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Abstract

In this paper we analyze whether (anthropometric) CO2 can forecast global temperature
anomaly (GT) over an annual out-of-sample period of 1907-2012, using an in-sample of 1880-
1906. For our purpose, we use 12 parametric and non-parametric univariate (only comprising
of GT) and multivariate (including both GT and CO2) models. Our results show that the
Horizontal Multivariate Singular Spectral Analysis (HMSSA) models (both Recurrent (-R)
and Vector (-V)) consistently outperform the other competing models. More importantly,
from the performance of the HMSSA-R model, we find conclusive evidence that CO2 can
forecast GT, and predict its direction of change. Our results highlight the superiority of
the nonparametric approach of the SSA, which in turn, allows us to handle any statistical
process: linear or nonlinear, stationary or non-stationary, Gaussian or non-Gaussian.

JEL Codes: C22; C32; C53; Q53; Q54.
Keywords: Global temperature anomaly; CO2 emissions; Forecasting; Univariate and multivari-
ate models.

1 Introduction

The climate change debate comprises of players who, in the absence of accessible evidence-based
and objective information, may resort to decisions based on perceptions and even possibly politi-
cal agendas (Khandekar et al., 2005). The debate gets even more aggressive when global warming
is discussed in relation to anthropometric carbon di-oxide (CO2) emissions (Solomon et al., 2009;
McMillan and Wohar, 2013). Global warming is popularly quantified using global temperature
anomaly (GT) measures which is the difference between a reference long-term average value
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and the actual value. The calculation of GT is in itself a complex process adjusting for aspects
such as, though not limited to, unequal distance between measuring stations, difference due to
the richly observed northern hemisphere versus the poorly observed southern hemisphere, ocean
versus terrestrial measurements, polar regions, into one representative number for the whole
earth (Hansen et al., 2010). Similarly global CO2 is estimated from energy statistics published
by the United Nations (2014) involving a complex system comprising of, again not limited to,
questionnaires, official statistics and other supplementary information (Boden et al., 1995).

While global warming has been accepted as happening (Hansen et al., 1981), the purpose
of this paper is to undertake a rigourous investigation of well established datasets for GT and
CO2 using a suite of forecasting models in an attempt to identify, possibly, a single model
that can be prescribed for forecasting GT. Specifically, we consider 12 time-series models for
forecasting GT from both parametric and nonparametric paradigms. These 12 models include
7 univariate models and 5 multivariate models namely: Random Walk (RW), Autoregressive
(AR), Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS),
Neural Networks (NN), Fractionalized ARIMA (ARFIMA), Exponential smoothing state space
model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS),
Bayesian Autoregression (BAR), Vector Autoregression (VAR), Bayesian Vector Autoregression
(BVAR) and Multivariate Singular Spectrum Analysis (MSSA). Our sample covers the annual
period of 1880-2012, with an out-of-sample period of 1907-2012 (based on an in-sample period
of 1880 to 1906). The start and end points of the analysis are purely driven by data availability
at the time of writing this paper, but the choice of the out-of-sample period is determined by
the earliest possible break date detected (based on the Bai and Perron (2003) tests of multiple
structural breaks) in the relationship between GT and CO2, which happened to be 1906. Since,
we estimate our models recursively over the out-of-sample period, we are able accommodate
for the change in the parameter estimates of the model while producing our forecasts. This
approach, in some sense makes the linear and nonlinear approaches comparable, by allowing all
the structural breaks to be in the out-of-sample, over which all types of models are re-estimated
over an expanding window.

This paper makes several important contributions: (i) this paper makes the first attempt to
provide a comprehensive comparisons of models for forecasting GT available in the literature; (ii)
it marks the introductory application of models such as TBATS, SSA and MSSA for forecasting
GT; and, (iii) the approach presented in this paper is a rare occasion in which univariate SSA’s
filtering capabilities are combined with the modelling and forecasting capabilities of MSSA in
order to find a solution to the problems associated with forecasting GT. Summarily, in our
investigation, we seek to isolate the trend in GT via SSA, and then propose using the extracted
GT trend along with CO2 data via MSSA for generating out-of-sample forecasts for GT. Finally,
we use a new and automated MSSA forecasting algorithm for generating out-of-sample forecasts
for GT. To the best of our knowledge, the only other paper to have analyzed the relationship
between CO2 and GT is that of McMilan and Wohar (2013), barring which all other papers in
this literature have analyzed these two variables separately in univariate settings.1 McMilan and
Wohar (2013), based on VAR and Generalized Method of Moments (GMM) approaches conclude
that CO2 has a weak relationship with GT. This could, however, be a result of uncaptured
nonlinearity in the relationship between these two variables, which is what we aim to understand
better in this paper by conducting an out-of-sample forecasting exercise, using univariate and
multivariate versions of linear and nonlinear models. The decision to rely on an out-of-sample
rather than an in-sample predictability exercise to gauge the relationship between CO2 and

1The reader is referred to McMilan and Wohar (2013) for a detailed literature review in this regard.
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global temperature is motivated out of the belief that: “The ultimate test of any predictive
model is its out-of-sample performance” (Campbell, 2008).

