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Perturbed Utility and General Equilibrium Analysis

Wei Ma∗

Abstract

We study general equilibrium theory of complete markets in an otherwise standard economy
with each household having an additive perturbed utility function. Since this function rep-
resents a type of stochastic choice theory, the equilibrium of the corresponding economy is
defined to be a price vector that makes its mean expected demand equal its mean endowment.
We begin with a study of the economic meaning of this notion, by showing that at any given
price vector, there always exists an economy with deterministic utilities whose mean demand
is just the mean expected demand of our economy with additive perturbed utilities. We then
show the existence of equilibrium, its Pareto inefficiency, and the upper hemi-continuity of
the equilibrium set correspondence. Specializing to the case of regular economies, we finally
demonstrate that almost every economy is regular and the equilibrium set correspondence in
this regular case is continuous and locally constant.

Keywords: General equilibrium; Stochastic choice; Regular economy

1 Introduction

The classical theory of general equilibrium, as initiated in Walras (2003) and culminated in Debreu
(1959), postulates that an individual preference be deterministic. The standing of this postulate has
been submitted to test by a number of empirical studies, as for instance Davidson and Marschak
(1959), and the result has cast grave doubt on its standing. This leads Block and Marschak (1960,
p. 97) to remark that “there is a need to substitute ‘stochastic consistency of choices’for ‘absolute
consistency of choices.”’We are then confronted with two questions: First, how to construct a utility
theory that can best represent the stochastic consistency and, second, under this new theory, in what
sense and to what extent we can reconstitute the classical general equilibrium theory.

∗International Business School Suzhou, Xi’an Jiaotong-Liverpool University, China.
Department of Economics, University of Pretoria, Pretoria, South Africa.
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For the first question a multitude of attacks have been made, beginning with Thurstone (1927)
through Marschak’s work mentioned above to more recent work of Fudenberg et al. (2015) and
Gul et al. (2014). In broad outline they fall under two main headings: random utility maximization
model and additive perturbed utility (APU) model, with all but Fudenberg et al. (2015) belonging
to the first class. These two types of models have overlap but neither nests the other.

As regards the second question the theory of general equilibrium under random utility max-
imization model has been studied with the pioneering work of Hildenbrand (1971). The main
objective here is to examine the statistical properties of the total excess demand and of the equi-
librium price vectors (cf. Bhattacharya and Majumdar (1973)). A typical result along this line of
research is exemplified by a kind of a central limit theorem: The total excess demand per capita of
a random economy tends, under suitable conditions, to be normally distributed when the number
of households in it increases without limit.

With this background the present paper undertakes to investigate general equilibrium theory
under the APU model of Fudenberg et al. (2015). Our objective is to reconstitute as many aspects
as possible of the classical general equilibrium theory. More specifically we shall examine what
is an appropriate notion of equilibrium, its existence, efficiency, determinacy, and the properties
of the equilibrium set correspondence. The major contrast with the research referred to in the last
paragraph is that the total excess demand no longer forms a random variable and there is accord-
ingly no way to study its statistical properties; but instead APU provides us with a possibility to
study, under stochastic choice theory, non-convex economies and the efficiency of their equilibria.
In fact, the implicit theme underlying the current investigation is that randomization supplies to us
a means to handle in a satisfactory manner non-convex economies: it helps to restore some results
that fail to hold for non-convex economies with deterministic utilities (cf. Section 4).

We begin in Section 2 with a review of the APU model. Since it applies only to simple lotteries
(i.e. lotteries with finite support), the proper framework for our purpose is Mas-Colell (1977a)’s
model of indivisible commodities. Specifically we assume all commodities are indivisible but one,
which guarantees that there is, at any strictly positive price vector, only finitely many feasible points
on the budget line, and focus our attention on economies with a continuum of households. Let X be
the corresponding consumption space and M(X) the set of simple lotteries on it. For any ϕ ∈M(X)
which has {x1, . . . ,xn} as its support and ϕi as the probability of xi, APU measures the utility of ϕ
in accordance with

U(ϕ) =
n

∑
i=1

u(xi)ϕi − c(ϕi),

where u is a function on X and c one on [0,1]. Observing that APU is not continuous with re-
spect to the weak topology on M(X), we set out to establish a different one such that the desired
continuity obtains, and show M(X) endowed with the new topology is separable and locally com-
pact. We continue with a study of the continuity of the budget set correspondence and the ‘demand
function,’and close Section 2 with a definition of an allocation as well as its feasibility and Pareto
efficiency.

In Section 3 we define the notion of equilibrium for an economy E, namely, as a price vector
that makes the mean (or total) expected demand of E equal its mean endowment. We begin with
a study of the economic meaning of this notion, by showing that at any given price vector, there
always exists an economy with deterministic utilities whose mean demand is just the mean expected

2



demand of E. The difference with the model of Hildenbrand (1971) lies in the fact that the resultant
deterministic economy varies with the given price vector. We then show that an equilibrium exists
under favorable conditions but is nevertheless not Pareto efficient in general. We end up the section
with a result on the upper hemi-continuity of the equilibrium set correspondence.

Aiming to study the determinacy of equilibria we proceed in Section 4 to examine a special
type of economies, i.e. regular economies, of which the definition is the same as in the case of
deterministic utilities. By analogy with the latter case we study a set of economies which share the
same utility structure but differ in endowment structure. We first set up a measure on the set of all
admissible initial endowments and then show that almost every economy is regular. We conclude
the section and also the paper by establishing, in the circumstance of regular economies, the con-
tinuity of the equilibrium set correspondence and its local constancy. This result is interesting by
noting that no geometric restriction is placed on u, i.e. it is not required to be concave. Without this
requirement the result, as has been proved by Mas-Colell (1977b), would fail to hold for economies
with deterministic utilities.

2 The Model

We assume given l (≥ 2) commodities on the market with only one of them perfectly divisible
and all the others indivisible. Since the divisible commodity is usually taken to be money, it is
economically reasonable to assume the demand of the indivisible commodities does not vanish.
Let

Zl−1
+ = {(z1, . . . ,zl−1) : zi is an integer for every i and z j > 0 for some j}; (2.1)

then we can take as the consumption space X = Zl−1
+ ×R+, wherein R+ stands for the set of

nonnegative real numbers. On the other hand we take Rl
++ as the space of initial endowments.

This contrast with the consumption space, of which use will be made in Section 4, makes economic
sense and can be understood from the viewpoint of aggregation across goods (cf. Varian (1992,
Section 9.3)). Take the car market for instance. It is sometimes convenient and reasonable to model
the household’s choice of a car without distinguishing whether the car is new or old or what brand
it is. Suppose the “average price”of the car is p. Then the value of the endowment of a household
with a new car in his hand will be above p, and that of a household with a used car below p. This
provides the justification for taking Rl

++ as the space of initial endowments.

