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Abstract

Various scientific studies have investigated the causal link between solar activity (SS) and the

earth’s temperature (GT). Results from literature indicate that both the detected structural

breaks and existing trend have significant effects on the causality detection outcomes. In this

paper, we make a contribution to this literature by evaluating and comparing seven trend

extraction methods covering various aspects of trend extraction studies to date. In addition,

we extend previous work by using Convergent Cross Mapping (CCM) - an advanced non-

parametric causality detection technique to provide evidence on the effect of existing trend

in global temperature on the causality detection outcome. This paper illustrates the use of

a method to find the most reliable trend extraction approach for data preprocessing, as well

as provides detailed analyses of the causality detection of each component by this approach

to achieve a better understanding of the causal link between SS and GT. Furthermore, the

corresponding CCM results indicate increasing significance of causal effect from SS to GT

since 1880 to recent years, which provide solid evidences that may contribute on explaining

the escalating global tendency of warming up recent decades.
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Nomenclature

ADF Augmented Dickey-Fuller.

CCM Convergent Cross Mapping.

DF −GLS Dickey-Fuller test with Generalised Least Squares detrended residuals.

DGT Detrended global temperature.

EDM Empirical Dynamic Modeling.

EMD Empirical Mode Decomposition.

GT Global temperature.

HEN Henderson Filter.

HP Hodrick-Prescott Filter.

KPSS Kwiatkowski-Phillips-Schmidt-Shin test.

LOESS Local Regression Filter.

MBA Model Based Approach.

NP Ng and Perron test.

PP Phillips and Perron test.

SIC Schwarz Information Criterion.

SS Sunspot number.

SSA Singular Spectrum Analysis.

WAV Wavelets Filter.

1 Introduction

Rising global temperature has both short and long term environmental and economic implica-

tions. As a result, there is growing interest among scientists worldwide to identify the factors

that affect the rate of change in global temperature. The connection between solar activity

and global warming has been well established in the scientific literature. For example, see ref-

erences [1–10]. An indication of solar activity is given by the sunspot number (SS). Sunspots

appear as dark spots on the surface of the Sun. Temperatures in the dark centers of sunspots

drop to about 3700 K (compared to 5700 K for the surrounding photosphere). They are magnetic

regions on the Sun, with the strength of a magnetic field which is thousands of times stronger

than the Earth’s magnetic field. Sunspots usually come in groups with two sets of spots, namely

positive (or north) magnetic field and negative (or south) magnetic field. Sunspots typically last

for several days, although very large ones may live for several weeks.1 The causality between

sunspot number (SS) and global temperature has been explored in many scientific work using

different causality detection techniques. The data on SS and GT contain many complex dy-

namic fluctuations. Also, there is a high possibility of the existence of non-stationary features

in the data. This poses difficulty in deriving convincing results on causality using parametric

techniques. Hence, our motivation for this paper is to provide evidence on the causality between

SS and GT using various advanced causality methods [11,12].

1Further details can be found at: http://solarscience.msfc.nasa.gov/feature1.shtmlSunspots.
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Given the long time series in climate change studies, the detected structural breaks show

significant effects on the causality detection outcomes. Also, in [11], we showed that the existing

trend of GT can affect causality detection, which may lead to misleading or spurious results

for both generally accepted and advanced causality detection methods. This motivates us to

investigate the possible effects of the trend on causality detection. We evaluate the differences

among various trend extraction techniques and the corresponding effects on the results derived.

In this paper, we adopt a non-parametric causality detection method Convergent Cross

Mapping [13]. We use the same dataset of SS and GT, and the corresponding subsamples

used in [11, 12]. The analysis uses different representative trend extraction methods covering

almost all aspects of trend extraction studies to date and evaluates their corresponding effects on

these advanced non-parametric causality tests. The emphasis of this paper is not reviewing all

available trend extraction methods. Instead, we focus on the crucial question of whether trend

extraction has effects on the advanced causality detection methods and providing comparisons

of those effects by a few representative trend extraction methods. To the best of our knowledge,

this paper is the first to adopt Convergent Cross Mapping to provide evidence on the causality

between sunspot numbers and the global temperature. We contribute to the scientific literature

on climate change that focuses on determining the causes of global warming.

The paper is structured as follows: Section 2 briefly introduces both the empirical and

advanced causality detection techniques adopted in recent climate change studies; Section 3

provides the descriptive summary of the original and various detrended data considering seven

different trend extraction methods; Section 4 summarises and compares the causality detec-

tion results by employing different causality detection techniques on the original and various

extracted series respectively; Furthermore, Section 5 decomposes both SS and GT into repre-

sentative components and conducts various causality tests respectively for the comprehensive

understanding of the causal link between SS and GT; Finally, Section 6 concludes.

2 Empirical and Advanced Causality Detection Techniques

2.1 Time Domain Granger Causality Test

Granger causality test [14] is the most accepted method for causality analyses and is widely

used in a number of disciplines. Various applications and developments of this technique can be

found in [15–19]. The regression formulation of Granger causality states that vector Xi is the

cause of vector Yi if the past values of Xi are helpful in predicting the future value of Yi, two
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regressions are considered as follows:

Xi =
T∑
t=1

αtYi−t + ε1i, (1)

Yi =
T∑
t=1

αtYi−t +
T∑
t=1

βtXi−t + ε2i, (2)

where i = 1, 2, · · · , N (N is the number of observations), T is the maximal time lag, α and β are

vectors of coefficients, ε is the error term. The first regression is the model that predicts Xi by

using the history of Yi only, while the second regression represents the model of Yi is predicted

by the past information of both Xi and Yi. Therefore, if the second model is a significantly

better model than the first one, existence of causality is concluded.

