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Optimal Information Transmission

Wei Ma∗

Abstract

This paper addresses the issue of how a given piece of information should be transmitted from
a better-informed doctor to an ill-informed patient. The information to be transmitted is ex-
pressed as a probability distribution on a space of the patient’s possible health states. For a
formal analysis of the issue we develop a two-person dynamic game, in which the doctor sends
a sequence of messages to the patient to inform him of his health state, and the patient, after
receiving each message, chooses an action in an attempt to improve upon his current health
status. We study some standard properties of the equilibria of this game; in particular, we show
that it has a subgame perfect equilibrium.

Keywords: Information transmission; Dynamic game theory; Subgame perfect equilibrium.
JEL classification: D73; D83

1 Introduction

Crawford and Sobel (1982) studied the question how much information a better-informed agent
should send to the other agent in a two-person game, and this question was then further analyzed
by Caplin and Leahy (2004) in the context of behavioral medicine. As a continuation of these two
papers, we shall consider here, also in the context of behavioral medicine, a different but related
question: Supposing the amount of information to be sent from one agent to the other has been
determined, or more simply, given a piece of information, how should it be sent from the better-
informed agent (henceforth call her the doctor) to the other agent (henceforth call him the patient).

Before making this question more precise let us first see an example, partly as an illustration and
partly as a motivation. Suppose that a patient is diagnosed as having tumour with probability 0.8,
and this tumour has an even chance of being either benign or malignant. Then the patient’s health
condition can formally be described by a probability distribution which yields benign tumor with
probability 0.4, malignant tumor with probability 0.4, and health with probability 0.2. Suppose
further that the doctor has two chances to communicate with the patient on his health condition. So
one way for her to do so is this: First tell him that he has tumour with probability 0.8, and then, in
the second chance, tell him that the tumour is with an even chance of being benign or malignant. A
second way is to tell him, in a one-shot fashion, that he has benign tumor with probability 0.4, etc.
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The first way is usually called gradual, and the second one-shot, resolution of uncertainty. This
situation is connected with the framing effect of decision making under risk (Tversky and Kahne-
man (1981, Problems 6 and 7)). Given two risky situations S1 and S2, Tversky and Kahneman’s ex-
periment showed that an individual may prefer S1 to S2 when their uncertainties are resolved grad-
ually, but he may reverse his preference when the uncertainties are instead resolved in a one-shot
fashion. Additionally, a number of experimental studies in financial economics, too, have shown
that people are not indifferent between those two kinds of uncertainty resolution. For instance,
Gneezy and Potters (1997) demonstrated that a subject will invest less in a financial instrument, the
more frequently he evaluates its returns (i.e. he prefers one-shot resolution of uncertainty).

Returning to our doctor-patient example, there now arises the question: For a doctor not know-
ing the patient’s preference between the two kinds of uncertainty resolution, how should she send
to him a piece of information on his health condition such that both of their utility levels are maxi-
mized in a certain sense; and even when she knows his preference but he prefers gradual resolution
of uncertainty, which one is the most preferred among a number of different ways for gradually
resolving the uncertainty involved?

To answer this question we have first to provide a quantitative description of an individual’s
preference between one-shot and gradual resolution of uncertainty. For this we shall invoke the
theories of Gul (1991) and Dillenberger (2010). According to them an individual preference is
completely characterized by a parameter β ∈ (−1,∞); more precisely, when β ∈ [0,∞) an individ-
ual displays a preference for one-shot resolution of uncertainty, and when β ∈ (−1,0] he displays
a preference for gradual resolution of uncertainty. These two preferences and their foundation—a
theory of multi-stage lotteries—are discussed in detail in Section 2.

In Section 3, we first describe the game we will study, and then present its extensive form and
define the notion of subgame perfect equilibrium. Specifically, there are two players: a doctor and a
patient. The doctor has in hand a piece of information on the patient’s health condition, and suppose
she has K chances to send him this information. Let us call each chance a period. In each period,
the doctor sends the patient a message; after receiving the message, he will take an action, which
might in turn alter the original information the doctor wants to send. Then in the next period, the
doctor, based on this updated information, will send another message, and based on this message
the patient will take another action. To illustrate, consider again the above doctor-patient example,
which has K = 2. In the case of gradual resolution of uncertainty, the message sent by the doctor
in period one is that the patient has tumour with probability 0.8, and the one in period two is that
the tumour is with an even chance of being benign or malignant. After receiving the message in
the first period, the patient may choose to undergo an operation, and this operation is most likely to
change his health condition.

To get some intuition of the game and some feeling of how the way of uncertainty resolution
will affect players’ payoffs, we proceed in Section 4 to examine a special example of the game in
which the patient reveals his preference to the doctor and the actions he takes are assumed not to
alter the information that the doctor wants to send him at the very beginning. This example, albeit
rather simple, is studied also for two other reasons: in the first place it is related to the framing
effect mentioned above, and, in the second, it serves as a more specific motivation for the present
paper.

Section 5 studies some standard properties of the equilibria of the game; in particular, it is
shown that the game has a subgame perfect equilibrium. Finally, Section 6 concludes the paper
with a brief remark.
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2 Theory of Multi-stage Lotteries

To our knowledge Segal (1990) is the first systematic study of multi-stage lotteries. Here we first
give the definition of a multi-stage lottery, and then make a brief review of Gul’s theory of disap-
pointment aversion (Gul (1991)) and Dillenberger’s preference for one-shot and gradual resolution
of uncertainty (Dillenberger (2010)), and finally discuss the relationship between multi-stage lot-
teries and partitions of a set.

