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Abstract

The existing models of Bayesian learning with multiple priors by Marinacci

(2002) and by Epstein and Schneider (2007) formalize the intuitive notion that

ambiguity should vanish through statistical learning in an one-urn environment.

Moreover, the multiple priors decision maker of these models will eventually learn

the ‘truth’. To accommodate non vanishing violations of Savage’s (1954) sure-

thing principle, as reported in Nicholls et al. (2015), we construct and analyze

a model of Bayesian learning with multiple priors for which ambiguity does not

necessarily vanish. Our decision maker only forms posteriors from priors that pass

a plausibility test in the light of the observed data in the form of a γ-maximum

expected loglikelihood prior-selection rule. The “stubbornness” parameter γ ≥
1 determines the magnitude by which the expectation of the loglikelihood with

respect to plausible priors can differ from the maximal expected loglikelihood.

The greater the value of γ, the more priors pass the plausibility test to the effect

that less ambiguity vanishes in the limit of our learning model.
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1 Introduction

In a seminal contribution, Savage (1954) provides an axiomatic foundation for subjec-

tive expected utility (SEU) theory which resolves a decision maker’s uncertainty through

a unique additive (subjective) probability measure. However, starting with Ellsberg’s

(1961) one-urn experiment, several experimental studies report systematic violations of

Savage’s key axiom, the sure-thing principle (STP) (cf. Wu and Gonzales 1999; Wakker

2010 and references therein). As a reaction to this finding, descriptive decision theories

have been developed which explain violations of the STP through ambiguity attitudes.

Central to this paper are multiple priors models which use sets of subjective additive

probability measures rather than a unique measure to describe a decision maker’s un-

certainty (cf. Gilboa and Schmeidler 1989; Jaffray 1994; Ghirardato, Maccheroni, and

Marinacci 2004).1 Multiple priors models offer a straightforward interpretation of ambi-

guity as a lack of ‘probabilistic’information: “[...] the subject has too little information

to form a prior. Hence (s)he considers a set of priors.” (Gilboa and Schmeidler 1989,

p. 142). By this interpretation, one would intuitively expect that violations of the STP

must vanish if the decision maker observes an unlimited amount of statistical informa-

tion. Our intuition is thereby informed by standard models of Bayesian learning accord-

ing to which a Savage (1954) decision maker—who holds a unique subjective prior—will

(under some regularity condition) almost certainly learn the ‘true’probability measure

if he observes a large amount of data which was i.i.d. generated by this measure.

A recent experimental study by Nicholls, Romm, and Zimper (2015) has put the no-

tion to the test that STP violations should tend to decrease through statistical learning.

These authors were running a sequence of Ellsberg-type one-urn experiments such that

the test group received an increasing amount of statistical information about the urn’s

true composition whereas the control group did not receive such information. Quite sur-

prisingly, the authors find that “... statistical learning has, at best, no impact on STP

violations. At worst, it might even be causing STP violations to increase.”(Nicholls et

al. 2015, p. 14)

To accommodate this empirical finding, this paper constructs a model of Bayesian

learning with multiple priors such that ambiguity does not necessarily vanish through

statistical learning. As the key feature of our model, the decision maker rejects priors

in the light of observed data by an application of the γ-maximum expected loglikelihood

prior-selection rule, which we newly introduce to the literature. The remainder of this

1An alternative (and under specific circumstances formally equivalent) class of models that accommo-

date ambiguity attitudes are models of Choquet decision making/Choquet expected utility (Schmeidler

1989; Gilboa 1987). These Choquet models express ambiguity attitudes through non-additive proba-

bility measures.
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introduction explains our formal learning model, as well as its economic relevance, in

more detail.

1.1 Existing results on Bayesian learning

Consider an indexed family of probability measures such that, unbeknownst to the de-

cision maker, one measure in this family (e.g., given by the composition of an urn) is

the true data-generating measure. The standard model of Bayesian learning considers

a Savage (1954) decision maker who resolves his uncertainty about the true measure

through a unique prior defined on an index space. In the one-urn environment relevant

to this paper, the index space is in an one-one relationship with the family of measures.

When this decision maker observes an i.i.d. data sample generated by the true measure,

he uses this statistical information to update his prior to a posterior by an application

of Bayes’ rule. If the prior is well-specified, i.e., if the true index belongs to its sup-

port, standard consistency results imply that the decision maker’s posteriors will almost

surely converge towards a Dirac measure concentrating at the true index/measure when

he can observe an unlimited amount of statistical information.2 More generally, for well-

and misspecified priors, Berk’s (1966) theorem implies that the posteriors will almost

surely concentrate at the index in the prior’s support that minimizes the Kullback-Leibler

(1951) divergence3 from the true measure.

Turn now to a multiple priors decision maker who resolves his uncertainty about

the true index/measure by a set of priors rather than a unique prior. Existing formal

models of Bayesian learning with multiple priors by Marinacci (2002) (=M-2002) and

by Epstein and Schneider (2007) (=ES-2007) establish formal conditions such that all

multiple posteriors concentrate at the true index/measure. Under the assumptions of

these models, STP-violations will thus vanish through Bayesian learning in the single

likelihood environment relevant to the Ellsberg one-urn experiment. More specifically,

M-2002 proves convergence to the true index/measure under the assumption that all

priors are well-specified. ES-2007 assume that the decision maker applies a specific prior-

selection rule—which we call the α-expected maximum likelihood rule—according to which

he rejects priors that are implausible in the light of the observed data. Posteriors are then

only formed from priors that are not rejected. Restricted to the one-urn environment,

ES-2007’s Theorem 1 implies that all multiple posteriors will concentrate at the true

index/measure if there is (at least) one well-specified prior.

2The seminal contribution is Doob’s (1949) consistency theorem. For generalizations and further

references see, e.g. Diaconis and Freedman (1986), Chapter 1 in Gosh and Ramamoorthi (2003), Lijoi,

Pruenster and Walker (2004).
3For a formal definition see Section 2.2.
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1.2 The γ-maximum expected loglikelihood rule

In the M-2002 model, the decision maker forms posteriors from all priors. In contrast,

ES-2007 assume that the decision maker only forms posteriors from priors that pass

a plausibility test in the form of their α-expected maximum likelihood rule. On the

one hand, we follow ES-2007 in that we regard it as plausible that a multiple priors

decision maker should reject priors that are, by some plausibility criterion, at odds with

the observed data. On the other hand, the α-expected maximum likelihood rule might

be too strong for some multiple priors decision makers because it implies vanishing

ambiguity in the single-urn environment.4 Because we want to establish the possibility

of non-vanishing STP violations, we introduce the γ-maximum expected loglikelihood rule

as a plausible alternative to the α-expected maximum likelihood rule.

Formally, ES-2007’s α-expected maximum likelihood rule rejects priors whose ex-

pected likelihood for a given data sample is not α-close to the maximal expected like-

lihood for some fixed parameter α ∈ (0, 1]. In contrast, our γ-maximum expected

loglikelihood rule rejects, for a fixed γ ∈ [1,∞), priors that are not γ-close to the

maximal expected loglikelihood. Both rules are equivalent if all priors are degenerate

(i.e., Dirac) probability measures since likelihood and loglikelihood maximization are

identical. However, if expectations of likelihoods versus loglikelihoods are taken with

respect to non-degenerate priors, the γ-maximum expected loglikelihood rule punishes

more strongly priors that support indices with small likelihoods. We therefore interpret

our decision maker as more cautious (i.e., more risk averse with respect to likelihood

outcomes) than the ES-2007 decision maker.

Two main findings for Bayesian learning with multiple priors under the γ-maximum

expected loglikelihood rule emerge.

1. For the special case of the maximum expected loglikelihood rule (i.e., γ = 1),

all multiple posteriors concentrate at the (typically) unique index/measure that

minimizes the Kullback-Leibler divergence from the true measure over all indices

in the support of the prior that minimizes the expected Kullback-Leibler divergence

from the true measure. In contrast to ES-2007’s α-expected maximum likelihood

rule, however, this unique index/measure is not necessarily the true index/measure

even if there is a well-specified prior.

4There might exist a number of possible ‘explanations’ for the experimental findings of Nicholls

et al. (2015). However, under the assumption that the subjects resemble Bayesian learners with

multiple priors, we would—contrary to the experimental findings—expect STP violations to decrease

under the ES-2007 learning model. In contrast, a learning model with non-vanishing ambiguity could

more convincingly explain persistent STP violations for this single-urn/likelihood experiment.
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2. Larger values of γ > 1 lead to larger sets of posteriors whereby we can always

find suffi ciently large values of γ such that (for suffi ciently rich sets of priors) some

posterior will concentrate at any given index/measure.

1.3 Non-vanishing violations of the sure-thing principle

To illustrate the possibility of non-vanishing STP violations, we reformulate the origi-

nal Ellsberg (1961) one-urn experiment within our framework of Bayesian learning with

multiple priors. We distinguish between an a priori (i.e., before any statistical in-

formation has been observed) and an a posteriori (i.e., after an unlimited amount of

statistical information has been observed) one-shot decision situation. We speak of non-

vanishing STP violations if the decision maker commits an Ellsberg paradox in the a

priori as well as in the a posteriori decision situation. Under the assumption that the

multiple priors decision maker is a maxmin expected utility decision maker (cf. Gilboa

and Schmeidler 1989), we identify conditions such that our learning model gives rise to

non-vanishing STP violations. More concretely, we show how the set of posteriors that

emerge in the limit of the Bayesian learning process gradually increases (with respect to

set-inclusion) in the value of the γ parameter. In other words, non-vanishing ambiguity

is γ-sensitive. This parameter sensibility of non-vanishing ambiguity is in contrast to

ES-2007’s α-expected maximum likelihood rule where ambiguity completely vanishes for

any parameter value α > 0.

1.4 Economic relevance

The possibility of non-vanishing ambiguity is a potentially attractive feature in economic

applications. Consider, for example, the class of theoretical models that establish the

possibility of speculative trade under the assumption that the decision makers express

ambiguity attitudes (e.g., Dow, Madrigal, and Werlang 1990; Halevy 2004; Zimper 2009;

Werner 2014). In contrast to the speculative trade model of Harrison and Kreps (1978),

which is based on heterogenous additive beliefs, speculative trade in these ambiguity-

driven models might become persistent under non-vanishing ambiguity even if the agents

are Bayesian learners.