2.2 Frequency Domain Causality Test

The frequency domain causality test is the extension of time domain Granger causality test

that identifies the causality between different variables for each frequency. In order to briefly

introduce the testing methodology, we mainly follow [20,21]. More details can be found in [22].

It is assumed that two dimensional vector containing Xi and Yi (where i = 1, 2, · · · , N
and N is the number of observations) with a finite-order Vector Auto-regression Model (VAR)

representative of order p,

Θ(R)

(
Yi

Xi

)
=

(
Θ11(R) Θ12(R)

Θ21(R) Θ22(R)

)(
Yi

Xi

)
+ Ei, (3)

where Θ(R) = I−Θ1R−...−ΘpRp is a 2×2 lag polynomial and Θ1, ...,Θp are 2×2 autoregressive

parameter matrices, with RkXi = Xi−k and RkYi = Yi−k. The error vector E is white noise with

zero mean, and E(EiE ′i) = Z, where Z is positive definite matrix. The moving average (MA)

representative of the system is(
Yi

Xi

)
= Ψ(R)ηi =

(
Ψ11(R) Ψ12(R)

Ψ21(R) Ψ22(R)

)(
η1i

η2i

)
, (4)

with Ψ(R) = Θ(R)−1G−1 and G is the lower triangular matrix of the Cholesky decomposition

G′G = Z−1, such that E(ηtη
′
t) = I and ηi = GEi. The causality test developed in [20] can be

written as:

CX⇒Y (γ) = log

[
1 +
|Ψ12(e−iγ)|2

|Ψ11(e−iγ)|2

]
. (5)

However, according to this framework, no Granger causality from Xi to Yi at frequency γ

corresponds to the condition |Ψ12(e−iγ)| = 0, this condition leads to

|Θ12(e−iγ)| = |Σp
k=1Θk,12 cos(kγ)− iΣp

k=1Θk,12 sin(kγ)| = 0, (6)
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where Θk,1,2 is the (1, 2)th element of Θk, such that a sufficient set of conditions for no causality

is given by [22]

Σp
k=1Θk,1,2 cos(kγ) = 0

Σp
k=1Θk,1,2 sin(kγ) = 0

. (7)

Hence, the null hypothesis of no Granger causality at frequency γ can be tested by using a

standard F-test for the linear restrictions (7), which follows an F (2, B − 2p) distribution, for

every γ between 0 and π, with B begin the number of observations in the series.

2.3 Convergent Cross Mapping Technique

Convergent Cross Mapping (CCM) was first introduced in [13] that aimed at detecting the

causation among time series and to provide a better understanding of dynamic systems that are

well explored by other well established methods such as Granger causality. CCM has proven to

be an advanced non-parametric technique for distinguishing causations in a dynamic system that

contains complex interactions. More details can be found in [13, 23–25]. We briefly introduce

CCM in this paper by following primarily [13].

Assume there are two variables Xi and Yi such that Xi has a causal effect on Yi. CCM will

test the causation by evaluating whether the historical record of Yi can be used to get reliable

estimates of Xi. We set i = 1, 2, · · · , n. Given a library set of n points that are not necessarily

equal to the total number of observations N of two variables, the lagged coordinates are adopted

to generate an E-dimensional embedding state space [26,27], in which the points are the library

vector Xi and prediction vector Yi

Xi : {xi, xi−1, xi−2, · · · , xi−(E−1)}, (8)

Yi : {yi, yi−1, yi−2, · · · , yi−(E−1)}, (9)

The E+1 neighbors of Yi from the library set Xi will be selected, which actually form the smallest

simplex that contains Yi as an interior point. Accordingly, the forecast is then conducted by this

process, which is the nearest-neighbour forecasting algorithm of simplex projection [26]. The

optimal E will be evaluated and selected based on the forward performances of these nearby

points in an embedding state space.

Therefore, by adopting the essential concept of Empirical Dynamic Modeling (EDM) and

generalized Takens’ Theorem [27], two manifolds are conducted based on the lagged coordinates

of the two variables under evaluation, which are the attractor manifold MY constructed by Yi

and respectively, the manifold MX by Xi. The causation will then be identified accordingly

if the nearby points on MY can be employed for reconstructing observed Xi. Note that the

correlation coefficient ρ is used for the estimates of cross map skill due to its widely acceptance
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and understanding, additionally, leave-one-out cross-validation is considered a more conservative

method and adopted for all evaluations in CCM.

3 Data and Trend Extraction

3.1 Original Data

The GT and SS data are at monthly frequency covering the period from January 1880 to May

2015, with the start and up to date end points being updated based on [11, 12]. The data for

GT were obtained from the Goddard Institute for Space Studies (GISS) [28] and the SS data

were obtained from the Solar Influences Data Analysis Centre (SIDC) [29]. Figure 1 presents

the time series plots of the original variables, in which we can observe the possible existing trend

in GT that is addressed with details in [11].
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Figure 1: Monthly SS and GT from 1880M01 to 2015M05.

By following [11, 12] with updated data to date, different unit root tests were conducted to

verify the stationarity of the series in Table 1. Additionally, structural breaks were detected in

the full sample at 1936M03 and 1986M12 by the test proposed in [30] according to [12], whereby

the break test was applied to the GT equation of the VAR comprising GT and SS. The test will

not be reproduced here (the reader is referred to [12] for details), and all the tests included in this

and the following sections will apply for the full sample as well as all sub-samples for comparison.
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Table 1: Unit Root Test Results.

