � X

	
: (12)

Note that, by re�exivity of �, both sets s (X) and S (X) are non-empty for all X 2
L0 (�).

Next consider the following de�nitions of possible properties that a preference relation

� on L0 (�) may or may not satisfy.

� Non-triviality: 9X;Y; Z 2 L0 (�) such that Y � X and X � Z.

� Completeness: 8X; Y 2 L0 (�), X � Y or Y � X.

� d0-continuity: 8X 2 L0 (�), the super-level set S (X) and the sub-level set s(X)
are closed sets with respect to the topology of convergence in probability.

� S-convexity: 8X 2 L0 (�), the super-level set S (X) is convex.

� s-convexity: 8X 2 L0 (�), the sub-level set s (X) is convex.

Without non-triviality the preference relation � is not very interesting. By com-

pleteness, the decision maker is capable of making decisions in any situation. Although

completeness might not always be plausible in empirical situations7, the whole point of

this paper is to assume that a decision maker may have preferences over all random

variables in L0 (�) and study the consequences of this assumption.

In behavioral terms continuity ensures that small changes, with respect to our chosen

metric d0, will not lead to abrupt changes in a decision maker�s choice. More precisely,

d0-continuity ensures that whenever a sequence of random variables fYkgk2N with X �
Yk for all k converges in probability to a random variable Y , then also X � Y , i.e.,

preferences will not be reversed in the limit. From an applicational perspective, d0-

continuity is necessary for any representation of complete preferences on L0 (�) by some

continuous utility function (see Section 4).

7In support of the empirical relevance of incomplete preferences see, e.g., Danan et al. (2015) and

references therein.
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S-convexity means that the decision maker likes to mix over the outcomes of random

variables; a feature that is closely associated with behavioral concepts like risk- or/and

uncertainty aversion as well as preference for diversi�cation. s-convexity means the

opposite and is associated with a risk- or/and uncertainty seeking and aversion against

diversi�cation.

To sum up: None of these �ve properties is behaviorally implausible (whereby S-

convexity is empirically far more relevant than s-convexity). Nevertheless, convexity

and continuity turn out to be incompatible with one another whenever preferences are

non-trivial and complete.

Theorem 1. Consider a binary preference relation � on L0 (�) that is non-trivial and
complete.

(a) The preference relation � cannot simultaneously satisfy d0-continuity and S-convexity.

(b) Neither can � simultaneously satisfy d0-continuity and s-convexity.

(c) If non-triviality or completeness are dropped, then � might simultaneously satisfy

d0-continuity and S-convexity (resp. s-convexity).

Sketch of the proof (for details see the Appendix): De�ne the strictly better and

strictly worse sets of X 2 L0 (�) as follows

S� (X) �
�
Z 2 L0 (�) jX � Z

	
, (13)

s� (X) �
�
Z 2 L0 (�) jZ � X

	
. (14)

Completeness ensures that the topological structure of L0 (�) determines open, resp.

closed, sets with respect to the preference relation � so that Proposition 1 becomes

applicable (cf. Remark 1). In particular, by completeness, d0-continuity implies that

the sets S� (X) and s� (X) must be open in the topology of convergence in probability.

But by Proposition 1, S� (X) and s� (X) cannot be open if they are non-empty, convex,

strict subsets of L0 (�). Non-triviality ensures non-emptiness of S� (X) and s� (X) as

well as S� (X) ; s� (X) ( L0 (�).

3.2 Quasi-concave and quasi-convex preferences

Note that the incompatibility result of Theorem 1 does not require transitivity of �
which is de�ned as follows:

� Transitivity: 8X; Y; Z 2 L0 (�) if X � Y and Y � Z, then X � Z.

8



Transitivity is a standard rationality requirement for economic agents that precludes

the possibility of simple money pumps (cf. Cubit and Sugden 2001). Next consider the

following possible properties of preferences.

� Quasi-concavity: 8X;Y 2 L0 (�) if X � Y , then X � �X + (1� �)Y for all

� 2 [0; 1].

� Quasi-convexity: 8X; Y 2 L0 (�) if X � Y , then �X + (1� �)Y � Y for all

� 2 [0; 1].

The concept of quasi-concavity�formally de�ned as �uncertainty aversion�over acts

in the Anscombe-Aumann (1963) framework�goes back to Gilboa and Schmeidler (1989,

Axiom A.5) and Schmeidler (1989).8 Because our formal de�nition of quasi-concavity

applies to the outcomes of random variables, the meaning of our de�nition is di¤erent

from the original one formulated for the Anscombe-Aumann framework.

Note that S-convexity implies quasi-concavity. Similarly, s-convexity implies quasi-

convexity. In what follows we establish that these relationships also hold in the other

direction whenever transitivity is satis�ed.

Proposition 2. Assume that � on L0 (�) is complete and transitive.

(a) Then quasi-concavity implies S-convexity.

(b) Then quasi-convexity implies s-convexity.

Combining Theorem 1 and Proposition 2 gives the following results.