2.1 Definition

Let X be a finite set of a patient’s states (such as health, indisposition, or serious disease), and let
R+ be the set of nonnegative real numbers. We assume given on X a utility function u : X → R+,
mapping each state to its utility level which, for technical reasons and without loss of generality, is
supposed to be nonnegative. For the purpose of this paper, only the utility level of a state matters,
and so we shall identify X with u(X), and assume henceforth that X be a finite subset of R+. A
one-stage lottery, or more simply a lottery, is a probability distribution on (X ,2X), where 2X stands
for the power set of X . To simplify the exposition we shall identify each x ∈ X with the Dirac
measure δx at x (i.e. the degenerate lottery that yields x with certainty). Let L1 be the set of all
such lotteries. We then define a two-stage lottery to be a probability distribution on L1 with finite
support, and let L2 be the set of all two-stage lotteries. That is,

L2 = {Q : L1 → [0,1]| Q(p) > 0 for finitely many p’s in L1and ∑
p∈L1

Q(p) = 1}.

Inductively, we can define a (k + 1)-stage lottery to be a probability distribution on Lk with finite
support, where Lk is the set of all k-stage lotteries, k = 1,2, . . ..

Throughout this paper we make the following convection: We use small Latin letters such as
p,q to designate a generic k-stage lottery, and when we discuss the relationship between a (k +1)-
stage lottery and a k-stage lottery, we use capital Latin letters such as P,Q to designate the former,
and small Latin letters such as p,q to designate the latter. Given P,Q ∈Lk and α ∈ (0,1) we define
R = αP+(1−α)Q to be a lottery in Lk such that R(p) = αP(p)+(1−α)Q(p) for all p ∈ Lk−1.
With this algebraic operation we can define two worthwhile notions: reduction and extension of
a k-stage lottery. Let us begin with the simpler case of reduction. It is easily seen that to each
Q ∈ Lk, k ≥ 2, there corresponds in Lk−1 a lottery ρr(Q) = ∑p∈Lk−1 Q(p)p. This ρr(Q) we shall
call a reduction of Q, and we say that ρr(Q) and Q are algebraically equivalent.

To define extension of a k-stage lottery we take Q ∈ Lk. Let supp(Q) = {p1, . . . , pn} be the
support of Q. For any partition, Π = {Π1, . . . ,Πl}, of supp(Q), we construct Qi ∈ Lk, i = 1, . . . , l,
such that

Qi(p j) =

{
1
τi

Q(p j), for p j ∈Πi,

0, otherwise,

where τi = ∑p j∈Πi Q(p j). Let ρe(Q) be the lottery that yields Qi with probability τi. It is obvious
that ρe(Q) ∈ Lk+1, and that ρe(Q) and Q are algebraically equivalent. This ρe(Q) we shall call an
extension of Q. From this construction we see that the cardinality of the support of ρe(Q) is equal
to that of Π, a fact that will be used in a little while.

2.2 Preferences for One-shot and Gradual Resolution of Uncertainty

We now discuss evaluation of a k-stage lottery, k = 1,2, . . .. Let us begin with the basic case of L1.
To evaluate a lottery we shall invoke Gul’s theory of disappointment aversion, and below we make
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a brief review of the computational aspect of this theory (see Gul (1991, pp. 684–685)). First, we
set the utility level of each Dirac measure δx ∈ L1 to be x. Second, for an arbitrary non-degenerate
lottery p ∈ L1, let {x1, . . . ,xn} be its support. Without loss of generality we assume x j−1 ≤ x j for
j = 2, . . . ,n.1 For each j ∈ {1, . . . ,n−1}, we construct a real number α j = ∑n

i= j+1 p(xi), and a pair
of lotteries, denoted by (q j,r j):

q j(x) = 0 for x /∈ {x j+1, . . . ,xn}, q j(x) = p(x)/α j for x ∈ {x j+1, . . . ,xn}
r j(x) = 0 for x /∈ {x1, . . . ,x j}, r j(x) = p(x)/(1−α j) for x ∈ {x1, . . . ,x j}.

Given β ∈ (−1,∞) let

γβ (α) =
α

1+(1−α)β
for all α ∈ [0,1]; (2.1)

and let V̂ (α j,q j,r j) = γ(α j)Eq j +(1−γ(α j))Er j, where E denotes the expectation operator. Then
we have the following two cases:

(I) x j∗ < V̂ (α j∗,q j∗,r j∗) < x j∗+1 for some j∗ ∈ {1, . . . ,n−1};
(II) V̂ (α j∗−1,q j∗−1,r j∗−1) = V̂ (α j∗,q j∗,r j∗) = x j∗ for some j∗ ∈ {2, . . . ,n}.

According to Gul (1991), one and only one of them will occur; moreover, the j∗ that satisfies the
inequalities in case (I) and the x j∗ that satisfies the equalities in case (II) are unique.2 If case (I)
(resp. (II)) occurs then we call p of type (I) (resp. (II)). Let uβ (p) be the utility level of p; we
define uβ (p) = V̂ (α j∗,q j∗,r j∗). In case (I) let D(p) = {(α j∗,q j∗,r j∗)} and in case (II) let

D(p) = {(α,q,r)| αq+(1−α)r = p and q(x) = 0 if x /∈ {x j∗, . . . ,xn},
r(x) = 0 if x /∈ {x1, . . . ,x j∗}}.