Sample Size Series Methods
None Intercept Intercept and Trend

Level Decision Level Decision Level Decision

Total Sample

(1625 Obs)

1880:1-2015:5

GT

KPSS ———– ———– 4.234*** (31) I(1) 0.686***(30) I(1)

ADF -1.301 (17) I(1) -1.296 (17) I(1) -3.443** (24) I(0)

PP -5.966*** (12) I(0) -5.964*** (12) I(0) -18.499*** (23) I(0)

DF-GLS ———– ———– -1.315 (6) I(1) -6.639***(3) I(0)

NP ———– ———– -31.142***(12) I(0) -516.032*** (23) I(0)

SS

KPSS ———– ———– 0.464**(15) I(1) 0.101 (15) I(0)

ADF -2.499**(3) I(0) -4.055***(3) I(0) -4.109***(3) I(0)

PP -2.526** (14) I(0) -3.189** (12) I(0) -4.027*** (0) I(0)

DF-GLS ———– ———– -3.383***(3) I(0) -6.879***(3) I(0)

NP ———– ———– -47.323***(14) I(0) -71.585***(14) I(0)

Sub-sample A

(674 Obs)

1880:1-1936:2

GT

KPSS ———– ———– 0.455*(19) I(1) 0.430***(19) I(0)

ADF -2.710***(3) I(0) -7.207***(2) I(0) -7.228***(2) I(0)

PP -4.313***(2) I(0) -13.397***(14) I(0) -13.424***(14) I(0)

DF-GLS ———– ———– -6.325***(2) I(0) -7.076***(2) I(0)

NP ———– ———– -234.149***(14) I(0) -275.304***(14) I(0)

SS

KPSS ———– ———– 0.053(21) I(0) 0.051(21) I(0)

ADF -1.819*(3) I(1) -3.451***(3) I(0) -3.447**(3) I(0)

PP -3.226***(18) I(0) -6.075***(8) I(0) -6.075***(8) I(0)

DF-GLS ———– ———– -3.043***(3) I(0) -3.322**(3) I(0)

NP ———– ———– -52.499***(8) I(0) -57.985***(8) I(0)

Sub-sample B

(609 Obs)

1936:3-1986:11

GT

KPSS ———– ———– 0.794***(17) I(1) 0.321***(16) I(1)

ADF -7.121***(1) I(0) -7.211***(1) I(0) -7.515***(1) I(0)

PP -12.979***(13) I(0) -13.102***(13) I(0) -13.678***(13) I(0)

DF-GLS ———– ———– -3.287***(2) I(0) -6.454***(1) I(0)

NP ———– ———– -92.270***(13) I(0) -229.775***(13) I(0)

SS

KPSS ———– ———– 0.061(18) I(0) 0.052(18) I(0)

ADF -1.690*(2) I(1) -2.720*(2) I(1) -2.741(2) I(1)

PP -1.932*(11) I(1) -3.600***(2) I(0) -3.614**(2) I(0)

DF-GLS ———– ———– -2.718***(2) I(0) -2.754*(2) I(1)

NP ———– ———– -24.056***(2) I(0) -24.089***(2) I(0)

Sub-sample C

(342 Obs)

1986:12-2015:5

GT

KPSS ———– ———– 1.835*** (14) I(1) 0.083 (13) I(0)

ADF -0.475 (3) I(1) -3.410**(3) I(0) -7.064***(1) I(0)

PP -1.063 (22) I(1) -6.518***(8) I(0) -10.546***(9) I(0)

DF-GLS ———– ———– -0.899 (3) I(1) -5.899***(1) I(0)

NP ———– ———– -15.362***(8) I(0) -121.714***(9) I(0)

SS

KPSS ———– ———– 0.464**(15) I(1) 0.101 (15) I(0)

ADF -0.960 (3) I(1) -1.870 (3) I(1) -2.229 (3) I(1)

PP -1.526(14) I(1) -2.898**(2) I(0) -4.027***(0) I(0)

DF-GLS ———– ———– -1.174(3) I(1) -1.427(3) I(1)

NP ———– ———– -8.847**(2) I(0) -11.959 (1) I(1)

a The *, ** and *** indicate significance at the 10%, 5% and 1% respectively.
b The critical values are as follows:(1)None: -2.566, -1.941 and -1.616 for ADF and PP at 1%, 5% and 10% level of significance,

respectively; (2)Intercept: -3.434, -2.863 and -2.567 (-2.566, 1.941, 1.617) [-13.8, -8.1 and -5.7] {0.739, 0.463, 0.347} for ADF

and PP (DF-GLS) [NP] {KPSS} at 1%, 5% and 10% level of significance, respectively;(3)Intercept and Trend: -3.963, -3.412

and -3.128 (3.48, 2.89, 2.57) [-23.80, -17.3 and -14.2] {0.216, 0.146, 0.119} for ADF and PP (DF-GLS) [NP] {KPSS} at 1%, 5%

and 10% level of significance respectively.
c Numbers in parentheses for ADF, PP and DF-GLS tests indicates lag-lengths selected based on the Schwarz Information

Criterion (SIC). For the NP test and the KPSS test, based on the Bartlett kernel spectral estimation method, the corresponding

numbers are the Newey-West bandwidth.
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Based on our results from the Kwiatkowski-Phillips-Schmidt-Shin (KPSS), augmented Dickey-

Fuller (ADF), Dickey-Fuller test with Generalised Least Squares detrended residuals (DF-GLS),