Theorem 2. Assume that � is non-trivial, complete, transitive, and d0-continuous.

(a) Then � must violate quasi-concavity.

(b) Then � must violate quasi-convexity.

8As motivation for his de�nition, Schmeidler (1989) writes: �Intuitively, uncertainty aversion means

that "smoothing" or averaging utility distributions makes the decision maker better o¤. Another way

is to say that substituting objective mixing for subjective mixing makes the decision maker better o¤.�

(p.582) For an alternative approach to uncertainty aversion de�ned over random variables (i.e., Savage

acts) rather than over Anscombe-Aumann acts see Epstein (1999).
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3.3 Preference for diversi�cation

Eddie Dekel (1989) has introduced the following de�nition in the context of portfolio

choices:9

� Preference for diversi�cation: 8X; Y 2 L0 (�) if X � Y , then X � �X+(1� �)Y
for all � 2 [0; 1].

Quasi-concavity implies preference for diversi�cation. The proof of the following

result establishes that preference for diversi�cation implies quasi-concavity under tran-

sitivity and d0-continuity.

Theorem 3. Assume that � on L0 (�) is complete, transitive, and d0-continuous.

Then � must violate preference for diversi�cation.

Remark 4. One implication of the above analysis is that so-called convex/coherent/sub-
additive risk measures de�ned over all L0 (�) cannot be continuous (see, e.g., Föllmer and

Schied 2002; Delbaen 2002, 2009; Assa 2016). The next section discusses implications

of our analytical �ndings for utility representations.

4 Implications for utility representations

This section assumes that preferences on L0 (�) are represented by some utility func-

tional.

Assumption 1. Fix some non-trivial and complete preference relation � on L0 (�)

and suppose that there exists some functional U : L0 (�) ! R such that, for all

X; Y 2 L0 (�),
X � Y i¤ U (X) � U (Y ) . (15)

We say that U is continuous (in probability) if d0 (Yk; Y )! 0 implies limk U (Yk) =

U (Y ). For quasi-concave U it must hold that

8X; Y 2 L0 (�) ; � 2 (0; 1) ; U (�X + (1� �)Y ) � min fU (X) ; U (Y )g (16)

whereas we have for quasi-convex U that

8X; Y 2 L0 (�) ; � 2 (0; 1) ;max fU (X) ; U (Y )g � U (�X + (1� �)Y ) . (17)

9For extensions of Dekel�s (1989) approach see Chateauneuf and Lakhnati (2007) and Chateauneuf

and Tallon (2002). For an excellent survey on this literature see De Giorgi and Mahmoud (2016).
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Proposition 4. Suppose that Assumption 1 holds. If U is continuous, then U can

neither be quasi-concave nor quasi-convex.

In the remainder of this section we discuss implications for expected utility and

Choquet expected utility, respectively.

4.1 Expected utility

Suppose that the utility representation (15) is of the expected utility (EU) form, i.e., for

all X 2 L0 (�),

U (X) � E (u (X)) (18)

=

Z



u (X (!)) d� (19)

for some utility function u : R ! R. Since the EU representation (18) is continuous,
the represented preferences � satisfy d0-continuity. Next observe that quasi-concavity

of EU preferences holds if u is concave thereby formally expressing risk-aversion of the

EU decision maker. Conversely, quasi-convexity of EU preferences holds if u is convex

thereby expressing risk-seeking. By Proposition 4, we thus obtain the following result.

Corollary 1. Suppose that Assumption 1 holds such that U is of the EU form (18).

Then the utility function u can neither be concave nor convex.

By Corollary 1, an EU representation over all random variables can thus neither

express global risk-aversion nor global risk-seeking. We will come back to this point in

our Examples 3 and 6 in Section 5.

Remark 5. The quintessence of Corollary 1 already appears in the EU literature
in the form of existence conditions for the integral (19) (cf. Nielsen 1984; Wakker 1993;

Delbaen, Drapeau and Kupper 2011 and references therein). A main insight from this

literature is that boundedness of u is required for any EU representation de�ned over

all random variables: for unbounded u we can always �nd random variables for which

the integral (19) does not exist.10 To see the connection between this literature and

our Corollary 1, observe that any (non-constant) concave u is unbounded from below

whereas any (non-constant) convex u is unbounded from above.