At this stage, it is important to emphasize the decision to use the SSA technique in forecast-
ing GT, which has recently evolved as a powerful technique in the field of time series analysis
(Hassani, 2007; Hassani et al., 2009), besides the other standard forecasting approaches indi-
cated above. SSA is a non-parametric technique that works with arbitrary statistical processes,
whether linear or non-linear, stationary or non-stationary, Gaussian or non-Gaussian. Given
that the dynamics of real time series, in our case GT, has usually gone through structural
changes during the time period under consideration, one needs to make certain that the method
of prediction is not sensitive to the dynamical variations. Moreover, contrary to the standard
methods of time series forecasting that assume normality and stationarity of the series (though
the latter is not an issue for BVAR models), SSA method is non-parametric and makes no prior
assumptions about the data, with forecasts being obtained through bootstrapping. Additionally,
SSA method decomposes a series into its component parts, and reconstructs the series by leaving
out the random (noise) component. Clearly then, SSA is a much more general approach that
allows us to handle issues of non-stationarity, non-normality, non-linearity, and even seasonality,
though the latter is not an issue in our annual data set. The rest of the paper is organised as
follows: in Section 2 we present a detailed description of the 12 forecasting models investigated
with extra emphasis on the SSA and MSSA models; in Section 3 we detail the datasets used
and the metrics used for the evaluation of the models, with estimations conducted in either R
or RATS; in Section 4 we present an in-depth analyses of the results in our quest to identify the
best model for our purpose; and finally we present some concluding remarks on the investigation
undertaken in Section 5.

2 Methodology

2.1 Random Walk (RW)

The random walk model is used as a benchmark. This is because it is widely accepted that
when introducing forecasting techniques for a particular purpose, it is vital that the introduced
techniques are able to outperform the RW2. In brief, the RW model states that today’s GT is
the best forecast for tomorrow’s GT.

2.2 Autoregressive Integrated Moving Average (ARIMA)

In this paper we use an optimized version of ARIMA which is referred to as auto-ARIMA,
and provided through the forecast package in R. A more detailed description of the algorithm
underlying auto-ARIMA can be found in Hyndman and Khandakar (2008) whilst a summarized
version is available in Hassani et al. (2015b). The process for obtaining point forecasts using
the R software is concisely presented in Hyndman and Athanasopoulos (2013).

2.3 Exponential Smoothing (ETS)

The ETS technique in the forecast package overcomes the limitations of the Makridakis et
al. (1998) algorithm pertaining to the calculation of prediction intervals. Whilst a detailed
description of the ETS technique can be found in Hyndman and Athanasopoulos (2013), in brief
this algorithm considers the error, trend and seasonal components along with over 30 possible

2http://robjhyndman.com/hyndsight/benchmarks/
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options for choosing the best exponential smoothing model via optimization of initial values and
parameters using the MLE and selecting the best model based on the AIC.

2.4 Neural Networks (NN)

The NN model used in this paper is popularly referred to as nnetar and is provided through
the forecast package in R. For a detailed explanation on how the nnetar model operates, see
Hyndman et al. (2013). It may be noted that in all cases the selected neural network model has
only k=1 hidden node, p=2 lags and we adopt annual difference specifications.

2.5 Fractionalized ARIMA Model (ARFIMA)

The ARFIMA algorithm used is also from the forecast package in R, and it automatically
estimates and selects the p and q for an ARFIMA(p,d,q) model based on the Hyndman and
Khandakar (2008) algorithm whilst d and parameters are selected based on the Haslett and
Raftery (1989) algorithm.

2.6 Exponential smoothing state space model with Box-Cox transformation,
ARMA errors, Trend and Seasonal components (TBATS)

The TBATS model is a technique aimed at providing accurate forecasts for time series with
complex seasonality. A detailed description of the model can be found in De Livera et al. (2011)
and is therefore not reproduced here.

Classical Autoregressive (AR), Bayesian Autoregressive (BAR), Vector Autoregres-
sive (VAR), and Bayesian Vector Autoregressive (BVAR) Models

The Vector Autoregressive (VAR) model, though “atheoretical” is particularly useful for fore-
casting purposes. Note an unrestricted VAR model, as suggested by Sims (1980), can be written
as follows:

yt = C +A(L)yt − 1 + εt (1)

where: y : (n × 1) vector of variables (global temperatures and global CO2 emissions) being
forecasted; A(L) : (n× p) polynomial matrix in the backshift operator L with lag length p, i.e.,
A(L) = A1L+A2L

2 + ...+ApL
p; C : (n× 1) vector of constant terms, and ε : (n× 1) vector of

white-noise error terms. In our case p = 2 based on the Akaike Information Criterion (AIC).
The VAR model uses equal lag length for all the variables of the model, and leads to the

problem of overparameterization. This, in turn, results in multicollinearity and loss of degrees
of freedom leads to inefficient estimates and large out-of-sample forecasting errors.