Phillips and Perron (PP), and Ng and Perron (NP) unit root tests, the null of a unit root is

overwhelmingly rejected (except for KPSS test the null of being stationary, it cannot be over-

whelmingly rejected), for the total sample of SS. However, for total sample of GT, while all the

tests support that the variable is trend-stationary, the ADF and DF-GLS test tends to suggest

non-stationarity of the series when the unit root test-equation has only a constant (or neither a

constant and trend in case of the ADF test). The PP and the NP tests, though, indicate sta-

tionarity even under the assumption of constant only (and neither a constant and trend in case

of the PP test). Given the nature of GT, it is evident that the unit root equation should in fact

include a trend. In general, for sub-sample A and sub-sample B we have overwhelming evidence

of stationary (especially based on the results of NP test, which have stronger power compared

to the other tests [11]). For sample C, while GT is found to be stationary in general at 1% level,

the evidence of stationarity, is slightly weaker for SS, barring the PP and NP tests, at 5% level

of significance. In summary, for the full sample and all sub-samples, we can conclude that both

series are stationary, whilst GT in general is trend-stationary, especially for sub-sample C.

3.2 Trend Extraction Methods and Extracted Data

The detrended GT (DGT) is provided aiming to remove the possible misleading effects of the

trend on the causality detection. The objective of this paper is to contribute on finding the

solution of whether different trend extraction methods that employed can affect the causality

detection in climate change studies. Thus, instead of reviewing all existing trend extraction

methods, a few selected and representative trend extraction methods are adopted and compared

in this paper by mainly following [31]. The trend extraction methods employed in this paper

cover almost all aspects of trend extraction studies to date, including Model Based Approach

(MBA), Empirical Mode Decomposition (EMD), Singular Spectrum Analysis (SSA), Wavelet

(WAV), Local Regression (LOESS), Henderson Filter (HEN) and Hodrick Prescott Filter (HP).

Since our main purpose is not reviewing all trend extraction techniques, we do not reproduce

the theoretical introductions of the methods, more details can be found in [31]. The DGT

series and corresponding extracted trend series are summarized below in Figure 2 and Figure 3

respectively. Note that all detrended series and corresponding extracted trend series will be

adopted for different causality tests respectively with considerations of both total sample and

sub-samples in Section 4.
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Figure 2: Detrended global temperature (DGT) by different methods (1880M01 to 2015M05) .
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Figure 3: Extracted trend of global temperature (GT) by different methods (1880M01 to

2015M05) .

4 Causality Test Results of the Original and Extracted Data

Iin this section, the causality tests are conducted for the original series, different detrended

series, and extracted trend series respectively. The corresponding results are summarized below

by different causality detection techniques.
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4.1 Time Domain Causality Test Results

Given the significant and empirical role of time domain causality test, we repeated the Granger

causality test with SS and different DGT, as well as extracted trend series by different techniques

respectively in Table 2. Note that all tests conducted satisfy the preconditions of time domain

causality test with results by the corresponding optimal lag. The null hypothesis that SS does

not Granger cause GT in general cannot be rejected for the sub-sample A except for DGT

by HEN. The results also point out that the null of non-causality still continued to hold at 5%

significant level for all trend and detrended series of sub-sample B and sub-sample C. The overall

causality from SS to GT considering the total sample is proved by DGT(HEN), DGT(LOESS)

and DGT(SSA) at 5% significant level. Thus, in general, comparing to the insignificant results

of the original series, the trend extraction is confirmed helpful on time domain causality test,

more specifically, DGT by HEN, LOESS and SSA indicate the significant causal link from SS

to GT at the total sample level.

Table 2: Summary of Granger causality test results.

Tested Series

Total Sample Subsample A Subsample B Subsample C

1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

F p-value F p-value F p-value F p-value

Original 1.0107 0.3642 0.947 0.3884 1.1374 0.3213 1.5871 0.2062

DGT(EMD) 1.9439 0.0842 1.6239 0.1825 1.4771 0.1953 0.6153 0.6055

DGT(HEN) 1.5184 0.0458 1.7268 0.0133 1.2998 0.2023 0.6559 0.5797

DGT(HP) 1.1439 0.1875 1.4968 0.0522 1.1201 0.2956 0.6757 0.5675

DGT(LOESS) 1.6184 0.0298 1.6243 0.1824 2.2294 0.0837 0.6179 0.6039

DGT(MBA) 1.3569 0.2287 1.6244 0.1824 1.4767 0.1955 0.6164 0.6048

DGT(SSA) 1.6201 0.0295 1.5080 0.1981 2.2310 0.0835 0.6188 0.6032

DGT(WAV) 1.9514 0.0831 1.6192 0.1836 1.4557 0.2025 0.9852 0.5374

Trend(EMD) 0.6276 0.9689 0.6934 0.9399 0.9475 0.5892 0.5359 0.9499

Trend(HEN) 0.8384 0.6107 1.2114 0.2983 1.1247 0.3212 1.0686 0.4127

Trend(HP) 1.5676 0.1661 0.9720 0.4432 0.9772 0.4309 0.5552 0.6449

Trend(LOESS) 0.5487 0.9552 0.7468 0.7978 0.6677 0.8723 0.4067 0.9527

Trend(MBA) 0.1212 0.9416 0.4413 0.7235 0.4869 0.6147 0.5125 0.6739

Trend(SSA) 0.6943 0.9624 1.2123 0.1642 1.0918 0.3507 0.5151 0.9986

Trend(WAV) 1.5173 0.0434 1.2843 0.1547 1.4776 0.0646 1.1989 0.3094

4.2 Frequency Domain Causality Test Results

The frequency domain causality results for the original series are listed below in Figure 4. Note

that the optimal lag-structures are maintained for all tests and the test statistics (blue) along

with the corresponding 5% critical values (red) for each particular frequencies are adopted to

evaluate the possible causal links from SS to GT.
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Figure 4: Frequency domain causality result for original GT.