10Cf. Wakker (1993, p.448): �The underlying problem was already observed by Menger (1934). As

soon as utility is unbounded, there exist acts with unbounded expected utility[:::].�
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Remark 6. Beyond this purely decision-theoretic literature, macro-economists have
observed that �model uncertainty�may easily lead to exploding moments of expected

utility functions (or of the stochastic discount factor) for unbounded utility functions

that are standard in the literature (cf. Geweke 2001; Weitzman 2007). This insight cul-

minated in Weitzman�s (2009) Dismal Theorem about modeling preferences over random

consumption streams: �Seemingly thin-tailed probability distributions (like the normal),

which are actually only thin-tailed conditional on known structural parameters of the

model (like the standard deviation), become tail-fattened (like the Student-t) after inte-

grating out the structural-parameter uncertainty. This core issue is generic and cannot

be eliminated in any clean way.�(p.9)

4.2 Choquet expected utility

Consider now a utility representation (41) which is of the Choquet expected utility

(CEU) form, i.e., for all X 2 L0 (�),

U (X) � EC (u (X)) (20)

=

Z C




u (X (!)) dv (21)

where the integral in (20) is the Choquet integral with respect to a nonatomic capacity

� on (
;�) that is equivalent to �. The Choquet integral is formally de�ned asZ C




u (X (!)) dv �
Z 1

0

� (u (X (!)) � x) dx�
Z 0

�1
(1� � (u (X (!)) � x)) dx (22)

(for details on Choquet integration and properties of the Choquet integral see Schmeidler

1986 for bounded u and, more generally, Wakker 1993).

We follow the literature and call � convex i¤, for all A;B 2 �,

� (A [B) + � (A \B) � � (A) + � (B) . (23)

� is called concave i¤ the inequality in (23) is reversed. CEU has been axiomatized in

Schmeidler (1989) and in Gilboa (1987) whereby Schmeidler (1989) associates convex

(resp. concave) � with ambiguity/uncertainty aversion (resp. seeking) (cf. Footnote 8).

Since the CEU representation (20) is continuous, Proposition 4 implies that (20)

cannot represent preferences that satisfy either quasi-concavity or quasi-convexity. For

the EU representation (18) quasi-concavity (resp. quasi-convexity) of U is simply im-

plied by concavity (resp. convexity) of u. The case is more complicated for the CEU

representation (20) for which we must additionally consider properties of �. In what

follows we derive conditions that imply quasi-concavity of any CEU representation.

12



By Proposition 3 in Schmeidler (1986), convexity of � implies, for any � 2 [0; 1],

EC (�u (X) + (1� �)u (Y )) � EC (�u (X)) + EC ((1� �)u (Y )) for all X; Y 2 L0 (�) ,
(24)

which is equivalent to

EC (�u (X) + (1� �)u (Y )) � �EC (u (X)) + (1� �)EC (u (Y )) for all X; Y 2 L0 (�)
(25)

since the Choquet integral is homogeneous of degree one. For concave u we have that

u (�X + (1� �)Y ) � �u (X) + (1� �)u (Y ) (26)

so that monotonicity of the Choquet integral implies, by (25),

EC (u (�X + (1� �)Y )) � �EC (u (X)) + (1� �)EC (u (Y )) for all X;Y 2 L0 (�) .
(27)

For all X; Y 2 L0 (�) such that EC (u (X)) � EC (u (Y )), we obtain from (27) that

EC (u (�X + (1� �)Y )) � EC (u (Y )) , (28)

which is the de�nition of a quasi-concave EC (u (�)). Collecting the above arguments
gives the following result (the argument for quasi-convexity proceeds analogously).

Corollary 2. Suppose that Assumption 1 holds such that U is of the CEU form (20).

Then we can neither have (i) concavity of the utility function u combined with

convexity of the capacity � nor (ii) convexity of the utility function u combined

with concavity of the capacity �.

Loosely speaking, Corollary 2 establishes that a CEU representation over all ran-

dom variables can neither express (i) global risk aversion combined with global ambi-

guity/uncertainty aversion nor (ii) global risk seeking combined with global ambigu-

ity/uncertainty seeking.

Remark 7. Corollary 1 is obviously a special case of Corollary 2. Whenever the ca-
pacity � is simultaneously convex and concave it becomes the additive measure � so that

the CEU representation (20) becomes the EU representation (18). Similar to our Remark

5 about unbounded utility functions in an EU representation, Schmeidler (1989,p.580)

ensures existence of (20) by restricting attention to a bounded utility function u.

13



5 Examples

This section illustrates our analytical results through examples that relax di¤erent as-

sumptions of Theorem 1 in order to ensure existence of preferences and/or their utility

representations.

Example 1. [Relaxing non-triviality]. Just consider a degenerate preference relation
such that 8X; Y 2 L0 (�) ; X � Y . This preference relation is (trivially) complete, d0-
continuous as well as S-convex (resp. s-convex). Moreover, it can be represented by any

constant functional U : L0 (�)! R.�

Example 2. [Relaxing completeness: Monotonicity]. We say that Y dominates

(�-a.e.) X, denoted X � Y , i¤

X (!) � Y (!) �-a.e. (29)

Let 8X;Y 2 L0 (�) ; X � Y i¤ X � Y and observe that continuity and convexity hold

for these incomplete preferences.�

Example 3. [Relaxing completeness: Risk-averse expected utility for non-negative
random variables]. Suppose that � is only de�ned on the set of non-negative random

variables

L0+ (�) �
�
X 2 L0 (�) j X (!) � 0 �-a.e.

