
 

 
Pareto
Uncert
Wei M
Xi’an Jia
Working
March 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______
Departm
Univers
0002, Pr
South A
Tel: +27
 

o Optimali
tainty 

Ma 
aotong-Live
g Paper: 201
2016 

__________
ment of Econ
sity of Preto
retoria 

Africa 
7 12 420 24

Depart

ity and In

erpool Unive
16-21 

__________
nomics 
ria 

13 

Univ
tment of Ec

ndetermin

ersity and Un

__________

versity of Pr
conomics W

nacy of Ge

niversity of P

__________

 

retoria 
Working Pap

eneral Eq

Pretoria 

__________

per Series 

quilibrium

_______ 

m under KKnightian 



Pareto Optimality and Indeterminacy of General Equilibrium under
Knightian Uncertainty

Wei Ma∗

Abstract

This paper studies general equilibrium theory, for both complete and incomplete markets, under
Knightian uncertainty. Noting that the preference represented by Knightian uncertainty induces
a set of complete preferences, we set ourselves the task of inquiring the relationship between an
equilibrium under Knightian uncertainty and its counterpart under the induced complete pref-
erences. It is shown that they are actually equivalent. The importance of this result is due to
its applications, among which the existence of equilibria under Knightian uncertainty and their
computation follow at once from the existing knowledge on general equilibrium theory under
complete preferences. Moreover, by means of that equivalence, we are in a position to investi-
gate the problem of efficiency and indeterminacy of equilibria under Knightian uncertainty.

Keywords: General equilibrium; Knightian uncertainty; Pareto optimality

1 Introduction

The science of microeconomics starts with the primitive notion of preference which is usually as-
sumed complete. That this assumption is dubious has been felt by several economists, among them
von Neumann and Morgenstern (1947), Aumann (1962), Schmeidler (1969). There are at least
two reasons for the incompleteness of a preference. From the viewpoint of an individual economic
agent, it is doubted “whether a person can always decide which of two alternatives [...] he prefer-
s”(von Neumann and Morgenstern, 1947, pp. 28-29). From the viewpoint of a group of economic
agents (as for instance the countries in the European Union), if their individual preferences do not
coincide, then the preference of the whole group would necessarily be incomplete (see Shapley
and Baucells (1998)). The purpose of this paper however is not to argue whether the preference
is complete or not; but, assuming it, to derive its effect on the general equilibrium theory, for both
complete and incomplete markets. Although much broader in scope, we shall concern ourselves
with four of its many facets: existence, uniqueness, efficiency, and computation.

∗International Business School Suzhou, Xi’an Jiaotong-Liverpool University, China.
Department of Economics, University of Pretoria, Pretoria, South Africa.
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To establish general equilibrium theory under incomplete preferences, a most natural approach
that suggests itself, is to extend all the technical machinery for complete preferences to the case of
incomplete preferences. This approach is taken, for instance, in Gale and Mas-Colell (1975) (which
treats also intransitive preferences). Besides being technically complicated it has,for instance, a
deficiency about computation of equilibria: The existing computational methods depend in one way
or another upon the notion of demand function, which however, as shown in Mas-Colell (1974), is
not well-defined under incomplete preferences.

In this paper we shall take a different approach, indirect yet more efficient. To elaborate on it
we take as an example the case of complete markets and let there be m consumers. Assume that
consumer i’s incomplete preference ≻i can be represented by a set Ui of utility functions: x ≻i y if
and only if u(x) > u(y) for all u in Ui, where x,y are two bundles of commodities. Let Ū = ×iUi,
the Cartesian product of Ui, and abbreviate (x1, . . . ,xm) to (xi), where xi denotes consumer i’s
consumption bundle. Then an equilibrium under incomplete preferences (or Ū-equilibrium for
short) is a feasible allocation (xi) and a price vector p such that x′i ≻i xi implies x′i is outside
of consumer i’s budget set Bi(p). Recall that, replacing x′i ≻i xi by ui(x′i) > ui(xi), ui ∈ Ui, we
get the usual notion of equilibrium under complete preferences, or ū-equilibrium for short, where
ū = (u1, . . . ,um). Now it is proper to ask the question, What is the relationship between a Ū- and
a ū-equilibrium; or, more specifically, whether it is true that ((xi), p) is a Ū-equilibrium when and
only when it is a ū-equilibrium for some ū ∈ Ū.

The point of this question, if its answer turns out in the affirmative, is warranted by its applica-
tions. As a trivial one, the existence of Ū-equilibrium follows at once from that of ū-equilibrium,
and an algorithm for computing the latter can be applied to compute the former. These two aspects,
due to the triviality, will not be discussed in the body of the text; they are mentioned here mere-
ly to motivate the question. As a much less trivial application we can discuss the efficiency and
indeterminacy of Ū-equilibria.

In view of the complexities of this general question, in this paper we shall limit our efforts, so
as to obtain a guide, to a special kind of incomplete preference, namely Knightian uncertainty. This
notion has its origin in the work of Knight (1921) and is formalized by Bewley (2002). Roughly
speaking, it assumes the existence of a set of probability measures on a state space such that one
state-contingent consumption bundle is preferred to another if and only if it has larger expected
utility for every measure in that set. The peculiarity of Knightian uncertainty is that it assumes a
fixed taste for every consumer, and attributes the incompleteness of her preference entirely to her
ambiguity about the likelihood of the states. This makes the determination of commodity prices
much easier than in the general case. The main result of the present paper is that, under Knightian
uncertainty, the question posed above has a positive answer in various cases: complete markets,
incomplete markets with nominal and real assets.

This paper contains six sections. Following this section of introduction, we make in Section 2 a
brief review of the notion of Knightian uncertainty. Section 3 studies the case of complete markets.
In the case of one commodity in each state the relation between Ū- and ū-equilibria is investigated
by Rigotti and Shannon (2005) and Dana and Riedel (2013). In particular, Theorem 7 of the former
indicates that any ū-equilibrium is a Ū-equilibrium while Theorem 2 of the latter establishes their
equivalence in the setting of a dynamic and infinite-dimensional model. In the static model with
any finite number of commodities the equivalence between Ū- and ū-equilibria has been worked
out by Carlier and Dana (2013), whose concern consists mainly in the efficiency of Ū-equilibria.
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We include their results here, to which we add a new one on indeterminacy of equilibria, on the
one hand to ease understanding of the main theme of the present paper, and on the other hand, to
set the tone for it.

In Section 4 we study a special kind of incomplete markets, namely those with one commodity
in each state. This peculiarity allows us to focus on the central variables of incomplete markets
(asset prices and demands) and disregard those only of secondary importance (commodity prices
and demands). From the special case we understand how to set asset prices under Knightian un-
certainty; which paves the way for the more general studies of the next two sections: Section 5
is concerned with incomplete markets with nominal assets and Section 6 with real assets. Recall
that Geanakoplos and Mas-Colell (1989) investigate the dimension of indeterminacy of equilibrium
commodity allocations when the assets are nominal, and they conclude that the indeterminacy is
independent of the incompleteness of the markets or the number of assets. In contrast, it will be
shown in Section 5 that the indeterminacy of equilibria caused by the incomplete preference does
depend on the number of assets.