For the full sample, significant causal link is confirmed for frequency that is greater than 2.45

corresponding to a cycle length between 2 and 2.6 months. Whilst, in terms of the sub-samples,

no significant causality can be identified for any frequency and the frequency domain test fails

to prove that SS has any predictability for GT in the sub-samples.

The following figures present the frequency domain causality test results for DGT by each

trend extraction methods respectively with specific results of all sub-samples. Identically, for

each test, the optimal lag-structure is assured and having greater test statistics (blue) than

the corresponding 5% critical values (red) indicates possible causal links from SS to GT within

corresponding frequency range.
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Figure 5: Frequency domain causality result for DGT(MBA).
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Figure 6: Frequency domain causality result for DGT(EMD).
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Figure 7: Frequency domain causality result for DGT(SSA).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Incremental Rsquared GC−test

frequency

In
c
re

m
e
n
ta

l 
R

−
s
q
u
a
re

d

total sample

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Incremental Rsquared GC−test

frequency

In
c
re

m
e
n
ta

l 
R

−
s
q
u
a
re

d

sub-sample A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Incremental Rsquared GC−test

frequency

In
c
re

m
e
n
ta

l 
R

−
s
q
u
a
re

d

sub-sample B

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Incremental Rsquared GC−test

frequency

In
c
re

m
e
n
ta

l 
R

−
s
q
u
a
re

d

sub-sample C

Figure 8: Frequency domain causality result for DGT(WAV).
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Figure 9: Frequency domain causality result for DGT(LOESS).
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Figure 10: Frequency domain causality result for DGT(HEN).
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Figure 11: Frequency domain causality result for DGT(HP).

The results of DGT by seven different trend extraction methods above could not reflect

significant differences on influencing the frequency domain causality test. In terms of the total

sample, weak causality is identified in general except the cases of DGT by HP filter and Hender-

son filter. The test statistics vary for each trend extraction method considering each sub-sample

respectively, however, there are no significant evidences of showing causality for all sub-samples

by different trend extraction methods. In general, given the evidences from seven different trend

extraction methods adopted, the possible existing trend of GT do not have significant influ-

ence on frequency domain causality test and detrending cannot assist or affect significantly on
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frequency domain causality test for the research of causal link between SS and GT in climate

change study.

Furthermore, the following figures present the frequency domain causality test results for

trend series extracted by each trend extraction methods respectively with specific results of all

sub-samples, followed by the summary of all frequency domain causality test results are listed in

Table 3. It is noticed that in general no causality can be detected by the extracted trend series

regardless of the sub-samples and trend extraction methods, except that the significant causal

link at short cycle frequency is detected at sub-sample B of the trend series extracted by SSA.
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Figure 12: Frequency domain causality result for trend(MBA).
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Figure 13: Frequency domain causality result for trend(EMD).
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Figure 14: Frequency domain causality result for trend(SSA).
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Figure 15: Frequency domain causality result for trend(WAV).
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Figure 16: Frequency domain causality result for trend(LOESS).
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Figure 17: Frequency domain causality result for trend(HEN).
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Figure 18: Frequency domain causality result for trend(HP).

Table 3: Summary of frequency domain causality test results.

Total Sample Sub-sample A Sub-sample B Sub-sample C

Tested Series 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Original YES(short cycle) NO NO NO

DGT(MBA) YES(short cycle) NO NO NO

DGT(EMD) YES(short cycle) NO NO NO

DGT(SSA) YES(short cycle) NO NO NO

DGT(WAV) YES(short cycle) NO NO NO

DGT(LOESS) YES(short cycle) NO NO NO

DGT(HEN) YES(week) NO NO NO

DGT(HP) NO NO NO NO

Trend(MBA) NO NO NO NO

Trend(EMD) NO NO NO NO

Trend(SSA) NO NO YES(short cycle) NO

Trend(WAV) NO NO NO NO

Trend(LOESS) NO NO NO NO

Trend(HEN) NO NO NO NO

Trend(HP) NO NO NO NO

4.3 Convergent Cross Mapping Causality Test Results

CCM is adopted for the first time for causality detection analysis in climate change studies,

in which the updated data and sub-samples that was used by [11] are employed. It is worth

to highlight that the significant advantage of employing this novel non-parametric technique

is that no prior linear model assumptions are made and this technique is designed for better

understanding of causal relationships in complex dynamical system. Note that all the test

results are obtained by the optimal embedding dimension respectively. More specifically, it is

determined by the nearest neighbor forecasting performance using simplex projection; Library

size is set identical within one corresponding sample size for the sake of further comparisons in

the following sections of the paper; Leave-one-out cross validation is applied for the best choice

on library size with optimal performance. The results of CCM tests of causation between SS

16



and GT (original) on the whole sample and all sub-samples are listed as follows.
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Figure 19: CCM result for original GT.

The cross map skill index reflects the reconstruction ability of the fact factor to the cause

factor for both directions respectively. Therefore, according to the CCM results of the original

series, CCM indicates significant ability of cross mapping considering the total sample, in which,

positive outcome reflects identified causal link from SS to GT. However, regarding each sub-

sample, sub-sample A cannot detect obvious causation from SS to GT; sub-sample B show

opposite causation from GT to SS, which is considered misleading results due to the fact; sub-

sample C reflects significant causation from SS to GT that possibly contains the influence of

trend. Note that due to the long time span of the data and the wide scale of library size

considered for more comprehensive analyses and comparisons, the increasing significance level

along with larger library size is reasonable as more information is adopted for cross validation

test and then for cross mapping.