	
(30)

and consider an expected utility decision maker with the following utility function

u (x) =
x

1 + x
, for x � 0. (31)

The expected utility of any X 2 L0+ (�) is given as the distance (4) of X from the

constantly zero random variable:Z



u (X (!)) d� =

Z



jX (!)� 0j
1 + jX (!)� 0jd� (32)

= d0 (X;0) 2 [0; 1) . (33)

This decision maker�s preferences on L0+ (�) are continuous and, by strict concavity of u

on R+, they are also S-convex on L0+ (�).
On the one hand, this example shows that continuity and convexity can be easily

reconciled if we restrict attention to preferences that are only complete on a suitable

subset of L0 (�) like L0+ (�) (cf. Remark 1). On the other hand, however, this example

also demonstrates that incompleteness can be a very unnatural assumption: Why should
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the decision maker not have preferences over random variables with losses (negative x) in

their support? We come back to this situation in Example 6 where we consider complete

preferences.�

Example 4. [Relaxing continuity: Lexicographic preferences]. De�ne (strict) dom-
inance on an event E 2 � as follows: 8X; Y 2 L0 (�)

X �E Y i¤X (!) � Y (!) �-a.e. on E;
X <E Y i¤X �E Y and X (!) < Y (!) on some E 0 � E with � (E) > 0.

Fix a collection 
1;
2; ::: of nested events in � such that 
i+1 � 
i, � (
1) = 1 and

� (
i) > � (
i+1) > 0 for all i. De�ne the following lexicographic preferences:

if X <
1 Y then X � Y ,
if neither Y <
i X nor X <
i Y for any i < j but X <
j Y , then X � Y ,
X � Y , else.

First, let us show that the (complete and non-trivial) preference relation � is S-

convex. If not, then X � Y but �Y + (1� �)X � X for some �. Focus on the strict

case X � Y . Then there exists some i � 1 and X; Y such that X <
i Y but neither

Y <
j X nor X <
j Y for j < i. Note that X <
i Y implies X <
i �Y + (1� �)X.
Similarly, neither Y <
j X nor X <
j Y implies neither Y <
j �Y + (1� �)X nor

X <
j �Y + (1� �)X for j < i. Consequently, X � �Y + (1� �)X, a contradiction.
Now focus on X � Y so that, by the same argument, neither Y <
j �Y +(1� �)X nor

X <
j �Y + (1� �)X for any j, implying �Y + (1� �)X � X.
Next observe that � is not d0-continuous. To see this, let 
1 = E1 [ E2, 
2 = E1

and consider the following random variables:

E1 E2

X 1 0

Yk 1� 1
k
1

Y 1 1

Note that Yk � X for all k but X � Y whereby d0 (Yk; Y )! 0.�

Example 5. [Relaxing continuity: Preferences generated by a linear functional].

Suppose that there exists a non-zero linear functional f on L0 (�). Then we can use f

to construct a non-trivial, complete, and convex preference relation as follows:

X �f Y i¤ f(X) � f(Y ). (34)
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This preference relation is non-trivial since f is non-zero (and by linearity thus non-

constant). It is complete since for all X; Y 2 L0 (�) we have either f(X) � f(Y )

or f(Y ) � f(X). It is convex since, for all X; Y; Z 2 L0 (�), if f(Z) � f(X) and

f(Z) � f(Y ) then

f(Z) = �f(Z) + (1� �)f(Z) (35)

� �f(X) + (1� �)f(Y ) = f(�X + (1� �)Y ): (36)

Recall from our Remark 2 that there does not exist any (non-zero) continuous linear

functional on L0 (�). However, that does not mean that there does not exist any linear

functional on this space at all. In what follows, we prove the existence of a linear function

on L0 (�) whereby we use Zorn�s lemma (cf. pp.65-66 in Komjàth and Totik 2006):

Zorn�s Lemma. Suppose that a non-empty partially ordered set (Z; R) has the prop-
erty that every chain has an upper bound, i.e., for any totally ordered set C � Z
there exists MC such that XRMC for all X 2 C. Then the set Z contains at least
one maximal element M, i.e., there is no X 2 Z with MRX and :XRM.

Let O be the set of all linearly independent subsets of L0 (�) that contains the

constant random variable 1. Because of f1g 2 O, O is non-empty. In Zorn�s lemma let

Z = O and R =�. Since O is a set of subsets of L0 (�), (O;�) is partially ordered. On
the other hand, for any chain C one can see thatMC = [A2CA is an upper bound. By
Zorn�s lemma, there must thus exist a maximal setM of linearly independent members

in L0 (�) that also contains 1. We claim thatM is a basis for L0 (�). If not, there exists

some X 2 L0 (�) such that X cannot be written as linear combination of members in

M. That means X is linearly independent from members of M. But if we introduce

X 0 =M[ fXg, thenM ( X 0, which contradicts the maximality ofM.