As another example, consider macro-economic models which deviate from Muth’s

(1961) rational expectations paradigm. Here, our model’s parameter-sensibility of non-

vanishing ambiguity is especially relevant. Similar to different values of a personal risk-

aversion parameter (as, e.g., in CRRA or CARA utility functions), different values of the

γ-parameter can be used to describe a personal feature of economic agents.5 In dynamic

5Daniele Pennesi suggested to call the parameter γ a “stubbornness measure”because it reflects the
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models where multiple priors agents update their priors in the light of a large amount

of statistical information, agents with small values of γ will closely resemble a rational

expectations EU decision maker whereas agents with large values of γ might express

strong ambiguity attitudes. The γ-sensibility of non-vanishing ambiguity thus admits

for a comparative statics analysis or/and for heterogenous agents models. For example,

the ‘risk-free rate’and the ‘equity premium’puzzles put forward by Mehra and Prescott

(1985; 2003) are based on the assumption that the representative agent’s belief about

the consumption growth rate coincides with its objective distribution. This assumption

is in turn justified by existing consistency results for Bayesian learning with single as

well as with multiple prior(s) combined with the large amount of statistical data on

consumption growth available to the representative agent. We consider it an interesting

avenue for future research to investigate in how far multiple priors decision making

embedded into our Bayesian learning model might contribute towards an explanation of

these asset pricing puzzles for plausible values of γ.

The remainder of the paper is organized as follows. Section 2 formally introduces

the one-urn environment and recalls Berk’s (1966) Theorem. Section 3 extends Bayesian

learning to the multiple priors framework. In Section 4 we present our main formal re-

sults for Bayesian learning with multiple priors under the γ-maximum expected loglike-

lihood prior-selection rule. Section 5 applies our theoretical findings to non-vanishing

STP violations in Ellsberg’s (1961) one-urn experiment. Section 6 discusses possible ex-

tensions of our approach in comparison with the existing literature on Bayesian learning

under ambiguity. Section 7 concludes. All formal proofs are relegated to the Appendix.

2 Preliminaries

2.1 Set-up: The one-urn environment

Denote by (Ω,Σ) a measurable space with state space Ω and σ-algebra Σ. This paper is

exclusively concerned with two special cases of measurable spaces. First, we speak of the

continuous case if Ω is some subset of the Euclidean line R and Σ is the corresponding

Borel σ-algebra. Second, we speak of the finite case whenever Ω is finite with #Ω > 1

and Σ is the power-set of Ω.

Unbeknownst to the decision maker, there exists a ‘true’/‘objective’probability mea-

sure defined on (Ω,Σ), denoted ϕθ∗. To capture this lack of knowledge, we consider a

decision maker’s lack of willingness to revisit his priors in the light of new data.
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set of probability measures on (Ω,Σ) that are indexed by θ ∈ Θ, i.e.,

Φ = {ϕθ | θ ∈ Θ} . (1)

We assume that Θ is finite with #Θ = n ≥ 2 and that θ∗ ∈ Θ. Because we want to

avoid Bayesian updating in the light of events that were ex ante perceived as impossible,

we further assume that all measures in Φ have full support on Ω. Denote by (Θ,F) the

index space such that F is the powerset of Θ.6

Next we consider a Σ-measurable function (random variable) X : Ω→ R such that,
for all ϕθ ∈ Φ and all B ∈ Σ,

E
[
IX−1(B), ϕθ

]
=

∫
Ω

IB (ω) dϕθ (ω) (2)

= ϕθ (B) (3)

where IB denotes the indicator function of B. Since the distribution function (=cdf) of

X on the probability space (Ω,Σ, ϕθ) fully specifies the measure ϕθ, we slightly abuse

notation by identifying X’s cdf, denoted ϕθ : R→ [0, 1], on (Ω,Σ, ϕθ) with the corre-

sponding probability measure ϕθ : Σ→ [0, 1]. That is, X satisfies, for any ϕθ ∈ Φ,

ϕθ ((a, b]) = ϕθ (X = b)− ϕθ (X = a) for all (a, b] ∈ Σ, (4)

in the continuous case; and

ϕθ ({ωm}) = ϕθ (X = b)− ϕθ (X = a) for all ωm ∈ Ω (5)

with X (ωm) ≤ b < X (ωm+1), X (ωm−1) ≤ a < X (ωm) in the finite case, respectively.

By the above set-up, the decision maker’s uncertainty about the true probability

measure in Φ on (Ω,Σ) is equivalent to his uncertainty about the true distribution of

X. Furthermore, both notions of uncertainty are equivalent to the decision maker’s

uncertainty about the true index in Θ. We refer to this one-one correspondence between

probability measures and indices as the “one-urn”or “single-likelihood”environment.7

We will frequently use the Radon-Nikodym derivative of measure ϕθ with respect to

a dominating measure m on (Ω,Σ), denoted dϕθ
dm
. This derivative is defined such that,

for all B ∈ Σ,

ϕθ (B) =

∫
ω∈B

dϕθ
dm

(ω) dm. (6)

6In the literature, (Θ,F) is also called the (possibly multiple) parameter space.
7As a generalization of the single-likelihood environment, ES-2007 consider a “multiple-likelihoods”

environment where an index θ in Θ corresponds to a set of θ-conditional probability measures. Although

the formal results of this paper will be exclusively derived for the single-likelihood environment, compare

Section 6 for an outlook on future research.
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In the continuous case, we assume that m is given as the Lebesgue measure so that, for

any absolutely continuous distribution function ϕθ,
dϕθ
dm

: R→R+ stands for the familiar

probability density function (=pdf) such that

ϕθ ((a, b]) =

∫
x∈(a,b]

dϕθ
dm

(x) dx. (7)

In the finite case, we assume that m is given as the counting measure, implying, for all

ω ∈ Ω,

ϕθ (ω) =

∫
ω′∈{ω}

dϕθ
1

(ω′) 1 (8)

=
dϕθ
1

(ω) (9)

= dϕθ (ω) . (10)

In the finite case, dϕθ
dm

(ω) as well as dϕθ (ω) thus become equivalent notions for the

probability ϕθ ({ω}) of the singleton event {ω}.

Example 1. Continuous case “Family of normal distributions”. Let

Ω = R and X (ω) = ω. Suppose that the probability measures ϕθ in Φ are

specified by the cdf’s of a normal distribution N (µθ, σθ) with mean µθ and

standard deviation σθ, θ ∈ Θ. That is, the decision maker’s uncertainty

about the true measure ϕθ∗ in Φ is equivalent to his uncertainty about the

true normal distribution N (µθ∗ , σθ∗) which, in turn, is equivalent to his

uncertainty about the true index θ∗ ∈ Θ. The Radon-Nikodym derivative
dϕθ
dm

is here the pdf of N (µθ, σθ).�

Example 2. Finite case “Coin tossing”. Let Ω = {ω0, ω1} and X (ωk) =

k. Further suppose that

ω0 = Heads

ω1 = Tails

and

ϕθ (X = 1) = ϕθ (ω1) = θ. (11)

Here the decision maker’s uncertainty about the true probability measure

ϕθ∗ in Φ is equivalent to his uncertainty about the true probability θ∗ of

the event {Tails} resulting from a coin toss. The index set Θ thus contains

the parameters of a Bernoulli distribution. The Radon-Nikodym derivative
dϕθ
dm

(ω), as well as dϕθ (ω), gives the probability of event {ω}, ω ∈ Ω.�
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In a next step, we assume that the decision maker can observe data generated by a

sequence of independently ϕθ∗-distributed coordinate random variablesX1, X2, ... defined

on the probability space (Ω∞,Σ∞, Pθ∗) such that Ω∞ = ×∞t=1Ω; Σ∞ denotes the standard

product algebra generated by Σ,Σ, ...; and Pθ∗ is the product measure generated by the

ϕθ∗’s. Each Xt : Ω∞ → R is thereby a time t version of the Σ-measurable function

X : Ω→ R in the sense that

Xt (..., ωt, ...) = X (ω) for ωt = ω. (12)

(Ω∞,Σ∞) is called the sample space because every realization of X1, X2, ... corresponds

to a data sample that might be possibly observed by the decision maker.

In the absence of ambiguity, the decision maker’s uncertainty about the true proba-

bility measure on (Ω,Σ) is modeled through a unique additive probability measure—“the

prior”—defined on the index space (Θ,F). In contrast, ambiguity with respect to the true

probability measure on (Ω,Σ) will be modeled through a non-degenerate set of additive

probability measures—“multiple priors”—defined on the index space (Θ,F). Models of

Bayesian learning investigate how the decision maker forms posteriors from his prior(s)

in the light of new statistical information drawn from the sample space.

2.2 Bayesian learning with a unique prior

Consider a standard Bayesian decision maker who holds a unique prior µ0 ∈ 4n defined

on the parameter space (Θ,F) where 4n denotes the Euclidean n-simplex.8 Through

Bayesian updating we obtain the (conditional) probability space
(

Θ,F , πtµ0
)
such that

one version of the posterior πtµ0 ∈ 4
n, formed from the prior µ0 after observing a data

sample drawn from X1, ..., Xt, is formally given as

πtµ0 (Θ′) =

∑
θ∈Θ′

t∏
i=1

dϕθ
dm

(Xi) · µ0 (θ)

∑
θ∈Θ

t∏
i=1

dϕθ
dm

(Xi) · µ0 (θ)

(13)

8Since there is an one-one correspondence between all probability measures on (Θ,F) and the points

in 4n, we slightly abuse notation and write µ0 ≡
(
µ1

0, ..., µ
n
0

)
∈ 4n for the additive probability measure

µ0 : F → [0, 1] such that, for all non-empty Θ′ ∈ F ,

µ0 (Θ′) = Σ{θj∈Θ′}µ
j
0.
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for any Θ′ ∈ F . Recall that, in the continuous case, dϕθ
dm

(Xi = x) denotes the evaluated

pdf dϕθ
dm

(x) whereas, in the finite case, dϕθ
dm

(Xi (ω) = x) denotes the probability of state

ω with respect to measure ϕθ. Note that, by the martingale convergence theorem, the

posterior πtµ0 converges with probability one to some emerging posterior π
∞
µ0
.9

A prior µ0 is well-specified if, and only if, the true parameter belongs to the support

of µ0, i.e., for our finite Θ, iff µ0 (θ∗) > 0. Denote by δθ ∈ 4n the Dirac measure

that attaches probability one to the index value θ ∈ Θ. By Doob’s (1949) consistency

theorem10, the emerging posterior of a well-specified prior will almost surely concentrate

at the true parameter value if the number t of observations becomes arbitrarily large,

i.e.,

π∞µ0 = δθ∗ , a.s. Pθ∗ (14)

or, equivalently,

Support
(
π∞µ0

)
= {θ∗} , a.s. Pθ∗. (15)

To state a convergence result for the more general case of not necessarily well-specified

priors, let us recall the following definition due to Kullback and Leibler (1951).