On a personal note I should like to thank the referee of my paper Ma (2015), which treats
also general equilibrium theory under Knightian uncertainty. In that paper, one of the concerns is
to establish a theorem on the existence of Ū-equilibrium with incomplete markets of real assets,
for which I have to, as in Radner (1972), impose an upper bound on forward transactions. The
referee asks: since incompleteness of preference leads to indeterminacy of equilibria, is it possible
to eliminate that bound? It is in attempt to answer this question that I come across the idea of the
present paper. From the equivalence of Ū- and ū-equilibria, the answer is no—incompleteness of
preference can not ease the establishment of the equilibrium existence theorem.

2 Knightian Uncertainty

This section makes a brief review of the formalization of Knightian uncertainty. For this purpose,
we start with a description of the economic environment with which we shall be concerned. We
shall study a pure exchange economy with two dates, denoted 0 and 1, and S possible states of
nature at date 1. We index the states by s running from 1 to S, and for notational convenience, call
date 0 state 0. Let there be m consumers, J assets, and L commodities in each state. Suppose that
every consumer has X =R(S+1)L

+ as her consumption space and that consumer i has ω i ≫ 01 as her
endowment vector. For x ∈ X , it is often convenient to write it state-wise as x = (x0, · · · ,xS) with
xs ∈ RL.

Let ∆S be the set of probability measures on {1, . . . ,S}, that is,

∆S = {π ∈ RS
+| ∥π∥1 = 1},

where ∥ · ∥1 stands for the 1-norm of a vector. We equip RS with the Euclidean topology and ∆S
the relative topology. Let ≻i be consumer i’s preference, i = 1, . . . ,m. Then she is said to be a
Knightian decision maker, if there exists a closed, convex subset Πi of ∆S such that

xi ≻i x′i if, and only if, U i
π(x

i)>U i
π(x

′i) for all π ∈ Πi,

where U i
π(x

i) = ui(xi
0)+∑S

s=1 πsui(xi
s), ui being specified in a moment. In case every Πi is a s-

ingleton, we call the environment a risky one, and otherwise, an uncertain one. Historically, the
necessity of differentiating between risk and uncertainty is first appreciated by Knight (1921), and

1As usual we define a vector x ≫ 0 as xi > 0 for every i, x ≥ 0 as xi ≥ 0 for every i, and x > 0 as x ≥ 0 but x ̸= 0.
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this notion is formalized recently by Bewley (2002).

For the purpose of obtaining a continuously differentiable demand function, we assume that
every Πi ⊂ rint(∆S), the relative interior of ∆S, and that every ui : RL

+ → R satisfies these four
conditions:

(i) ui is continuous, strictly concave on RL
+ and smooth on RL

++;
(ii) The set {z ∈ RL

+| ui(z)≥ ui(x)} ⊂ RL
++ for every x ∈ RL

++;
(iii) The gradient (∂ui(x)/∂x1, . . . ,∂ui(x)/∂xL) ∈ RL

++ for every x ∈ RL
++.

This set of conditions is similar to that of Magill and Quinzii (2002, pp. 50–51)), except that
their fourth condition is strengthened here to strict concavity. We wish to remark that use of these
assumptions will be made in the study of indeterminacy, efficiency and computation of equilibria;
for existence, they can be relaxed to a great extent.

Before concluding this section we make some notational conventions: Let X̄ = Xm, the Carte-
sian product of m copies of X , and Π̄ = Π1 ×·· ·×Πm; let x̄ and π̄ designate, respectively, generic
elements of X̄ and Π̄, and we call x̄ an allocation. In the following pages we shall use superscripts
to refer to the consumers and subscripts to the components of a vector. Thus, for example, xi ∈ X
stands for a consumption bundle for consumer i, while xi

s for her consumption in state s. Finally,
given two vectors, v1,v2, of the same dimension, by v1v2 we mean their inner product.

3 Complete Markets

This section concerns the case of complete markets. Let ∆ denote the set of normalized price
vectors, that is,

∆ = {p ∈ X | ∥p∥1 = 1},
and let ∆++ be the relative interior of ∆. For each p ∈ ∆ the budget set of consumer i is given by

Bi(p) = {x ∈ X | px ≤ pω i}.
With this we can define the notion of a Π̄-equilibrium, which is just the usual notion of equilibrium
adapted for Knightian uncertainty:

DEFINITION 3.1. (i) An allocation x̄ = (x1, . . . ,xm) is said to be feasible if ∑i xi =∑i ω i. It together
with a price vector p∈∆, is said to be a Π̄-equilibrium if it is feasible and x′i ≻i xi implies x′i /∈Bi(p)
for every i.
(ii) A feasible allocation x̄= (x1, . . . ,xm) is said to be Pareto efficient if there exists no other feasible
allocation x̄′ = (x′1, . . . ,x′m) ∈ X̄ such that x′i ≻i xi for every i.

To study properties of Π̄-equilibria we introduce another type of equilibrium, namely π̄-equilibrium.
To define it, observe that each π̄ = (π1, . . . ,πm) ∈ Π̄ induces for every consumer a complete pref-
erence, denoted <π i:

xi <π i x′i if, and only if, U i
π i(xi)≥U i

π i(x′i).

Let ≻π i be the asymmetric part of <π i . With these complete preferences we can define a π̄-
equilibrium as follows:

DEFINITION 3.2. A pair (x̄, p) with x̄ = (x1, . . . ,xm) is said to be a π̄-equilibrium if x̄ is feasible
and x′i ≻π i xi implies x′i /∈ Bi(p) for evey i.
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Concerning the relationship of a Π̄-equilibrium to a π̄-equilibrium and the Pareto efficiency of
the former, we have according to Carlier and Dana (2013, Theorems 4.3, 3.6):

THEOREM 3.1. (i) (x̄, p) is a Π̄-equilibrium if, and only if, it is a π̄-equilibrium for some π̄ ∈ Π̄.
(ii) Every Π̄-equilibrium is Pareto efficient.

We turn next to the indeterminacy of Π̄-equilibria. We shall use the same notion of indetermi-
nacy as in Geanakoplos and Mas-Colell (1989), but define it for a different object. More precisely,
what Geanakoplos and Mas-Colell (1989) concern is the indeterminacy of equilibrium commodity
allocations; instead, our concern here is the indeterminacy engendered by the variation in π̄ , and so
we shall define it for both commodity allocations and prices. This, incidentally, provides us with a
great deal of technical convenience.