Now let us construct a linear functional f1 as follows: for every X 2 L0 (�), there
are real numbers fxmgm2M such that X =

P
m2M xmm. Let f1(X) := x1: SinceM is a

basis, the representation X =
P

m2M xmm is unique, and as a result f1 is well de�ned

and linear. �

Example 6. [Relaxing convexity: Expected utility with a reference point at zero].
Recall the situation of Example 3 but assume now a complete preference ordering on

L0 (�). De�ne the following (once-di¤erentiable) utility function:

u (x) =

(
x
1+x

if x � 0
x
1�x if x � 0

(37)
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resulting in an EU representation of continuous preferences � on L0 (�). As under

Example 3, the expected utility of any �-a.e. positive X is its distance d0 (X;0) from

the constant zero random variable. For an �-a.e. negative Y we haveZ



u (Y (!)) d� =

Z



(�) jY (!)� 0j
1 + jY (!)� 0jd� = �d0 (Y;0) ; (38)

that is, the expected utility of the negative Y is the negative of its distance from this

zero random variable. Consequently, U (X) 2 (�1; 1) for any X 2 L0 (�).
Observe that u is strictly concave for all x > 0 and strictly convex for all x < 0

so that the EU decision maker is risk-averse for positive and risk-seeking for negative

outcomes. From Corollary 1 we know that an EU representation of a preference relation

� on L0 (�) is impossible for an utility function that is concave (or convex) on the whole
domain R. This example shows that we can have an EU representation of preferences
on L0 (�) when we are prepared to give up S-convexity (corresponding to a concave u,

i.e., risk-aversion) as well as s-convexity (corresponding to a convex u, i.e., risk-seeking)

as global properties.

Finally, let us interpret u as a value function from prospect theory (cf. Wakker 2010)

such that positive x correspond to gains with respect to the reference point zero whereas

negative x stand for losses. Under this interpretation giving up on S- and s-convexity for

the above preferences is nothing else than the standard assumption of prospect theory

according to which the bounded value function for gains is (strictly) concave whereas it

is (strictly) convex for losses (cf. Vendrik and Woltjer 2007 and references therein).�

Example 7. [Relaxing convexity: Value-at-Risk]. Recall the de�nition of Value at
Risk (VaR) as a popular risk measure in �nancial applications which is not sub-additive:

VaR�(X) = �sup fx 2 RjP (X � x) � �g (39)

for a �xed con�dence level 1 � � 2 (0; 1). Let 8X; Y 2 L;X � Y i¤ VaR�(X) �
VaR�(Y ). It is easy to see that (the complete and non-trivial) � is d0-continuous

because d0-continuity implies convergence in distribution. The following example taken

from Embrechts et al. (2002) shows that S-convexity is violated. Let X;Y be two

independent Pareto distributed random variables with FX(x) = FY (x) = 1�x�1=2; x � 1
and 0, otherwise. Then it is easy to see that P (X + Y � z) = 1� 2

p
z�1
z

< P (2X � z),
for z � 2. Consequently, VaR�(X+Y2 ) > VaR�(X) =

VaR�(X)+VaR�(Y )
2

. That is, we have

X; Y 2 S(X) but not X+Y
2
2 S(X) so that S-convexity fails.

As the basis for the Basel II and III capital requirement formula, the VaR criterion

has been heavily criticized in the mathematical �nance literature because it does not

satisfy preference for diversi�cation (cf. Artzner et al. 1997, 1999). On the other

17



hand, VaR has the nice feature to ensure continuity of preferences on L0 (�), which is

impossible for convex/coherent/subadditive risk measures (see Remark 4).�

6 Discussion: Our topology of choice

Mathematical continuity is a relative concept that is determined by the topology we

impose on L0 (�). We will show in a moment that it is easy to come up with topologies

on L0 (�) that can reconcile convexity with mathematical continuity with respect to these

topologies. This raises the question why we have chosen the topology of convergence in

probability.

The remainder of this section presents three arguments in favor of the d0-metric as

our topology of choice. These arguments can be summarized as follows:

1. A utility representation over the distributions of random variables is continuous if,

and only if, d0-continuity holds.

2. The d0-metric is behaviorally plausible and it translates the standard convergence

behavior of random variables from familiar Lp (�) spaces into the larger L0 (�)

space.

3. Any alternative topologies we can think of that reconcile convexity with mathe-

matical continuity require behaviorally implausible notions of convergence.

6.1 Continuous utility representation over distributions

Let us assume that a non-trivial and complete preference relation on L0 (�) can be

represented by some utility function de�ned over the distributions of all random variables

in L0 (�).11 Recall that the distribution FZ of any Z 2 L0 (�) is a probability measure
on the Borel subsets of the real line satisfying

FZ (A) � � (f! 2 
 j Z (!) 2 Ag) . (40)

Assumption 2. Fix some non-trivial and complete preference relation � on L0 (�)

and suppose that there exists some real-valued U such that, for all X; Y 2 L0 (�),

X � Y i¤ U (FX) � U (FY ) . (41)

11The majority of utility representations reduces preferences over random variables to preferences over

distributions. Notable exceptions are state-dependent utility models. For a good textbook treament of

state-dependent expected utility see Chapter 6.E in Mas-Collel et al. (1995). For a recent overview

on objective and subjective models with state-dependent utility see Karni and Schmeidler (2016) and

references therein.
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For a sequence of random variables fYkgk2N we write FYk ) FY whenever the Yk
converge in distribution to Y , i.e., whenever the cumulative distribution functions (=cdf)

of the Yk converge weakly to the cdf of Y .12 We say that U is continuous in distribution

if FYk ) FY implies limk U (FYk) = U (FY ).