Definition 1. The Kullback-Leibler (KL) divergence of ϕ′ from ϕ is defined as

DKL(ϕ||ϕ′) =

∫
Support(ϕ)

dϕ

dm

[
ln
dϕ/dm

dϕ′/dm

]
dm (16)

= Eϕ

[
ln
dϕ

dϕ′

]
. (17)

9To see this rewrite, for any Θ′, πtµ0 (Θ′) as conditional expectation of the indicator function

of Θ′ with respect to the induced probability measure P on the joint index and parameter space

(Θ× Ω∞,F⊗Σ∞). To be precise, for the notation of our set-up it holds that, for all θ ∈ Θ and

B ∈ Σ∞,

Pθ (B) ≡ P (B | θ) ≡ P (Θ×B | {θ} × Ω∞)

as well as, for all Θ′ ∈ F ,
µ0 (Θ′) ≡ P (Θ′) ≡ P (Θ′ × Ω∞) .

By Theorem 35.6 in Billingsley (1995) (which is an implication of the martingale convergence theorem),

we obtain

πtµ0 (Θ′) ≡ E [IΘ′ (θ) , P (θ | X1, ..., Xt)]

→ E [IΘ′ (θ) , P (θ | X1, X2, ...)] ≡ π∞µ0 (Θ′)

with P probability one.
10An accessible proof can be found in Section 1.3.3. of Gosh and Ramamoorthi (2003).
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In our set-up, the KL-divergence (16) can take on values in [0,∞) wherebyDKL(ϕ||ϕ′) =

0 if, and only if, ϕ = ϕ′ so that the KL-divergence gives us some notion about how close

ϕ′ is to ϕ without being a fully fledged metric.11 In the continuous case, (16) becomes

DKL(ϕ||ϕ′) =

∫
x∈Support(ϕ)

ln

[
dϕ/dm

dϕ′/dm
(x)

]
dϕ

dm
(x) dx (18)

where dϕ
dm
and dϕ′

dm
are the pdf’s of the (absolutely continuous) distribution functions ϕ

and ϕ′, respectively. In the finite case, we have that

DKL(ϕ||ϕ′) =
∑
ω∈Ω

dϕ (ω) · ln dϕ (ω)

dϕ′ (ω)
(19)

where dϕ (ω) and dϕ′ (ω) denote the probabilities of event {ω} with respect to the
probability measures ϕ and ϕ′, respectively.

Example 3. Revisit Example 1 and suppose that the ϕθ are given as
normal distributions N (µθ, σθ) with Θ = {1, ..., n}. A straightforward exer-
cise12 shows that, for any i, j ∈ Θ,

DKL(ϕi||ϕj) = ln
σj
σi

+
σ2
i +

(
µi − µj

)2

2σ2
j

− 1

2
. (20)

�

Theorem 0. (Berk 1966). The emerging posterior π∞µ0 of a—not necessarily well-

specified—prior µ0 will almost surely concentrate at the subset Θ∗µ0 ⊆ Support (µ0)

consisting of the KL-divergence minimizers ϕθ from the true measure ϕθ∗. That

is,

Support
(
π∞µ0

)
= Θ∗µ0 , a.s. Pθ∗ (21)

such that

Θ∗µ0 = arg min
θ∈Support(µ0)

DKL(ϕθ∗ ||ϕθ). (22)

11The KL-divergence is asymmetric and does not satisfy the triangle inequality. Note that, by con-

vention, the KL-divergence takes on the value ∞ iff dϕ/dm > 0 and dϕ′/dm = 0; however, this case is

not relevant to our paper because each ϕ′ has full support on (Ω,Σ).
12For an elegant way to derive (20) see the answer of user ‘ogrisel’ under

http://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
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Remark. While Berk (1966) does not explicitly mention the notion ‘KL-divergence’,
which is implicit in his analysis by his Definition (b) of η (θ), Kleijn and Vaart (2006)

do. To see that Berk’s Theorem entails Doob’s Theorem just observe that, for any

well-specified prior µ0,

{θ∗} = arg min
θ∈Support(µ0)

DKL(ϕθ∗ ||ϕθ) (23)

so that (21) becomes (15).

3 Bayesian learning with multiple priors

3.1 Prior selection rules

Turn now to a Bayesian decision maker who expresses ambiguity attitudes through

multiple priors over the parameter values in Θ. Instead of an unique prior µ0, we now

consider a non-empty, closed setM0 ⊆ 4n of priors over Θ. Suppose, for the moment,

that the decision maker forms posteriors from all his priors. Then he will, almost surely,

end up with the following set of emerging posteriors after observing an unlimited amount

of statistical information

Π∞ =
⋃

µ0∈M0

{
π∞µ0

}
, a.s. Pθ∗. (24)

If all priors inM0 are well-specified, we can immediately restate, by Doob’s Theorem,

M-2002’s main finding according to which all emerging posteriors concentrate at the true

measure ϕθ∗, i.e.,

Π∞ = {δθ∗} , a.s. Pθ∗. (25)

For the more general case of not-necessarily well-specified priors, we obtain, by Berk’s

Theorem 0, that every π∞µ0 in (24) has support on Θ∗µ0 given by (22). In particular, if

δθ ∈ M0, then also δθ ∈ Π∞. As a consequence, the set of emerging posteriors (24)

might become quite implausible if not all priors are well-specified.

Example 4. Revisit the “Coin tossing”Example 2. Suppose that the
parameter space is given as

Θ = {0.01, 0.99} (26)

such that θ∗ = 0.99. In the long run the decision maker will thus observe,

by the law of large numbers, about 99% of all coin tosses resulting in Tails.
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Further suppose that the set of priors is given as all probability measures on

(Θ,F), i.e.,M0 = 42. By Berk’s Theorem 0, we obtain the following set of

emerging posteriors

Π∞ = {δ0.01, δ0.99} (27)

because all mixed priors as well as δ0.99 converge to δ0.99 whereas δ0.01 con-

verges to δ0.01. That is, after unlimited Bayesian learning the decision maker

regards it still as possible that the objective probability of Tails might be

only 1% despite having observed Tails in 99% of all coin tosses.�

On the one hand, we regard the set of emerging posteriors in the above example as

highly unrealistic; i.e., we do not believe that there are many real-life decision makers

who would end up with δ0.01 ∈ Π∞. On the other hand, we regard it as too restrictive to

consider only decision makers with well-specified priors as M-2002. In particular, we do

not see any plausible reason why multiple priors decision makers should not hold some

misspecified before they observe any data.

To resolve this “plausibility dilemma”, we follow the seminal approach of ES-2007 and

assume that the decision maker tests the plausibility of his priors against the observed

data in accordance with some prior-selection rule. Formally, the set of admissible (=non-

rejected) priors in the light of any observed data sample drawn from X1, ..., Xt is thereby

determined by some prior-selection rule R, i.e.,

X1, ..., Xt 7−→Mt
0,R, t = 1, 2, ..., (28)

such that the set of R-admissible priors at t, denotedMt
0R, satisfies, for all t,

Mt
0,R ⊆M0. (29)

Note that, by (29), previously rejected priors might become admissible later on if they

are supported by new data. To illustrate the concept of a prior-selection rule, consider

the following two examples of perceivable rules.

Example 5. If the decision maker applies the maximum expected like-

lihood rule, he rejects each prior as implausible that does not maximize the

expected likelihood for the observed data sample, i.e.,

Mt
0,ML = arg max

µ0∈M0

∑
θ∈Θ

t∏
i=1

dϕθ
dm
· µ0 (θ) . (30)

�
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Example 6. Now consider the maximum expected loglikelihood rule. By

this rule, the decision maker rejects each prior as implausible that does not

maximize the expected loglikelihood for the observed data sample, i.e.,

Mt
0,MLL = arg max

µ0∈M0

∑
θ∈Θ

ln

t∏
i=1

dϕθ
dm
· µ0 (θ) . (31)

�

IfM0 only contains degenerate measures, both rules are equivalent because likelihood

and loglikelihood maximizers are identical. This equivalence is no longer the case if the

expectation is taken with respect to non-degenerate priors in M0. More specifically,

compared to the maximum expected likelihood rule the maximum expected loglikelihood

rule punishes more strongly priors µ0 that have θ’s with small likelihoods in their support.

Remark. The above rules are very restrictive in that they (typically) reject all priors
except for one. As a consequence, both rules generate a sequence of singleton sets of ad-

missible priors to the effect that any ambiguity already vanishes after observing the first

drawing, i.e., data-point. In the remainder of this paper, we therefore consider two fami-

lies of less extreme prior-selection rules—the ES-2007 α-maximum expected likelihood, on

the one hand, and the γ-maximum expected loglikelihood rule, on the other hand—which

nest the maximum expected likelihood (resp. loglikelihood) rule as respective special

cases.

3.2 Admissible limit priors and emerging posteriors

To describe the long-run learning behavior of a multiple priors decision maker who

applies a prior-selection rule, we have to make a stand about how to define the set of

admissible priors that survive this prior-selection rule if the number of data observations

gets arbitrarily large. More precisely, we have to decide whether we either consider the

cluster or the limit points of any sequence of R-admissible priors
{
Mt

0,R

}
t∈N as the

priors inM0 that survive the prior-selection rule R in the limit.

