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Abstract

The problem of computing equilibria for general equilibrium models with incomplete real asset markets, or GEI mod-
els for the sake of brevity, is reconsidered. It is shown here that the rank-dropping behavior of the asset return matrix
could be dealt with in rather a simple fashion: We first compute its singular value decomposition, and then, through
this decomposition, construct, by the introduction of a homotopy parameter, a new matrix such that it has constant rank
before a desired equilibrium is reached. By adjunction of this idea to the homotopy method, a simpler constructive
proof is obtained for the generic existence of GEI equilibria. For the purpose of computing these equilibria, from this
constructive proof is then derived a path-following algorithm whose performance is finally demonstrated by means of
two numerical examples.

Keywords: Incomplete asset markets; General equilibrium theory; Homotopy method
JEL: C68; C63

1 Introduction

After the hard work of a number of researchers over a number of decades, the proposition that the actual market is
incomplete has been widely acknowledged to be a fact in the town of economics. This then naturally raises the question
of how much of the general equilibrium theory for complete markets could be extended to the case of incomplete
markets. With this question in mind, the present paper is concerned with the general equilibrium model with incomplete
real asset markets, and studies the existence and computation of its equilibrium.

There are various reasons for the market being incomplete, such as asymmetric information, moral hazard, and
transaction costs (see Geanakoplos (1990)), and this incompleteness has both remarkable and far-reaching implications.
Two of them, perhaps most notable of all, are that perfect competition need not necessarily lead to market efficiency,
and that nominal assets are in marked contrast to real assets, in terms of their impact on the existence of equilibrium. As
regards the latter, equilibria have been shown in Werner (1985) and Cass (2006) to exist when the assets marketed are
nominal. But, on the other hand, it has been shown in Hart (1975), by way of example, that, when the assets marketed
are real, equilibria may fail to exist for GEI models. This unpleasant phenomenon, fortunately, has turned out to be
nongeneric, and the generic existence of GEI equilibria has been established in, for instance, Duffie and Shafer (1985);
Geanakoplos and Shafer (1990); Hirsch et al. (1990). The basic idea of these papers is to consider the demand function
as defined on the cartesian product of the price simplex and a Grassmann manifold, and then make extensive use of
results from differential topology. In the same spirit, a procedure for computing GEI equilibria has been devised in
Demarzo and Eaves (1996). The efficiency of this procedure however is adversely affected by the high-dimension of
the Grassmann manifold.

The first constructive proof that dispenses with the use of Grassmann manifold is to our knowledge presented in
Brown et al. (1996). In that paper the ingenious idea of switching homotopies is invented. Relatively speaking, the
procedure derived from this idea for computing GEI equilibria is, as remarked in Demarzo and Eaves (1996), not
robust and not easy to implement. Motivated presumably by these considerations, Schmedders (1998, 1999) introduce
the idea of a penalty function with penalties imposed on transactions on the asset market. On the one hand, this method
is intuitively appealing and becomes easy to implement, but, on the other hand, its generic convergence has not yet
been established.

∗Corresponding author: Department of economics, University of Pretoria, Pretoria 0002, South Africa. Tel: +27-0124204751. Email: maweic-
ityu@gmail.com
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Confronted with this state of affairs we propose in the present paper to give another constructive proof for the
generic existence of GEI equilibria. Recall that the main difficulty for so doing consists in the fact that the asset
return matrix may drop rank as the price varies. To circumvent this our idea is rather simple, and could be intuitively
described as follows. Let R(p) be the asset return matrix, where p denotes the price vector. We first find its singular
value decomposition, given say by L1(p)Σ(p)L2(p), where L1(p),L2(p) are two orthogonal matrices and Σ(p) is a
diagonal matrix. From matrix theory it follows that the diagonal entries of Σ(p) are nonnegative, and the number of
its strictly positive diagonal entries is precisely the rank of R(p). Based on this fact, we then introduce a parameter t
in [0,1], add the term 1− t to every diagonal entry of Σ(p), and let the resultant matrix be Σ(p, t). Using it we form a
new matrix R(p, t) = L1(p)Σ(p, t)L2(p), which is easily seen to be of full rank for every t in [0,1). With R(p, t) as a
substitute for R(p), we are finally able, by means of the homotopy method, to establish the generic existence of GEI
equilibria. This idea is carried out in detail in Section 3. It must be remarked that all the technicalities required to
realize the idea have already been available in the literature, especially in Brown et al. (1996); what we have to do is
simply put them in order.