To define indeterminacy we pick π̄ = (π1, . . . ,πm) ∈ Π̄ and let xi(p, π̄) be a solution for some
p ∈ ∆ to the following problem

maxU i
π i(x) subject to x ∈ Bi(p). (3.1)

From the assumptions on Πi and ui made in Section 2, it follows that xi(p, π̄) is smooth in p and
π̄ . Let xi

−1 be the vector formed by deleting from xi its first component, and similarly for ω i. By
Walras’ law, we have as the ‘excess demand function’:

f (p, π̄) =
m

∑
i=1

xi
−1(p, π̄)−

m

∑
i=1

ω i
−1. (3.2)

From Debreu (1959) we know that function (3.2) has for each π̄ ∈ Π̄ a (not necessarily unique)
zero; let p(π̄) be the set of zeros of f . Then, by reference to statement (i) of Theorem 3.1, the set
of Π̄-equilibria is given by

Ec = {(x̄, p) ∈ X̄ ×∆| xi = xi(p, π̄), p ∈ p(π̄), π̄ ∈ Π̄}, (3.3)

where the subscript, c, stands for ‘complete markets.’With a view to later developments we define
in the spirit of Geanakoplos and Mas-Colell (1989) the notion of indeterminacy more generally for
an arbitrary set E as follows:

DEFINITION 3.3. The degree of indeterminacy of E is said to be τ if it contains the image of a
smooth, one-to-one function whose domain contains an open subset of Rτ but does not contain any
open subset of Rτ ′ with τ ′ > τ .

It is to be noted that the notion of indeterminacy thus defined is a purely local construction: For
instance, in terms of Ec, it concerns a property of Ec only in a neighborhood of π̄ ∈ Π̄. This point
will play an important role in our discussion of indeterminacy.

Intuitively, the degree of indeterminacy of Ec should depend on the dimension of Π̄. To make
precise the latter we just assume that Π̄ is a manifold of dimension K. Then we have

THEOREM 3.2. The degree of indeterminacy of Ec is K.

PROOF. The proof is similar in spirit to that of Geanakoplos and Mas-Colell (1989, Theorem 1),
but technically much simpler, due to the completeness of the market structure. It makes use of
some tools from differential topology, for which we refer to Mas-Colell (1989) or Guillemin and
Pollack (1974).
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Step 1. A pair (x̄, p) ∈ Ec is said to be induced from π̄ ∈ Π̄ if p ∈ p(π̄) and each component xi

of x̄ is equal to xi(p, π̄). We first show that different π̄ induces different (x̄, p); more specifically,
if π̄ ̸= π̄ ′ and (x̄, p), (x̄′, p′) are induced respectively from them, then (x̄, p) ̸= (x̄′, p′). To see this
note that if p ̸= p′ then we are done. Suppose from now on that p = p′, and assume to the contrary
that x̄ = x̄′. Let π̄ ′ = (π ′1, . . . ,π ′m); then π̄ ̸= π̄ ′ implies π i ̸= π ′i for some i. Consider Program 3.1;
its first-order condition is given by

DxU i
π i(x) = λ p, λ being the Lagrangian multiplier.

Recalling the functional form of U i
π i from Section 2, this together with p = p′ and xi = x′i, implies

that π i = π i′ , a contradiction.

Step 2. Let ω̄ = (ω1, . . . ,ωm). We take ω̄ as a parameter in function (3.2) and write it as

f (p, π̄, ω̄) =
m

∑
i=1

xi
−1(p, π̄)−

m

∑
i=1

ω i
−1;

let fω̄ = f (p, π̄, ω̄). Recall that ∆++ is the relative interior of ∆. From the assumptions on Πi and
ui made in Section 2, we have p ∈ ∆++ for any zero (p, π̄, ω̄) of f . In view of the local character of
indeterminacy, we may take a neighborhood Π̄0 of π̄ ∈ Π̄, which is a manifold (without boundary)
of dimension K, and consider f as a function on ∆++ × Π̄0 ×R(S+1)L

++ . Then, from Mas-Colell
et al. (1995, Proposition 17.D.4, p. 596), the Jacobian matrix, Dω̄ f (p, π̄, ω̄), has full rank at any
zero (p, π̄, ω̄) of f . By the transversality theorem, fω̄ has zero as a regular value for almost every
ω̄ , which together with the implicit function theorem implies that f−1

ω̄ (0) is a smooth manifold of
dimension K.

Take (p, π̄) from f−1
ω̄ (0) and let O(p, π̄) ⊂ f−1

ω̄ (0) be its neighborhood. Then, by definition
of smooth manifold, there exists a neighborhood N in RK such that O(p, π̄) is diffeomorphic to
N. Denote the diffeomorphism by ϕ and its projections on ∆++,Π̄ by ϕ1,ϕ2 respectively. We then
define g : N→ Ec such that

g(t) = (x̄(ϕ(t)),ϕ1(t)).

It is obvious that g is smooth. For its injectivity we take two distinct t1, t2 ∈ N. If ϕ1(t1) ̸= ϕ1(t2)
then we are done. Otherwise we have ϕ2(t1) ̸= ϕ2(t2) as ϕ is a diffeomorphism. This together with
Step 1 implies that g(t1) ̸= g(t2), which therefore proves that Ec contains the image of a smooth,
one-to-one function whose domain contains an open subset of RK .

It remains to show that the domain does not contain any open subset of RK′
with K′ > K.

Suppose otherwise; we may assume without loss of generality that K′ = K + 1 and the open set
contained within the domain is RK+1 itself. Consider Π̄0 ×R; it is obviously a manifold of dimen-
sion K + 1, and so there is a diffeomorphism φ between Π̄0 ×R and RK+1. Given a π̄ ∈ Π̄0, we
then have φ(π̄,r1) ̸= φ(π̄,r2) for any distinct r1,r2 ∈ R. Since Ec contains the image of a smooth,
one-to-one function on RK+1, this means that, to each π̄ ∈ Π̄0, there correspond infinitely many
equilibria (x̄, p). Note that for a fixed π̄ , the economy in question reduces to a usual one with com-
plete preferences, and so by Mas-Colell (1989, Proposition 5.5.2, p. 188), it has only finitely many
equilibria, a contradiction. This completes the proof. Q.E.D

Before concluding this section, we wish to make a remark on step one: This step shows the
advantage of defining the notion of indeterminacy for (x̄, p) rather than for x̄ alone, because a
variation in π̄ may not be able to result in a variation in x̄, a phenomenon that will recur in somewhat
different guises in the following sections.
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4 One-commodity Incomplete Markets

This section concerns the situation of incomplete markets of real assets with one commodity in each
state. In the case of complete preferences this special economy is studied by Magill and Quinzii
(2002, Chapter 2). The reason for studying it here is that, for one thing, it is interesting in its own
right, and, for another, it serves as a preliminary to the developments of the ensuing two sections.