Proposition 5. Suppose that Assumption 2 holds. U is continuous in distribution if,

and only if, � is d0-continuous.

Most decision-theoretic applications are concerned with the maximization of utility

functions over distributions whereby�mainly out of analytical convenience�these utility

functions are supposed to be continuous. By Proposition 5, such analytical convenience

would not be at hand without d0-continuity.

6.2 Lp (�) spaces and the d0-metric

Beyond the mere mathematical de�nition of continuity there is also a behavioral inter-

pretation of what it means that a decision maker has �continuous preferences�. According

to this behavioral interpretation of continuity, preferences should not abruptly switch

in the limit of converging random variables. A good behavioral concept of continuity

should therefore be based on a behaviorally plausible concept of convergence that closely

captures what real-life decision makers may perceive as convergence of random variables.

Let us consider the familiar Lp (�) spaces with 1 � p � 1 which only contain random

variables that come with an expected value.13 The standard topology imposed on these

spaces is generated by the Lp-norm

kXkp =
( �R



jXjp d�

� 1
p for 1 � p <1

inf f� 2 [0;1) j � (f! 2 
 j jX (!)j > �g) = 0g for p =1
(42)

with corresponding metric

dp (X; Y ) = kX � Y kp for all X; Y 2 Lp (�) . (43)

Arguably, most decision-theorists would agree that convergence in the dp-metric is a

behaviorally plausible notion for the convergence behavior of random variables in Lp (�).

12Denote by CDFZ the cdf of Z, formally de�ned as

CDFZ (x) � FZ (�1; x] for all x 2 R.

The CDFYk converge weakly to the CDFY i¤CDFYk (x)! CDFY (x) for all x such that � (Y = x) = 0;

(for more details see Chapter 14 in Billingsley 1995).
13For properties of Lp (�) spaces with 1 � p � 1 see Section 19 in Billingsley (1995).
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When we move from an Lp (�) space to the large L0 (�) space, where the metric

dp is no longer available in general, it would be desirable to have a metric for L0 (�)

that guarantees for any sequence fYkgk2N � Lp (�) the same convergence behavior in

L0 (�) as under the dp-metric. The following proposition shows that the d0-metric is

accomplishing this task.

Proposition 6. Fix some Lp (�) space with 1 � p � 1. Convergence in the dp-metric
implies convergence in the d0-metric, i.e.,

dp (Yk; Y )! 0 implies d0 (Yk; Y )! 0. (44)

6.3 Alternative topologies that establish compatibility between
convexity and continuity

To see that it is actually trivial to ensure compatibility of convexity with some notion of

mathematical continuity, let us �rst consider the discrete topology on L0 (�) generated

by the discrete metric metric dD : L0 (�)� L0 (�)! [0; 1) such that

dD (X; Y ) =

(
0 X = Y , �-a.e.

1 else.
(45)

In this topology all subsets of L0 (�) are closed to the e¤ect that convexity and dD-

continuity are compatible. To impose dD-continuity, however, comes with the drawback

that the corresponding notion of convergence is behaviorally not very plausible.

Example 8. [Convergence under dD-continuity]. Let us revisit the lexicographic
preferences of Example 4 which satisfy convexity but violate d0-continuity. These (like

any other) preferences trivially satisfy dD-continuity because only (eventually) constant

sequences of random variables converge under the discrete topology. For the random

variables
E1 E2

Yk 1� 1
k
1

Y 1 1

we can thus have under dD-continuity that Yk � X for all k as well as X � Y because

the Yk no longer converge to Y , i.e.,

lim
k!1

dD (Yk; Y ) = 1. (46)
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Arguably, most real-life decision makers would judge that (or: behave as if) the Yk were

increasingly resembling Y for larger k whereby the di¤erence between the Yk and Y

becomes negligible in the limit. But then any behaviorally relevant concept of continuity

should be based on the notion that the Yk are indeed converging to Y , which is not the

case under dD-continuity.�

The discrete topology stands for the largest topology under which any given con-

vex preference relation over equivalence classes of random variables becomes continuous.

Alternatively, we might consider the smallest topology under which a given convex pref-

erence relation becomes continuous. More precisely, �x some convex preference relation

� and introduce the smallest topology whose closed sets consist of a basis given by

super- and sub-level sets s(X); S(X);8X 2 L0 (�). Indeed, this topology is the small-
est topology under which � is continuous and it is also included in any such topology.