An approach to overcome this overparameterization, as described in Littermann (1981, 1986),
Doan et al (1984), Todd (1984), and Spencer (1993), is to use a Bayesian VAR (BVAR) model.
Instead of eliminating longer lags, the Bayesian method imposes restrictions on these coefficients
by assuming that these are more likely to be near zero than the coefficient on shorter lags.
However, if there are strong effects from less important variables, the data can override this
assumption. The restrictions are imposed by specifying normal prior distributions with zero
means and small standard deviations for all coefficients with the standard deviation decreasing
as the lags increases. The exception to this is, however, the coefficient on the first own lag of a
variable, which has a mean of unity. Note Litterman (1981) used a diffuse prior for the constant.
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This is popularly referred to as the “Minnesota prior” due to its development at the University
of Minnesota and the Federal Reserve Bank at Minneapolis.

The standard deviation of the distribution of the prior for lag m of variable j in equation i
for all i, j and m, defined as S(i, j,m), can be specified as follows:

S(i, j,m) = [w × g(m)× f(i, j)]
σi
σj

(2)

with f(i, j) = 1, if i = j and kij otherwise, with (0 ≤ kij ≤ 1), g(m) = m−d, d > 0. Note
σi is the standard error of the univariate autoregression for variable i. The ratio σi

σj
scales

the variables so as to account for differences in the units of measurement and, hence, causes
specification of the prior without consideration of the magnitudes of the variables. The term
w indicates the overall tightness and is also the standard deviation on the first own lag, with
the prior getting tighter as we reduce the value. The parameter g(m) measures the tightness on
lag m with respect to lag 1, and is assumed to have a harmonic shape with a decay factor of
d, increasing which tightens the prior on increasing lags. The parameter f(i, j) represents the
tightness of variable j in equation i relative to variable i, and by increasing the interaction, i.e.,
the value of kij , we can loosen the prior. Following the extant literature on BVAR models, we
look at the following combinations of w and d: (0.3, 0.5), (0.2, 1.0), (0.1, 1.0), (0.2, 2.0) and
(0.1, 2.0), with kij set at 0.5. Univariate versions of the BVAR models, which we call Bayesian
autoregressive (BAR) models, are estimated for the same values of w and d as above, but with
kij set at 0.001, since a small interaction value basically reduces the multivariate model to its
corresponding univariate version. In the results section however, we only report the BAR and
BVAR models which produces the most accurate forecasts, which in our case, happened to be
the BAR1 (w=0.3, d=0.5, kij=0.001) and BVAR5 (w=0.1, d=2.0, kij=0.5).3

The BVAR model is estimated using Theil’s (1971) mixed estimation technique, which in-
volves supplementing the data with prior information on the distribution of the coefficients. In
an artificial way, the number of observations and degrees of freedom are increased by one, for
each restriction imposed on the parameter estimates. The loss of degrees of freedom due to
over parameterization associated with a VAR model is, therefore, not a concern in the BVAR
model. Further note that, one major advantage of the BVAR and BAR models is that we can
use non-stationary data for its estimation. Sims et al. (1990) indicate that with the Bayesian ap-
proach entirely based on the likelihood function, the associated inferences do not require special
treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape
regardless of the presence of non-stationarity. Given this, we mimic AR and VAR models by
setting w=2.0, d=2.0, kij=0.001, and w=2.0, d=0, kij=1.0, respectively. In other words, we
are able to estimate classical versions of AR and VAR models without worrying about ensuring
stationarity of the variables under consideration.

2.7 Singular Spectrum Analysis (SSA)

The SSA technique is now a popular filtering and forecasting technique which is exploited in a
variety of fields (see for example, Hassani et al. (2009), Hassani et al. (2010a,b), Hassani et al.
(2015a), Silva and Hassani (2015)). In brief, SSA seeks to filter the noise in a time series and
reconstruct a less noisy signal which is then used for forecasting future data points (Hassani et
al. 2015a). SSA also has its multivariate form which is referred to as Multivariate SSA (MSSA)
which can be used for modelling and forecasting using multiple series. In comparison to SSA,

3Complete details of the results from the other BAR and BVAR models are available upon request from the
authors.
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MSSA is relatively new with few applications (see for example, Hassani et al. (2010c), Patterson
et al. (2011), Oropeza and Sachchi (2011), Hassani et al. (2013a,b).

There are several benefits of using SSA and MSSA models. As these models are non-
parametric they are not bound by the parametric assumptions of normality, stationarity and
linearity (Hassani et al. (2013a). As such, one is able to model the data without any trans-
formations which in turn ensures there is no loss of information (Hassani et al. 2013b). In
addition, as SSA is a filtering technique, it enables users to decompose a time series in order to
obtain a richer understanding of the underlying dynamics. Moreover, once the associated signal
is extracted, SSA enables users to forecast the signal alone. For example, if we are interested in
the trend component alone we have the option of extracting the trend from the data and then
forecasting the trend.