We notice that from the constructive proof above a path-following algorithm can be derived for computing GEI
equilibria. This algorithm is, in comparison with the existing ones (Brown et al. (1996) and Schmedders (1998)),
marked by its simplicity and low-dimensional search space. To test its performance we apply it in Section 4 to compute
the equilibria for some numerical examples; the results of which turn out to be rather satisfactory, showing that the
algorithm derived is both effective and efficient. Before embarking on an elaboration of the preceding results, we have
first of all to spell out the model economy with which we shall be concerned; let us do this in the ensuing section.

2 The GEI Model

We shall study the same general equilibrium model with incomplete real asset markets as for instance in Brown et al.
(1996); Duffie and Shafer (1985); Schmedders (1998). This model consists of two periods with uncertainty over the
states of nature in the second period. In this period we assume there are S number of possible states, which will be
indexed by s running from 1 to S; call the first period state zero. In each sate there are L commodities available,
which will be indexed by l running from 1 to L. We shall hereafter use the symbol, xsl , to refer to a certain amount of
commodity l in state s.

We assume K real assets marketed in the economy, which will be indexed by k running from 1 to K; to make the
market incomplete we further assume K < S. By a real asset we shall mean an asset whose payoff in each state is
specified by a bundle of commodities in that state. Let M = L(S + 1); we can therefore characterize each asset by a
vector of dimension M whose first L components denote its payoff in state zero, the second L components its payoff
in state one, and so forth. This in turn enables us to characterize the asset market by a matrix A, of dimension M×K,
with its k-column designating the payoff of asset k. Without loss of generality and to simplify the exposition we shall
assume that every asset has a zero payoff in state zero.

Let ∆ = {p ∈ RM
+ | ∑M

i=1 pi = 1} be the price simplex and ∆++ its relative interior. For each p ∈ ∆++ it is often
convenient to partition it state-wise into p = (p̄0, . . . , p̄S) with p̄s ∈ RL being the price vector for state s, s = 0, . . . ,S.
As in Brown et al. (1996) we define for a particular p = (p̄0, . . . , p̄S) ∈ ∆

P =




0 p̄1 0 · · · 0
0 0 p̄2 · · · 0
...

...
...

. . .
...

0 0 0 · · · p̄S




S×M

;

the nominal return matrix at the price vector p of the assets is then given by

R(p) = PA ∈ RS×K . (1)

We assume H +1 households inhabiting in the economy, which will be indexed by h running from 0 to H. House-
hold h is characterized by an endowment vector eh ∈ RM

++ and a utility function Uh : RM
++ → R with the following

standard properties:
(i) smoothness: Uh is C∞,

(ii) strict monotonicity: DUh(x) ∈ RM
++ for all x in RM

++,
(iii) differentiably strict convexity: z>D2Uh(x)z < 0 for all z 6= 0 with DUh(x)z = 0,
(iv) boundary condition: {x ∈ RM

++|Uh(x)≥Uh(x0)} is closed in RM for all x0 in RM
++.