Denote by limt→∞Mt
0,R the set that contains all cluster points in 4n of a given

sequence
{
Mt

0,R

}
t∈N. Formally, µ ∈ 4

n is a cluster point of
{
Mt

0,R

}
t∈N if, and only if,

for every open set V around µ there are infinitely many t such that V ∩Mt
0,R 6= ∅.13

13The set of all cluster points of a given sequence of sets is also called the topological lim sup of this

sequence (Aliprantis and Border 2006, p. 114) or the upper limit of this sequence (Berge 1997, p. 119).
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Conversely, denote by limt→∞Mt
0,R the set of all limit points of the sequence

{
Mt

0,R

}
t∈N

such that µ ∈ 4n is a limit point of
{
Mt

0,R

}
t∈N if, and only if, for every open set V

around µ there exists some T such that, for all t ≥ T , V ∩Mt
0,R 6= ∅.14 Whereas every

limit point is a cluster point the converse is not true, implying

lim
t→∞
Mt

0,R ⊆ lim
t→∞
Mt

0,R. (32)

To see the difference between both concepts of topological set limits applied to the

notion of admissible limit priors consider the following example.

Example 7. Let ϕθ be the normal distribution with mean θ and variance
1 and suppose that Θ = {θ∗, θ1, θ2} with θ∗ = 0, θ1 = −1, θ2 = 1. Further,

suppose thatM0 = {µ′0, µ′′0} with

µ′0 = δθ1 , µ
′′
0 = δθ2 . (33)

That is, the decision maker will observe a sample that is generated by a sym-

metric (unbiased) random walk whereas he assumes that the data was either

generated by a negatively or by a positively biased random walk. Further

suppose that the decision maker applies the maximum expected likelihood

rule15 as prior-selection rule. Observe that

∑
θ∈Θ

t∏
i=1

dϕθ
dm
· µ′0 (θ) ≥

∑
θ∈Θ

t∏
i=1

dϕθ
dm
· µ′′0 (θ)⇔ (34)

t∏
k=1

dφθ1
dm

(Xk) ≥
t∏

k=1

dφθ2
dm

(Xk)⇔ (35)

ln

∏t

k=1

dφθ1
dm

(Xk)∏t

k=1

dφθ2
dm

(Xk)
≥ 0⇔ (36)

ln
exp

[
−1

2

∑t
k=1 (Xk − θ1)2]

exp
[
−1

2

∑t
k=1 (Xk − θ2)2] ≥ 0⇔ (37)

ln exp

[
(θ1 − θ2)

t∑
k=1

Xk −
t

2

(
θ2

1 − θ2
2

)]
≥ 0⇔ (38)

−2
t∑

k=1

Xk ≥ 0 (39)

14The set of all limit points of a given sequence of sets is also called the topological lim inf of this

sequence (Aliprantis and Border 2006, p. 114) or the lower limit of this sequence (Berge 1997, p. 119).
15Which is here, due to the degenerate priors, equivalent to the maximum expected loglikelihood rule.
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implying that

Mt
0,ML =


{µ′0} if

∑t
k=1Xk < 0

{µ′0, µ′′0} if
∑t

k=1Xk = 0

{µ′′0} if
∑t

k=1Xk > 0

(40)

By the recurrence theorem (Chung and Fuchs 1951), we will almost surely

observe that
∑t

k=1Xk crosses the zero line infinitely many times if t gets

arbitrarily large. Consequently, there do not exist any limit points for the

sequence
{
Mt

0,ML

}
t∈N so that

lim
t→∞
Mt

0,ML = ∅, a.s. Pθ∗. (41)

On the other hand, we obtain the non-empty set of cluster points

lim
t→∞
Mt

0,ML = {µ′0, µ′′0} , a.s. Pθ∗ . (42)

�

To take limt→∞Mt
0,ML = {µ′0, µ′′0} rather than the empty set limt→∞Mt

0,ML as the

set of one-admissible limit priors in the above example appears to us as the natural

thing to do. Since µ′0 as well as µ
′′
0 will always be supported (almost surely) by some

data, a cautious (conservative) decision maker should not rule out any prior in {µ′0, µ′′0}
as impossible. Motivated by these considerations, we introduce the following definition

of R-admissible limit priors.

Definition 2. We define set of R-admissible limit priors, denotedM∞
0,R, as the set of

cluster points of
{
Mt

0,R

}
t∈N that almost surely emerge, i.e.,

M∞
0,R ≡ lim

t→∞
Mt

0,R, a.s. Pθ∗. (43)

In words: The set of R-admissible limit priors consists of all priors inM0 that will

almost surely pop up again as elements in sets of the sequence
{
Mt

0,R

}
t∈N whenever the

data sample becomes arbitrarily large. In a next step, we assume that, for any given

prior-selection rule R, all emerging posteriors must have been formed from R-admissible

limit priors.16

16Equivalently, we define the emerging posteriors as the cluster points of the sequence of sets of

posteriors {Πt
R}t∈N that almost surely emerge.
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Definition 3. The set of emerging posteriors under the prior-selection rule R, denoted
Π∞R , is defined as

Π∞R =
⋃

µ0∈M∞0,R

{
π∞µ0

}
. (44)

We say that ambiguity vanishes if, and only if, Π∞R is a singleton, i.e.,

Π∞R =
{
π∞µ0

}
. (45)

Suppose, for example, that every prior inM∞
0,R has a unique KL-divergence minimizer

in its support. Then (44) becomes, by Berk’s Theorem, the following collection of Dirac

measures

Π∞R =
⋃

µ0∈M∞0,R

{
δθ̂ | θ̂ ∈ arg min

θ∈Support(µ0)
DKL(ϕθ∗ ||ϕθ)

}
. (46)

In that case, vanishing ambiguity means

Π∞R = {δθ̂} (47)

for some θ̂ ∈ Θ whereby we allow for the possibility that θ̂ 6= θ∗. That is, vanishing

ambiguity does not necessarily imply that the decision maker also learns the truth.

3.3 The Epstein and Schneider (2007) α-maximum expected
likelihood rule

The α-maximum expected likelihood rule, introduced by ES-2007, relaxes the maximum

expected likelihood rule of Example 3 by allowing the decision maker to keep priors

that are α-close to the expected likelihood maximizing prior. Restricted to the one-urn

environment, the formal definition of this rule is given as follows.

Definition 4. The α-maximum expected likelihood rule (ES-2007). Fix some α ∈ (0, 1].

The set of α-admissible priors after observing a sample drawn from X1, ..., Xt is

given as

Mt
0,α =

{
µ′0 ∈M0 |

∑
θ∈Θ

t∏
i=1

dϕθ
dm
· µ′0 (θ) ≥ α · max

µ0∈M0

∑
θ∈Θ

t∏
i=1

dϕθ
dm
· µ0 (θ)

}
. (48)
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Under some regularity assumptions17, ES-2007 derive their Claim 3 (p. 1301) ac-

cording to which all α-admissible limit priors will be well-specified if there exists at least

one well-specified prior inM0.

Claim 3 in ES-2007. If µ0 (θ∗) > 0 for some µ0 ∈ M0, then µ0 (θ∗) > 0 for all

µ0 ∈M∞
0,α.

To see that this result by ES-2007 is surprisingly strong, consider the following ex-

ample.

Example 8. Revisit the coin tossing situation of Example 2 and suppose
that the parameter space is given as

Θ = {0.49, 0.5, 0.99} (49)

where θ ∈ Θ is the probability of event {Tails}. Further suppose that the
coin is slightly unfair such that θ∗ = 0.49. Next consider the set of priors

M0 = {µ′0, µ′′0} such that

µ′0 = ε · δ0.49 + (1− ε) · δ0.99, (50)

µ′′0 = δ0.5, (51)

for some small ε > 0. Note that µ′0 is well-specified but a very incorrect

belief because it attaches the large probability 1 − ε to the very false para-
meter value θ = 0.99. On the other hand, µ′′0 is misspecified but very close

to the true value. If the decision maker applies the α-maximum expected

likelihood rule, he will, by Claim 3 in ES-2007, eventually reject the prior µ′′0
so that µ′0 remains the only admissible prior from which he forms posteriors.

That is, the α-maximum expected likelihood rule drives out the almost true

parameter value 0.5 in favor of the prior ε · δ0.49 + (1− ε) · δ0.99, which—as a

belief—is quite off-the-mark.�

Based on Claim 3 in ES-2007, we can immediately derive, by an application of

Doob’s Theorem, Epstein and Schneider’s (2007) Theorem 1 (p. 1288) for our one-urn

environment as follows.

17ES-2007 restrict attention to a finite state space Ω. Because ES-2007 admit for non-finite index

sets Θ, they impose weak compactness of M0 and they also require that µ0 (θ∗) has to be uniformly

bounded away from zero if θ∗ is in the support of µ0. For our finite index sets,M0 is weakly compact

if, and only if, it is closed whereby the bounded-away-from-zero condition is automatically satisfied for

finite index sets. For further details about their regularity assumptions see Theorem 1 (ES-2007, p.

1288).
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Theorem 1 (ES-2007). Suppose that Ω is finite. If µ0 (θ∗) > 0 for some µ0 ∈ M0,

then the set of posteriors that emerge under the α-maximum expected likelihood

rule is given as

Π∞α = {δθ∗} . (52)

4 New results: The γ-maximum expected loglikeli-

hood rule

Central to our paper is the introduction of a new prior-selection rule as a perceivable

alternative to the ES-2007 α-maximum expected likelihood rule.

Definition 5. The γ-maximum expected loglikelihood rule. Fix some γ ∈ [1,∞). The

set of admissible priors after observing a sample drawn from X1, ..., Xt is given as

Mt
0,γ =

{
µ′0 ∈M0 |

∑
θ∈Θ

ln
t∏
i=1

dϕθ
dm
· µ′0 (θ) ≥ γ · max

µ0∈M0

∑
θ∈Θ

ln
t∏
i=1

dϕθ
dm
· µ0 (θ)

}
(53)

whenever the maximal expected loglikelihood is not strictly positive, i.e.,

max
µ0∈M0

∑
θ∈Θ

ln
t∏
i=1

dϕθ
dm
· µ0 (θ) ≤ 0, (54)

and

Mt
0,γ =Mt

0,MLL = arg max
µ0∈M0

∑
θ∈Θ

ln
t∏
i=1

dϕθ
dm
· µ0 (θ) , (55)

else.