Throughout the paper we shall use ∥ · ∥ to denote the 1-norm of a vector. Let P be the price
simplex, i.e.

P= {p ∈ Rl
+ : ∥p∥= 1},

and P++ its relative interior, ∂P its boundary. Recall that by a preference being incomplete we
understand the existence of at least one pair of commodity bundles that is incomparable to each
other. In this paper we assume the households involved all have incomplete but strongly monotone
preference on X (see von Neumann and Morgenstern (1947, pp. 28-29) and Shapley and Baucells
(1998) for the reasons a household may possibly have incomplete preference). This means that at
a given price level p ∈ P, the household with initial endowments e will choose from

B(p) = {x ∈ X : px = pe}, (2.2)

but he may nevertheless not be able to determine the preference relation of x1 and x2 for some
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x1,x2 ∈ B(p). If, and this will be assumed in the sequel, the household is forced to decide between
x1 and x2, we postulate that he will do so in a random fashion.

To describe this random behavior let M(X) be the set of simple lotteries on X, i.e. probability
measures with a finite support. Noting that B(p) is a finite set on P++, the household’s choice
among B(p) can therefore be formalized by an element of M(X). Since a great deal of notation
will be introduced presently, it seem appropriate here to make a convention on the symbolism: we
shall use ϕ ,ϕ 1,ϕ 2 and the like to denote generic elements of M(X); for ϕ and for any other vector
that will appear in this paper, we shall use superscripts to distinguish between different vectors and
subscripts to indicate the components of a vector.

According to Fudenberg et al. (2015) the random behavior of the household can, as stated in
the introduction, be represented by a perturbed utility function U : M(X)→ R, assuming the form

U(ϕ) =
n

∑
i=1

u(xi)ϕi − c(ϕi), (2.3)

such that ϕ 1 is preferred to ϕ 2 if, and only if, U(ϕ 1) ≥ U(ϕ 2). Here ϕ ∈ M(X) has as its
support{x1, . . . ,xn} and ϕi the probability of xi; u : X → R is continuous and strictly increasing,
and c is strictly convex on [0,1] and continuously differentiable on (0,1). Since U is defined only
for simple lotteries (which, as noted above, would be the case for B(p) if p ∈ P++), we assume

lim
∥x∥→∞

u(x) = +∞.

This condition (together with others) will make the equilibrium price vector (to be defined later on)
a member of P++. Let U be the set of all such U that fulfill the requirements above.

We now define the notion of an economy under perturbed utility. To this end we need a topology
on U. By analog with case of deterministic utility, we identify each U with the set

{(ϕ 1,ϕ 2) : U(ϕ 1)≥U(ϕ 2)},
and impose on U the topology of closed convergence. To make this precise however we demand a
topology on M(X): The usual way is to take the weak topology, but it is not a natural one in the
current context because U is not continuous with respect to it. To see this take l = 2 and ϕ to be the
Dirac measure at (1,1). Let ϕ n be the measure with two-element support {(1−1/n,1−1/n),(1+
1/n,1+ 1/n)}, each with equal probability. Then as is easily verified, ϕ n converges weakly to ϕ ,
but, due to the strict convexity of c, U(ϕ n)9U(ϕ).

In addition to the continuity of U we require for later considerations the topology on M(X) to
be such as makes M(X) locally compact, so that the closed-convergence topology on U is metriz-
able, and makes the solution to Program (2.5) continuous with respect to the closed-convergence
topology on U.

With these requirements in mind we observe that every point of M(X) can be viewed as an
element of Ω = Rl+1 ×R∞, the space of matrices with (l + 1) rows and an infinite number of
columns. For example, take l = 2 and ϕ to be the lottery that yields both (1,2) and (2,1) with
equal probability. Then we can formulate this measure in terms of a matrix: 1 2 0 · · ·

2 1 0 · · ·
0.5 0.5 0 · · ·

 .
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To make this correspondence definite we put the lexicographic order, denoted 5L, on X: For xi =
(xi

1, . . . ,x
i
l), i = 1,2,

x1 5L x2 if and only if x1
1 ≤ x2

1 or x1
s = x2

s ,x
1
t ≤ x2

t ,1 ≤ s ≤ t −1,2 ≤ t ≤ l.

Throughout the paper we shall make the convention that the elements of any subset of X are ar-
ranged in ascending lexicographical order. For any ϕ with support {x1, . . . ,xn} and probability ϕi
of taking xi we construct the corresponding matrix by putting (x1,ϕ1) in the first column, (x2,ϕ2)
the second, up to (xn,ϕn), and setting the rest of the columns to be zero; more precisely, with ϕ we
associate this matrix

ω(ϕ) =
[

x1 · · · xn 0 · · ·
ϕ1 · · · ϕn 0 · · ·

]
.

In the following pages we shall identify ϕ with ω(ϕ). On Ω we place the 1-norm ∥ · ∥: For any
ω = (ωi j) ∈ Ω let

∥ω∥= max
1≤ j≤∞

l+1

∑
i=1

|ωi j|.

We first study the property of this norm, then its effect on the topology of M(X). Take from
M(X) a sequence ϕ k which has as its support {xk,1, . . . ,xk,Nk} and has qk

i as the probability of xk,i,
k = 0,1, . . .. Then we have

LEMMA 2.1. (i) ϕ k → ϕ 0 when and only when Nk = N0 for k sufficiently large and xk,i → x0,i,
qk

i → q0
i for all i.

(ii) M(X) endowed with the 1-norm is a separable, locally compact space.

PROOF. Let us begin by proving statement (i). The sufficiency is obvious. For the necessity
suppose ϕ k → ϕ 0. Recalling from equation (2.1) the structure of Zl−1 we have ∥x∥ ≥ 1 for every
x ∈X. This together with the convergence of ϕ k, implies Nk = N0 for k sufficiently large. And then
the convergence of xk,i and qk

i is simply a matter of the definition of 1-norm.

For statement (ii) we begin with the separability of M(X). Let X0 be the set of points in X
whose components are all rational numbers, so that X0 is countable. Let X0 = {θ 1,θ 2, . . .} and

Tn = {(q1, . . . ,qn) : qi ≥ 0,∑qi = 1,qi is rational},

wherein qi stands for the probability of taking θ i. Then it is not hard to check that the union,∪∞
n=1Tn,

is a countable, dense subset of M(X), so that M(X) is separable.