Given the incomplete market structure the households, in contradistinction to the case of complete markets, will
face a sequence of markets. In first period there are spot markets for L current commodities and securities markets for
K assets. In the second period the assets will pay off and the spot markets in every state will be reopened for the L
commodities. For household h, if we let x = (x̄0, . . . , x̄S) ∈RM

+ be his total consumption vector with x̄s his consumption
vector for state s, eh = (ēh

0, . . . , ē
h
S), and θ = (θ1, . . . ,θk) his portfolio of assets, then at a particular commodity price

2



vector p = (p̄0, . . . , p̄S) ∈ ∆ and an asset price vector q ∈ Rk
+, household h, so as to determine his demand, will be

confronted with the following problem:

max
(x,θ)

Uh(x), subject to

p̄0 · (x̄0− ēh
0)+qθ = 0,

P(x− eh) = R(p)θ .

As is argued in Brown et al. (1996), this problem would have a solution only if the asset price vector q does not admit
an arbitrage opportunigy. With this consideration the above maximization problem is equivalent to:

max
x

Uh(x), subject to

p · (x− eh) = 0,

P(x− eh) = R(p)θ for some θ .

(2)

We now proceed to define the notion of equilibrium. For this let x∗h(p,R(p)) be the solution to problem (2), and
define

Zh(p,R(p)) = x∗h(p,R(p))− eh

to be the excess demand function for household h. Let U = (U0, . . . ,UH) and e = (e0, . . . ,eH); then a GEI economy is
completely characterized by the triplet (U,e,A).

DEFINITION. A GEI equilibrium for the economy (U,e,A) is a price vector p ∈ ∆ such that ∑H
h=0 Zh(p,R(p)) = 0.

Also as is explained in Brown et al. (1996) this definition is not convenient to deal with for certain reasons. In
view of this we introduce the Cass trick (see Cass (2006)). Consider household zero; suppose that she faces, instead of
problem (2), the following problem with a complete market structure:

max
x

U0(x), subject to p · (x− e0) = 0.

We call this household an unconstrained one and suppose that xu(p) is her demand function. Let Zu(p) = xu(p)−e0 and
Z(p) = Zu(p)+ ∑H

h=1 Zh(p,R(p)). Then according to the Cass trick the above definition of equilibrium is equivalent
to the following:

DEFINITION. A GEI equilibrium for the economy (U,e,A) is a price vector p ∈ ∆ such that Z(p) = 0.

3 The Equilibrium Existence Theorem

The purpose of this section is to establish the existence of GEI equilibria as defined above. From Hart (1975) we have
learned that such an attempt may fail when the assets involved are real; so what we shall do is rather to establish the
generic existence of GEI equilibria, or, more precisely, the existence of GEI equilibria for almost every (e,A) ∈W ,
where W = R(H+1)M×RM×K .

It has become well known, since the work of Hart (1975), that the main difficulty in doing so lies in the fact that the
asset return matrix R(p) may drop rank as p varies, leading then to a discontinuous demand function. To circumvent
this difficulty we make use of the homotopy method, by first introducing into the picture a parameter t ∈ [0,1], and
then defining a new asset return matrix R(p, t) as follows. Let the singular value decomposition of R(p) be given by

R(p) = L1(p) ·Σ(p) ·L2(p),

where L1(p),L2(p) are two orthogonal matrices and Σ(p) is a diagonal matrix. Let σ1(p), . . . ,σK(p) be the diagonal
entries of Σ(p). From matrix theory it follows that σk(p)≥ 0 for all k, and that the rank of R(p) is equal to the number
of σk(p) that is strictly positive. Using this result we set σk, t(p) = σk(p)+(1− t), and define

R(p, t) = L1(p)Σt(p)L2(p),

where Σt(p) ∈ RS×K is a diagonal matrix with its k-th diagonal entry given by σk, t(p); it is easily seen that R(p, t) has
full rank for all (p, t) ∈ RM

+ × [0,1).