If (54) holds, the decision maker judges, by (53), priors as plausible whose expected

loglikelihood is γ-close to the expected loglikelihood of the maximizing prior. Note that

the greater the value of γ ≥ 1, the more priors will be included inMt
0,γ for a given data

sample. Further note that (54) always holds for the finite but not necessarily for the

continuous case (e.g., let arg maxµ0∈M0 = δθ such that ϕθ is the uniform distribution

on [a, b] with 0 < a, b < 1). If (54) is violated to the effect that the decision maker

deals with a strictly positive maximal expected loglikelihood, we simply assume that the

γ-maximum expected loglikelihood rule reduces to the maximum expected loglikelihood

rule (55).
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Proposition 1. The set of posteriors that emerge under the γ-maximum expected

loglikelihood rule is given as

Π∞γ =
⋃

µ0∈M∞0,γ

{
π∞µ0

}
(56)

such that either

M∞
0,γ =

{
µ′0 ∈M0 |

∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ′0 (θ) ≤ min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ0 (θ)

+
(1− γ)

γ

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ)

}
(57)

whenever this set is non-empty, or

M∞
0,γ = arg min

µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ0 (θ) (58)

else.18

Observe that (57) is empty if, and only if, the expected cross-entropy

−
∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) (59)

is strictly negative and γ > 1. A strictly negative expected cross-entropy is impossible for

the finite but not for the continuous case. If the expected cross-entropy is positive, i.e.,

(57) is non-empty, the emerging posteriors are formed from priors whose expected KL-

divergence is suffi ciently close to the minimal expected KL-divergence whereby greater

values of γ will imply greater sets of posteriors. The following subsections further char-

acterize the set of emerging posteriors (56) for different values of γ.

4.1 Special case γ = 1: The maximum expected loglikelihood
rule

For γ = 1 the γ-maximum expected loglikelihood rule becomes the maximum expected

loglikelihood rule of Example 6, i.e., (57) becomes

M∞
0,γ=1 = arg min

µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ0 (θ) . (60)

18The proof of Proposition 1 uses our assumption of a finite index space Θ. We conjecture that an

analogous proof should (by the dominated convergence theorem) also go through for an infinite state

space Θ combined with a finite Ω (as in ES-2007). However, the situation might be different for the

continuous case if the pdf’s are not bounded away from zero.
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That is, under the maximum expected loglikelihood rule, the admissible limit priors are

the priors that minimize the expected KL-divergence from the true measure.

Corollary 1. Suppose that γ = 1. If µ′0 (θ∗) > 0 for some

µ′0 ∈ arg min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ0 (θ) , (61)

then the set of posteriors that emerge under the maximum expected loglikelihood

rule is given as

Π∞γ=1 = {δθ∗} . (62)

In particular, (62) holds if δθ∗ ∈M0.

In contrast to the mere existence of a well specified prior in Theorem 1 for the ES-

2007 model, the well-specified prior µ′0 of Corollary 1 must also minimize the expected

KL-divergence. The following example demonstrates that our decision maker does not

necessarily learns the truth if there is some well-specified prior but δθ∗ /∈M0.

Example 9. Revisit the coin tossing Example 8 where

Θ = {0.49, 0.5, 0.99} (63)

with θ∗ = 0.49 andM0 = {µ′0, µ′′0} such that

µ′0 = ε · δ0.49 + (1− ε) · δ0.99, (64)

µ′′0 = δ0.5. (65)

By continuity of the KL-divergence, we can always find ε > 0 suffi ciently

small such that∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ′′0 (θ) <
∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ′0 (θ) (66)

⇔
Eϕθ∗ [ln dϕθ∗ ]− Eϕθ∗ [ln dϕ0.5] < ε ·

(
Eϕθ∗ [ln dϕθ∗ ]− Eϕθ∗ [ln dϕθ∗ ]

)
(67)

+ (1− ε) ·
(
Eϕθ∗ [ln dϕθ∗ ]− Eϕθ∗ [ln dϕ0.99]

)
⇔

Eϕθ∗ [ln dϕ0.5] > ε · Eϕθ∗ [ln dϕθ∗ ] + (1− ε) · Eϕθ∗ [ln dϕ0.99]
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since

Eϕθ∗ [ln dϕθ∗ ] > Eϕθ∗ [ln dϕ0.5] > Eϕθ∗ [ln dϕ0.99] . (68)

To be concrete observe that

Eϕθ∗ [ln dϕ0.5] = (1− 0.49) · ln (1− 0.5) + 0.49 · ln 0.5 ≈ −0.693147

Eϕθ∗ [ln dϕθ∗ ] = (1− 0.49) · ln (1− 0.49) + 0.49 · ln 0.49 ≈ −0.692947

Eϕθ∗ [ln dϕ0.9999] = (1− 0.49) · ln (1− 0.99) + 0.49 · ln 0.99 ≈ −2.35356

so that any ε > 0 satisfying

ε <
Eϕθ∗ [ln dϕ0.5]− Eϕθ∗ [ln dϕ0.99]

Eϕθ∗ [ln dϕθ∗ ]− Eϕθ∗ [ln dϕ0.99]
(69)

⇔
ε < 0.99988 (70)

would do. �

Note that we obtain in the above example for ε < 0.99988 that

Π∞ = {δ0.49, δ0.5} ,
Π∞α = {δ0.49} ,

Π∞γ=1 = {δ0.5} .

Without any prior-selection rule ambiguity will not vanish. Under the ES-2007 α-

maximum expected likelihood rule ambiguity will, for all α > 0, vanish whereby the

decision maker learns the true probability measure ϕ0.49. Ambiguity will also vanish

under the maximum expected loglikelihood rule, however, here the decision maker will

learn the almost true probability measure ϕ0.5 rather than the true ϕ0.49.

Remark. To see the intuition behind the formal difference between the maximal ex-
pected likelihood versus the maximal expected loglikelihood rule, consider the analogy to

risk-neutral versus strictly risk averse EU maximization with respect to multiple priors.

If likelihoods are taken as prizes, expected likelihood maximization corresponds to risk

neutral expected utility (=expected value) maximization. In contrast, expected loglike-

lihood maximization corresponds to strictly risk averse expected utility maximization

such that the utils are given as the logs of the prizes. By this interpretation, a deci-

sion maker who uses loglikelihoods as utils is more cautious (risk-averse) than a decision

maker who instead uses likelihoods as utils. In particular, priors that put positive weight
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on likelihoods that are close to zero will be considered as highly unfavorable from the

perspective of such a cautious decision maker. In the above example, the well-specified

prior ε · δ0.49 + (1− ε) · δ0.99 is rejected as implausible because the positive weight on the

unlikely parameter θ = 0.99 pulls down the expected loglikelihood of this prior.

4.2 Allowing for suffi ciently large γ > 1

Turn now to the case that γ > 1. The following result implies that the emerging

posteriors in (56) may concentrate at different indices whereby there tend to be more

emerging posteriors for greater values of γ.

Proposition 2. Suppose that ϕθ∗ satisfies

Eϕθ∗

[
ln
dϕθ∗

dm

]
< 0. (71)

Then

δθ̂ ∈ Π∞γ (72)

for some suffi ciently large γ if, and only if,{
θ̂
}

= arg min
θ∈Support(µ′0)

DKL(ϕθ∗||ϕθ) (73)

for some prior µ′0 ∈M0.

Note that the condition (71) is equivalent to the condition that the entropy19 of ϕθ∗

has to be strictly positive. Condition (71) is thus always satisfied for the discrete case

since ϕθ∗ has, by assumption, full support on Ω with #Ω > 1. The situation is different

for the continuous case where pdf’s can take on values greater than one so that (71)

might become positive.

Corollary 2. Suppose that (71) holds. For any given θ ∈ Θ, if δθ ∈M0, then

δθ ∈ Π∞γ (74)

for some suffi ciently large γ.

19More precisely, we refer to the Shannon entropy for the discrete and to the differential entropy for

the continuous case.
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In contrast to the α-maximum expected likelihood and to the maximum expected

loglikelihood rule (i.e., γ = 1), ambiguity will thus not vanish under the γ-maximum

expected loglikelihood rule for suffi ciently large values of γ. We come back to this

observation in the next section where we investigate non-vanishing STP-violations.

5 Application: Non-vanishing violations of the sure-

thing principle

This section embeds Ellsberg’s (1961) original one-urn experiment within our model of

Bayesian learning with multiple priors under the assumption that the decision maker

is a maxmin expected utility decision maker. Two main findings emerge. First, we

can establish the possibility of non-vanishing violations of Savage’s (1954) sure-thing

principle. Second, we demonstrate that the non-vanishing ambiguity increases in the γ

parameter.

5.1 The Ellsberg one-urn experiment

Savage (1954) considers a decision maker who has preferences � over Savage acts which
map some state space Ω into a set of consequences, denoted Z. By imposing several

structural and behavioral axioms, Savage derives the celebrated subjective expected utility

(SEU) representation of � such that, for all Savage acts f, g,

f � g ⇔
∫
ω∈Ω

u (f (ω)) dϕ ≥
∫
ω∈Ω

u (g (ω)) dϕ, (75)

where the subjective probability measure ϕ as well as the utility function u : Z → R are
uniquely20 pinned down by the decision maker’s preferences. We introduce the following

notational convention for the SEU of act f with respect to probability measure ϕ

EU (f, ϕ) ≡
∫
ω∈Ω

u (f (ω)) dϕ. (76)

Savage’s key behavioral axiom is the sure-thing principle which states that, for all

Savage acts f, g, h and events E ∈ Σ,

fEh � gEh ⇔ fEh
′ � gEh

′ (77)

whereby

fEh (ω) =

{
f (ω) for ω ∈ E
h (ω) for ω ∈ ¬E

(78)

20Of course, the utility function u is only unique up to some positive affi ne transformation.
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Starting with Ellsberg (1961), several experiments have reported systematic viola-

tions of the sure-thing principle, also dubbed ‘Ellsberg paradoxes’. Let us focus on

Ellsberg’s (1961, p. 654) original one-urn experiment. The Ellsberg urn contains 30 red

balls and 60 black or yellow balls of unknown proportion. Define the relevant state space

Ω = {ω1, ω2, ω3} (79)

where ω1 (resp. ω2, ω3) stands for the state in which a red (resp. black, yellow) ball will

be drawn. Next consider the following four Savage acts where E = {ω1, ω2}

ω1 ω2 ω3

fEh 1 0 0

gEh 0 1 0

fEh
′ 1 0 1

gEh
′ 0 1 1

The majority of decision makers express the preferences

fEh � gEh and gEh′ � fEh
′. (80)

Note that the ‘Ellsberg paradox’(80) constitutes a violation of the sure-thing principle

(77) and can therefore not be accommodated by SEU theory.