We now turn to the local compactness of M(X). For any ϕ ∈ M(X) consider the closed unit
ball centered at ϕ :

B(ϕ) = {ϕ ′ : ∥ω(ϕ ′)−ω(ϕ)∥ ≤ 0.5}.
From the structure of Zl−1 (see (2.1)) it follows that the support of any ϕ ′ in B(ϕ) must be of
the same cardinality as that of ϕ , say, equal to n. Then B(ϕ) is a closed and bounded subset
of the finite dimensional space Rl+1 ×Rn, so that B(ϕ) is compact, and hence M(X) is locally
compact. Q.E.D

We are now ready to define the notion of an economy. Endow U with the topology of closed
convergence, so that it becomes, according to Lemma 2.1 and Hildenbrand (1974, Theorem 2, p.
19), a compact metrizable space. Endow X with the usual Euclidean topology and H=U×X with
the product topology, so that H is a complete and separable metrizable space; a generic element
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of H we shall call a household and denote by h = (Uh,eh). By an economy E we shall mean the
completion of a Borel probability measure on H such that

∫
ehdE(h) is finite. The requirement of

E being complete here is purely for technical reason.

In the case of deterministic utilities, it is well-known that the non-convexity of X may lead to the
non-existence of equilibrium. The same phenomenon however will occur also for the economies
with APU. For this reason, we shall study, as in Yamazaki (1978), an economy E with a dispersed
endowment distribution. More precisely, recall that Rl denotes the l-dimensional Euclidean space;
let B(Rl) be its Borel algebra. Then the endowment distribution of E, denoted µe, is the probability
measure on (Rl,B(Rl)) such that

µe(Bl) = E{h ∈H : eh ∈ Bl}, for every Bl ∈B(Rl).

Given p ∈ P++ the resulting wealth distribution, denoted µp,e, is defined to be the probability
measure on (R,B(R)) such that

µp,e(B1) = E{h ∈H : p · eh ∈ B1}, for every B1 ∈B(R).
Then µe is said to be dispersed if µp,e is absolutely continuous with respect to the Lebesgue measure
on R for every p ∈ P++. For the sake of convenient reference, an economy with a dispersed endow-
ment distribution, we shall call a dispersed economy, and, throughout the paper, by an economy we
shall understand a dispersed one, unless otherwise stated.

The motivation for a dispersed economy E is tied to the continuity of the mean excess demand
of E. To elaborate on this we need the notion of local cheaper points as introduced by Yamazaki
(1978): An x ∈X is said to have local cheaper points at a price vector p ∈ P, if every neighborhood
of x contains a point x′ ∈ X such that px′ < px. Note that this notion is independent of utility
functions, and so Yamazaki’s Corollary 1 still holds in the present context. More precisely, let
Cp = {x ∈ X : x does not have local cheaper points}, and

Hp = {h ∈H : Bh(p)∩Cp ̸=∅}, (2.4)

where Bh(p) is the budget set as defined in equation (2.2) for household h at price vector p. Then we
have E(Hp) = 0. Using this property Yamazaki (1978) proved that, with non-convex consumption
spaces, the individual demand correspondence is upper hemi-continuous for almost every house-
hold.1 It, and this will be useful in a moment, is worthy of notice that in our case Cp, for p ∈ P++,
is the set of points in X whose last components vanish.

Yamazaki’s result admits an analogue in our setting. More specifically, let ∆(Bh(p)) be the set
of probability measures on Bh(p), and let ϕ(h, p) be the Uh-maximizer on ∆(Bh(p)), that is, ϕ(h, p)
is the solution to

max Uh(ϕ)
s.t. ϕ ∈ ∆(Bh(p)).

(2.5)

As Uh is by assumption strictly concave, ϕ(h, p) is unique. In the circumstances where the price
vector p is our major concern we also write ϕ h(p). Before studying the continuity of ϕ(h, p) we
first investigate the continuity of Bh(p), a result of which use will be made frequently in what
follows. For this purpose we need a topology on the set of all finite subsets of X. To echo the
topology on M(X) we adopt the following metric: For any two finite subsets, X1 and X2, of X,

1Mas-Colell (1977a) obtained the same result for our current consumption space X.
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define

d(X1,X2) = dH(X1,X2)+ |#X1 −#X2|,
where dH stands for the Hausdorff metric and # for the cardinality of a set. One easily verifies that
this is indeed a metric. As above we first study the property of the metric, then the continuity of
Bh(p) with respect to it. Let Xk = {xk,1, . . . ,xk,Nk}, k = 0,1,2, . . .. Recall that the elements of Xk

are arranged in ascending lexicographical order. We claim that

LEMMA 2.2. (i) Xk → X0 when and only when Nk = N0 for k sufficiently large and xk,i → x0,i for
all i.
(ii) The correspondence Bh(p) is continuous in (h, p) for every h ∈H\Hp and p ∈ P++.

PROOF. Since statement (i) is an immediate consequence of the definition of d we shall skip the
formal proof.

For statement (ii) take an arbitrary p ∈ P++ and let (hk, pk) → (h, p), where hk = (Uk,ek),
h = (U,e), h /∈Hp, k = 1,2, . . .. For notational convenience let Bk = Bhk(pk), B = Bh(p). Suppose
Bk = {xk,1, . . . ,xk,Nk}, B = {x1, . . . ,xN}. According to statement (i) it suffices to show Nk = N for k
sufficiently large and xk,i → xi as k → ∞ for i = 1, . . . ,N.

Let us begin with the former. For any x ∈ X let x̄ ∈ Zl−1 be the same vector as x but with the
last component deleted, and likewise for p̄. Since h /∈Hp and p ∈ P++, it follows that p̄x̄i < pe,
i = 1, . . . ,N. As hk → h implies ek → e, we have p̄kx̄i < pkek, hence N ≤ Nk, for k sufficiently large.

To prove Nk = N, therefore, we assume by way of contradiction that Nk > N for infinitely many
k. Without loss of generality we may assume Nk > N for every k. This means there exists for every
k a yk ∈ Bk such that p̄ȳk > pe. Since the sequence {ek} is convergent, it is bounded, hence the set,
Y = {ȳk : k = 1,2, . . . ,}, is finite (as ȳk ∈ Zl−1). It then follows that there exists a ȳ ∈ Y such that
ȳ = ȳk for infinitely many k, which we assume are k1,k2, . . .. As p̄ȳ > pe, we have p̄k j ȳ > pk jek j

for j sufficiently large. But this contradicts with y ∈ Bk j , which therefore proves Nk = N for k
sufficiently large.

To prove xk,i → xi recall the elements of Bk and B are arranged in ascending lexicographic
order. Since pxk,i = pek, pxi = pe and ek → e it follows that x̄k,i = x̄i for k large enough, hence that
xk,i → xi. This completes the proof. Q.E.D

With the aid of Lemma 2.2 we can establish the continuity of ϕ(h, p):

LEMMA 2.3. The function ϕ(h, p) is continuous in (h, p) for every h ∈H\Hp and p ∈ P++.