However, the same criticism as under Example 8 applies: Making the (convex) lexico-

graphic preferences of Example 4 continuous is incompatible with any topology in which

Y belongs to some closed set containing all Yk. As in the case of the discrete topology,

the notion of convergence required to make the preferences of Example 4 continuous is

therefore not plausible from a behavioral perspective.

So far we have considered topologies that treat random variables which coincide �-

almost everywhere as identical objects. If we are prepared to give up this notion of

equivalence classes of random variables, preference relations on L0 (�) become possible

that can combine convexity with mathematical continuity.

Example 9. [Abandoning equivalence classes of �-a.e. random variables]. Let


 = [0; 1) and consider the topology for which convergence means (i) convergence in d0
and (ii) for all points in [0; 1), i.e.,

for any net X� ! X i¤ d0(X�; X)! 0 and X�(!)! X(!);8! 2 [0; 1): (47)

The analysis in Aliprantis and Burkinshaw (1978, p.114 ) implies that, for any ! 2 [0; 1),
f!(X) = X(!) is a continuous functional. Consequently, for any �xed ! 2 [0; 1), the
complete preference relation � de�ned by

X � Y i¤X(!) < Y (!) (48)

is continuous. Obviously, this preference relation is also convex.�

Preferences described under Example 9 su¤er from the interpretational drawback

that the decision maker must care about probability zero events under our assumption
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of an atomless �. In our opinion, it is behaviorally more plausible for decision makers to

treat random variables as identical objects in case they are identical almost everywhere.

Remark 8. Example 9 also demonstrates why the assumption of a nonatomic

measure space is crucial to our analysis. Suppose, for example, that � (!) > 0 with !

given by (48). Then the preferences of Example 9 are (i) convex as well as continuous

whereby (ii) the decision maker�s preferences no longer depend on a probability zero

event.
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Appendix: Formal proofs

Proof of Proposition 1. Let L be a convex subset of L0 (�) with non-empty interior
and suppose that Y 2 L0 (�) belongs to the interior of L. Fix some � > 0 such that

X 2 L whenever d0 (Y;X) � �. Pick some partition f
1; :::;
ng of 
 such that � (
i) �
�; i = 1; :::; n, which always exists for nonatomic �. Choose Z 2 L0 (�) arbitrarily and
introduce Yi = Y + nZ1
i where 1
i denotes the indicator function on 
i. For any

i = 1; :::; n we have

d0 (Y; Yi) =

Z



jY � Yij
1 + jY � Yij

d� =

Z



jnZ1
ij
1 + jnZ1
ij

d� =

Z



jnZj
1 + jnZj1
id� (49)

<

Z



1
id� = � (
i) � �: (50)

Consequently, we have Yi 2 L for all i = 1; :::; n.
Next note that

1

n

nX
i=1

Yi = Y +
nX
i=1

Z1
i (51)

= Y + Z. (52)

By convexity of L, we thus have

Y + Z =
1

n
Y1 + :::+

1

n
Yn 2 L. (53)

Since Z 2 L0 (�) was chosen arbitrarily, we obtain L = L0 (�), which proves the

lemma.��

Proof of Theorem 1. Ad part (a).
Step 1. Suppose that S (X) is convex. By non-triviality, we have Y 62 S (X) which

implies S (X) 6= L0 (�). By Proposition 1, S (X) must thus have an empty interior with
respect to the topology of convergence in probability on L0 (�).

Step 2. By non-triviality, we also have that the set

S� (X) �
�
X 0 2 L0 (�) jX � X 0	 � S (X) (54)

is non-empty because of Z 2 S� (X).
Step 3. Combining Step 1 and Step 2 establishes that S� (X) cannot be an open

set in the topology of convergence in probability. However, by completeness,

s (X) = L0 (�) nS� (X) (55)

so that s (X) cannot be a closed set, which contradicts d0-continuity.�
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Ad part (b). Just observe that non-triviality implies (i), by s (X) 6= L0 (�) and

Proposition 1, that s (X) has an empty interior as well as (ii) non-emptiness of

s� (X) �
�
X 0 2 L0 (�) jX 0 � X

	
� s (X) . (56)

By an analogue argument as under Step 3, the set

S (X) = L0 (�) ns� (X) (57)

is thus not closed.�
Ad part (c). The validness of this statement is demonstrated through the examples

in Section 3. ��

Proof of Proposition 2. We prove part (a). If S (X) = fXg there is nothing to
prove so let us assume that Y; Z 2 S (X) with Y 6= Z. Without loss of generality, suppose
that, by completeness, Y � Z. If quasi-concavity holds, we have Y � �Z + (1� �)Y .
Finally, since X � Y , transitivity implies X � �Z + (1� �)Y .��

Proof of Theorem 3. By Theorem 2 it is su¢ cient to show that quasi-concave

preferences follow from preference for diversi�cation under the assumptions of Theorem

3.