5.2 Maxmin expected utility

To accommodate the Ellsberg paradox (80), Gilboa and Schmeidler (1989) propose a

“maxmin expected utility with non-unique prior”(=MEU) representation such that, for

all Savage acts f, g,

f � g ⇔ min
ϕ∈P

∫
ω∈Ω

u (f (ω)) dϕ ≥ min
ϕ∈P

∫
ω∈Ω

u (g (ω)) dϕ (81)

for some non-empty set of probability measures P.21 If P reduces to a singleton, i.e.,
P = {ϕ} for any subjective probability measure ϕ, MEU reduces to SEU. However, if P
does not reduce to a singleton, the decision maker’s preferences express ambiguity in the

sense that he cannot pin down his uncertainty through a unique probability measure.

21Gilboa and Schmeidler (1989) axiomatize MEU within an Anscombe-Aumann (1963) framework

where the set of consequences Z contains all lotteries over some non-degenerate set of deterministic

prizes. Under this Gilboa and Schmeidler (1989) axiomatization, P is uniquely pinned down as a non-
empty, closed and convex set of finitely additive probability measures. We ignore here this specific

axiomatic foundation and also allow for, e.g., non-convex P.
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The MEU concept assumes that ambiguity is always resolved in a very pessimistic way:

Each act is evaluated with respect to the probability measure in P that gives the minimal
expected utility for the act in question.

Although this assumption of extreme ambiguity aversion is, in general, somewhat un-

realistic22, we follow the majority of the literature and suppose that the preferences (80)

can be best explained through extreme ambiguity aversion. That is, in the remainder of

this section we consider a MEU decision maker and we denote by

MEU (f,P) ≡ min
ϕ∈P

EU (f, ϕ) (82)

the decision maker’s maxmin expected utility from act f with respect to the set of

probability measures P.
To see that MEU can indeed accommodate the Ellsberg paradox (80) let Ω =

{ω1, ω2, ω3} and Σ = 2Ω. Furthermore, (quite naturally) suppose that all probability

measures ϕ in P have the following structure

ϕ =

(
1

3
, ϕ (ω2) ,

2

3
− ϕ (ω2)

)
(83)

for some ϕ (ω2) ∈
[
0, 2

3

]
. Without loss of generality, set u (z) = z for z ∈ {0, 1}. By

(83),

MEU (fEh,P) =
1

3
and MEU (gEh

′,P) =
2

3
. (84)

If ϕ1 ∈ P such that ϕ1 (ω2) < 1
3
, then

MEU (gEh,P) ≤ EU (gEh, ϕ1) <
1

3
. (85)

If ϕ2 ∈ P such that ϕ2 (ω2) > 1
3
, then

MEU (fEh
′,P) ≤ EU (fEh

′, ϕ2) <
2

3
. (86)

Collecting the above arguments gives us the following result.

Lemma 1. If there are ϕ1, ϕ2 ∈ P such that

ϕ1 (ω2) <
1

3
and ϕ2 (ω2) >

1

3
, (87)

then the MEU decision maker commits the Ellsberg paradox (80), i.e.,

MEU (fEh,P) > MEU (gEh,P) , (88)

MEU (gEh
′,P) > MEU (fEh

′,P) . (89)

22For a more realistic generalization of MEU, see the α-MEU concept of Ghirardato et al. (2004).
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5.3 Bayesian learning with multiple priors and non-vanishing
STP violations

We recast the Ellsberg one-urn experiment within our formal set-up of Bayesian learning

with multiple priors. Let Ω = {ω1, ω2, ω3} and Σ = 2Ω and consider the following set of

probability measures on (Ω,Σ)

Φ =

{
ϕθ =

(
1

3
, ϕθ (ω2) ,

2

3
− ϕθ (ω2)

)
| ϕθ (ω2) =

θ

90
, θ ∈ Θ

}
(90)

such that the index set Θ is given as

Θ = {1, ..., 59} . (91)

The indices in Θ correspond to the possible numbers of black balls in the urn whereby

we assume that there is at least one black (and one yellow) ball in the urn.23 As a

consequence, Φ contains all probability measures with full support on Ω that might be

deemed possible by the decision maker if he associates probabilities with the possible

ratios of balls in the Ellsberg urn. To focus our analysis, we assume that θ∗ = 30, i.e.,

we set ϕθ∗ (ω2) = 1
3
as the true probability that a black ball will be drawn from the urn.

Consider at first the a priori decision situation in which the decision maker has not

yet received any statistical information about θ∗ in the form of θ∗-i.i.d. drawings. We

model the MEU decision maker’s a priori uncertainty about the true parameter value

through some set of priorsM0 defined on the index space (Θ,F). The set of probability

measures P in (82) then becomes the set of reduced compound measures in M0 ◦ Φ

defined on (Ω,Σ) such that, for any Savage act f ,

MEU (f,M0 ◦ Φ) = min
µ0∈M0

∑
θ∈Θ

[∑
ω∈Ω

u (f (ω))ϕθ (ω)

]
µ0 (θ) (92)

= min
ϕ0∈M0◦Φ

∑
ω∈Ω

u (f (ω))ϕ0 (ω) (93)

where

ϕ0 (ω) ≡
∑
θ∈Θ

ϕθ (ω)µ0 (θ) . (94)

Now consider the a posteriori decision situation in which the decision maker had

started out with priors inM0 and subsequently observed arbitrarily many θ
∗-i.i.d. draw-

ings. The MEU decision maker will (a.s. Pθ∗) resolve his uncertainty about the true

23We exclude θ = 0 and θ = 60 out of convenience since we do not want to make a stand about

Bayesian updating in the light of events that the decision maker perceives as impossible. E.g., we want

to avoid the case that µ0 = δ60 and the decision maker observes a yellow ball drawn from the urn.
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parameter value through the set of emerging posteriors Π∞γ defined on the index space

(Θ,F). In this a posteriori decision situation, we thus obtain the set of reduced com-

pound measures P = Π∞R ◦ Φ, defined on (Ω,Σ), implying, for any Savage act f ,

MEU
(
f,Π∞γ ◦ Φ

)
= min
{π∞µ0 |µ0∈M∞0,γ}

∑
θ∈Θ

[∑
ω∈Ω

u (f (ω))ϕθ (ω)

]
π∞µ0 (θ) (95)

= min
ϕ∞γ ∈Π∞γ ◦Φ

∑
ω∈Ω

u (f (ω))ϕ∞γ (ω) (96)

where

ϕ∞γ (ω) ≡
∑
θ∈Θ

ϕθ (ω) π∞µ0 (θ) . (97)

Note that an a priori MEU decision maker becomes an a posteriori SEU decision

maker through Bayesian learning if, and only if, the set of emerging posteriors Π∞γ is a

singleton. Since Π∞γ only contains degenerate probability measures, such an a posteri-

ori SEU decision maker will hold a subjective belief that coincides with the objective

probability measure ϕθ∗ on (Ω,Σ) if, and only if, Π∞γ = {δθ∗}.
We speak of non-vanishing STP violations if the decision maker commits the Ellsberg

paradox (80) in the a priori as well as in the a posteriori decision situation. More

precisely, we say that STP violations do not vanish if, and only if,

MEU (fEh,M0 ◦ Φ) > MEU (gEh,M0 ◦ Φ) and (98)

MEU (gEh
′,M0 ◦ Φ) > MEU (fEh

′,M0 ◦ Φ) (99)

as well as

MEU
(
fEh,Π

∞
γ ◦ Φ

)
> MEU

(
gEh,Π

∞
γ ◦ Φ

)
and (100)

MEU
(
gEh

′,Π∞γ ◦ Φ
)

> MEU
(
fEh

′,Π∞γ ◦ Φ
)
. (101)

Proposition 3. Suppose that there are two misspecified priors µ′0, µ
′′
0 ∈M0 such that

µ′0 has support only on indices θ < 30 and µ′′0 has support only on indices θ > 30.

Then there exists some suffi ciently large γ < ∞ such that STP violations do not

vanish.

Remark. The reader should be careful to distinguish between the two different
notions of ‘multiple priors’used in the different strands of literature that are relevant

to our paper. First, there is our notion of the set of priors M0, defined on (Θ,F),
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which captures the decision maker’s (initial/unconditional) uncertainty about the true

measure in Φ. This ‘multiple priors’notion is in line with the literature on Bayesian

learning/updating. Second, there is the set P, defined on (Ω,Σ), of additive probability

measures that appears in the MEU utility representation (82). The (axiomatic) decision

theoretic literature typically refers to the members in P as the ‘multiple priors’that are
relevant to the agent’s decision situation. With respect to this decision theoretic notion,

our set of reduced compound measuresM0 ◦Φ captures the ‘multiple priors’relevant to

the a priori decision situation whereasM0 ◦Π∞γ captures the ‘multiple priors’relevant

to the a posteriori decision situation.