PROOF. Again take an arbitrary p ∈ P++ and let (hk, pk)→ (h, p), where hk = (Uk,ek), h = (U,e),
h /∈ Hp; let Bk = Bhk(pk), B = Bh(p). Since ϕ(h′, p′) is a function of (h′, p′), it is sufficient, ac-
cording to Hildenbrand (1974, Example 1, p. 21), to show its upper hemi-continuity. For notational
convenience let ϕ k = ϕ(hk, pk), ϕ = ϕ(h, p). Suppose ϕ k → ϕ 0; then, according to Hildenbrand
(1974, Theorem 1, p. 24), we have but to show ϕ = ϕ 0. Combining part (i) of Lemma 2.1 and
Lemma 2.2 we know ϕ 0 ∈ ∆(B). So it remains to prove U(ϕ 0) ≥ U(q) for any q ∈ ∆(B). Again
by Lemma 2.2, Bk and B have the same cardinality for k large enough, so that q ∈ ∆(Bk). This
means Uk(ϕ k) ≥ Uk(q), hence U(ϕ 0) ≥ U(q) as Uk → U . This proves the continuity of ϕ in
(h, p). Q.E.D
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To help illuminate the idea of ϕ(h, p) let us consider a specific example. Take c(ϕ)=ηϕ 2 where
η > 3/2 is a positive scalar. Suppose Bh(p) = {x1,x2,x3} and u(xi) = i. Using this information
we can solve (2.5) for ϕ(h, p), which is a probability measure that produces x1 with probability
1/3−1/2η , x2 with probability 1/3, x3 with 1/3+1/2η . From this we can see that as η increases
household h will display decreasing selectivity in the sense of Definition 13 of Fudenberg et al.
(2015).

To conclude the section we introduce two more notions, those of an allocation and its Pareto
efficiency. We define an allocation ϕ to be a mapping of H into M(X). For notational simplicity
let ϕ h = ϕ(h). Then ϕ is said to be feasible for an economy E if∫ ∫

xdϕ h(x)dE(h)≤
∫

ehdE(h).

Since
∫

xdϕ h(x) can be interpreted as the expected consumption bundle for household h, the notion
of feasibility requires that the mean expected consumption bundle of an economy should not exceed
its mean endowment. A justification for this notion will be given in the ensuing section after the
idea of equilibrium has been defined. An allocation ϕ is said to be Pareto efficient if it is feasible
and there does not exist a feasible allocation ϕ ′ such that Uh(ϕ ′h)>Uh(ϕ h) for a.e. h ∈H.

3 Equilibrium and Its Properties

In this section we shall define the notion of an economic equilibrium under perturbed utility and
study its existence, Pareto efficiency, and the continuity of the equilibrium set correspondence. Let
us start out with the definition of an equilibrium.

3.1 Definition and Interpretation

Roughly speaking, an equilibrium price vector for an economy E is one such that the mean of
the corresponding expected excess demand is non-positive. More formally, recall ϕ h(p) is the
Uh-maximizer on ∆(Bh(p)); we define the mean expected excess demand of E to be

ΦE(p) =
∫ ∫

xdϕ h(p)dE(h)−
∫

ehdE(h). (3.1)

Let ϕ(p) = {ϕ h(p) : h ∈H}. Then an equilibrium is defined to be a combination of a price vector
p and an allocation ϕ(p) such that ΦE(p) = 0. Sometimes we write Φ(E, p) when the economy E
is taken also as a variable.

We begin by establishing the meaning of ΦE(p) and of the corresponding equilibrium, by com-
paring to the economies with deterministic utilities. According to Agranov and Ortoleva (2015)
stochastic choice may arise from incomplete preferences, which in turn may be attributed to the
fact that the decision maker, rather than being an individual, is actually a coalition (cf. Baucells
and Shapley (2008)). On this account we understand each household as a coalition and interpret
ΦE from this viewpoint.

First of all, let us consider a concrete example to get some intuition. Assume that each house-
hold h consists of three members: father, mother, and child, each of them endowed with a complete
(deterministic) preference, denoted respectively by %h

f ,%h
m,%h

c , and having an equal endowment
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eh. Let %h be the preference of household h which is defined as: For any two consumption bundles
x,y

x %h y ⇔ x %h
i y, for all i ∈ { f ,m,c}.

Assume that every Bh(p) contains exactly three elements: {xh,1,xh,2,xh,3} and that

xh,1 %h
f xh,2 %h

f xh,3,

xh,2 %h
m xh,1 %h

m xh,3,

xh,3 %h
c xh,1 %h

c xh,2,

so that household h would be indecisive between xh,1,xh,2,xh,3. Assume the household will en-
counter the situation infinitely many times and each time it is forced to make a decision, in accor-
dance with the following mechanism: one of its three members is picked at random, whose decision
will then be taken as that of the household. On this account the demand of the household will be
the probability measure ϕ h which yields each xh,i with equal probability of 1/3, i = 1,2,3. Hence∫ ∫

xdϕ hdE(h) =
1
3

∫
(xh,1 + xh,2 + xh,3)dE(h),

from which there follows

ΦE(p) =
1
3

∫
(xh,1 + xh,2 + xh,3)dE(h)−

∫
ehdE(h).

So ΦE(p) can be interpreted as the mean excess demand of the set, H×{1,2,3}, of individuals.

To make this idea precise we introduce some notation. Let P be the set of preference relations
on X×X, i.e. preorders that are complete, transitive, and continuous. Endow P with the topology
of closed convergence and P×X with the product topology (remember that X is equipped with
the Euclidean topology). We define a deterministic economy to be a Borel probability measure on
P×X. Our objective is to find a deterministic economy whose mean excess demand is exactly the
mean expected excess demand of the economy E.

For this purpose we have to idealize the situation somewhat by assuming that every household
contain a continuum of individuals. Let T = [0,1] denote that continuum and by (h, t) we shall mean
individual t in household h. Let Bh(p) = {xh,1(p), . . . ,xh,Nh(p)} for p ∈ P++. The information at
our disposal is the proportion, say τh,n, of individuals in T who have xh,n(p) as their demanded
bundle. It is, however, not easy at all to specify for every individual a demand function Dht(p) such
that the Lebesgue measure of the set, {t ∈ T : Dht(p) = xh,n(p)}, is equal to τh,n and there exists a
preference ≽ht in P which is maximized by Dht(p) on the budget set Bh(p).