We compile here, but leave their proofs to the appendix, a number of properties of uβ that will
be useful later in the following lemma: Let j∗ be defined as above; for pi with support {xi

1, . . . ,x
i
n}

and p with support {x1, . . . ,xn}, let pi ⇒ p stand for xi
j → x j and p(xi

j)→ p(x j) as i → ∞ for all
j = 1, . . . ,n.

LEMMA 2.1. (i) uβ is continuous under the topology generated by the L1 metric.3

(ii) uβ (p) = uβ (q) implies uβ (p) = uβ (α p+(1−α)q) for all α ∈ (0,1) and all p,q ∈ L1.
(iii) uβ (p) = γ(α)Eq+(1− γ(α))Er for any (α,q,r) ∈ D(p).
(iv) For any p of type (II), V̂ (α j,q j,r j) > x j when x j < x j∗−1 and V̂ (α j,q j,r j) < x j when x j > x j∗ .
(v) If β i → β and pi ⇒ p, then uβ i(pi)→ uβ (p).

Inductively, we can use Gul’s theory to evaluate any k-stage lottery, k = 2,3, . . .. Take a two-
stage lottery for example; let Q ∈ L2 with its support given by {p1, . . . , pn}. Evaluate each pi by
means of Gul’s theory, and let vi = uβ (pi), i = 1, . . . ,n. Then we form a (one-stage) lottery q which
yields vi with probability Q(pi). Let uβ (Q) be the utility level of Q; we define uβ (Q) = uβ (q).

Therefore, we obtain a utility function uβ : ∪k≥1L
k → R which maps each k-stage lottery to its

utility level. With these preliminaries we can introduce Dillenberger’s preference for one-shot and
gradual resolution of uncertainty.

DEFINITION 1. A patient displays preference for one-shot resolution of uncertainty (PORU) if
for any Q ∈ L2, uβ (ρr(Q))≥ uβ (Q). He displays preference for gradual resolution of uncertainty
(PGRU) if for any Q ∈ L2, uβ (ρr(Q))≤ uβ (Q).

1With a view to later application we, as opposed to Gul (1991), allow x j−1 = x j for some j. But this is not essential
and all results of Gul (1991) are still valid.

2Since it is possible that x j−1 = x j, the j∗ that satisfies the equalities in case (II) may not be unique.
3For the definition of this topology see Gul (1991, Footnote 5, p. 671).

4



According to this definition and Dillenberger (2010, p. 1989), a patient displays PORU if
β ≥ 0 in Eq. (2.1) and PGRU if −1 < β ≤ 0. From this we can see that a patient is completely
characterized by the value of β , and henceforth for easier reference, we shall call a patient with
β = β0 of β0-type.

2.3 Multi-stage Lottery and Partition of X

This subsection is preliminary to Section 3. Let us first recall the definition of a partition (see for
example Billingsley (1995, A3, p. 536)).

DEFINITION 2. (i) A partition of X is a finite collection of subsets of X , say {X1, . . . ,Xn}, such
that Xi∩X j = /0 for i 6= j and ∪n

i=1Xi = X .
(ii) For any two partitions Π1,Π2 of X , Π2 is finer that Π1, written Π1 ≥ Π2, if every element of
Π2 is a subset of some element of Π1.

Remark. Suppose Π1 = {X1, . . . ,Xn1}, Π2 = {Y1, . . . ,Yn2}, and Π1 ≥Π2. Let Ii = { j|Y j ⊂ Xi};
then it is easily checked that Xi =∪ j∈IiYj. Moreover, assume given a sequence Π1 ≥Π2 ≥ ·· · ≥Πk
and let Fi be the algebra generated by Πi; then it is easily verified that {F1, . . . ,Fk} constitutes a
filtration (see Billingsley (1995, p. 458) for its definition). All the development that follows could
equivalently be stated in term of filtrations, but as will become clear later, it is more convenient to
adopt the language of partitions.

The following construction, depending on the notion of extension of a lottery, is fundamental
to later development. Given p ∈ L1 and a sequence Π1 ≥ Π2 ≥ ·· · ≥ Πk of partitions of X , we
can use this sequence to construct a (k +1)-stage lottery that is algebraically equivalent to p in the
following fashion. Let Πi = {X i

1, . . . ,X
i
ni
}, i = 1, . . . ,k. Without loss of generality we may assume

supp(p) = X , so that Πi constitutes a partition of supp(p) (otherwise let Y i
j = X i

j∩supp(p) and then
Π′

i = {Y i
1, . . . ,Y

i
ni
} is a partition of supp(p)). Let ρe be as defined in Section 2.1; using Πk we can

construct P2 = ρe(p), a two-stage lottery that is algebraically equivalent to p. Now consider Πk−1.
Let Ik−1

i = { j| Xk
j ⊂ Xk−1

i }; by means of the above remark, the set, {Ik−1
i | i = 1, . . . ,nk−1}, is a

partition of {1, . . . ,nk}. Also as remarked at the end of Section 2.1, Πk and supp(P2) have the same
cardinality, so that we may assume supp(P2) = {p1, . . . , pnk}. Then to Πk−1 there corresponds
a partition of supp(P2): {{p j| j ∈ Ik−1

i }| i = 1, . . . ,nk−1}. Using this partition we can construct
P3 = ρe(P2), a three-stage lottery that is algebraically equivalent to P2, hence to p. Iterating this
process we will obtain a (k+1)-stage lottery that is algebraically equivalent to p; let us denote this
lottery by ρ(Π1, . . . ,Πk, p).