Let X = RM
++× [0,1], a smooth manifold with boundary of dimension M +1, and let

E = {(p, t,w) ∈ X×W | R(p, t) has full rank K}.
Noting that E is an open subset of X×W , it is a smooth submanifold. Replace R(p) with R(p, t) in problem (2) and let
Zh(p,R(p, t)) be the counterpart of Zh(p,R(p)) for this new problem. Given a vector v let v−1 be the vector formed by
deleting the last component of v. Consider the homotopy H : E → RM defined by

H(p, t,w) =
[

Zu
−1(p)+ t ∑H

h=1 Zh
−1(p,R(p, t))

∑i pi−1

]
; (3)
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and refer to the first set of equations as H−1(p, t,w). It is by means of this homotopy that we shall establish the existence
of GEI equilibria:

THEOREM 1. The economy (U,e,A) has a GEI equilibrium for almost every (e,A) ∈ W . Moreover, if multiple
equilibria exist, they are locally unique and odd in number.

PROOF. See the Appendix. Q.E.D

4 Numerical Test

We notice that, on the basis of the proof of Theorem 1, a path-following algorithm of predictor-corrector type could be
devised for the numerical computation of GEI equilibria. The purpose of this section is not to present the details of this
algorithm (as it has become a standard practice in the field of applied general equilibrium theory), for which we refer
the reader to Allgower and Georg (1993), Eaves and Schmedders (1999); but instead to test its performance through
some numerical examples, and compare it with the existing algorithms.

EXAMPLE 1. This example is extracted from Brown et al. (1996). Let there be three households, three future states,
two assets, and two commodities in each state. Assume that households 1 and 2 are the same in terms of their char-
acteristics, i.e., they share the same utility function and the same endowment vector. The utility functions take on the
following form:

Uh(x) =−
S

∑
s=0

λs

(
K−

L

∏
l=1

(xsl)αh
l

)2

, h = 0,1,

for which K = 5.7, λ = [1,1/3,1/3,1/3], α0 = [1/4,3/4], and α1 = [3/4,1/4]. The endowment vectors of households
0 and 1 are given respectively by e0 = [2,2;0.5,1;1,1;1.5,1] and e1 = [1,1;2.5,2;2,2;1.5,2]. Assume furthermore that
the two assets available are forward contracts for each good; that is, asset 1 delivers one unit of good 1 in each state,
and asset 2 delivers one unit of good 2 in each state; or more formally,

A> =
[

1 0 1 0 1 0
0 1 0 1 0 1

]
.

In this example of economy, the asset return matrix R(p) drops rank at the price equilibrium vector corresponding
to t = 0.5. For further analysis of this example consult Brown et al. (1996); here we only present the numerical result
of the computation. We implement the algorithm by means of a MATLAB routine. After 22 iterations (by an iteration
we mean a combination of the predictor and corrector steps), it terminates with the following price equilibrium vector:

[0.3026,0.2211;0.0873,0.0673;0.0925,0.0661;0.0984,0.0647].

It is readily seen that this result is the same, up to normalization, as what is obtained in Brown et al. (1996); it however
takes the latter 65 iterations to arrive at this result.

EXAMPLE 2. This example is extracted from Schmedders (1998, Section 6.2). It is almost the same as Example 1,
except for the following modifications: K = 57, e0 = [20,20;8,24;10,30;618], e1 = [10,10;25,20;20,20;15,20], and

A> =
[

1 0 1 0 1 0
2 −1 2 −1 2 −1

]
.

In this example of economy, the asset return matrix R(p) drops rank at the starting price equilibrium vector. We
run once more our MATLAB routine; after 21 iterations it terminates with the following price equilibrium vector:

[0.3034,0.2323;0.0898,0.0584;0.0966,0.0518;0.1106,0.0571],

which is easily seen to be all but identical with what is obtained in Schmedders (1998).

EXAMPLE 3. This is a large-scale example extracted again from Schmedders (1998, Section 6.3.2), and the compu-
tation of its equilibrium was claimed there to be the most challenging. This example is given here for the purpose of
comparing the performance of the algorithm in this paper with that of Schmedders (1998). For this reason the latter is
implemented also by means of a MATLAB routine (instead of the HOMPACK package), and both algorithms are run
on a DELL Inspiron 15R laptop.