In view of this we retreat somewhat by permitting each individual’s preference to vary with p
but to be fixed on Bh(p). Then we have the following:

LEMMA 3.1. For every x ∈ Bh(p) there exists such a preference in P as is maximized at x.

PROOF. Let ci = pixi/peh, where pi,xi are the ith components of p and x, respectively. Construct
the Cobb-Douglas utility function ∑l

i=1 ci lnyi; it is readily verified that this function has x as its
maximizer on Bh(p). Q.E.D

With the aid of this lemma we can prove the main result of this section:

THEOREM 3.1. For every p ∈ P++ there exists a deterministic economy which has ΦE(p) as its
mean excess demand function.
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PROOF. Fix some p ∈ P++; let Bh(p) = {xh,1(p), . . . ,xh,Nh(p)} and recall that ϕ(h, p) is the maxi-
mizer of Uh on ∆(Bh(p)). Since p is fixed, we shall for the sake of notational convenience suppress
the argument p in the expressions Bh(p),ϕ(h, p) and the like, and write them simply as Bh,ϕ h, etc.
Divide T into Nh subintervals, T h,1, . . . ,T h,Nh , such that λ (T h,n) = ϕ h(xh,n), where λ denotes the
Lebesgue measure on R. According to Lemma 3.1 we can find a preference <h,n which has xh,n as
its maximizer on Bh. Now define a mapping f from H×T to P×X:

f (h, t) = (<h,n,eh) for t ∈ T h,n.

Endow H×T with the product measure and denote its completion by π . Assume for a moment
that f is measurable and define a deterministic economy Ep as follows: For any B in the Borel
σ -algebra of P×X

Ep(B) = π{(h, t) : f (h, t) ∈ B}.
On account of the measurability of f the economy Ep is well defined and, as one easily verifies by
means of Fubini’s theorem, has ΦE(p) as its mean excess demand function.

So there remains to show the measurability of f . For this purpose it suffices to show that f
is almost everywhere continuous. This allows us to assume without restriction of generality that
every interval T h,n is open; denote its larger endpoint by t̄h,n. Let T̄ h = {t̄h,1, . . . , t̄h,Nh}, T0 =
∪h∈H{h}× T̄ h, and T1 = (H×T )\T0. The technical difficulty with T0 is that its measurability is
open. Happily, however, we notice that its every measurable subset, according to Fubini’s theorem,
is of zero measure, so that T0 is of zero inner measure. This means that π can be extended to a larger
σ -algebra such that T0 is measurable and of zero measure. More specifically, let B(H×T ) be the
σ -algebra generated by the union of B(H)⊗B(T ) and T0, where B(H)⊗B(T ) is the product
σ -algebra on H×T ; then there exists a measure on B(H×T ), denoted by π̄ , such that

π̄(T0) = 0, π̄(B) = π(B) for every B ∈B(H)⊗B(T ).2

Recall the definition of Hp from equation (2.4); let T = T1\(Hp × T ), so that T is of full
measure. We proceed to show that f is continuous on T. Suppose (hk, tk) → (h0, t0) ∈ T, k =
1,2, . . .. Then by Lemma 2.3, ϕ(hk, p)→ ϕ(h0, p), and so referring to Lemma 2.1, we may assume
the supports of ϕ(hk, p) all have the same cardinality. Let ϕ(hk, p) has {xk,1, . . . ,xk,N} as its support
with qk

i of taking xk,i, k = 0,1, . . .; then xk,i → x0,i and qk
i → q0

i for all i. Recalling from the first
paragraph of this proof the definition of T hk,i we have

T hk,1 = (0,qk
1) and T hk,i = (

i−1

∑
j=1

qk
i ,

i

∑
j=1

qk
i ), i = 2, . . . ,N;k = 0,1, . . . .

This implies that if t0 ∈ T h0,i then tk ∈ T hk,i, so that we may assume f (hk, tk) = (<k,i,ek) for
k = 0,1,2, . . .. Since <k,i has xk,i as its maximizer it follows from the construction of <k,i (cf. the
proof of Lemma 3.1) that <k,i→<i,0, hence that f is continuous. This completes the proof. Q.E.D

3.2 Existence and Efficiency

This subsection will study the existence of equilibrium and its Pareto efficiency. Concerning the
first aspect we have

2This is possible as is seen from http://math.stackexchange.com/questions/1181869/extension-of-measure-on-
sigma-algebra.

10



THEOREM 3.2. Every dispersed economy has an equilibrium.

PROOF. Let Φ(p) be the mean expected excess demand for an economy E as defined in equa-
tion (3.1). According to Mas-Colell et al. (1995, Proposition 17.C.1, p. 585), it suffices to show
that on P++, Φ(p) is continuous, homogeneous of degree zero, bounded below, satisfies the Walras’
law and and the boundary condition, i.e. ∥Φ(pn)∥ → ∞ as pn → p ∈ ∂P. That Φ(p) is homoge-
neous of degree zero and satisfies the Walras’ law is straightforward. Its boundedness from below
follows immediately from the finiteness of the mean endowment.

We begin by showing the continuity of Φ(p). Take pk → p ∈ P++; the proof depends on Lem-
ma 2.3 and Lebesgue’s dominate convergence theorem. More specifically, referring to Lemmata 2.1
and 2.3, we obtain

fk(h)→ f (h) for any h /∈Hp

where we have put fk(h) =
∫

xdϕ h(pk) and f (h) =
∫

xdϕ h(p). Observe that pk fk(h) = pkeh, which,
in combination with p ∈ P++, implies fk(h) ≤ τ∥eh∥ for some constant τ . Hence according to
Lebesgue’s dominate convergence theorem, Φ(pk)→ Φ(p). This proves the continuity of Φ(p).

It remains to show the boundary condition. For this take pk → p ∈ ∂P. According to Fatou’s
lemma, it is sufficient to show ∥ fk(h)∥ → ∞ for any h /∈ Hp. So consider an arbitrary h /∈ Hp.
For notational simplicity let Bk = Bh(pk) and ϕ k = ϕ(h, pk). It is easily seen that there exists an
xk ∈ Bk such that ∥xk∥ → ∞, from which however we cannot derive

∫
xdϕ k → ∞, because ϕ k(xk)

may possibly tend to zero. Fortunately this would not happen, as can be seen from the first-order
condition of Programe (2.5): Recall the functional form of U given in equation (2.3) and let θk be
the Lagrange multiplier, so that for xi ∈ Bk

u(xi)−θk = c′(ϕ k(xi)). (3.2)

From this we see intuitively that the larger the xi, the larger the ϕ k(xi), as the convexity of c implies
the monotonicity of c′. By the intuition alone however we can not formally deduce ϕ k(xk) 9 0
because θk may possibly increase to ∞.