3 The Model

3.1 The Game

We consider the following game. Suppose that there is a patient of β -type who comes to see a
doctor. After diagnosis the doctor gets some knowledge about the patient’s health condition, which
is represented by a probability distribution, say π , on X . This distribution is then the information
that the doctor wants to convey to the patient. We assume that she is endowed with a prior proba-
bility distribution, say µ , on the possible types of the patient, and has K chances to communicate
with him. Each chance we shall from now on call a period. In each period, the doctor sends to the
patient a message about his health condition. After receiving the message, the patient chooses an
action from {0,1} (which may refer, for example, to refusing or accepting a treatment), and this
action will in turn update π to, say, π ′ (which means, for example, that after receiving a treatment,
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his health condition may be improved upon). Let us designate this game by Γ, and assume that all
aspects of Γ except π and its update π ′ are common knowledge.

To make this game more precise we have to address the following questions: (i) what the word
‘message’means; (ii) how an action taken by the patient will change the information that the doctor
wants to pass on to him; (iii) the payoff structure of Γ. Let us deal with these questions one by one.

For (i), by a message we shall mean a partition of X , and a sequence of messages, a sequence of
partitions of X that become increasingly finer. To illustrate and justify this let us consider again the
doctor-patient example that opened the introduction. Formally the patient’s health condition can be
described by the following distribution, denoted by p:

health status benign tumour malignant tumour healthy
probability 0.4 0.4 0.2

Remember that K = 2 and that one way for the doctor to inform the patient of the distribution p is
this: First tell him that he has tumour with probability 0.8, and then, in the second period, tell him
that the tumour is with an even chance of being benign or malignant. Formally this constitutes a
two-stage lottery, which can be represented diagrammatically as follows:

tumour

healthy

malignant

benign

healthy

Stage 1 Stage 2

0.8

0.2

0.5

0.5

1

Let tumour = {benign tumour,malignant tumour}. Then the set, Π = {{tumour},
{healthy}}, is a partition of {benign tumour, malignant tumour, healthy}. Let ρ be as defined at
the end of Section 2.3; then the message sent by the doctor in period one is given by ρ(Π, p).
With regard to a sequence of messages, since the message in the (k + 1)-st period is to be more
informative than the one in the k-th period, it is natural to require messages in the sequence to
become ever finer. This solves question (i).

For question (ii), let TK =×K
i=1{0,1}. We can formally represent how a sequence of actions in

TK updates π ∈ L1 by a function fπ : TK → L1. For question (iii), we shall discuss it in detail in
the next subsection.

3.2 Extensive Form and Equilibrium

We now define the payoff structure of Γ, the notion of mixed-strategy, and the corresponding equi-
librium. To this end we have to formulate the game in extensive form. To be concrete and for ease
of understanding let us first do this for the doctor-patient game.

For notational convenience, let x1 = benign tumor, x2 = malignant tumor, and x3 = health.
Then the set X = {x1,x2,x3} has four partitions (excluding X itself): m1 = {{x1},{x2},{x3}},
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Figure 3.1: Extensive form of the doctor-patient game

m2 = {{x1,x2},{x3}}, m3 = {{x1,x3},{x2}}, m4 = {{x1},
{x2,x3}}. Let F(m) = {m′| m≥ m′}; i.e., F(m) is the set of partitions that are finer than m.

Recall that K = 2 in the doctor-patient game; its extensive form is given in Figure 3.1. In
this figure symbols as a0,a1, . . ., represent the doctor’s decision nodes, and symbols as b1,b2, . . .,
represent the patient’s decision nodes. The game starts with a0, at which the doctor can take four
actions m1, . . . ,m4, each of them denoting a message that she can send to the patient. These four
actions then lead to four decision nodes for the patient: b1, . . . ,b4; at every bi the patient can take
either of the two actions: 0 or 1. This in turn leads to eight decision nodes for the doctor: a1, . . . ,a8.
We define a function φ1 on {a1, . . . ,a8} such that φ1(ai) gives the penultimate action taken to reach
ai. So the actions available at ai must be members of the set F(φ1(ai)), i = 1, . . . ,8. Take a1 for
example; note that φ1(a1) = m1 and F(m1) = {m1}, so the action available at a1 is m1 only. Take
a3 for another example; we now have φ1(a3) = m2 and F(m2) = {m1,m2}, so the actions available
at a3 are m1 and m2. Therefore, each of ai, i = 1, . . . ,8 will yield one or two decision nodes for the
patient, which all together are denoted by b5,b6, . . .. At each bi, i≥ 5, the patient again takes either
of the two actions: 0 or 1; and this in turn leads to the endpoints of the game, given by z1,z2, . . ..