We begin with a description of the market structure. Let L = 1, i.e. there is one commodity
in each state. At date 0 there occur transactions on both assets and the spot commodity; at date 1
there are spot markets for the commodity in each state. Take the commodity in each state as the
numéraire, and denominate the asset returns in terms of them. Let as j ∈R+ be the return of asset j
in state s and A j = (a1 j, . . . ,aS j)

⊤, where the symbol, ⊤, stands for the transpose of a matrix. Let
A =

[
A1, . . . ,AJ

]
, and As be its s-th row. As we study incomplete markets, we demand J < S and,

without loss of generality, that A be of full rank. Let q = (q1, . . . ,qJ) ∈ RJ
+ be a vector of asset

prices; then the budget set, Bi(q), of consumer i consists of all (xi,θ i) ∈ X ×RJ satisfying

xi
0 −ω i

0 +qθ i ≤ 0

xi
s −ω i

s −Asθ i ≤ 0,s = 1, . . . ,S.
(4.1)

We now define the notion of general equilibrium for incomplete markets, or, more briefly, GEI
equilibrium. Let θ̄ = (θ 1, . . . ,θ m) ∈ RmJ and recall x̄ = (x1, . . . ,xm).

DEFINITION 4.1. A triple (x̄, θ̄ ;q) is said to be a Π̄-GEI equilibrium if

(i) (x′i,θ ′i) with x′i ≻i xi implies (x′i,θ ′i) /∈ Bi(q), i = 1, . . . ,m;
(ii) ∑i xi = ∑i ω i, ∑i θ i = 0.

Likewise, a π̄-GEI equilibrium is defined to be a triple (x̄, θ̄ ;q) which satisfies the above two
conditions but with ≻π i taking the place of ≻i in condition (i).

We proceed with a study of the relationship between Π̄- and π̄-GEI equilibria. For this we
first introduce a functional-theoretic notation (see Magill and Quinzii (2002, Section 13)). Define
T : RJ → RS by

T (θ) = Aθ , ∀θ ∈ RJ

and let T ∗ : RS →RJ be the adjoint of T . This means that T (θ)z = T ∗(z)θ for all (z,θ) ∈RS×RJ .
For later use let xi = (xi

0,x
i
1), where xi

1 denotes the consumption bundle in period one, and similarly
for ω i = (ω i

0,ω
i
1). We now state that

THEOREM 4.1. (x̄, θ̄ ;q) is a Π̄-GEI equilibrium if, and only if, it is a π̄-GEI equilibrium for some
π̄ ∈ Π̄.

PROOF. Given v = (v1, · · · ,vS) with v1 ̸= 0 let N(v) = (v2
v1
, · · · , vS

v1
). Suppose x̄ = (x1, . . . ,xm). From

the assumptions of Section 2, it follows that x̄ ≫ 0, whether (x̄, θ̄ ;q) is a Π̄- or a π̄-GEI equilibrium.
With this it is reasonable to set

Πi(xi) =
{

N(∇U i
π(x

i))
∣∣ π ∈ Πi} ,

where ∇U i
π(x

i) is the gradient of U i
π(x

i) at xi. For a generic element z = (z1, . . . ,zS) ∈ Πi(xi), zs
represents the marginal rate of substitution between states s and 0; or, alternatively, z can be thought
of as a vector of normalized marginal utilities. Evidently, Πi(xi) is compact and convex.
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The theorem follows easily from the following lemma, which can be perceived as an incomplete-
market analogue of Carlier and Dana (2013, Lemma 4.1).
LEMMA 4.1. Let (xi,θ i) ∈ Bi(q) for some q ∈ RJ

+ with xi ≫ 0. The following are equivalent:
(a) (x′i,θ ′i) with x′i ≻i xi implies (x′i,θ ′i) /∈ Bi(q);
(b) q ∈ T ∗(Πi(xi));
(c) there exists a π ∈ Πi such that (xi,θ i) solves

max
(y,φ)

U i
π(y) subject to (y,φ) ∈ Bi(q). (4.2)

To prove the lemma, we begin with (a)⇒(b). Note that, in economic terms, each element of
T ∗(Πi(xi)) represents a vector of normalized marginal utilities of the assets. Assume to the contrary
that (b) were not true. Since Πi(xi) is compact and convex, so also is T ∗(Πi(xi)). By the strong
separating hyperplane theorem (see, e.g., Magill and Quinzii (2002, Theorem 9.4, p. 73)), there
exists a θ ∈ RJ such that

T ∗(z)θ > qθ , or (T ∗(z)−q)θ > 0, for all z ∈ Πi(xi). (4.3)

Take ∆xi = (−qθ ,T (θ)). Since xi ≫ 0, we can choose r ∈ R++ small enough such that

x′i = xi + r∆xi ≫ 0, and θ ′i = θ i + rθ .
It is obvious that (x′i,θ ′i) ∈ Bi(q). Now we shall apply Carlier and Dana (2013, Lemma 3.2) to
show x′i ≻i xi. For this let Π̄i(xi) = {(1,z)| z ∈ Πi(xi)}, which corresponds to Vi(xi) of Carlier and
Dana (2013) by taking their Φ = (1,0, . . . ,0) ∈ RS+1. For every z̄ ∈ Π̄i(xi), we have according to
inequality (4.3) and the identity T ∗(z)θ = zT (θ) that

z̄(−qθ ,T (θ)) =−qθ + zT (θ)> 0.

From Carlier and Dana’s lemma, which says, in our notation, that if r∆xi · z̄ > 0 for all z̄ ∈ Π̄i(xi)
then xi + r∆xi ≻i xi, we conclude that x′i ≻i xi, a contradiction with condition (a). This proves (b).

For (b)⇒(c), take π ∈ Πi such that q = T ∗(N(∇U i
π(x

i))). This means that the price of each
asset is equal to its marginal utility in period one. But this is precisely the first-order condition for
Problem (4.2), which proves (c), by referring to the strict quasi-concavity of U i

π . Finally, (c)⇒(a)
is obvious. This completes the proof of the lemma, hence of the theorem also. Q.E.D

We turn next to the efficiency of Π̄-GEI equilibrium. For this we first introduce the concept
of constrained Pareto efficiency (see, e.g., Magill and Quinzii (2002, Definitions 12.1, 12.2, pp.
103–104)).

DEFINITION 4.2. An allocation (x1, . . . ,xm) is A-feasible if it is feasible and there exists a θ i such
that

xi
1 −ω i

1 = T (θ i) for every i.

An A-feasible allocation (x1, . . . ,xm) is constrained Pareto efficient if there exists no A-feasible
allocation (x′1, . . . ,x′m) such that x′i ≻i xi for all i.

Informally, an allocation is constrained Pareto efficient (or optimal) if it is not dominated by
any other feasible allocation which is achievable through the market system A. When J = S, the
markets become complete and every feasible allocation is achievable through A, hence the notion
reduces to that of (full) Pareto efficiency.

The constrained Pareto efficiency of Π̄-GEI equilibria has been shown by Ma (2015); but here,
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using Theorem 4.1, a simpler proof suggests itself.

THEOREM 4.2. Every Π̄-GEI equilibrium is constrained Pareto efficient.