To deal with this problem let

Am = {x ∈ X : u(x)≤ mM},
where m is an integer and M is an arbitrary positive scalar. Since u(x)→ ∞ as ∥x∥ → ∞ it follows
that Am is a bounded set for any given m, hence that |Am∩Bk| is finite, where | · |, when applying to
a set, denotes its cardinality. Noting that |Bk| → ∞ as pk → p ∈ ∂P, there exists for every m an Nm
such that

|BNm\Am|> |BNm ∩Am|, (3.3)

where \ denotes the set-theoretic substraction. Referring to the definition of Am we have u(xi) >
mM, hence u(xi)> u(x j) and therefore, by equation (3.2), ϕ Nm(xi)> ϕ Nm(x j), for any xi ∈ BNm\Am
and any x j ∈ Am. This together with (3.3) implies that ϕ Nm(BNm\Am)≥ 0.5, hence that

∥
∫

xdϕ Nm∥=
∫
∥x∥dϕ Nm ≥ 0.5τm, where τm = min

x∈BNm\Am
∥x∥.

To establish the boundary condition therefore we have only to show τm → ∞. Suppose to the
contrary that τm ≤ τ̄ for every m and some scalar τ̄ . This means that there exists for every m an
xm ∈ BNm\Am such that ∥xm∥ ≤ τ̄ , hence that, due to the continuity of u, u(xm) ≤ mM and hence
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xm ∈ Am, for m sufficiently large; a contradiction. Q.E.D

After establishing the existence of equilibrium it is then natural to ask about its Pareto efficiency.
Let (p,ϕ) be an equilibrium. Observe that if ϕ h(p) solves

maxUh(ϕ) s.t. p
∫

xdϕ ≤ peh.

then one can establish, using the feasibility argument as in the case of deterministic utilities (cf.
Varian (1992, p. 326)), that (p,ϕ) is Pareto efficient. The feasible set of the above problem however
is larger than household h’s budget set Bh(p), which indicates that the equilibrium might not be
Pareto efficient in general. Indeed a counterexample is not hard to come by.

Specifically let l = 2,u(x) = exp(x1 + x2) for any x = (x1,x2) ∈ X, c(q) = q2 for any q ∈ [0,1].
Recall the functional form of U from equation (2.3); we construct an economy wherein all house-
holds share the same utility function. Let α : [0,1] → H be a mapping such that α(t) = (U,et)
where et = (1,1+ t); this enables us to indicate the household by t. It is not hard to see that α is
measurable and thereby induces in the usual way an economy E on H. We shall show the equilib-
rium of E is not Pareto efficient. First, according to Theorem 3.2, E has an equilibrium, say (p,ϕ)
and p ∈ P++; let ϕ = (ϕ t). It then follows that the budget set of t is compact, hence that, due to the
continuity of u, his utility level U(ϕ t) is bounded. Now consider household t; we want to construct
for him a sequence of probability measures ϕ k ∈ M(X) whose utilities tend to ∞. Let ϕ k yield
(0.5k,0.5k) with probability 1/k and (0.5,0.5) with 1− 1/k. It can be verified without difficulty
that ∫

xdϕ k ≤ et and U(ϕ k)→ ∞,

and so U(ϕ k)>U(ϕ t) for k sufficiently large. Therefore, (p,ϕ) is Pareto inefficient.

3.3 The Equilibrium Set Correspondence

Given an economy E let Π(E) be the set of its equilibrium price vectors. In light of Hildenbrand
and Mertens (1972), this subsection undertakes to study the continuity of Π(E).

To formalize the question we need a topology on the set E of all economies. For this we shall
employ the routine one which induces the following notion of convergence: En → E means En
weakly converges to E and

∫
ehdEn →

∫
ehdE. It is called α-topology by Mas-Colell (1977b).

With it we have:

THEOREM 3.3. The correspondence Π : E→ P is upper hemicontinuous.

PROOF. The idea is to use Hildenbrand (1974, Theorem 1, p. 24). First, Π(E) ̸= ∅, from Theo-
rem 3.2. Next, Π is compact-valued. In fact, more general than this is true:
LEMMA 3.2. If Ek → E, pk → p, pk ∈ Π(Ek), then p ∈ Π(E).
PROOF. Remember that ϕ(h,q) is the solution of Program (2.5) when the prevailing price vector
is q. From the premise of the lemma follows p ∈ P++. Recall from equation (2.4) the definition
of Hp. For h /∈Hp take hk → h. Then by Lemma 2.3, ϕ(hk, pk)→ ϕ(h, p) and so, by part (i) of
Lemma 2.1

fk(hk)→ f (h), (3.4)
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where for notational economy we have defined fk(h) =
∫

xdϕ(h, pk), f (h) =
∫

xdϕ(h, p).

Now we show p ∈ Π(E). The method is similar to but much simpler than the one used by
Hildenbrand and Mertens (1972), as in our case each household has a unique ‘demand function’ϕ(h, p).
Since Ek → E and pk ∈ Π(Ek), it follows that∫

fk(h)dEk(h)→
∫

e(h)dE(h). (3.5)

Associate T = [0,1] with the Lebesgue measure λ . Since H is complete and separable it follows
from Skorokhod’s theorem (cf. Hildenbrand (1974, pp. 50–51, (37))), that there exist measurable
mappings αk and α of T into H such that Ek = λ ◦α−1

k and E = λ ◦α−1, and αk(t)→ α(t) a.e.
on T . Hence we have by (3.4), fk(αk(t))→ f (α(t)) a.e. on T , so that by Fatou’s lemma and (3.5),∫

f (α(t))dλ (t)≤
∫

e(α(t))dλ (t). (3.6)

This, together with p f (α(t)) = pe(α(t)) and p ∈ P++, implies that the equality must hold in (3.6),
which therefore completes the proof. Q.E.D

From the lemma it follows at once that Π is compact-valued. With this the theorem then follows
conjointly from the lemma and Hildenbrand’s theorem mentioned at the very beginning of the
proof. Q.E.D

4 Regular Economies

The notion of regularity of an economy springs from the study of the question as to the uniqueness
of equilibria. This section will undertake to study the relative position of regular economies in the
set of all economies and then, in light of Dierker (1975) and Mas-Colell (1977b), investigate in this
regular case some properties of the equilibrium set correspondence as defined in Section 3.3. Let
us begin with the first question.

4.1 Genericity Analysis

In the case of finite economies with deterministic utilities the relative position of regular economies
is discussed by means of genericity analysis (cf. Mas-Colell et al. (1995, Chapter 17, pp. 593–
597)). Our aim here is to develop its analogue for the current setup.