It is not hard to extend the above description to any game Γ. Abstractly put and in the ter-
minology of Selten (1975), let T be the game tree for Γ, Z the set of all endpoints, D the set of
all vertices of T that are not endpoints, and a0 the origin of T . In the notation of last paragraph
we let D = A∪B, where A = {a0,a1, . . .} with each ai being a decision node for the doctor and
B = {b1,b2, . . .} with each bi being a decision node for the patient. For notational convenience we
shall call the doctor player one, the patient player two, and write D1 for A and D2 for B. Every
member of Di is an information set for player i. Recall that φ1 is a function on D1 that labels each
of its member with the penultimate action taken to reach it. Let Cd be the set of all choices at
d ∈D. It is readily checked that Ca = F(φ1(a)) for every a ∈D1, and Cb = {0,1} for every b ∈D2.
Moreover, it is easily seen that both players have perfect recall.

Again following Selten (1975), we define a local strategy sid at the information set d ∈ Di to
be a probability distribution over Cd for i = 1,2. A local strategy sid is called pure if it assigns
1 to one choice at d and 0 to the other choices. A behavior strategy si for player i is a function
which assigns a local strategy sid to every d ∈ Di; si is called pure if every local strategy sid is.
According to Kuhn (1953) and remembering that the game is of perfect recall, mixed-strategies are
equivalent to behavior strategies, and therefore we shall restrict our following consideration to the
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latter, hereafter simply called strategies.

Let Sid denote the set of local strategies at d ∈ Di, Si the set of strategies for player i, and
S = S1× S2 the set of strategies for the game. To complete description of the game there remains
to specify the payoffs of the endpoints and of the strategies. For this let ξ0(d) = d, ξ1(d) be the
immediate predecessor of d for d 6= a0, ξn(d) the n-th predecessor of d; let P be the set of partitions
of X and φ2 : D\{a0}→P∪{0,1} a function that maps each non-initial node to the last action taken
to reach it (see Kreps and Wilson (1982)). Let v1 : Z → R+ be a function that maps each endpoint
to its payoff for the doctor, and v2 for the patient.

With this notation and for any z∈Z let m(z)= (ξ1(z),ξ3(z), . . . ,ξ2K−1(z)) and t(z)= (ξ2(z),ξ4(z), . . . ,ξ2K(z)).
Then the sequence t(z) of patient’s actions will update π into fπ(t(z)), and the uncertainty of this
updated information will be resolved according to the sequence m(z) of patient’s messages. This
way of uncertainty resolution, by means of the construction at the end of Section 2.3, will lead to a
(K +1)-stage lottery σ(z) = ρ(m(z), fπ(t(z))). Under this interpretation, it is reasonable to set

v2(z) = uβ (σ(z)). (3.1)

For the doctor, we assume her, as in Caplin and Leahy (2004), to be entirely empathetic by setting

v1(z) =
∫∞

−1
uβ ′(σ(z))dµ(β ′). (3.2)

In particular, when µ is the Dirac measure at β , we have v1(z) = v2(z), so that the doctor shares the
same utility function with the patient.

To specify payoffs of the strategies note that each s = (s1,s2) ∈ S induces a probability distri-
bution Ps on Z according to the formula

Ps(z) =
2K

∏
k=1

sι(k),ξk(z)(φ2(ξk−1(z))), (3.3)

where ι : {1,2, . . . ,2K} → {1,2} is defined by ι(k) = 2 for k odd and ι(k) = 1 for k even. Let
V1 : S→R+ be a function that maps each strategy to its payoff for the doctor, and V2 for the patient.
Since the patient is assumed in this paper to follow the theory of Gul (1991) (instead of the standard
expected utility theory), we set

V2(s) = uβ (Ps),

where uβ (Ps) is the utility level of Ps evaluated according to Gul’s theory. And for the doctor, we
set as above

V1(s) =
∫∞

−1
uβ ′(Ps)dµ(β ′).

With these preparations we can now define the notion of equilibrium. We shall study subgame
perfect equilibrium. It is interesting to observe that, as every information set of the game is a
singleton, the notion of subgame perfection coincides with that of sequential rationality of Kreps
and Wilson (1982). To define it we need the following standard notation: for s ∈ S let (s−id,s′id) be
a strategy in S which is derived from s by replacing sid with s′id .

DEFINITION 3. A strategy s∗ = (s∗1,s
∗
2) ∈ S is a subgame perfect equilibrium for Γ if for every

d ∈ Di, i = 1,2,

Vi(s∗)≥Vi(s∗−id,sid) for every sid ∈ Sid.

Remark. Again as every information set of the game is a singleton, this definition is equivalent
to the usual one, for example, the one of Selten (1975).
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4 An Example

To get some intuition of the game and some feeling of the phenomenon that the way of uncertainty
resolution would affect the players’ payoff, we consider a specific example. Recall that π denotes
the information that the doctor wants to convey to the patient. For the sake of simplicity we assume
fπ(t) = π for all t ∈ TK , and that the patient reveals his type to the doctor, so that they share the
same utility function. We take K = 2 and π = [(1,2,3,4);(0.1,0.2,0.3,0.4)], i.e. a lottery that
yields 1 with probability 0.1 and 2 with probability 0.2, etc.