PROOF. Let (x̄, θ̄ ;q) be a Π̄-GEI equilibrium with x̄ = (x1, . . . ,xm). Referring to Theorem 4.1,
we know that (x̄, θ̄ ;q) is also a π̄-GEI equilibrium for some π̄ = (π1, . . . ,πm) ∈ Π̄. According to
Magill and Quinzii (2002, Theorem 12.3, p. 104), every π̄-GEI equilibrium is constrained Pareto
efficient, which by their Proposition 12.4, can be characterized by the equalities:

N(∇U1
π1(x1))A = · · ·= N(∇Um

πm(xm))A;

or otherwise put, T ∗(z1) = · · ·= T ∗(zm), where zi = N(∇U i
π i(xi). This means

m∩
i=1

T ∗(Πi(xi)) ̸= /0.2 (4.4)

The theorem then follows by referring to Ma (2015, Proposition 2) which says that x̄ is constrained
Pareto efficient if and only if (4.4) holds valid. Q.E.D

We proceed to study the indeterminacy of Π̄-GEI equilibria. Observe that in (4.2), once the asset
demand θ i is determined (as a function of q of course), so also is the commodity demand xi, and
therefore it is adequate to study the asset demand alone in this case. For any π̄ = (π1, . . . ,πm) ∈ Π̄
and ω̄ = (ω1, . . . ,ωm), let θ i(q, π̄, ω̄) be the solution to the following problem

maxU i
π i(x) subject to (x,θ) ∈ Bi(q), (4.5)

which is readily seen to be smooth in (q, π̄, ω̄). Let

f (q, π̄, ω̄) =
m

∑
i=1

θ i(q, π̄, ω̄),

and q(π̄, ω̄) be the set of zeros of f for each (π̄, ω̄). Then the set of Π̄-GEI equilibria is given by

Eo = {(θ̄ ,q)| θ i = θ i(q, π̄, ω̄),q ∈ q(π̄, ω̄), π̄ ∈ Π̄},
where the subscript, o, stands for ‘one-commodity.’

Compared with the case of complete markets, the indeterminacy of Eo is more subtle here.
Note that a variation in π̄ will lead to a variation in the marginal utilities of commodities. With
complete markets, this variation will have to be offset, in order to restore the equilibrium, either by
a change in the allocation of commodities or by a change in their prices; hence, no matter what,
the equilibrium of the economy will change. In the present case, however, what is essential, as
explicated above, is the asset demand. The variation in π̄ may not be able to change the marginal
utilities of assets, and so the asset demand, hence the equilibrium of the economy, might remain
unaltered.

To be concrete let us take an example. Let there be two states and one asset whose returns are
one unit of the commodity in each state, i.e.

S = 2, J = 1, A =
[
1 1

]⊤
.

Let Uπ(x) = lnx0+π1 lnx1+π2 lnx2 and the endowment ω =
[
1 1 1

]⊤. Let q be the asset price;

2The defintion of T ∗ and of Πi(xi) here are slightly different from those of Ma (2015). But it is not hard to see that
this condition is equivalent to the one in Ma (2015, Proposition 2).
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then we have at equilibrium
q
x0

=
π1

x1
+

π2

x2
,

where the left-hand side denotes the marginal disutility of buying one unit of the asset in period
zero, and the right-hand side, the corresponding marginal utility in period one. According to the
specification of the economy, we always have x1 = x2, hence

q
x0

=
1
x1
,

which means that the asset demand is independent of (π1,π2).

To simplify the discussion we make in the rest of the paper the assumption, that every Πi con-
tains an interior point in the topology of ∆S.3 Under this assumption, from Theorem 3.2, the degree
of indeterminacy of Ec is m(S− 1). Intuitively, this number, in view of the above considerations,
is expected to be lowered by the incompleteness of the markets. The following theorem shows that
this is indeed the case:

THEOREM 4.3. The degree of indeterminacy of Eo is mJ.

PROOF. The proof proceeds in two steps and resembles that of Theorem 3.2. In the first step, we
show that there exists an open subset of Π̄, of dimension mJ, such that π̄ ̸= π̄ ′ implies that for
q ∈ q(π̄, ω̄),q′ ∈ q(π̄ ′, ω̄)

(θ̄(q, π̄, ω̄),q) ̸= (θ̄(q′, π̄ ′, ω̄),q′);

and any other open subset of higher dimension will not do. To see this, note that π̄ ̸= π̄ ′ means
π i ̸= π ′i for some i. In the following we focus on consumer i. Let

x = ξ (q, π̄, ω̄)

be her commodity demand at the equilibrium asset price vector q ∈ q(π̄, ω̄). Without loss of gen-
erality we assume that ω̄ is fixed and π̄ is also fixed except its i-th component π i. This enable us
to write x = ξ (π i), π i ∈ Πi. To simplify the notation we shall use π,π ′,π1 etc. to denote a generic
element of Πi. Let π = (π1, . . . ,πS) ∈ Πi; then we have at equilibrium

∂ui(x)
∂x0

q j = ∑
s

πs
∂ui(x)

∂xs
as j, j = 1, . . . ,J. (4.6)

Now we show that a variation in π for some π ∈ Πi will lead to a change in the right-hand side
member, so that, to restore the equilibrium, there will be an attendant change either in q or in x
(hence θ ).

For this purpose we take an interior point π of Πi and let O(π) be one if its neighborhoods
contained in Πi. Let x = ξ (π), and

Ax =

∂ui(x)/∂x1
. . .

∂ui(x)/∂xS

A.

Furthermore, let sp(Ax) be the column space of Ax and Oi = O(π)∩ sp(Ax), so that Oi ̸= /0. With
these conventions the right-hand side of (4.6) can be written πAx. For any distinct π1,π2 ∈ Oi we

3This assumption can be weakened to the extent that every Πi contains an interior point in the topology of aff(Πi),
the affine space of Πi. It is not very difficult to see that, with this weaker assumption, the following arguments hold
still with some small modifications.
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have therefore

(π1 −π2)Ax ̸= 0.

For notational convenience let π̃ = (π1,π2). Since the expression, (π1 −π2)Ax, is continuous in
(π1,π2,x), there exist a neighborhood O(π̃) of π̃ and a corresponding neighborhood Oπ̃(x) of x
such that (π ′−π ′′)Ax′ ̸= 0 for all π ′,π ′′ ∈ O(π̃) and x′ ∈ Oπ̃(x). Let Oi

c be a compact subset of Oi

with nonempty interior; then we can cover Oi
c ×Oi

c by finitely many O(π̃), say O(π̃1), . . . ,O(π̃n).
Let O(x) = ∩n

i=1Oπ̃i(x) and Oi
o be the interior of Oi

c. We have thus

(π ′−π ′′)Ax′ ̸= 0 for any π ′,π ′′ ∈ Oi
o and any x′ ∈ O(x).

Recall that ξ−1(O(x)) = {π ∈ Πi|ξ (π) ∈ O(x)}. Let Πi
o = Oi

o ∩ξ−1(O(x)); then ξ (π) ∈ O(x) for
any π ∈ Πi

o, hence

(π ′−π ′′)Ax′ ̸= 0 for any π ′,π ′′ ∈ Πi
o and x′ = ξ (π ′). (4.7)

This means that when π ′ is altered to π ′′, the right-hand side of (4.6) will alter accordingly, and so
there will result a change in the equilibrium (θ ,q).