Those interested in a detailed account of the theory underlying SSA are referred to Sanei
and Hassani (2015). In brief, the SSA technique is made up of two stages known as Decompo-
sition and Reconstruction. The rationale behind using SSA here is not for forecasting, but for
extracting the trend in GT. Below we present the filtering and reconstruction stages of SSA,
and in doing so we mainly follow Sanei and Hassani (2015).

Stage 1: Decomposition

Consider the real-valued nonzero time series YN = (y1, . . . , yN ) of sufficient length N . The only
parameter at this stage is the Window Length L, an integer such that 2 ≤ L ≤ N .

Step 1: Embedding

Embedding is a mapping that transfers a one-dimensional time series YN = (y1, . . . , yN ) into the
multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)

′ ∈ RL, where K = N−L
+1. The embedding step results in the trajectory matrix X = [X1, . . . , XK ] = (xij)

L,K
i,j=1, which

is a Hankel matrix. Accordingly, all the elements along the diagonal i+ j = const are constant.

Step 2: Singular Value Decomposition (SVD)

In this step we obtain the singular value decomposition of the trajectory matrix. Denote by
λ1, . . . , λL the eigenvalues of XX

′
in decreasing order of magnitude (λ1 ≥ . . . λL ≥ 0) and by

U1, . . . , UL the orthonormal system (that is, (Ui, Uj)=0 for i 6= j (the orthogonality property)
and ‖Ui‖=1 (the unit norm property)) of the eigenvectors of the matrix XX

′
corresponding to

these eigenvalues. If we denote Vi = X
′
Ui/
√
λi, then the SVD of the trajectory matrix can be

written as:
X = X1 + · · ·+ Xd, (3)

where Xi =
√
λiUiVi

′
(i = 1, . . . , d).

Stage 2: Reconstruction

The second and final parameter in SSA, i.e. the number of eigenvalues, r is required at this
stage. Note that when L is sufficiently large the first eigenvalue corresponds to the trend of a
given series.
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Step 1: Grouping

In the grouping step, we split the elementary matrices Xi into several groups and sum the
matrices within each group. Let I = {i1, . . . , ip} be a group of indices i1, . . . , ip. Then the
matrix XI corresponding to the group I is defined as XI = Xi1 + · · ·+ Xip . The spilt of the set
of indices J = 1, . . . , d into the disjoint subsets I1, . . . , Im corresponds to the representation

X = XI1 + · · ·+ XIm . (4)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping.

Step 2: Diagonal Averaging

Diagonal averaging transfers each matrix I into a time series, which is an additive component
of the initial series YN . This procedure is called diagonal averaging, or Hankelization of the
matrix Z. The result of the Hankelization of a matrix Z is the Hankel matrix HZ, which is
the trajectory matrix corresponding to the series obtained as a result of the diagonal averaging.
By applying the Hankelization procedure to all matrix components of (4), we obtain another
expansion:

X = X̃I1 + . . .+ X̃Im (5)

where X̃I1 = HX. This is equivalent to the decomposition of the initial series YN = (y1, . . . , yN )
into a sum of m series:

yn =

m∑
k=1

ỹ(k)n (6)

where Ỹ
(k)
N = (ỹ

(k)
1 , . . . , ỹ

(k)
N ) corresponds to the matrix XIk . Figure 1 below shows the extracted

GT trend using the SSA procedure explained above. For this purpose we use L = 18, r = 1. In
the next step, we use this extracted GT trend and actual CO2 data with MSSA for forecasting
GT.

2.8 Multivariate Singular Spectrum Analysis (MSSA)

Those interested in an in-depth explanation of the theory underlying MSSA are directed to
Hassani and Mahmoudvand (2013). We begin by presenting the Horizontal MSSA Recurrent
(HMSSA-R) optimal forecasting algorithm which is followed by the Horizontal MSSA Vector
(HMSSA-V) optimal forecasting algorithm. In presenting these two algorithms we mainly follow
and rely on the notations in Hassani and Mahmoudvand (2013).

2.8.1 HMSSA-R Optimal Forecasting Algorithm

1. Consider M time series with identical series lengths of Ni, such that Y
(i)
Ni

= (y
(i)
1 , . . . , y

(i)
Ni

)
(i = 1, . . . ,M).

2. Split each time series into three parts leaving 2
3

rd
for model training and testing, and 1

3

rd

for validation. In this case we use 25 observations from extracted GT trend and CO2 data
to train and test the HMSSA models.

3. Beginning with a fixed value of L = 2 (2 ≤ L ≤ N
2 ) and in the process, evaluating

all possible values of L for YNi , using the training data construct the trajectory matrix

X(i) = [X
(i)
1 , . . . , X

(i)
K ] = (xmn)L,Ki

m,n=1 for each single series Y
(i)
Ni

(i = 1, . . . ,M) separately.
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Figure 1: SSA trend for GT (1880–2012).