5.4 The set of emerging posteriors is γ sensible

Ambiguity typically decreases but not necessarily vanishes through statistical learning in

our model of Bayesian learning with multiple priors. More specifically, the degree of non-

vanishing ambiguity is increasing in the value of the γ parameter of our prior-selection

rule. To illustrate this γ-sensibility of non-vanishing ambiguity, let us first agree on a

straightforward definition of the (here: incomplete) “less ambiguous than”relationship

in terms of set-inclusion. Given any two sets of probability measuresM,M′ defined on

(Θ,F), we say thatM expresses (strictly) less ambiguity than M′ ifM⊆ (⊂)M′.

To focus our analysis, we next impose the following assumption on the a priori

decision situation in the Ellsberg one-urn experiment.24

Assumption 1. Suppose that the set of priors is given as the set of all probability
measures on (Θ,F), i.e.,M0 = 459.

By Assumption 1, we obviously have for any γ that Π∞γ ⊆M0 so that ambiguity must

(weakly) decrease through Bayesian learning. The following result shows very concretely

that γ′ ≥ γ implies Π∞γ ⊆ Π∞γ′ whereby the set-inclusion becomes strict whenever γ
′ is

suffi ciently greater than γ. That is, Π∞γ expresses strictly less ambiguity than Π∞γ′ if

γ′ >> γ.

Proposition 4. For any θ ∈ Θ,

δθ ∈ Π∞γ (102)

24This assumption corresponds to Gilboa and Schmeidler’s (1989, p. 142) ‘extreme case’.
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if, and only if,

γ ≥
1
3
· ln θ

90
+ 1

3
· ln
(

60−θ
90

)
2
3
· ln 1

3

. (103)

Obviously, the right side of the inequality (103) must take its minimum at the true

value θ = θ∗ = 30 so that δθ∗ ∈ Π∞γ holds for all possible values of γ, including the

maximum expected loglikelihood rule where γ = 1. If the distance |θ − θ∗| from the true
value increases, however, greater values of γ are required to ensure δθ ∈ Π∞γ whereby

these values are, by the symmetry of (103), identical for parameters θ and θ′ = 60− θ.
To be concrete, Table 1 lists, for all parameter values in Θ, the (approximate) values

of γ such that (103) holds with equality.

θ; θ′ γ

1; 59 2.24014

2; 58 1.93245

3; 57 1.75583

4; 56 1.63296

5; 55 1.5396

6; 54 1.46497

7; 53 1.40332

8; 52 1.35122

9; 51 1.30645

10; 50 1.26751

11; 49 1.23333

12; 48 1.20311

13; 47 1.17627

14; 46 1.15233

15; 45 1.13093

θ; θ′ γ

16; 44 1.11178

17; 43 1.09466

18; 42 1.07935

19; 41 1.06571

20; 40 1.05361

21; 39 1.04292

22; 38 1.03357

23; 37 1.02548

24; 36 1.01858

25; 35 1.01282

26; 34 1.00816

27; 33 1.00457

28; 32 1.00203

29; 31 1.00051

30 1

Table 1: γ-sensibility of the set of emerging posteriors

The interpretation of Table 1 is straightforward whereby we restrict, for convenience,

attention to the subset of emerging posteriors, denoted Π∞γ ∩ D, that only contains
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emerging Dirac measures.25 Iff

1 ≤ γ < 1.00051, (104)

then

Π∞γ = Π∞γ ∩ D = {δθ∗} ; (105)

iff

1.00051 ≤ γ < 1.00203, (106)

then

Π∞γ ∩ D = {δ29, δθ∗ , δ31} ; (107)

and so forth until γ ≥ 2.24014 results in

Π∞γ ∩ D = {δ1, δ2, ..., δ59} . (108)

In this latter case, Π∞γ ∩ D ◦ Φ = Φ so that the decision maker regards all ϕθ in Φ as

possible despite the fact that he had observed an unlimited amount of drawings with

replacement from the urn.

Note that if, and only if, γ < 1.00051, ambiguity vanishes in the a posteriori decision

situation to the effect that the decision maker learns the true value. Furthermore, the

decision maker will commit an Ellsberg paradox in the a posteriori decision situation if,

and only if, γ ≥ 1.00051 because

δ29, δ31 ∈ Π∞γ (109)

ensures, by Lemma 1, that the STP violations do not vanish.

6 Related models and an outlook on future research

While the multiple priors decision maker of our single-likelihood environment expresses

ambiguity about the index spaces, he is certain that the data is generated by some i.i.d.

25Note that, for all θ and θ′ = 60− θ,

DKL(ϕθ∗ ||ϕθ) = DKL(ϕθ∗ ||ϕθ′)

so that there are priors inM0 = 459, e.g.,

0.5δθ + 0.5δθ′ ,

with two different KL-divergence minimizers in their support. By Berk’s Theorem, posteriors formed

from these priors will not become Dirac measures.
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process. To be more specific, recall that Bayesian learning of a Savage (1954) decision

maker can be described by the joint index and sample space

(Θ× Ω∞,F⊗Σ∞, P ) (110)

such that the unique subjective additive probability measure P is pinned down by a

unique prior µ0 as follows: for all Θ′ ∈ F and all t,

P (Θ′ × (X1, ..., Xt)) =
∑
θ∈Θ′

t∏
i=1

dϕθ
dm

(Xi) · µ0 (θ) (111)

≡ P µ0 (·) (112)

As a specific multiple priors generalization of this Savage decision maker, we have con-

sidered in this paper a multiple priors decision maker, whom we model via the joint

index and sample space (
Θ× Ω∞,F⊗Σ∞,Πiid

)
(113)

whereby the additive probability measures in Πiid are pinned down by the multiple priors

inM0 such that

Πiid =
⋃

µ0∈M0

{P µ0} (114)

with P µ0 given by (111).

Instead of the specific i.i.d. multiple priors space (113), one might model Bayesian

learning with multiple priors for general spaces

(Θ× Ω∞,F⊗Σ∞,Π) (115)

where Π stands for an arbitrary set of multiple additive probability measures. For

example, the multiple likelihoods environment considered by Epstein and Schneider

(2007) weakens the assumption that the decision maker perceives the data as identi-

cally distributed whereas it keeps the independence assumption (i.e., the urns might be

independently swapped whereby the decision maker cannot observe this swapping). In

this ES-2007 multiple-likelihoods environment, the set Π in (115) consists of additive

probability measures such that, for all priors µ0 ∈M0,

P (Θ′ × (X1, X2, ...)) =
∑
θ∈Θ′

t∏
i=1

dϕiθ
dm

(Xi) · µ0 (θ) (116)

with

ϕiθ ∈ Φ (· | θ)≡{ϕ (· | θ) | ϕ ∈ Φ} . (117)
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ES-2007 call Φ (· | θ) the multiple likelihoods set for a given index θ. The question arises
in how far our γ-expected maximum loglikelihood rule would also select among different

likelihoods and not only among different priors. We therefore regard it an interest-

ing avenue for future research to extend our learning model to a multiple likelihoods

environment.

In a different strand of the literature on Bayesian learning under ambiguity, the

decision maker is described as a Choquet decision maker whose ambiguity with respect

to the joint index and data space is modeled through a non-additive probability measure

(e.g., Zimper and Ludwig 2009; Zimper 2011, 2013, Ludwig and Zimper 2014, Groneck,

Ludwig, and Zimper 2015). Denote this non-additive probability measure by ν and

recall that there exist different perceivable Bayesian update rules according to which a

Choquet decision maker may form a conditional non-additive measure ν (· | ·) from ν;

(cf., e.g., Gilboa and Schmeidler 1993; Sarin and Wakker 1998; Eichberger, Grant, and

Kelsey 2006). Such a Choquet Bayesian learner would be modeled for the joint index

and sample space

(Θ× Ω∞,F⊗Σ∞, ν (· | ·)) (118)

such that the conditional measure ν (· | ·) must specify the Bayesian update rule (resp.
rules) that has (resp. have) been applied. More specifically, the Choquet learning mod-

els by Zimper and coauthors consider neo-additive probability measures (Chateauneuf,

Eichberger, and Grant 2007) that are updated either via the pessimistic, optimistic or

generalized Bayesian update rule in the light of an objective i.i.d. data process. Such

a Choquet decision maker is not only ambiguous about the indices but also about the

whole data-generation process. Interestingly, such ambiguity with respect to the data

process might result in neo-additive posteriors ν (Θ′ | X1,X2, ...) that reflect an increase

rather than a decrease in ambiguity whenever the decision maker observes more and

more ϕθ∗-i.i.d. generated data. Such a possible increase in ambiguity through Bayesian

learning is in contrast to this paper’s learning model but also to the multiple likelihoods

learning model of ES-2007.

It is well-known in the literature that Choquet decision making with respect to

conditional neo-additive probability measures can be equivalently described as α-maxmin

multiple priors decision making in the sense of Ghirardato, Maccheroni, and Marinacci

(2004) if the corresponding multiple priors Bayesian update rules are employed to form

sets of multiple posteriors. In future research, we would like to recast neo-additive

Choquet Bayesian learning models (118) as Bayesian learning models with multiple

priors (115) with the aim to investigate the exact mathematical relationship between

these different model classes of Bayesian learning under ambiguity. In particular, the
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formal relationship between the multiple likelihoods approach of ES-2007, on the one

hand, and Choquet Bayesian learning models, on the other hand, is not well-understood

yet.

7 Concluding remarks

Nicholls et al.’s (2015) report an experiment in which the number of STP violations does

not decline through an increase in statistical information. Motivated by this experimen-

tal finding, we have developed a Bayesian learning model with multiple priors such that

STP violations do not necessarily vanish. Our approach thereby follows Epstein and

Schneider (2007), who convincingly argue that a multiple priors decision maker should

test the plausibility of his priors against the observed data. In contrast to the ES-2007

model, however, we consider a more cautious prior selection rule which is governed by a

“stubbornness”factor measuring the decision maker’s reluctance to revisit his priors. As

a potentially interesting feature for future economic applications, the Bayesian learner

of our model will end up with the more non-vanishing ambiguity, the more stubborn he

is.
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Appendix: Formal proofs

Proof of Proposition 1. Step 1. By Definition 5, the expected loglikelihood maxi-
mizing prior(s) will be inMt

0,γ for all t, i.e.,

arg max
µ0∈M0

∑
θ∈Θ

ln

t∏
i=1

dϕθ
dm
· µ0 (θ) ⊆Mt

0,γ. (119)

By a similar formal argument as under Step 3 below, it can be shown that M∞
0,γ (a.s.