Following the CCM test for original series, the figures listed below show all the CCM test

results for DGT by different trend extraction methods. Identically, all tests are obtained by the

optimal embedding dimension respectively; by optimal outcome based on cross validation results;

with identical library size within one corresponding sample size for the sake of comparisons.
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Figure 20: CCM result for DGT(MBA).

17



500 600 700 800 900 1000

0
.0

0
.1

0
.2

0
.3

0
.4

Library Size

C
ro

ss
 M

a
p
 S

ki
ll 

(r
h
o
)

SS xmap DGT
DGT xmap SS

total sample

100 150 200 250 300 350 400

0
.0

0
.1

0
.2

0
.3

0
.4

Library Size

C
ro

ss
 M

a
p
 S

ki
ll 

(r
h
o
)

SS xmap DGT
DGT xmap SS

sub-sample A

100 150 200 250 300 350 400

0
.0

0
.1

0
.2

0
.3

0
.4

Library Size

C
ro

ss
 M

a
p
 S

ki
ll 

(r
h
o
)

SS xmap DGT
DGT xmap SS

sub-sample B

50 100 150 200

0
.0

0
.1

0
.2

0
.3

0
.4

Library Size

C
ro

ss
 M

a
p
 S

ki
ll 

(r
h
o
)

SS xmap DGT
DGT xmap SS

sub-sample C

Figure 21: CCM result for DGT(EMD).
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Figure 22: CCM result for DGT(SSA).
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Figure 23: CCM result for DGT(WAV).
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Figure 24: CCM result for DGT(LOESS).
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Figure 25: CCM result for DGT(HEN).
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Figure 26: CCM result for DGT(HP).

Furthermore, the figures listed below show all the CCM test results for trend series extracted

by different trend extraction methods respectively with considerations of both total sample and

sub-samples.
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Figure 27: CCM result for trend(MBA).
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Figure 28: CCM result for trend(EMD).
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Figure 29: CCM result for trend(SSA).
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Figure 30: CCM result for trend(WAV).
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Figure 31: CCM result for trend(LOESS).
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Figure 32: CCM result for trend(HEN).
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Figure 33: CCM result for trend(HP).

If the CCM results of original GT are recalled for comparison, in which, the total sample and

sub-sample C both indicate significant causation from SS to GT, whilst sub-sample A reflects

no causation and sub-sample B shows wrong direction. In terms of the DGT and trend series

in line with the corresponding CCM results listed above, significant differences are generally

obtained among seven different trend extraction methods. In order to provide further analyses

on the corresponding effects of each trend extraction method on CCM causality test, the results

are again summarized to be more brief below in Table 4.

We find evidence of significant causality in general in terms of trend series, which strongly

reflect the causal link from SS to the emerging trend of global warming. Only trend by HP and

HEN show relatively weaker causality, while the corresponding DGT by HEN and HP also fail

on providing positive results of existing causal links. However, regarding the total sample that

was proved significant by original series, DGT (as well as trend series) by MBA, EMD, SSA and

WAV continue to hold significant results. Thus, DGT by LOESS, HEN and HP may work fine

on extracting the existing trend, but it will possibly remove or reduce the causal effects between

SS and GT to be captured by CCM.

Regarding the sub-sample A, all CCM results in general show significant evidences of causal-

ity, regardless of whether the level of causation is weak or strong. This is an impressive effect

detected as no causal link can be identified when the original series are considered. We can con-

clude that the existing trend series and DGT together lead to weaken or mislead the results for
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Table 4: Summary of CCM causality test results.

Total Sample Sub-sample A Sub-sample B Sub-sample C

Tested Series 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Original YES NO Wrong Direction YES

DGT(MBA) YES(very weak) YES(weak) Wrong Direction YES(weak)

DGT(EMD) YES YES(weak) YES Wrong Direction

DGT(SSA) YES YES(very weak) YES YES

DGT(WAV) YES(very weak) YES Wrong Direction Wrong Direction

DGT(LOESS) NO YES(weak) Wrong Direction Wrong Direction

DGT(HEN) NO YES NO YES(very weak)

DGT(HP) NO YES NO YES(weak)

Trend(MBA) YES(strong) YES(strong) YES(strong) YES(strong)

Trend(EMD) YES(strong) YES(strong) YES(strong) YES(strong)

Trend(SSA) YES(strong) YES(strong) YES(strong) YES(strong)

Trend(WAV) YES(strong) YES(strong) YES(strong) YES

Trend(LOESS) YES(strong) YES YES(strong) YES(strong)

Trend(HEN) YES(week) YES(week) Wrong Direction Wrong Direction

Trend(HP) YES(week) YES(week) Wrong Direction YES(very week)

sub-sample A on causality analyses. This can be generally improved to obtain more significant

outcomes by extracting the trend with all representative trend extraction methods listed here

(regardless the level of significance for different methods).

In terms of sub-sample B, which indicated a wrong direction causality in case of the original

series, only DGT by EMD and SSA show positive results indicating causality. The others fail

to detect or, even worse, provide misleading results of wrong direction of causation.