We examine two cases: β = 0.5 and β =−0.5. Let m1 = {{1},{2},{3},{4}}, m2 = {{1,2},{3,4}},
and m3 = {{1,2,3},{4}}. Since fπ(t) = π for all t ∈ T2, the behavior of the patient has no effect
on the payoffs of both players, and so we shall restrict our attention to the doctor. Take as an exam-
ple the following three ways of uncertainty resolution: (m1,m1), (m2,m1), and (m3,m1), of which
the first means that the doctor sends the message m1 in the both periods, and the other two have a
similar interpretation.

When β = 0.5, it is obvious that (m1,m1) is preferred to both (m2,m1) and (m3,m1), as a
nonnegative β implies a PORU. More concretely, a direct calculation shows that the utility level
of (m1,m1) is 2.826, that of (m2,m1) is 2.727, and that of (m3,m1) is 2.754. When β = −0.5, a
direct calculation shows that the utility level of (m1,m1) is 3.286, that of (m2,m1) is 3.387, and that
of (m3,m1) is 3.381, so that (m2,m1) is the most preferred. Additionally, it is interesting to note
that (m3,m1) is preferred to (m2,m1) when β = 0.5, but this preference relation is reserved when
β changes to −0.5.

5 Main Result

Let ∆ be the set of Borel probability distributions on (−1,∞), and let Γµ be the game as defined
in Section 3 when the doctor’s belief on the patient’s types is given by µ ∈ ∆. The object of this
section is to study some standard properties of the equilibria for Γµ . As a preliminary, it is easily
seen that all properties of Lemma 2.1 continue to be valid when the domain is changed to Z, and
therefore we shall refer to the lemma without explicit mention of the underlying domain.

PROPOSITION 5.1. The game Γµ has a subgame perfect equilibrium for every µ in ∆.

PROOF. Before turning to the proof we must first discuss the continuity of Vi, i = 1,2. For this note
that the set D and every Cd , d ∈ D, are all nonempty and finite, so that we can embed every Sid ,
and hence S, into some finite dimensional Euclidean spaces and impose on them the corresponding
Euclidean metrics. We now show that both V1 and V2 are continuous with respect to the Euclidean
metric. Take sk ∈ S with sk → s0. Referring to Eq. (3.3), we have Psk

(z)→ Ps0
(z) for every z ∈ Z.

This means that Psk → Ps0
under the L1 metric, hence that V2 is continuous, by property (i) of

Lemma 2.1.

For the continuity of V1 let x̄ = maxx∈X x. From the definition of σ(z) (see the line immediately
above Eq. (3.1)), there follows 0≤ uβ (σ(z))≤ x̄ for all β and all z ∈ Z, hence 0≤ uβ (Ps)≤ x̄ for
all β and all s ∈ S. By property (v) of Lemma 2.1 we know that uβ (Ps) is continuous in β for every
s ∈ S, hence that uβ (Ps), as a function of β , is Borel measurable. This together with the continuity
of V2 and Lebesgue dominated convergence theorem implies that V1 is continuous.

We turn now to the proof of the proposition. It is somewhat standard and based on Kakutani’s
fixed point theorem (see for instance Debreu (1959)). Recall that Sid is the set of local strategies at
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d ∈ Di; we define

rid(s) = argmax
s′id∈Sid

Vi(s−id,s′id), for all d ∈ Di, i = 1,2,

define ri : S → Si by ri(s) = ×d∈Dirid(s), the Cartesian product of all rid , and define r : S → S by
r(s) = r1(s)× r2(s). To prove the proposition it is sufficient to show that the correspondence r has
a fixed point. For this, it is then, according to Kakutani’s theorem, sufficient to check the following
four conditions:

(1) The set S is nonempty, compact, and convex.
(2) r(s) is nonempty for all s.
(3) r(s) is convex for all s.
(4) The correspondence r is upper hemi-continuous.

According to the discussion in the first paragraph of this proof, every Sid is a nonempty, compact,
and convex subset of some finite dimensional Euclidean space, so that Condition (1) is true by
Debreu (1959, Sections 1.6, (7) and 1.9, (11)). Condition (2) follows immediately from the com-
pactness of Sid and the continuity of Vi. For Condition (3), let sk = (s−id,sk

id) ∈ S for any s ∈ S,
sk

id ∈ Sid , and d ∈ Di, i,k = 1,2; it is readily checked that Pλ s1+(1−λ )s2
= λPs1

+ (1− λ )Ps2
for

all λ ∈ [0,1]. This together with property (ii) of Lemma 2.1 implies that rid(s) is convex, hence
Condition (3) is true, again by Debreu (1959, Section 1.9, (11)). As regards Condition (4), let
ϕi(s−id) = Sid for all s ∈ S, so that ϕi is continuous at s−id . Since Vi is continuous on S it follows
from Debreu (1959, Section 1.8, (4)) that each rid is upper hemi-continuous, hence that r is upper
hemi-continuous, by Debreu (1959, Section 1.8, (3)). This verifies Condition (4). Q.E.D

It is easy to observe that the equilibria of Γµ depend on µ . To study this dependence, we define
E : ∆→ S to be such that E(µ) is the set of equilibria of Γµ for every µ ∈ ∆, and endow ∆ with the
weak topology.

PROPOSITION 5.2. The correspondence E : ∆→ S is upper hemi-continuous.