4. Then, construct the block trajectory matrix XH as follows:

XH =
[

X(1) : X(2) : · · · : X(M)
]
.

5. Let vector UHj = (u1j , . . . , uLj)
T , with length L, be the jth eigenvector of XHXT

H which
represents the SVD.

6. Evaluate all possible combinations of r (1 ≤ r ≤ L − 1) step by step for the selected
L and construct X̂H =

∑r
i=1 UHiU

T
Hi

XH as the reconstructed matrix obtained using r
eigentriples:

XH =
[

X̂(1) : X̂(2) : · · · : X̂(M)
]
.

7. Consider matrix X̃(i) = HX̂(i) (i = 1, . . . ,M) as the result of the Hankelization procedure
of the matrix X̂(i) obtained from the previous step for each possible combination of SSA
choices.

8. Let UO
Hj

denote the vector of the first L− 1 coordinates of the eigenvectors UHj , and πHj

indicate the last coordinate of the eigenvectors UHj (j = 1, . . . , r).

9. Define υ2 =
r∑
j=1

π2Hj
.
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10. Denote the linear coefficients vector R as follows:

R =
1

1− υ2
r∑
j=1

πHjU
O
Hj . (7)

11. If υ2 < 1, then the h-step ahead HMSSA forecasts exist and is calculated by the following
formula:

[
ŷ
(1)
j1
, . . . , ŷ

(M)
jM

]T
=


[
ỹ
(1)
j1
, . . . , ỹ

(M)
jM

]
, ji = 1, . . . , Ni,

RTZh, ji = Ni + 1, . . . , Ni + h,

(8)

where, Zh =
[
Z

(1)
h , . . . , Z

(M)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i = 1, . . . ,M).

12. Seek the combination of L and r which minimises a loss function, L and thus repre-
sents the optimal HMSSA-R choices for decomposing and reconstructing in a multivariate
framework.

13. Finally use the selected optimal L to decompose the series comprising of the validation
set, and then select r singular values for reconstructing the less noisy time series, and use

this newly reconstructed series for forecasting the remaining 1
3

rd
observations.

2.8.2 HMSSA-V Optimal Forecasting Algorithm

1. Begin by following the steps in 1-9 of the HMSSA-R optimal forecasting algorithm above.

2. Consider the following matrix

Π = UOUOT + (1− v2)RRT , (9)

where UO = [UO
1 , ..., U

O
r ]. Now consider the linear operator

P(v) : Lr 7→ RL, (10)

where

P(v)Y =

(
ΠYM
RTYM

)
, Y ∈ Lr, (11)

and YM is vector of last L− 1 elements of Y .

3. Define vector Z
(i)
j (i = 1, . . . ,M) as follows:

Z
(i)
j =

{
X̃

(i)
j for j = 1, . . . , ki

P(v)Z
(i)
j−1 for j = ki + 1, . . . , ki + h+ L− 1

(12)

where, X̃
(i)
j ’s are the reconstructed columns of trajectory matrix of the ith series after

grouping and leaving noise components.

4. Now, by constructing matrix Z(i) = [Z
(i)
1 , ..., Z

(i)
ki+h+L−1] and performing diagonal averag-

ing we obtain a new series ŷ
(i)
1 , ..., ŷ

(i)
Ni+h+L−1, where ŷ

(i)
Ni+1, ..., ŷ

(i)
Ni+h

provides the h step
ahead HMSSA-V forecast for the selected combination of L and r.

9



5. Finally, follow steps 12-13 in the HMSSA-R optimal forecasting algorithm to find the
optimal L and r for obtaining HMSSA-V forecasts.

Finally, in Table 1 we present the MSSA model parameters for obtaining the forecasts for
GT at each horizon.

Table 1: MSSA models for forecasting Global Temperature
h HMSSA-R HMSSA-V
1 MSSA(5, 4) MSSA(7, 6)
2 MSSA(4, 3) MSSA(7, 6)
3 MSSA(6, 4) MSSA(2, 1)
4 MSSA(2, 1) MSSA(2, 1)
5 MSSA(4, 2) MSSA(4, 2)
6 MSSA(3, 2) MSSA(3, 2)
7 MSSA(3, 2) MSSA(3, 2)
8 MSSA(6, 3) MSSA(7, 4)
9 MSSA(6, 3) MSSA(7, 4)
10 MSSA(7, 4) MSSA(6, 3)

Note: Shown here in brackets are the combinations of L and r as MSSA(L, r).