For the most recent sub-sample C that possibly reflects the most meaningful conclusion,

DGT by SSA manage to hold the significant result that keep the consistency of the results by

original series, more importantly, with reasonable level of significance. In more details, the CCM

results of DGT by SSA show emerging causality relationship from SS to GT that also prove the

significant predictive ability of SS on GT.

As an advanced non-parametric causality detection method, CCM outperforms the other

generally accepted methods with not only the original series but also the DGT and extracted

trend series. However, the existing trend of GT has also been proved affecting the outcomes of

CCM. According to the comparisons of different trend extraction methods in terms of the study

of SS and GT in climate change, SSA outperforms the others on providing better preprocessed

series for CCM test with significant causal link detected regardless of the DGT and trend series

for all sub-samples as well as the total sample. More importantly, it indicates the emerging

causal effects from SS to GT, which contributes on explaining the tendency of global warming

recent decades.
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5 Data Decomposition by SSA and Effects on Causality Detec-

tion

All previous comparisons are conducted by the original SS together with the trend and DGT

respectively, in line with the SSA technique is found the most appropriate trend extraction

method on data preprocessing for causal analyses in climate change study. In this section,

both the SS and GT are further decomposed by SSA into representative components: trend,

cycle and noise. All causality tests are then obtained by different components respectively to

provide further comprehensive understanding of the causal link between SS and GT, which may

contribute on target the most significant component that dominates the causal analysis in a

complex system like climate changes study.

5.1 Singular Spectrum Analysis Technique

Singular Spectrum Analysis (SSA) is a relatively new and advanced technique of time series

analysis. It is stated as a nonparametric technique incorporating the elements of classical time

series analysis, multivariate statistics, multivariate geometry, dynamical systems, and signal

processing [32]. More coherent, detailed explanations and various applications of both standard

SSA and its multivariate extension – MSSA can be found in ( [33–42]). The SSA technique is

performed in two stages, which are known as decomposition and reconstruction. Embedding

and Singular Value Decomposition (SVD) are included in the first stage of decomposition, while

the second phase of reconstruction contains grouping and diagonal averaging. Brief descriptions

of SSA steps classified by the structure state of the matrix are listed below.

Step 1 : Embedding. The one-dimensional time series YN = (y1, . . . , yN ) is firstly transferred

into the multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)T ∈ RL, where

L(2 ≤ L ≤ N − 1) is the window length and K = N − L + 1. The result of this step is the

trajectory matrix X = [X1, . . . , XK ] = (xij)
L,K
i,j=1.

Step 2 : SVD. Here we perform the SVD of X. Denote by λ1, . . . , λL the eigenvalues of

XXT arranged in the decreasing order (λ1 ≥ . . . ≥ λL ≥ 0) and by U1 . . . UL the corresponding

eigenvectors. The SVD of X can be written as X = X1 + . . .+ XL , where Xi =
√
λiUiV

T
i .

Step 3 : Grouping. The grouping consists in splitting the elementary matrices into several

groups and summing the matrices within each group.

Step 4 : Diagonal averaging. This step aims at transforming a matrix to the form of a Hankel

matrix, which can be subsequently converted back to a time series.

5.2 Data Decompositions by SSA

As can be seen in Figure 34 and Figure 35, the original GT and SS are decomposed by SSA

into the representative components of trend, cycle and noise respectively. Note that the window
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length is selected as N/2 where N is the number of observations. All operations are conducted

by R with the corresponding package (RSSA)2.
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Figure 34: Decompositions of global temperature (DGT) by SSA (1880M01 to 2015M05) .
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Figure 35: Decompositions of sunspot number (SS) by SSA (1880M01 to 2015M05) .

2Combinations of eigenvalues are selected due to the features of representative components (further details are

available upon request from the authors). Also, there are different alternative packages available in R, as well as

another software CaterpillarSSA
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5.3 Causality Test Results of the Data Decompositions by SSA

The causality tests are conducted on each group of components respectively with considerations

of not only the total sample but also all sub-samples. The detailed results of frequency domain

and CCM tests are listed below, followed by the brief summary of causality test results by

components in Table 5.
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Figure 36: Frequency domain causality result for trends.
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Figure 37: Frequency domain causality result for cycles.
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Figure 38: Frequency domain causality result for noises.

25



200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

SS xmap GT
GT xmap SS

total sample

100 150 200 250 300 350 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

SS xmap GT
GT xmap SS

sub-sample A

100 150 200 250 300 350 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

SS xmap GT
GT xmap SS

sub-sample B

50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

SS xmap GT
GT xmap SS

sub-sample C

Figure 39: CCM causality result for trends.
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Figure 40: CCM causality result for cycles.
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Figure 41: CCM causality result for noises.

6 Discussion

When we decompose the data into different components, we find that even the generally accepted

parametric method time domain causality test achieves the significant results for both trend

and cycle series (except for the sub-sample B of the cycle component). For the frequency domain

and CCM causality tests, the significant causal link is generally proved significant for both the

trend and cycle series. Only the total sample of cycle fails to be detected by frequency domain
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Table 5: Summary of causality test results of decomposed data by SSA.