Let us recall how it is carried out in the former case. The point of view here is to consider,
rather than an individual economy, a space of economies which share the same utility function
but differ in their initial endowments, so that each economy can be parametrized by the vector of
its initial endowments. We first impose on the utility function some favourable conditions which
imply a smooth demand function, and then associating the set of all admissible vectors of initial
endowments with the Lebesgue measure, we show that almost every economy is regular. To avoid
cross-reference we reproduce here the definition of regularity from Mas-Colell et al. (1995, Sec-
tion 17.D, p. 591): Recall that DpΦE(p) represents the Jacobian matrix of ΦE(p) with respect to
p.

DEFINITION 4.1. An equilibrium price vector p for an economy E is regular if DpΦE(p) has rank
l −1. The economy is said to be regular if all of its equilibrium price vectors are regular.
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By analogue with the first aspect concerning the utility function, we shall throughout this section
restrict our consideration to u ∈ C2(X), c ∈ C2[0,1], and assume, to avoid corner solutions, the
positivity condition of Fudenberg et al. (2015, Definition 1), i.e. the solution of Program (2.5) has
none of its components vanishing. At the same time, we confine ourselves to the economies with
compact support, a limit whose necessity has been disclosed by Dierker (1975) . These conditions,
as will be seen later in Lemma 4.1, suffices to assure us of a continuously differentiable mean
expected excess demand function.

We turn now to the second aspect, i.e. to set up a measure on the set of initial endowments such
that almost every economy with its endowments in that set is regular. This is much harder that the
first aspect because there is a continuum of households, so that, if the vector of initial endowments
is still used as a parametrization of the economy, the transversality theorem,3 the main tool in
genericity analysis, would not be applicable.

To overcome this problem we observe that for any initial endowment function eh = (eh
1, . . . ,e

h
l ),

the subset of economies whose endowment functions are of the form (r1eh
1, . . . ,rleh

l ) with r =

(r1, . . . ,rl) ∈ Rl
++, can be indexed by r, and therefore lends itself to genericity analysis. By con-

necting somehow the results on each of these subsets we can hopefully arrive at the desired result
on the entire set of all economies.

To formalize the idea we have to introduce some mathematics. Again let T = [0,1] and associate
it with the Lebesgue measure. Since H is complete and separable it follows from Hildenbrand
(1974, p. 50, (37)) that every economy E can be viewed as a measurable mapping of T into H,
so that we can interpret each t ∈ T as a household. Let e(t) be the initial endowment of t, then by
definition of an economy,

∫
e(t)dt < ∞,4 so that e belongs to the l-fold product of the space L1(T )

(the space of absolutely integrable functions on T ). This space however, compared with the space
C(T ) of continuous functions on T , is a bit bizarre in behavior, for any of its two points are not
distinguishable that differ only on a set of measure zero. More precisely assume for the moment
l = 1. Take e(t) = 1 for every t ∈ T and e′(t) = 1 for t irrational, e′(t) = −1 otherwise. Then e
and e′ are the same from the point of view of L1(T ). But it is absurd to have an economy wherein
some household has negative endowments. For this reason we shall restrict our consideration to
e(t) ∈ Cl(T ), the l-fold product of C(T ). This is fortunately not too serious a restriction as is
indicated by the Lusin’s theorem. To lighten notation we shall suppress the argument T and write
instead C and Cl .

Let us start out with a review of C. It is a separable Banach space when endowed with the norm

∥ f∥= max
t∈T

| f (t)|.

Let

B = { f ∈C : ∥ f∥= 1 and f (t)≥ 0,∀t ∈ T},
and Bl be its l-fold product. Associate Bl with the product topology and place on it a Borel proba-
bility measure. Endow Rl

++ with the Lebesgue measure and the product space Bl ×Rl
++ with the

product measure, to be denoted by χ .

3This theorem has an infinite-dimensional version. But its validity depends on very demanding conditions, which
are not satisfied in the current situation.

4Here and hereafter, the integral is in the sense of Lebesgue.
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Let Γ be the set of all admissible initial endowment functions, that is,

Γ = {e : e ∈Cl and e(t)≥ 0,∀t ∈ T}.
For the sake of convenient reference, an economy whose initial endowment function is in a certain
set, we shall call the economy being in that set. For instance, if an economy E has its initial
endowment function in Γ, we shall say that E is in Γ. Then, and this is the essential point, we can
identify Γ with Bl ×Rl

++ in the following fashion: For any two vectors v1,v2 ∈ Rl
++ let v1 ◦ v2 be

their Hadamard product, i.e.

v1 ◦ v2 = (v1
1v2

1, . . . ,v
1
l v2

l ),

where vi = (vi
1, . . . ,v

i
l), i = 1,2. For an endowment function e, by v1 ◦ e (or e◦ v1) we shall mean a

function e′ of T into Rl
++ such that e′(t) = v1 ◦ e(t) for t ∈ T . Let γ : Bl ×Rl

++ → Γ such that

γ(e,r) = e◦ r. (4.1)

Then γ is easily seen to be a homeomorphism, and hence Γ and Bl ×Rl
++ are topologically the

same, which therefore allows us to impose the measure χ on Γ.

With this measure however there is a technical difficulty. Specifically fix an e ∈ Bl and consider
the set {e}×Rl

++. To this set, as discussed above, we can apply genericity analysis to conclude
that there exists a set Re of full measure such that every economy in {e}×Re is regular. To reach
the desideratum that every economy in Γreg = ∪e∈Bl{e}×Re is regular, we have to deal with the
measurability of Γreg. To this end we invoke again the device in the preceding section: Let F be the
product σ -algebra on Bl ×Rl

++, and we extend χ from F to the σ -algebra generated by F∪{Γreg}
such that χ(Γreg) = 1, where without danger of confusion we denote the extension still by χ .

With these preparations we can state our main result:

THEOREM 4.1. Almost every economy in Γ is regular.

PROOF. Take an arbitrary e ∈ Bl and consider the set Γr = {e◦ r : r ∈ Rl
++}. We begin by show-

ing that every economy E in Γr has a continuously differentiable mean expected excess demand
function with respect to the price vector p and the vector r. Recall equation (3.1) where the mean
expected excess demand function is indicated as a function of p alone; here for our purpose we
shall write it more explicitly as a function of (p,r). Then we have
LEMMA 4.1. ΦE(p,r) ∈C1(P++×Rl

++).
PROOF. Take (p0,r0)∈ P++×Rl

++ and let O be its immediate neighborhood. Consider household
t /∈ Hp where Hp is as defined in equation (2.4); let B(p,r) be his budget set at the price vector
p and with his initial endowments given by er(t) = e(t) ◦ r. By Lemma 2.2 we may assume the
existence, for all (p,r) ∈ O, of an integer N such that B(p,r) = {x1(p,r), . . . ,xN(p,r)}. Since Hp
is of measure zero and E is assumed to have a compact support, to prove the lemma, it suffices to
show

∫
xdϕ t(p,r) is continuously differentiable, where ϕ t(p,r) is the solution to Program (2.5); for

which it is in turn sufficient to show the continuous differentiability of xi and ϕ t(p,r).