Note that Πi
o is of dimension J; we now show that any open set, say Π′i

o , of higher dimension
than J will not do. Namely, (4.7) will not be satisfied if Πi

o is replaced by Π′i
o . To see this note that

there exists, as Π′i
o is of higher dimension than J, an interior point π ′ of Π′i

o satisfying π ′ /∈ sp(Ax).
Let x = ξ (π ′) and sp(A⊥

x ) be the orthogonal complement of sp(Ax), so that we can write π ′ =
π ′

1 +π ′
2, where π ′

1 ∈ sp(Ax), π ′
2 ∈ sp(A⊥

x ) with π ′
2 ̸= 0. Pick π ′′ = π ′

1 +π ′′
2 , that is, π ′′ differs from

π ′ only in their components in sp(A⊥
x ); and π ′′ ∈ Π′i

o when π ′′
2 is close enough in Euclidean metric

to π ′
2. Then we have (π ′−π ′′)Ax = 0, which means that the asset demand will remain unaltered

when π ′ is changed to π ′′. This completes the proof of step 1.

For the second step, let Π̄o = Π1
o ×·· ·×Πm

o and we consider f as a function from RJ × Π̄o ×
RL(S+1) to RJ . Let us begin by showing that Dω1 f (q, π̄, ω̄) is of full rank for any (q, π̄, ω̄) ∈
f−1(0). The idea is the same as the one used in the argument of Geanakoplos and Mas-Colell (1989,
Lemma 3). Consider consumer 1. For asset j, j = 1, . . . ,J, by decreasing ω1

0 by q j and increasing
ω1

s by A j
s , her commodity demand and demand of other assets than asset j remain unaltered while

her demand of asset j reduces by one unit. Let

Aq =

[
−q⊤

A

]
;

then we have Dω1 f (q, π̄, ω̄)Aq = −IJ , where IJ is the identity matrix of dimension J. Since rank
IJ = J, it follows that rankDω1 f (q, π̄, ω̄) = J, i.e. Dω1 f (q, π̄, ω̄) is of full rank. Arguing as in the
proof of Theorem 3.2, the theorem then follows. Q.E.D

5 Incomplete Markets with Nominal Assets

This section concerns the general situation described in Section 2 and assumes that the assets in-
volved are all nominal. By nominal we mean the asset returns are denominated in money, which
allows us to specify the asset returns by a matrix A = (as j) ∈RS

+×RJ
+, as j being the return of asset

j in state s. Let As be the s-th row of A, i.e. asset returns in state s.

Given a commodity-price vector p = (p0, . . . , pS) ∈ ∆ and an asset-price vector q ∈ RJ
+, the

budget set of consumer i, Bi
n(p,q), where the subscript, n, stands for ‘nominal,’consists of all
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(xi,θ i) ∈ X ×RJ satisfying

p0(xi
0 −ω i

0)+qθ i ≤ 0

ps(xi
s −ω i

s)−Asθ i ≤ 0,s = 1, . . . ,S.
(5.1)

After this preparation we can define the notions of Π̄-GEI equilibrium and its counterpart π̄-GEI
equilibrium. Recall x̄ = (x1, . . . ,xm), θ̄ = (θ 1, . . . ,θ m).

DEFINITION 5.1. A quadruple (x̄, θ̄ ; p,q) is said to be a Π̄-GEI equilibrium if

(i) (x′i,θ ′i) with x′i ≻i xi implies (x′i,θ ′i) /∈ Bi
n(p,q), i = 1, . . . ,m;

(ii) ∑i xi = ∑i ω i, ∑i θ i = 0.

Likewise, a π̄-GEI equilibrium is defined to be a quadruple (x̄, θ̄ ; p,q) which satisfies the above
two conditions but with ≻π i taking the place of ≻i in condition (i).

Concerning their interrelation we state that

THEOREM 5.1. (x̄, θ̄ ; p,q) is a Π̄-GEI equilibrium if, and only if, it is a π̄-GEI equilibrium for
some π̄ ∈ Π̄.

PROOF. The proof depends on the results of Section 4. For this we take one commodity, say
commodity one, from each state and form the vector

x̂i = (xi
01, . . . ,x

i
S1).

Let ∇Û i
π(x

i) be the gradient of U i
π with respect to x̂i, that is,

∇Û i
π(x

i) = (
∂U i

π(x
i)

∂xi
01

, . . . ,
∂U i

π(x
i)

∂xi
S1

).

Recall the definition of N(∇Û i
π(x

i)). In the last section where we assume L = 1, by normalizing
ps1 = 1 for all s, the quantity, N(∇Û i

π(x
i))A, represents the marginal utilities of the assets in period

one, so that the equilibrium asset price vector q = N(∇Û i
π(x

i))A. Here, with L > 1, to find an
analogue of that quantity, we have to take into consideration the commodity prices p. For this note
that the marginal disutility of buying one unit of asset j in period zero is

∂U i
π(x

i)

∂xi
01

q j

p01
,

and the marginal utility it yields in period one is

∑
s

∂U i
π(x

i)

∂xi
s1

as j

ps1
,

so that at equilibrium

q j = ∑
s

∂U i
π(x

i)

∂xi
s1

(
∂U i

π(x
i)

∂xi
01

)−1 p01

ps1
as j.

With this understood it becomes clear how the commodity prices come in. Specifically let N(∇Û i
π(x

i))=
(v1, . . . ,vS) and define

Np(∇Û i
π(x

i)) = (v1
p01

p11
, . . . ,vS

p01

pS1
).

Let Π̂i
p(x

i) =
{

Np(∇Û i
π(x

i))
∣∣ π ∈ Πi} , which is easily seen to be compact and convex.

12



Recall that ui is a function on RL and xi
s ∈ RL; let ∇ui(xi

s) be the gradient of ui at xi
s, and P(xi)

the set of equilibrium commodity-price vectors at xi, that is,

P(xi) = {(p0, . . . , pS) ∈ ∆| ∇ui(xi
s) = λs ps, λs > 0}.

Let T,T ∗ have the same meaning as in Section 4. The theorem then follows easily from this lemma:
LEMMA 5.1. Let (xi,θ i) ∈ Bi

n(p,q) with xi ≫ 0; then the following are equivalent
(a) (x′i,θ ′i) with x′i ≻i xi implies (x′i,θ ′i) /∈ Bi

n(p,q);
(b) p ∈ P(xi), q ∈ T ∗(Π̂i

p(x
i));

(c) there exists a π ∈ Πi such that (xi,θ i) solves

max
(y,φ)

U i
π(y) s.t. (y,φ) ∈ Bi

n(p,q). (5.2)

The implication (b)⇒(c) is an immediate consequence of the fact that (b) is the first-order
condition for (5.2), and (c)⇒(a) is a matter of definition. There remains (a)⇒(b). We begin by
showing p ∈ P(xi). Suppose otherwise; then there exists an s such that ∇ui(xi

s) ̸= λs ps for all
λs > 0, hence xi

s cannot solve the problem:

maxui(xs) s.t. psxs − psω i
s −Asθ i = 0,

wherein θ i is kept fixed. Let x′is be its solution, so that ui(x′is )> ui(xi
s). Let x′i be the same as xi but

with xi
s replaced by x′is , so that (x′i,θ i) ∈ Bi

n(p,q), and, since Πi ⊂ rint(∆S), U i
π(x

′i)>U i
π(x

i) for all
π ∈ Πi. But this means x′i ≻i xi, a contradiction. This proves p ∈ P(xi).