Total Sample Sub-sample A Sub-sample B Sub-sample C

Decomposition 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Time Domain

Trend YES(5.2009***) YES(8.5674***) YES(4.4397***) YES(3.3258***)

Cycle YES(11.5135***) YES(7.6866***) NO(0.9371) YES(9.7739***)

Noise NO(1.7220) NO(0.9646) NO(1.5214) NO(0.4616)

Frequency Domain

Trend YES YES YES YES

Cycle NO YES YES YES

Noise NO NO NO NO

CCM

Trend YES(week) Wrong Direction YES(week) YES

Cycle YES YES YES YES

Noise NO Wrong Direction YES(week) NO

test, and sub-sample A of trend component shows misleading results of opposite direction of

causation by CCM. The causality is overwhelmingly rejected for the noise component by both

time domain and frequency domain tests, except the sub-sample B by CCM test. In case of the

trend component, the overall significant results indicate the long term causal effect from SS to

GT, while the CCM results provide comprehensive analyses that the predictive ability from the

other direction is also relatively strong. This is due to the feature of the component and it is

worth highlighting that the results by CCM (considering the gap between two cross mapping

skill indices) reflect the wrong direction - very weak SS to GT - slightly stronger SS to GT across

the sub-samples in line with week causation detected over the total sample.

In terms of the cycle component, the results by different causality tests are generally sig-

nificant. We find that no causality can be detected by time domain test in sub-sample B. The

corresponding results by frequency domain test is also weak (only in limited range of long cycle).

CCM is the most sensitive technique that shows the highly significant causality of sub-sample B

comparing to the other tests. It is worthwhile to note that the week causality detected by CCM

on the noise component at sub-sample B. This possibly indicates some irregular or nonlinear

patterns of causal relationships that is also successfully captured by CCM. More importantly,

in case of the CCM results of the cycle component across the time scale, we again prove the

emerging causal effects of SS on GT. This indicates the tendency of global warming due to

sunspot activity, especially for the recent decades.

In general, by decomposing the data into representative components with SSA technique,

even the applicability of the basic parametric method (time domain causality test) is signifi-

cantly improved. The causal link conclusion is overwhelmingly obtained, while the CCM shows

the strongest ability of capturing the possible causal effects regardless of the time scale and

components. The data preprocessing is absolutely necessary for the causal analyses of the com-

plex system like climate change, and it has been proved to be able to significantly improve the

performances of generally all causality tests.

27



7 Conclusion

In this paper, we analyze the possible effects of the existing trend on causality detection technique

performances. Specifically, we use data on sunspots and global temperature, used to climate

change studies, to test causality with the empirical time domain causality test as well as advanced

non-parametric causality detection techniques such as domain causality test and CCM. This is

the first paper to apply CCM to find evidence on the causal relationship between SS and GT.

Previous work [11,12] illustrated that these non-parametric methods outperformed the generally

accepted techniques of investigating the causal link between SS and GT by showing significant

advantages on analyzing data with nonlinear features or complex fluctuations. We extend this

literature by conducting various well-established trend extraction methods and evaluating the

possible effects on the causality detection in climate change study. For the first time, we provide

evidence on the emerging significant predictive ability of SS on GT and, more importantly, the

reconstruction ability of using extracted information from fact factor on the cause factor based

on information theory. CCM is demonstrated to be a reliable method for causality detection in

climate change study with outstanding performances in complex systems.

When we compare the different effects of the existing trend of GT with seven mainstream

trend extraction methods, we find that the frequency domain causality test do not get significant

influences by existing trend. The weak causality continues to hold for the total sample among

DGT by different trend extraction methods, and there are no significant differences captured

among causal analyses across sub-samples by preprocessing the data with different methods

(except the week short cycle causality detected on trend extracted by SSA in sub-sample B).

Conversely, the outcomes of CCM causality test varies when different trend extraction tech-

niques are considered. It is recognized that all trend extraction methods can improve the causal-

ity analyses for sub-sample A, which previously was led to either wrong or misleading results

by the existing trend. DGT by LOESS, HEN and HP can possibly remove or reduce the causal

effects between SS and GT to be clearly captured for the total sample. Only DGT by EMD and

SSA get positive results indicating causality for sub-sample B, while the others show misleading

direction of causality or fail to identify any. Last and most import sub-sample C, which reflects

the results of most recent decades, only DGT by SSA manage to hold the significant result.

Additionally, DGT by SSA shows the emerging causality relationship from SS to GT across all

sub-samples. This confirms the strong causal relationship between SS and GT, also contributes

to providing convincing evidence on the emerging global warming. SSA is therefore proved the

most appropriate trend extraction technique for data preprocessing aiming at providing better

causal analyses of SS and GT.

Furthermore, the data is decomposed by SSA into representative components of trend, cycle

and noise, which proves to contribute on achieving the significant improvements on the perfor-

mances of all causality tests, even the parametric time domain causality test. The causality

is overwhelmingly confirmed regardless of the component and time scale, and CCM shows the
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strongest ability and sensitivity of capturing possible causal links between SS and GT.

This paper successfully answers a crucial question that the existing trend has impacts on

the causality analyses outcomes, even for the advanced non-parametric techniques that already

outperformed the generally accepted methods with significant advantages. We also confirm that

trend extraction will absolutely contribute on assisting the causal analyses in climate change

study, whilst the causality analyses will still lead to conclusions with great contrast by using

different trend extraction methods. Among which, the SSA trend extraction is identified as the

most reliable method for data preprocessing, while CCM shows outstanding performance among

all causality tests adopted. The emerging causal effects from SS to GT, especially for recent

decades, are overwhelmingly proved, which reflects the better understanding of the tendency of

global warming.

Broadly, this paper contributes to the scientific literature on climate change in various ways.

It provides a better process of causal analyses on a complex system like climate change study and

identifies the most reliable trend extraction method for data preprocessing to study causality

between SS and GT. It provides a comprehensive analysis of the causal effects by different

components and demonstrates CCM as the most reliable causality detection technique due to

its robust performances on not only the dominating components like trend and cycle but also

the less important component of noise.
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