PROOF. Let sk ∈ E(µk) where µk ∈ ∆, k = 1,2, . . ., and assume sk → s0, µk → µ0. It suffices
to show that s0 ∈ E(µ0). First we consider player 2 (the patient); this case is simpler as V2 is
independent of µ . Note that sk ∈ E(µk) implies V2(sk)≥V2(sk

−2b, t2b) for every t2b ∈ S2b and every
b ∈ D2. As argued in the proof of Proposition 5.1, V2 is continuous; passing to the limit we have

V2(s0)≥V2(s0
−2b, t2b) for every t2b ∈ S2b and every b ∈ D2. (5.1)

Now consider player 1 (the doctor). Let

V k
1 (s) =

∫∞

−1
uβ (Ps)dµk(β ), V 0

1 (s) =
∫∞

−1
uβ (Ps)dµ0(β );

and we have to show that

V 0
1 (s0)≥V 0

1 (s0
−1a, t1a) for every t1a ∈ S1a and every a ∈ D1. (5.2)

For this note that sk ∈ E(µk) implies V k
1 (sk) ≥ V k

1 (sk
−1a, t1a) for every t1a ∈ S1a and every a ∈

D1. Therefore it suffices to show that V k
1 (sk)→V 0

1 (s0) and V k
1 (sk

−1a, t1a)→V 0
1 (s0

−1a, t1a). We shall
prove the former only; a similar argument holds also for the latter.

For notational convenience let gk(β ) = uβ (Psk
) and g0(β ) = uβ (Ps0

). The idea is to use The-
orem 3.5 of Serfozo (1982). To reduce the need for frequent cross-referencing we first reproduce
some of Serfozo’s definitions and a relevant part of his Theorem 3.5 (see Serfozo (1982, pp.383,
388, 390)): The sequence {gk} is uniformly {µk}-integrable if

lim
α→∞

sup
k

∫

|gk|≥α
|gk|dµk = 0;
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this sequence converges continuously to g0, denoted by gk c→ g0, if gk(β k)→ g0(β 0) for any β k →
β 0 with β 0 ∈ (−1,∞). Then Theorem 3.5 of Serfozo (1982) states, in terms of our notation, that
if µk → µ0, gk c→ g0, V k

1 (sk) < ∞ for all k, and {gk} is uniformly {µk}-integrable, then V k
1 (sk)→

V 0
1 (s0). Since µk → µ0 is assumed a priori, to complete the proof, it remains to check the other

three conditions.

To see gk c→ g0, we take β k → β 0. By means of property (v) of Lemma 2.1 and the definition
of σ(z), we have uβ k(σ(z))→ uβ (σ(z)) for all z ∈ Z. Since sk → s0 it follows that Psk

(z)→ Ps0
(z)

for every z ∈ Z. Referring again to property (v) of Lemma 2.1 we obtain gk(β k)→ g0(β 0). This
shows gk c→ g0.

For the other two conditions, recall that x̄ = maxx∈X x; again as argued in the proof of Proposi-
tion 5.1, we have 0≤ uβ (Ps)≤ x̄ for all β and all s ∈ S, from which follows 0≤ gk(β )≤ x̄ for all
β . This then implies that V k

1 (sk) < ∞ for all k and that {gk} is uniformly {µk}-integrable. So the
proof of inequality (5.2) is completed, and therefore the whole proof is completed by combining
(5.1) and (5.2). Q.E.D

6 Conclusion

Like commodities, information is also a kind of scarce resources. Two of the central issues re-
volving around it are how much and how information should be transmitted from a better-informed
agent to an ill-informed one. While the former issue has been well studied in the literature, this
paper concentrates on the latter. We begin the analysis of the issue by formalizing it into a doctor-
patient dynamic game, and then show that the game has an equilibrium, and the equilibrium de-
pends, in an upper hemi-continuous manner, upon the doctor’s belief µ of the patient’s type.

This belief has been assumed throughout the paper to be fixed during the information transmis-
sion process. But it is not difficult to notice that the actions taken by the patient must contain some
information about his type, and therefore the doctor may well take advantage of this information
to update her belief µ . As a future work one may study properties of the game (as for instance
existence of equilibrium) in this new situation.

As another future work note that the doctor’s belief µ is assumed to be a probability distribu-
tion. A great deal of experimental evidence falling under the category of decision making under
ambiguity (see for example Ellsberg (1961)), however, suggests that the doctor’s uncertainty about
the patient’s type may not be able to totally captured by a single probability distribution, but instead
has to be captured by a set of probability distributions (Gilboa and Schmeidler (1989)) or a capac-
ity (Schmeidler (1989)). So another direction for future work is to study properties of the game in
which the doctor has an ambiguous belief on the patient’s type.

A Appendix: Proof of Lemma 2.1

The first four properties follow easily from Gul (1991): More specifically, property (i) is a direct
consequence of his Axiom 2; property (ii) follows from the remark immediately after his Axiom 3;
properties (iii) and (iv) are easily seen from Gul (1991, pp. 684–685).