Step 1. Without loss of generality, suppose that X � Y with X 6= Y (again: if

S (X) = fXg, we don�t have anything to prove). We have to show that preference for
diversi�cation implies

X � �X + (1� �)Y (58)

for � 2 [0; 1]. If X � Y , we immediately obtain (58). So, let us assume X � Y:
Step 2. Because any metric is continuous (3.16 Theorem in Aliprantis and Border

2006), we obtain:

Lemma 1. Fix some � � 0. For any X; Y 2 L0 (�), there exists some � > 0 such that

d0 (q
0X + (1� q0)Y; qX + (1� q)Y ) � � (59)

for all jq0 � qj � �.

Step 3. Introduce

q� = max fq 2 [0; 1] jX � �X + (1� �)Y; 8� 2 [0; q]g . (60)

By transitivity, we have

X � �X + (1� �)Y (61)
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i¤ � 2 [0; q�]. If q� = 1, we have the desired result (58). Suppose now 0 � q� < 1. By
X � Y , d0�continuity and completeness implies that the set

S� (X) �
�
Z 2 L0 (�) jX � Z

	
(62)

is open. Consequently, there exists some number � > 0 such that d0 (Y; Z) � �

implies X � Z, i.e., Z 2 S� (X). By Lemma 1, there exists some � > 0 such

that d0 (Y; �X + (1� �)Y ) � � for all � � �. Consequently, for all � � �, X �
�X+(1� �)Y implying q� � � > 0. That is, we can henceforth assume that 0 < q� < 1.
Step 4. We claim that q� < 1 implies X � q�X + (1� q�)Y . We prove this claim

by way of contradiction. First, suppose that X � q�X + (1� q�)Y . By Lemma 1 and
openness of the set S� (X), there exists some � > 0 such that

d0

�
q
0
X +

�
1� q0

�
Y; q�X + (1� q�)Y

�
� � (63)

for all jq0 � q�j � �. Let q0 = min
�
1; q� + 1

2
�
	
and observe that q0 > q� as well as

X � q0X +
�
1� q0

�
Y . But this contradicts the de�nition of q�.

Next, suppose that X � q�X+(1� q�)Y �. An analogous argument as above results
in some q0 such that q0 < q� as well as q

0
X +

�
1� q0

�
Y � X. Again, a contradiction to

the de�nition of q�.

Step 5. In Step 4 we have proven that X � q�X + (1� q�)Y whenever q� < 1 By

preference for diversi�cation, we thus obtain

X � �X + (1� �) (q�X + (1� q�)Y ) (64)

,
X � (� + (1� �) q�)X + (1� �) (1� q�)Y (65)

for all � 2 [0; 1]. By de�nition of q�,

� + (1� �) q� � q� (66)

for all � 2 [0; 1], which only holds for q� = 1. But this contradicts q� < 1 and gives us
the desired result (58).��

Proof of Proposition 4. d0-continuity is violated if, and only if, there exists

some sequence of random variables fYkgk2N with d0 (Yk; Y ) ! 0 such that X � Yk

for all k but Y � X. By Assumption 1, we then have that U (X) � U (Yk) for all

k and U (Y ) < U (X), which violates continuity of U . Consequently, continuity of U

requires d0-continuity. Moreover, by Assumption 1, quasi-concave (resp. quasi-convex)

preferences require a quasi-concave (resp. quasi-convex) U . The proposition then follows

from Theorem 2.��
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Proof of Proposition 5. The �if�-part is easy since convergence in the d0-metric
implies convergence in distribution; that is, d0 (Yk; Y ) ! 0 implies FYk ) FY (cf., e.g.,

Theorem 25.2 in Billingsley 1995).

The �only if�part is less obvious as convergence in distribution on the same probability

space does not necessarily imply convergence in the d0-metric. Suppose that FYk )
FY . Then F�1Yk converges point-wise to F�1Y where, for any Z, F�1Z denotes the left

inverse of CDFZ . Let us �x a uniform random variable V on (0; 1) which exists because

the probability space is nonatomic. By construction, the random variable F�1Z (V ) has

the same distribution as the random variable Z, implying, by (41), F�1Yk (V ) � Yk and

F�1Y (V ) � Y . Since the F�1Yk (V ) converge point-wise to F
�1
Y (V ), they also converge in

probability (i.e., in d0). By law-invariance of U , we thus have

lim
k
U(Yk) = lim

k
U(F�1Yk (V )) = U(F

�1
Y (V )) = U(Y ). (67)

��

Proof of Proposition 6. Suppose that f 2 Lp (�) and g 2 Lq (�) with either
1
p
+ 1

q
= 1 or p =1, q = 1. By Hölder�s inequality, we have thatZ




jf � gj d� � kfkp � kgkq . (68)

For any X; Y 2 Lp (�), let

f � jX � Y j , (69)

g � 1

1 + jX � Y j (70)

so that (68) becomes

d0 (X; Y ) � dp (X; Y ) � kgkq . (71)

Since kgkq � 1, convergence in dp implies convergence in d0 on Lp (�).��
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