3 Data and Metrics

3.1 Data

The data we investigate here consists of two variables, namely the global temperatures anomaly
(GT) and global carbon dioxide (CO2) emissions, and spans the annual period of 1880-2012,
with the start and end of the period being purely driven by the availability of data. The GT were
obtained from the National Aeronautics and Space Administrations (NASA) and the Goddard
Institute for Studies (GISS). As mentioned earlier, the GT data relates to temperature anomalies
relative to the base period 1951-1980. The data on CO2 was obtained from the Carbon Dioxide
Information Analysis Centre, and is measured in thousand metric tons of carbon. While GT
remains untransformed in our analysis, we use the natural logarithm of CO2 emissions. Further,
we separate the entire data period into an in-sample period spanning 1880-1906, and an out-
of-sample period of 1907-2012. This separation of the period was determined by the Bai and
Perron (2003) tests of multiple structural breaks applied to the global temperatures equation of
the VAR model, which, in turn, detected the following break dates: 1907, 1945, 1974, 1992, and
2004. Since our models are estimated recursively over the out-of-sample period in which all the
remaining break dates fall, this separation of the period is ideal as it helps us to accommodate
for changes in the parameter estimates of the model in the out-of-sample period. Finally, we
produce one- to ten-year-ahead forecasts based on this recursive estimation scheme to forecast
in the short- and long-term horizon.

3.2 Metrics

To evaluate the 12 competing models, we use the popular RMSE loss function and the direction
of change (DC) criterions for comparing their forecasting performances. All outcomes relating to
forecast accuracy are tested for statistical significance using the Kolmogorov-Smirnov Predictive
Accuracy (KSPA) test (Hassani and Silva, 2015), whilst the DC results are tested for statistical
significance using a Student’s t-test.
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Root Mean Squared Error (RMSE)

The RMSE is now a standard quantitative technique for evaluating forecasting accuracy of
alternate models. It is also popular as one of the most frequently cited measures in forecasting
literature (see, for example, Altavilla and De Grauwe (2010) and Hassani et al. (2015b)). Here,
we mainly follow Altavilla and Grauwe (2010) in defining the RMSE.

RMSE =

(
1

n

N∑
i=1

e2t+h+i

)1/2

,

where, et+k = χt+h−χ̂t+h is the forecast error where h ≥ 1, and χ̂t+b represents the h-step-ahead
forecast.

In addition to the RMSE, we also consider the Ratio of the RMSE (RRMSE) criterion. In
order to save space we only present an example of the RRMSE criterion.

RRMSE =
RW

ETS
=

(∑N
i=1(ŷT+h,i − yT+h,i)2

)1/2
(∑N

i=1(ỹT+h,i − yT+h,i)2
)1/2 ,

where, ŷT+h is the h-step ahead forecast obtained by RW, ỹT+h is the h-step ahead forecast
from the ETS model, and N is the number of the forecasts. If RW

ETS is less than 1, then the RW
outperforms ETS by 1- RWETS percent.

Direction of Change (DC)

The DC metric is an equally important measure as the RMSE because it is able to show whether
the forecast is correctly predicting the actual direction of change. A model is said to have a
better DC prediction than a random walk if it records a DC greater than 50% (Altavilla and de
Grauwe, 2010). A detailed description of the DC metric can be found in Altavilla and Grauwe
(2010). In brief,

DC =

(
1

T

T∑
t=1

φ∆e
t+h = ∆t+h

)
,

where, ∆t+h and ∆e
t+h are the actual and predicted direction of change in GT h steps ahead,

and φ equals 1 if ∆t+h = ∆e
t+h and 0 otherwise.

4 Empirical Results

Table 2 presents the out-of-sample forecasting RMSE results for GT. The presentation of the
results which considers both short and long term forecasts of GT enables stakeholders to select
the best model at each forecast horizon of interest. We first discuss the overall results. The
first observation is that no single model can provide the best forecast for GT across all horizons.
However, it is moot to note that the two MSSA models succeed in reporting the lowest RMSE
in comparison to all models evaluated across all horizons. As such, in relation to all models
considered in this study, we are able to identify clearly that MSSA has the potential to provide
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the most accurate forecasts for GT. Secondly, given that these superior MSSA results have been
attained by using CO2 as an indicator variable, we are able to conclude that CO2 can indeed
help in predicting GT. If one is interested in a single model for obtaining the best possible
forecasts for GT, then based on the average lowest RMSE we can propose that specifically the
HMSSA-R model, as used in this study, is best for this purpose.

The results also enable a more detailed analysis and differentiation between univariate and
multivariate models. In terms of the univariate models we see that across all horizons, ETS
forecasts are best for GT. Interestingly as well, on most occasions the RW forecasts are seen to
outperform the univariate models (except ETS), and also the BAR1, BVAR5 and VAR forecasts
with the exception of h = 1 step ahead results from VAR and BVAR5 models. Another point
to note is that forecasts for GT from the multivariate BAR1 model is almost as bad as the
worst performing NN model according to the average RMSE criterion. Furthermore, as both
univariate and multivariate models are considered in this study, practitioners also have the
option of selecting the best univariate or multivariate model for forecasting GT at a particular
horizon of interest.