We turn now to the proof of property (v). Although somewhat lengthy, the basic idea of the
proof is fairly simple, namely, to make full use of statements (I) and (II) of Section 2.2. Without
loss of generality we may assume that xi

1 ≤ xi
2 ≤ ·· · ≤ xi

n for all i.4 Let (α i
j,q

i
j,r

i
j) and (α j,q j,r j),

4This is easily seen to cause no problem for x1 < x2 < · · · < xn, because xi
j → xi for all j. When x j−1 = x j but
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j = 1, . . . ,n− 1, be a series of triples constructed respectively from pi and p according to the
procedure described in Section 2.2. From their construction it follows easily that α i

j → α j, qi
j ⇒

q j, and ri
j ⇒ r j for all j = 1, . . . ,n− 1. Recall that V̂ (α j,q j,r j) = γ(α j)Eq j + (1− γ(α j))Er j

and V̂ (α i
j,q

i
j,r

i
j) = γ(α i

j)Eqi
j +(1− γ(α i

j))Eri
j. By Eq. (2.1), γβ is continuous in α and β . This

combined with β i → β gives that

V̂ (α i
j,q

i
j,r

i
j)→ V̂ (α j,q j,r j) for all j. (A.1)

When p is of type (I), there exists a j0 satisfying x j0 < uβ (p)< x j0+1 and uβ (p)= V̂ (α j0,q j0,r j0).
Referring to Eq. (A.1) this means xi

j0 < V̂ (α i
j0,q

i
j0,r

i
j0) < xi

j0+1, hence uβ i(pi) = V̂ (α i
j0,q

i
j0,r

i
j0), for

i sufficiently large. Referring again to Eq. (A.1) we have uβ i(pi)→ uβ (p).

When p is of type (II), there exists a j0 such that uβ (p)= V̂ (α j0−1,q j0−1,r j0−1)= V̂ (α j0,q j0,r j0)=
x j0 . If there exists a j such that x j < x j0 , let j1 = max{ j| x j < x j0}; otherwise let j1 = 0. Similarly,
if there exists a j such that x j > x j0 , let j2 = min{ j| x j > x j0}; otherwise let j2 = n + 1. Then we
have four cases:

(1) j1 = 0 and j2 = n+1,
(2) j1 = 0 and j2 < n+1,
(3) j1 > 0 and j2 = n+1,
(4) j1 > 0 and j2 < n+1.

We shall show that property (v) holds in each case. Let us begin with case (1). In this case we have
obviously uβ (p) = x1 = xn. Note that xi

1 ≤ uβ i(pi) ≤ xi
n for every i; passing to the limit we get

uβ i(pi)→ uβ (p).

For the remaining three cases, their proofs are similar, so let us take case (4) as an example and
leave cases (2) and (3) to the interested reader. In case (4) we claim that

CLAIM A.1. xi
j1 < uβ i(pi) < xi

j2 for i sufficiently large.

PROOF. We shall prove uβ i(pi) < xi
j2 only; a similar argument holds also for xi

j1 < uβ i(pi). Assume
by contradiction that there exists a subsequence of {1,2, . . .}, which we might as well assume is the
sequence itself, such that xi

j2 ≤ uβ i(pi), i = 1,2, . . .. We first show that j2 < n. To see this suppose
by contradiction that j2 = n. Let Ji = { j| xi

j = xi
n}; then

∑
j∈Ji

pi
j = 1. (A.2)

Let J be the set-theoretic limit superior of {Ji}, and let τ = min j∈J j. By the very definition of limit
superior, there exists a subsequence {Jit | t = 1,2, . . .} such that τ = min j∈Jit

j. This implies that
Jit = {τ,τ + 1, . . . ,n} for all t, hence that J = Jit and x j = xn for every j ∈ J. Using Eq. (A.2) we
have ∑ j∈J pit

j = 1. Passing to the limit we get ∑ j∈J p j = 1, hence uβ (p) = xn. But this contradicts
uβ (p) = x j0 , as j2 < n+1 implies x j0 < xn. So we have j2 < n.

As a consequence, there exists an integer l ≥ 0 and a subsequence of {1,2, . . .}, which we might
again assume is the sequence itself, such that xi

j2+l ≤ uβ i(pi) < xi
j2+l+1. From the construction of

uβ i it follows that uβ i(pi) = V̂ (α i
j2+l,q

i
j2+l,r

i
j2+l). Passing to the limit and referring to Eq. (A.1) we

have V̂ (α j2+l,q j2+l,r j2+l) ≥ x j2+l . But note that x j2+l > x j0 , and therefore, according to property
(iv), V̂ (α j2+l,
q j2+l,r j2+l) < x j2+l , a contradiction. This shows that uβ i(pi) < xi

j2 . Q.E.D

From Claim A.1 it follows that every pi, i = 1,2, . . ., must belong to one of the following sets:

xi
j−1 > xi

j for some j and some i, we can simply interchange xi
j−1 and xi

j.
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• I1
j3 = {pi| uβ i(pi) = xi

j3}, where j1 < j3 < j2;
• I2

j4 = {pi| xi
j4 < uβ i(pi) < xi

j4+1}, where j1 ≤ j4 < j2.

Those sets that are either empty or finite we can simply disregard and restrict our consideration to
those that are infinite. From the definitions of j1 and j2 it follows that x j = x j0 , hence (α j,q j,r j) ∈
D(p), for j1 < j < j2. This implies that limi→∞,i∈I1

j3
uβ i(pi) = x j3 = uβ (p), and, using uβ i(pi) =

V̂ (α i
j4,q

i
j4,r

i
j4) and Eq. (A.1), that limi→∞,i∈I2

j4
uβ i(pi) = V̂ (α j4,q j4,r j4) = uβ (p).
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