Let there be three households, five future states, two assets, and five commodities in each state. The utility function
of each household is given by the following functional form:

Uh(x) =
1

γh +1

S

∑
s=0

λs

L

∑
l=1

(xsl)γh+1, h = 0,1,2
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for which λ = [1,1/5,1/5,1/5,1/5,1/5], γ0 =−0.5, γ1 =−3, and γ2 =−8. The endowment vectors of the households
are generated randomly with each eh

sl being a random variable following the uniform distribution on [0.75,1.25], h =
0,1,2, s = 0, . . . ,5, l = 1, . . . ,5. Assume furthermore that the payoffs of the two assets are given by

A> =
[

π0 π0 π0 π0 π0
π1 π2 π3 π4 π5

]
,

where π0 = (1,0,0,0,0), πs = (0,0.7 + s,0,0,0), s = 1, . . . ,5; namely, the payoff of the first asset is one unit of
commodity 1 in each state of the second period, and that of the second asset 0.7 + s units of commodity 2 in state s,
s = 1, . . . ,5.

We create 10 samples of this economy by randomly varying the endowment vectors, and use both the algorithm of
this paper and that of Schmedders (1998) to compute their equilibria. The performance of these two algorithms is given
in Table 1, in which ‘Iteration’indicates the average number of iterations that it takes for the algorithm to converge,
and ‘CPU(s)’the average time (in seconds); ‘ME’indicates the maximum error in all samples (see Schmedders (1998,
Section 6.3)). From the table we can see that the algorithm of this paper takes less number of iterations but each

Iteration CPU(s) ME×10−7

Algorithm of this paper 91.5 62.5 8.86
Schmedders (1998) 114.9 64.4 5.80

Table 1: Performance comparison

iteration takes a longer time, and so we may conclude that the two algorithms are on the whole comparable in terms of
the running time and maximum error.

A Appendix: Proof of Theorem 1

We shall proceed in three steps, each of which will be formulated as a lemma. To state the first lemma, we shall need
the following notion: Given a w ∈W let Hw(p, t) = H(p, t,w); then Hw is said to be boundary-free if cl{p| (p, t) ∈
H−1

w (0)} ⊂ RM
++.

LEMMA 1. The homotopy H(p, t,w) is smooth on E, and, moreover, Hw is boundary-free.

PROOF. To see the smoothness of H, we notice, in view of Proposition 2.7.2 of Mas-Colell (1989), that Zu(p) is
smooth on E, so there remains to prove the smoothness of Zh(p,R(p, t)) for h = 1, . . . ,H. But this proof, by recalling
that R(p, t) has full rank on E, is identical with that of Case 2 of Lemma 2 in Schmedders (1999).

To see that Hw is boundary-free, we take a sequence (pr, tr) ∈ H−1
w (0) and suppose that it converges to (p∗, t∗).

We wish to show that p∗ ∈ RM
++. Suppose not; then if, in the first place, p∗i = 0 for some 1 ≤ i ≤ M− 1, then

limpr→p∗ ‖Zu
−1(pr)‖= ∞, contradicting the fact that (pr, tr) ∈ H−1

w (0). If, in the second place, p∗M = 0, then we have

lim
pr

M→p∗M
Zu

M(pr) = ∞, (A.1)

where Zu
M denotes the M-th component of Zu. Recall that the Walras’ law asserts that

pr
−1H−1(pr, tr,w)+ pr

M[Zu
M(pr)+ tr

H

∑
h=1

Zh
M(pr,R(pr, tr))] = 0;

for which we have, since (pr, tr)∈H−1
w (0), that the first term on the left-hand side vanishes and pr

M > 0. It then follows
that Zu

M(pr)+ tr ∑H
h=1 Zh

M(pr,R(pr, t)) = 0 for all r. But this, noting that each Zh
M(pr,R(pr, t)) is bounded from below,

is in contradiction to Eq. (A.1). This proves p∗ ∈ RM
++, and hence Hw is boundary-free. Q.E.D

Let the symbol, ∂ , stand for the operation of taking boundary of a manifold; let ∂H : ∂X×W →RM and ∂Hw(x) =
∂H(x,w). For more information on the notions involved from differentiable topology we refer to Mas-Colell (1989) or
Milnor (1997).