Prior to discussing the results over the forecasting horizon, we test the out-of-sample forecasts
for statistically significant differences by using the one-sided Kolmogorov-Smirnov Predictive
Accuracy (KSPA) test (Hassani and Silva, 2015). The KSPA test evaluates whether the model
with the lowest RMSE also reports a lower stochastic error in comparison to a competing model.
The results from the one-sided KSPA test are indicated on Table 2. Based on the test results, we
find no statistically significant differences between the forecasts from HMSSA-R and HMSSA-V
models for any horizon at the 10% significance level. This was expected as there is a very meagre
difference between the RMSE’s from the two MSSA models. In relation to the other models, we
notice a high number of statistically significant outcomes at the 10% significance level beyond
the h = 1 step-ahead horizon, suggesting that on most occasions, the HMSSA-R model is indeed
reporting a lower stochastic error than the other models. In fact, at horizons 2-3 and 5-10 the
HMSSA-R model reports a lower stochastic error in comparison to all other univariate models
(except HMSSA-V). Therefore, we are able to suggest the HMSSA-R model as the best model
from those evaluated here for forecasting GT at these horizons. However, at h = 1 step-ahead,
where the HMSSA-V model reports the lowest RMSE, we can only suggest that the HMSSA-V
model outperforms NN, ARFIMA and TBATS in terms of reporting the comparatively lowest
stochastic error. This suggests that at h = 1 step-ahead, there is a high probability of chance
occurrences causing differences in forecasting results between the MSSA models and RW, AR,
ARIMA, ETS, BAR1, VAR and BVAR5 models. As such, in the very short run (h = 1) we do
not find sufficient evidence to suggest that any particular model evaluated here is superior to
another for forecasting GT based on the one-sided KSPA test.

In Table 3 we consider HMSSA-R as a benchmark model and present the RRMSE results for
GT forecasts. The choice of HMSSA-R as a benchmark model was influenced by the fact that
the one-sided KSPA test reported a high number of statistically significant outcomes proving the
HMSSA-R forecasts tend to report stochastically smaller errors than majority of the competing
models at majority of the forecasting horizons, and as the HMSSA-R model reports the lowest
average RMSE across all ten forecasting horizons. Here, once again we exploit the KSPA test
which is based on the cumulative distribution functions (c.d.f) of the forecast errors (Hassani
and Silva, 2015). In this case we use it to test the overall performance of the models across
all 10 forecasting horizons in order to ascertain whether on average one model is significantly
better than another. The empirical c.d.f. of squared out-of-sample forecasting errors across all
horizons are shown in Figure 2. According to Hassani et al. (2009), if the c.d.f. of forecast
errors from one model lies strictly above and towards the left of the c.d.f. of forecast errors from
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another model, then the model lying on the left reports a lowers stochastic error. However, it is
not possible to draw conclusions from Figure 2 alone, and as such we call on the one-sided KSPA
test. Evidence from the one-sided KSPA test (results indicated on the ‘Avg.’ row in Table 3)
suggests that on average, across all 10 horizons, the only instance in which HMSSA-R fails to
report a stochastically smaller error than another model is in comparison to HMSSA-V forecasts
at a 90% confidence level. This provides added justification for selecting the HMSSA-R model
proposed in this study as a benchmark for forecasting GT.

The RRMSE results in Table 3 are further tested for statistical significance via the two-
sided KSPA test which seeks to ascertain the existence of a statistically significant difference
between the distributions of two forecast errors. Leaving aside the HMMSA-R and HMSSA-V
models which do not report any statistically significant differences between forecast errors at the
90% confidence level, we can conclude that beyond h = 1, the HMSSA-R forecasts are indeed
significantly better than the HMSSA-V forecasts. The beauty of the RRMSE criterion is that it
enables us to further quantify the performance of a given forecasting model and show by what
percentage it outperforms forecasts from another model. Accordingly, based on the RRMSE
we are able to conclude that on average, across all ten horizons, the HMSSA-R forecasts are
27%, 49%, 40%, 33%, 52%, 48%, 40%, 51%, 44%, 42% and 2% better than forecasts from
RW, AR, ARIMA, ETS, NN, ARFIMA, TBATS, BAR1, VAR, BVAR5 and HMSSA-V models
respectively.

Presented in Table 4 are the DC prediction results from the GT forecasts. It is important to
evaluate the accuracy of a model in its ability to correctly predict the actual direction of change
in the time series.4 The DC results indicate that on average the multivariate BAR1 model is
worst in predicting the actual direction of change in GT. If we consider only the univariate
models, then the AR model has the worst DC prediction whilst the ETS model reports the
best. In terms of multivariate models, the MSSA models report the best DC predictions on
average and are almost identical. However, if one was to suggest a single model with the
best average DC prediction then it would be the HMSSA-R model with an average accuracy
of 78%. The inclusion of the DC results at each horizon enables practitioners to select the
best model for a particular forecasting horizon not only based on the RMSE criterion but also
based on its ability at providing a good DC prediction for GT. In line with good statistical
practice we test all DC predictions for statistical significance using the Student’s t-test as in
Hassani et al. (2009). Accordingly, we see that the DC predictions reported for AR, ARIMA,
ARFIMA, TBATS, BAR1, VAR, and BVAR5 models at all horizons are likely to be a result of
chance occurrences. However, some of the DC predictions for ETS and NN models are found
to be statistically significant whilst all the DC predictions from the two MSSA models report
statistically significant outcomes across all horizons. As such, we are able to conclude with 95%
confidence that the MSSA DC predictions are significantly greater than 50% across all horizons.