Pθ∗) is never empty since

arg min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ0 (θ) ⊆M∞
0,γ a.s. Pθ∗, (120)

i.e., the expected Kullback-Leibler divergence minimizers belong asymptotically to the

expected γ-log-likelihood maximizers for any value of γ.

Step 2. Observe that any

µ′0 ∈ arg min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ0 (θ) (121)

belongs to (57) if (57) is non-empty.

Step 3. Suppose now that
µ′0 ∈M∞

0,γ (122)

but

µ′0 /∈ arg min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ0 (θ) . (123)

This is only possible if there exists some subsequence {tk}k∈N ⊆ {t}t∈N such that

∑
θ∈Θ

tk∑
i=1

ln
dϕθ
dm
· µ′0 (θ) ≥ γ · max

µ0∈M0

∑
θ∈Θ

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ)⇔ (124)

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ′0 (θ) ≥ γ · max

µ0∈M0

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ)⇒ (125)

lim
tk→∞

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ′0 (θ) ≥ lim

tk→∞
γ · max

µ0∈M0

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ) . (126)

Focus on the l.h.s. term of (126). Because Θ is finite, we can switch the sum and

the limit to obtain

lim
tk→∞

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ′0 (θ) =

∑
θ∈Θ

lim
tk→∞

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ′0 (θ) . (127)
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Turn now to the r.h.s. term of (126). We are going to argue, via Berge’s (1997)

maximum theorem, that we can switch the max and the limit. To this purpose, define

the following inner product

f (ytk , µ0) ≡
∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ) (128)

= ytk · µ0 (129)

where

ytk =

(
1

tk

tk∑
i=1

ln
dϕθ1
dm

, ...,
1

tk

tk∑
i=1

ln
dϕθn
dm

)
(130)

and

µ0 = (µ0 (θ1) , ..., µ0 (θn)) . (131)

Next define the value function of (128) as

M (ytk) = max
µ0∈M0

f (ytk , µ0) . (132)

Since M0 is, as a closed subset of 4n, compact and f is continuous, we know from

Berge’s (1997, p. 116)26 maximum theorem that the value functionM (ytk) is continuous.

Consequently, if limtk→∞ ytk exists, then

lim
tk→∞

γ ·M (ytk) = γ ·M
(

lim
tk→∞

ytk

)
. (133)

In other words, if

lim
tk→∞

1

tk

tk∑
i=1

ln
dϕθ
dm

(134)

exists (a.s. Pθ∗) for all θ, which we will show in a moment, then (a.s. Pθ∗)

lim
tk→∞

γ · max
µ0∈M0

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ) (135)

= γ · max
µ0∈M0

lim
tk→∞

∑
θ∈Θ

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ) (136)

= γ · max
µ0∈M0

∑
θ∈Θ

lim
tk→∞

1

tk

tk∑
i=1

ln
dϕθ
dm
· µ0 (θ) . (137)

Recall that the law of large numbers implies for the i.i.d.

ln
dϕθ
dm

(X1) , ..., ln
dϕθ
dm

(Xn) (138)

26Also see p. 570 in Aliprantis and Border (2006).
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that

lim
tk→∞

1

tk

tk∑
i=1

ln
dϕθ
dm

= Eϕθ∗

[
ln
dϕθ
dm

]
a.s. Pθ∗ (139)

for any θ. By (139) and using (127) and (137), we obtain that (126) is (a.s. Pθ∗)

equivalent to

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) ≥ γ · max

µ0∈M0

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ0 (θ)⇔ (140)

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) ≥ γ ·

(
− min

µ0∈M0

∑
θ∈Θ

−Eϕθ∗
[
ln
dϕθ
dm

]
· µ0 (θ)

)
(141)

⇔

−
∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) + γ · Eϕθ∗

[
ln
dϕθ∗

dm

]
(142)

≤ γ · min
µ0∈M0

∑
θ∈Θ

−Eϕθ∗
[
ln
dϕθ
dm

]
· µ0 (θ) + γ · Eϕθ∗

[
ln
dϕθ∗

dm

]
⇔

γ ·
∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ)dµ′0 (θ)− (1− γ)
∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) (143)

≤ γ · min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ)dµ0 (θ)

⇔

∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ′0 (θ) (144)

≤ min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ)dµ0 (θ) +
(1− γ)

γ

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) .

This proves that

µ′0 /∈ arg min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ0 (θ) (145)

is inM∞
0,γ if, and only if, µ

′
0 is in (57).

Step 4. Combining the last argument with Step 1 shows that

arg min
µ0∈M0

∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ0 (θ) =M∞
0,γ a.s. Pθ∗ (146)

whenever (57) is empty.
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Collecting results proves the proposition.��

Proof of Proposition 2. The only-if part is trivial. By Berk’s Theorem 0, we

cannot have δθ̂ ∈ Π∞γ if θ̂ is not the Kullback-Leibler divergence minimizer for any prior

inM0.

Let us prove the if-part. As a suffi cient condition for µ′0 ∈M∞
0,γ, we have that∑

θ∈Θ

DKL(ϕθ∗||ϕθ) · µ′0 (θ) ≤ (1− γ)

γ

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) . (147)

Next observe that

lim
γ→∞

(1− γ)

γ

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) = −

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) (148)

as well as∑
θ∈Θ

DKL(ϕθ∗ ||ϕθ) · µ′0 (θ) =
∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ∗

dm

]
· µ′0 (θ)−

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ)

< −
∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) (149)

since, by (71), ∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ∗

dm

]
· µ′0 (θ) < 0. (150)

Consequently, we can always find γ large enough such that∑
θ∈Θ

DKL(ϕθ∗||ϕθ) · µ′0 (θ) <
(1− γ)

γ

∑
θ∈Θ

Eϕθ∗

[
ln
dϕθ
dm

]
· µ′0 (θ) , (151)

which proves that µ′0 ∈M∞
0,γ.

In other words, any µ′0 ∈ M0 will belong toM∞
0,γ if γ is chosen is suffi ciently large.

If such µ′0 has θ̂ as the unique Kullback-Leibler divergence minimizer in its support, we

obtain (72) by Berk’s Theorem 0.��

Proof of Proposition 3. Step 1. Consider the a priori decision situation. Anal-
ogous to the derivation of Lemma 1, we have that

MEU (fEh,M0 ◦ Φ) =
1

3
and MEU (gEh

′,M0 ◦ Φ) =
2

3
. (152)
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Further, note that

MEU (gEh,M0 ◦ Φ) ≤ MEU

(
gEh,

∑
θ∈Θ

ϕθ (ω)µ′0 (θ)

)
(153)

≤ EU

(
gEh,

∑
θ∈Θ

ϕθ (ω) δ29

)
(154)

= EU (gEh, ϕ29) (155)

=
29

90
<

1

3
(156)

as well as

MEU (fEh
′,M0 ◦ Φ) ≤ MEU

(
fEh

′,
∑
θ∈Θ

ϕθ (ω)µ′′0 (θ)

)
(157)

≤ EU

(
fEh

′,
∑
θ∈Θ

ϕθ (ω) δ31

)
(158)

= EU (fEh
′, ϕ31) (159)

=
1

3
+

29

90
<

2

3
. (160)

Consequently, the inequalities (98)-(99) hold.

Step 2. Consider the a posteriori decision situation. Note that

MEU
(
fEh,Π

∞
γ ◦ Φ

)
=

1

3
and MEU

(
gEh

′,Π∞γ ◦ Φ
)

=
2

3
. (161)

The specifications of µ′0 and µ
′′
0 imply, by Proposition 2, for some suffi ciently large γ the

existence of some

δθ′ , δθ′′ ∈ Π∞γ (162)

such that θ′ < 30 < θ′′. Consequently,

MEU (gEh,Π
∞
Z ◦ Φ) ≤ EU

(
gEh,

∑
θ∈Θ

ϕθ (ω) δθ′

)
(163)

≤ EU

(
gEh,

∑
θ∈Θ

ϕθ (ω) δ29

)
(164)

<
1

3
(165)
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as well as

MEU (fEh
′,Π∞Z ◦ Φ) ≤ EU

(
fEh

′,
∑
θ∈Θ

ϕθ (ω) δθ′′

)
(166)

≤ EU

(
fEh

′,
∑
θ∈Θ

ϕθ (ω) δ31

)
(167)

<
2

3
, (168)

which proves the inequalities (100)-(101).��

Proof of Proposition 4. By the proof of Proposition 1 (cf., inequality (140) as
well as Step 2.), µ′0 ∈M∞

0,γ if, and only if,∑
θ′∈Θ

Eϕθ∗

[
ln
dϕθ′

dm

]
· µ′0 (θ′) ≥ γ · max

µ0∈M0

∑
θ′∈Θ

Eϕθ∗

[
ln
dϕθ′

dm

]
· µ0 (θ′) . (169)

Since, by assumption,M0 = 459, we have, for any θ ∈ Θ,

δθ ∈ Π∞γ (170)

if, and only if,

Eϕθ∗

[
ln
dϕθ′

dm

]
· δθ ≥ γ · Eϕθ∗

[
ln
dϕθ′

dm

]
· δθ∗

⇔

Eϕθ∗

[
ln
dϕθ
dm

]
≥ γ · Eϕθ∗

[
ln
dϕθ∗

dm

]
(171)

⇔
Eϕθ∗

[
ln dϕθ

dm

]
Eϕθ∗

[
ln dϕθ∗

dm

] ≤ γ (172)

⇔
dϕθ∗ (ω2) · ln dϕθ (ω2) +

(
2
3
− dϕθ∗ (ω2)

)
· ln
(

2
3
− dϕθ (ω2)

)
dϕθ∗ (ω2) · ln dϕθ∗ (ω2) +

(
2
3
− dϕθ∗ (ω2)

)
· ln
(

2
3
− dϕθ∗ (ω2)

) ≤ γ (173)

⇔
1
3
· ln θ

90
+ 1

3
· ln
(

60−θ
90

)
2
3
· ln 1

3

≤ γ, (174)

which proves the proposition.��
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