It remains to show q ∈ T ∗(Π̂i
p(x

i)). The idea is essentially the same as in the proof of Lem-
ma 4.1. Again assume to the contrary that q /∈ T ∗(Π̂i

p(x
i)). Then there exists a θ ∈ RJ such that

T ∗(z)θ > qθ , or (T ∗(z)−q)θ > 0, for all z ∈ Πi
p(x

i). (5.3)

Choose r ∈ R++ small enough such that x̂′i ≫ 0 and θ ′i = θ i + rθ , where

x′i01 = xi
01 − rqθ/p01,x′is1 = xi

s1 + rAsθ/ps1.

Let x′i be the same as xi but with x̂i replaced by x̂′i. Then it is obvious that (x′i,θ ′i) ∈ Bi(p,q).

Now we show x′i ≻i xi. For this let Û i
π(x̂

i) =U i
π(x̂

i,xi
−1), where xi

−1 denotes the vector formed
by deleting x̂i from xi. It suffices to show Û i

π(x̂
′i) > Û i

π(x̂
i) for all π ∈ Πi. Note that Û i

π behaves
just as if there were only one commodity in each state, and so the rest of the argument is the same
as in Lemma 4.1. More specifically let

Πi(x̂i) =
{

N(∇Û i
π(x̂

i))
∣∣ π ∈ Πi} ,

and Π̄i(x̂i) = {(1,z)| z ∈ Πi(x̂i)}. Let ∆x̂i = (−qθ/p01,A1θ/p11, . . . ,ASθ/pS1); then we have ac-
cording to inequality (5.3), after a little algebra,

ẑ ·∆x̂i > 0 for every ẑ ∈ Π̄i(x̂i).

From this together with Carlier and Dana (2013, Lemma 3.2) it follows that x′i ≻i xi, a contradiction
with condition (a). This proves (b). Q.E.D

We turn now to the problem of efficiency. As opposed to the one-commodity case of Section 4
we have now to take care of the commodity prices.

DEFINITION 5.2. An allocation (x1, · · · ,xm) is A-feasible if it is feasible and there exist p,q,θ i

such that (xi,θ i) ∈ Bi
n(p,q) for every i. An A-feasible allocation (x1, · · · ,xm) is constrained Pareto

efficient if there exists no A-feasible allocation (x′1, · · · ,x′m) such that x′i ≻i xi for all i.

13



The efficiency of Π̄-GEI equilibria in this case becomes rather complicated, depending in large
measure upon the consumer’s ambiguity, or the size of the sets Πi. And so we have to content
ourselves with results about several special examples. At the extreme of each Πi being a singleton,
we know from Geanakoplos and Polemarchakis (1985) that, when 2(L−1)≤ m < S(L−1), Π̄-GEI
equilibria are generically constrained Pareto suboptimal.

For the second example, we note that the condition of every Πi being a singleton can be relaxed
a little bit. More precisely, let π̄ = (π1, . . . ,πm) with π i ∈ rint(∆S) and x̄ = (x1, . . . ,xm) be a π̄-
GEI equilibrium. Appealing to the generic constrained Pareto suboptimality of x̄ we may assume
the existence of another A-feasible allocation (x′1, · · · ,x′m) such that U i

π i(x′i)>U i
π i(xi) for every i.

Noting that U i
π i is continuous in π i, there exists a closed set O(π i) containing π i such that

U i
π ′i(x′i)>U i

π ′i(xi) for every π ′i ∈ O(π i).

Let Πi = O(π i). Then we see that x̄ is a Π̄-GEI equilibrium and it is constrained Pareto suboptimal.

Of course, constrained suboptimality is not always the case, as can be seen from the following
trivial example. Let S = 3,J = 2, and

A =

1 0
0 1
0 0

 .

If every consumer believes that the third state is impossible to occur, then the prevailing equilibria
will be Pareto efficient, because the markets now are in effect complete.

So much for efficiency. Let us pass to the problem of indeterminacy. As usual, for any π̄ =
(π1, . . . ,πm) ∈ Π̄ and ω̄ = (ω1, . . . ,ωm) let

(xi(p,q, π̄, ω̄),θ i(p,q, π̄, ω̄)) = argmax{U i
π i(x)| (x,θ) ∈ Bi

n(p,q)}. (5.4)

Let xi
∗ be the same vector as xi but with commodity one in every state removed and similarly for

ω i
∗. Let

f (p,q, π̄, ω̄) = (
m

∑
i=1

xi
−1(p,q, π̄, ω̄)−ω i,

m

∑
i=1

θ i(q, π̄, ω̄)).

By Walras’ law the set of Π̄-GEI equilibria is given by

En = {(x̄, θ̄ ; p,q)| (xi,θ i) solves (5.4),(p,q) is a zero of f for (π̄, ω̄) ∈ Π̄× X̄}.
Our task is to determine the indeterminacy of En. Recall the assumption made in Section 4 on
Πi. Note that, in contrast to Geanakoplos and Mas-Colell (1989), which is concerned with the
indeterminacy of equilibrium commodity allocations, the set En contains the commodity and asset
price vectors, and so it is not reasonable to limit p in ∆. For this reason we assume in the rest of
this section that p ∈ RL(S+1)

++ . Then we have that

THEOREM 5.2. The degree of indeterminacy of En is S+1+mJ.

PROOF. To begin with we shall show the existence of an open subset Π̄o of Π̄ such that different
π̄ in it will lead to different π̄-equilibria. For this suppose (x̄, θ̄ ; p,q) is a π̄-GEI equilibrium. Then
we have

∂ui(xi
0)

∂xi
01

q j

p01
= ∑

s
πs

∂ui(xi
s)

∂xi
s1

as j

ps1
.
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Let

Ax,p =


∂ ui(xi

s)

∂xi
s1

1
ps1

. . .
∂ui(xi

S)

∂xi
S1

1
pS1

A.

Substituting Ax in the proof of Theorem 4.3 for Ax,p and following the argument there we will arrive
at the desired conclusion.

Now consider f as a mapping from RL(S+1)+J×Π̄o×RmL(S+1) to R(L−1)(S+1)+J . From Geanako-
plos and Polemarchakis (1985) follows that the matrix ∂ω1 f has full rank at any zero of f . This
means, by the transversality theorem, that zero is a regular value of fω̄ for almost every ω̄ , where
fω̄ = f (·, ·, ·, ω̄). Using the implicit function theorem we have that f−1

ω̄ (0) is a smooth manifold of
dimension S+1+mJ. The rest of the argument is then identical with the corresponding part in the
proof of Theorem 3.2. Q.E.D

6 Incomplete Markets with Real Assets

This section concerns the same situation as in the last section, but replacing nominal assets there
by real ones. By real assets we mean those whose returns are denominated in terms of the com-
modities in each state. The results about this situation can be derived more or less directly from
their counterparts in the preceding sections, and so we shall outline them only without attempting
to present the details.