Let us begin with xi. Recall that x̄ stands for the same vector as x but with its last component
deleted; we have again by Lemma 2.2, that x̄i(p,r) = x̄i(p′,r′) for any (p,r),(p′ r′) ∈ O. Denote
the last component of xi(p,r) by xi

L(p,r) and that of p by pL; a straightforward calculation gives

xi
L(p,r) =

per(t)− p̄x̄i(p,r)
pL

,

whence follows at once the smoothness of xi(p,r) in (p,r).
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We now turn to ϕ t(p,r). The idea, as in the case of deterministic utilities, is to apply the
classical version of the implicit function theorem. Specifically recall the functional form of U as
given in equation (2.3) and form the Lagrangian of Program (2.5):

L =
N

∑
i=1

u(xi(p,r))ϕi − c(ϕi)−δ (∑ϕi −1).

The first-order conditions are then given by

u(xi(p,r))− c′(ϕi)−δ = 0, i = 1, . . . ,N,

∑ϕi −1 = 0.

The Jacobian matrix of this system with respect to (ϕ1, . . . ,ϕN ,δ ) is
−c′′(ϕ1) 0 · · · 0 −1

0 −c′′(ϕ2) · · · 0 −1
...

...
...

...
...

0 0 · · · −c′′(ϕN) −1
1 1 · · · 1 0

 .

Since c is strictly convex it follows that c′′(q)> 0 for q ∈ (0,1), hence the invertibility of the above
matrix. Applying the implicit function theorem we conclude that ϕi is continuously differentiable
in (x1(p,r), . . . ,xN(p,r)). This together with the smoothness of xi implies the continuous differen-
tiability of ϕi in (p,r). Q.E.D

Now according to the transversality theorem (cf., for example, Mas-Colell et al. (1995, Propo-
sition 17.D.3, p. 595)) and the construction of the probability measure χ , to prove the theorem, it
remains to show rankDrΦE(p,r) = l−1 for any (p,r) ∈ P++×Rl

++. But this follows from the by
now almost standard argument as the one used in Mas-Colell et al. (1995, Proposition 17.D.4, p.
596), and hence the proof is completed. Q.E.D

4.2 The Equilibrium Set Correspondence

Recall that Π(E) designates for an economy E the set of its equilibrium price vectors. This subsec-
tion seeks to study its continuity and local constancy. In order to avoid complications arising from
the null set Hp (cf. equation (2.4)) we take X++ = Zl−1 ×R++ as the consumption space. Let
Ureg be the set of functions assuming the form (2.3) with u ∈ C2(X++) and c ∈ C2(0,1). Endow
Ureg with the topology of C2 uniform convergence on compact sets, and Hreg = Ureg ×X++ with
the product topology. At the same time endow the set of all subsets of Hreg with the the Hausdorf-
f metric, and impose on Hreg what is called by Mas-Colell (1977b) β -topology: En → E means
En → E in the α-topology and supp(En)→ supp(E).

With these preliminaries we state

THEOREM 4.2. The correspondence Π :Ereg→P is continuous, and there exists for every E ∈Ereg
a neighborhood OE such that #Π(E) is finite and constant on OE .

PROOF. The proof is almost the same as that of Dierker (1975) and hence we shall present an out-
line only. The basic idea is to use another version of the implicit function theorem (see Appendix).
For technical reasons it is convenient to use a different normalization of the price vectors, that is,
we set pl = 1. Also by slight abuse of notation let Φ(E, p) be the mean expected excess demand of
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the economy E for the first l − 1 commodities, and let f (h, p) be the vector consisting of the first
l −1 components of

∫
xdϕ(h, p) and similarly for e−l(h), so that

Φ(E, p) =
∫

f (h, p)dE(h)−
∫

e−l(h)dE(h).

From the proof of Theorem 3.3 follows the continuity of Φ on Ereg ×Rl−1
++ .

Now we show the continuity of ∂Φ(E, p)/∂ pi in a neighborhood of (E, p). For this take Ek →E
and pk → p. Recall from Section 2 that Cp is the set of points in X that do not have local cheaper
points. There follows X++∩Cp =∅, and hence Hp =∅, for all p∈Rl−1

++ . So the situation becomes
all but identical with that of Lemma 3 of Dierker (1975). First, with the aid of the argument of
Lemma 4.1, it is not hard although somewhat tedious to verify that as hk → h and pk → p ∈ Rl−1

++ ,

∂ f
∂ pi

(hk, pk)→ ∂ f
∂ pi

(h, p).

Since Ek and E are all assumed to have compact supports, it follows that

∂Φ(Ek, pk)

∂ pi
=

∫
∂ f (hk, pk)

∂ pi
dEk(h),

∂Φ(E, p)
∂ pi

=

∫
∂ f (h, p)

∂ pi
dE(h).

On applying Billingsley (1968, Theorem 5.5, pp. 33–34), which says in our notation that Ek → E
implies Ek f−1

k converges weakly to E f−1, we conclude ∂Φ(Ek, pk)/∂ pi → ∂Φ(E, p)/∂ pi.

Take E ∈ Ereg and suppose Π(E) = {q1, . . . ,qn}. For each qi we know DpΦ(E,qi) is invertible.
It then follows from the implicit function theorem that there exist neighborhoods OE,i of E, Oi of
qi, and a continuous function ξi : OE,i → Oi such that for each E ′ ∈ OE,i, ξi(E ′) is the unique point
in OE,i which satisfies Φ(E,ξi(E)) = 0. Let OE = ∩iOE,i; we have

Π(E ′) = ∪ξi(E ′) for all E ′ ∈ OE ,

which therefore completes the proof. Q.E.D

Appendix

THEOREM. (Implicit function theorem) Let Z be an open subset of Rl and Θ a metric space; let
f : Z ×Θ → Rl be continuous. Suppose the Jacobian matrix Dz f of f with respect to z exists at
each point (z,θ) and is continuous on Z×Θ. Assume Dz f (z̄, θ̄) is invertible and f (z̄, θ̄) = 0. Then
there exist neighborhoods Oz̄ of z̄, Oθ̄ of θ̄ , and a continuous function ξ : Oθ̄ → Oz̄ such that for
each θ ∈ Oθ̄ , ξ (θ) is the unique point in Oz̄ which satisfies f (ξ (θ),θ) = 0.
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