4Note that it is not possible to calculate the DC metric for RW forecasts as it results in the DC statistic going
to infinity because the RW is simply today’s value considered to be tomorrow’s forecast.
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Figure 2: The cumulative distribution functions of the squared out-of-sample errors.
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Table 4: DC predictions from out-of-sample forecasts for Global Temperature.
h AR ARIMA ETS NN ARFIMA TBATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V
1 0.42 0.54 0.60 0.57 0.56 0.58 0.42 0.38 0.41 0.71∗ 0.71∗

2 0.43 0.50 0.65∗ 0.61∗ 0.58 0.53 0.42 0.42 0.40 0.78∗ 0.78∗

3 0.52 0.52 0.61∗ 0.58 0.57 0.45 0.50 0.54 0.54 0.72∗ 0.71∗

4 0.49 0.49 0.62∗ 0.61∗ 0.52 0.46 0.47 0.55 0.55 0.67∗ 0.67∗

5 0.49 0.51 0.66∗ 0.55 0.53 0.50 0.47 0.56 0.55 0.74∗ 0.74∗

6 0.50 0.51 0.61∗ 0.58 0.54 0.51 0.48 0.56 0.53 0.82∗ 0.82∗

7 0.41 0.47 0.56 0.56 0.45 0.43 0.38 0.54 0.50 0.82∗ 0.82∗

8 0.43 0.42 0.57 0.57 0.47 0.45 0.42 0.53 0.47 0.82∗ 0.78∗

9 0.46 0.50 0.60 0.64∗ 0.50 0.45 0.43 0.56 0.53 0.84∗ 0.83∗

10 0.38 0.42 0.55 0.49 0.39 0.41 0.35 0.54 0.51 0.85∗ 0.86∗

Avg. 0.45 0.49 0.60 0.58 0.51 0.48 0.43 0.52 0.50 0.78 0.77

Note: ∗ indicates the DC prediction is statistically significant based on a Student’s t test at p = 0.05.

Finally, in Figure 3 we present a graphical illustration of the the best out-of-sample forecasts
for GT in the very short run (h = 1) and the very long run (h = 10). It is evident that as the
horizon increases the forecasting task appears more difficult even for the MSSA models which
are seen performing significantly better than the other models considered here. Interestingly,
the forecasts from the other models showed clear signs of difficulties in modelling and providing
an accurate forecast for GT amidst the variation visible in the series, and in most cases the
competing models were seen picking up the variations too late in time and reflects the compara-
tively poor DC predictions reported in Table 4. Figure 4 in the Appendix shows the plot of the
actual and the forecasts for horizons 1 to 10 attained via the models with the best DC predic-
tions in both univariate and multivariate cases. The approach proposed in this study, whereby
we extract the trend in GT with SSA prior to combining the extracted GT trend with CO2

data in a multivariate framework enables the MSSA models to overcome the issues pertaining
to modelling the volatility in GT and provide forecasts which are comparatively more accurate
and reliable for decision making.
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Figure 3: Out-of-sample MSSA forecasts for GT.
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5 Conclusions

The two popular and passionate debates in the space of climate change are (i) Is it possible to
predict global temperature anomaly (GT) reliably?; and (ii) Is there definitive causal evidence
of (anthropometric) CO2 being the driver of GT? This paper is an exercise to contribute to
this debate by providing objective analyses of relevant data using an ensemble comprising of
12 parametric and non-parametric out-of-sample forecasting techniques using only GT data
(univariate), as well as using both GT and CO2 data (multivariate). The significance of this
paper lies in that, using the well established datasets we have identified the ‘best’ model, from
12 candidate models, for forecasting GT both in the short- and long-term horizons. Specifically,
our results have identified that the Horizontal Multivariate Singular Spectral Analysis (HMSSA)
models (both Recurrent (-R) and Vector (-V)) consistently outperform the other competing
models in a statistically significant fashion. Further, from the performance of the HMSSA-R
model, we have conclusive evidence that CO2 can predict GT. We also evaluated the models
in their ability to predict the direction of change (DC) for the GT forecasts. Although in
the univariate setup the exponential smoothing (ETS) model performs best in forecasting DC
followed by the HMSSA models, in the multivariate setup, the HMSSA models once again score
best when evaluated using the metrics considered. Thus, from our investigation and from the
analyses of the findings, if we have to recommend a model for forecasting GT, HMSSA-R is a
clear winner. Our results also highlight the superiority of the nonparametric approach of the
SSA, which in turn, allows us to handle any statistical process: linear or nonlinear, stationary
or non-stationary, Gaussian or non-Gaussian.
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Figure 4: Best DC predictions: GT (Black), univariate model (Blue), MSSA model (Red).
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