We begin with a description of the asset returns. Since the returns are denominated in com-
modities, the return of an asset in each state can be formally represented by a vector of dimension
L, hence that in period one by a vector of dimension LS. Let L̄ = LS; then the asset market structure
is expressible by a matrix A, of dimension L̄× J, its j-column designating the returns of asset j.
For each p = (p0, . . . , pS) ∈ RL(S+1)

++ let

Λp =


p1 0 · · · 0
0 p2 · · · 0
...

... . . . ...
0 0 · · · pS


S×L̄

;

the nominal return matrix at the price vector p of the assets is then given by

V (p) = ΛpA ∈ RS×J. (6.1)

Let Vs(p) be the s-th row of V (p). The budget set of consumer i, Bi
r(p,q), where the subscript, r,

stands for ‘real,’then consists of all (xi,θ i)∈ X ×RJ which satisfy (5.1) with Vs(p) taking the place
of As, that is

p0(xi
0 −ω i

0)+qθ i ≤ 0

ps(xi
s −ω i

s)−Vs(p)θ i ≤ 0,s = 1, . . . ,S.
(6.2)

It is readily seen that these budget constraints are homogenous of degree zero in (p,q), and there-
fore we may assume in this section that p ∈ RL(S+1)

++ with ps1 = 1 for every s. This normaliza-
tion will provide us with some convenience in the proof of Theorem 6.1. Now we can define
the notions of Π̄-GEI equilibrium and its counterpart π̄-GEI equilibrium. Recall x̄ = (x1, . . . ,xm),
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θ̄ = (θ 1, . . . ,θ m).

DEFINITION 6.1. A quadruple (x̄, θ̄ ; p,q) is said to be a Π̄-GEI equilibrium if

(i) (x′i,θ ′i) with x′i ≻i xi implies (x′i,θ ′i) /∈ Bi
r(p,q), i = 1, . . . ,m;

(ii) ∑i xi = ∑i ω i, ∑i θ i = 0.

Likewise, a π̄-GEI equilibrium is defined to be a quadruple (x̄, θ̄ ; p,q) satisfying the above two
conditions with ≻π i taking the place of ≻i in condition (i).

Concerning their interrelation we state that

THEOREM 6.1. (x̄, θ̄ ; p,q) is a Π̄-GEI equilibrium if, and only if, it is a π̄-GEI equilibrium for
some π̄ ∈ Π̄.

PROOF. The analysis is similar to that in the proof of Theorem 5.1. More specifically, define
T : RJ → RL̄ as T (θ) = Aθ , ∀θ ∈ RJ , and let T ∗ : RL̄ → RJ be its adjoint. Again let us begin with
the equilibrium asset prices. From marginal analysis we have at equilibrium

∂U i
π(x

i)

∂xi
01

q j =
S

∑
s=1

L

∑
l=1

∂U i
π(x

i)

∂xsl
bsl j,

where bsl j denotes the units of commodity l that asset j pays off in state s, and so

q j =
S

∑
s=1

L

∑
l=1

∂U i
π(x

i)

∂xsl
(
∂U i

π(x
i)

∂xi
01

)−1bsl j, j = 1, . . . ,J. (6.3)

Recall from Section 4 the definition of N(∇U i
π(x

i)) and let N1(∇U i
π(x

i)) be the vector formed by
deleting from N(∇U i

π(x
i)) the components in state 0. Let

Πi(xi) =
{

N(∇U i
π(x

i))
∣∣ π ∈ Πi} ,Πi

1(x
i) =

{
N1(∇U i

π(x
i))

∣∣ π ∈ Πi} .
With this notation equation (6.3) can be written compactly as q = z1A for some z1 ∈ Πi

1(x
i).

Similarly as in Section 5 we define P(xi) to be the set of commodity price vectors (p0, . . . , pS)
such that ∇ui(xi

s) = λs ps for some λs > 0. Then it is sufficient to prove this lemma:
LEMMA 6.1. Let (xi,θ i) ∈ Bi

r(p,q) with xi ≫ 0; then the following are equivalent
(a) (x′i,θ ′i) with x′i ≻i xi implies (x′i,θ ′i) /∈ Bi

r(p,q);
(b) p ∈ P(xi), q ∈ T ∗(Πi

1(x
i));

(c) there exists a π ∈ Πi such that (xi,θ i) solves

max
(y,φ)

U i
π(y) s.t. (y,φ) ∈ Bi

r(p,q). (6.4)

To prove this lemma note that the proofs of (b)⇒(c), (c)⇒(a), and (a)⇒ p ∈ P(xi), are ex-
actly the same as those of Lemma 5.1, and so are omitted here. Therefore it remains (a)⇒ q ∈
T ∗(Πi

1(x
i)), which again is similar to (although not identical with) the corresponding part in the

proof of Lemma 5.1.

More precisely suppose q /∈ T ∗(Πi
1(x

i)). Then there exists a θ ∈ RJ such that

T ∗(z1)θ > qθ , or (T ∗(z1)−q)θ > 0, for all z1 ∈ Πi
1(x

i). (6.5)

We construct (x′i,θ ′i) such that x′i = xi+ r∆x, θ ′i = θ i+ rθ i, where ∆x = (−qθ ,0, . . . ,0,(Aθ)⊤) ∈
RL(S+1) and r ∈ R++ is small enough such that x′i ≫ 0. It is obvious that (x′i,θ ′i) ∈ Bi

r(p,q).
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To derive a contradiction it suffices to show that x′i ≻i xi. For this purpose take z ∈ Πi(xi); then
according to inequality (6.5)

z ·∆x =−qθ + z1Aθ > 0,

where z = (z0,z1) and z1 ∈ Πi
1(x

i). So, by referring to Carlier and Dana (2013, Lemma 3.2),
x′i ≻i xi. Q.E.D

Finally we turn to the problems of efficiency and indeterminacy. The solving of these two prob-
lems, as seen from the previous sections, requires tools from differential topology, the application
of which in turn necessitates the smoothness of commodity and asset demand functions. This s-
moothness however is not at our disposal, because of the rank-dropping behavior of V (p) (see, e.g.,
Hart (1975)).

One way of avoiding the difficulty is, as in Geanakoplos and Mas-Colell (1989), to study a
special kind of real assets, namely those whose returns are paid uniformly in, say, commodity
one of each state. In this case, the problem of efficiency has the same nature as in the case of
nominal assets; in particular, the equilibria are generically constrained Pareto suboptimal when the
preferences involved are complete or the consumers have a ‘small’degree of ambiguity. As for
indeterminacy, the problem is the same as in the case of Section 4, because the indeterminacy of
equilibria depends, not on the number of commodities, but on the Walras’ law, the homogeneity of
demand, and the consumers’ ambiguities in the likelihoods of the states.
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