LEMMA 2. For generic w, the set H−1
w (0) is a smooth, compact one-dimensional submanifold of X , and ∂H−1

w (0) =
H−1

w (0)∩∂X .

PROOF. We first show that H−1
w (0) is a smooth one-dimensional submanifold of X . To see this we claim that 0 is

a regular value of both H and ∂H. In fact, it follows from the proof of Proposition 17.D.4 of Mas-Colell et al. (1995)
that De0Zu

−1(p) = M−1, and hence DeH−1(p, t,w) = M−1. Let 1 = (1, . . . ,1); then we have

D(e,p)H(p, t,w) =
[

DeH−1(p, t,w) DpH−1(p, t,w)
0 1

]
.
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It is a simple matter to show that this matrix has rank M; so, by its very definition, we obtain that 0 is a regular
value of H. Notice that W is a smooth manifold without boundary; it follows from the transversality theorem (see for
instance Mas-Colell (1989, p. 45)) that 0 is a regular value of Hw for almost every w ∈W . Then an application of the
above argument to ∂H shows at once that 0 is a regular value of ∂Hw for almost every w ∈W . Combining the above
reasoning we obtain that for generic w, 0 is a regular value of both Hw and ∂Hw; and therefore, by the implicit function
theorem (see for instance Mas-Colell (1989, p. 43)), that H−1

w (0) is a smooth one-dimensional submanifold of X with
∂H−1

w (0) = H−1
w (0)∩∂X .

We now show that H−1
w (0) is compact. From the last equation of H we know that H−1

w (0) is bounded, so it remains
to show that H−1

w (0) is closed. Suppose by contradiction that there exists a sequence (pr, tr) ∈ H−1
w (0) converging

to (p∗, t∗) /∈ H−1
w (0). First we have p∗ ∈ RM

++, since Hw is boundary-free. Let Ew = {(p, t) ∈ X | (p, t,w) ∈ E}. We
claim that (p∗, t∗) /∈ Ew, for otherwise (p∗, t∗) would belong to H−1

w (0) (as Hw is, by Lemma 1, smooth on Ew).
Since p∗ ∈ RM

++ we have (p∗, t∗) ∈ X , so the sole possibility in agreement with the fact of (p∗, t∗) /∈ Ew is that rank
R(p∗, t∗) < K. Remember that R(p, t) has full rank for every p and every t ∈ [0,1); we obtain that t∗ = 1.

To complete the proof, it suffices now to apply the argument of Theorem V of Brown et al. (1996, p. 17), to show
that (p∗,1) /∈ Ew is generically impossible. Since R(pr, tr) is of full rank for all r, its span must converge to some
K-dimensional subspace of RS. Therefore

span R(pr, tr)→ span Φ
[

I
V

]

for some permutation matrix Φ and V ∈ R(S−K)×K . Then from the continuity of both Z and the sum ∑i pi, we have

Zu
−1(p∗)+

H

∑
h=1

Zh
−1(p∗,Φ

[
I
V

]
) = 0 (A.2)

∑
i

p∗i −1 = 0 (A.3)

Since rank R(p∗,1) < K, there must exist a redundant column, say the i-th column. Let R−i(p∗,1) ∈ RS×(K−1) be the
matrix formed by deleting the i-th column of R(p∗,1). Then we have

[−V I]Φ−1R−i(p∗,1) = 0 (A.4)
R(p∗,1)α = 0 (A.5)

for some α ∈ RK with αi nonzero. Let F(p,V,α,w) be the set of functions on the left-hand side of Eqs. (A.2)–(A.5).
Direct counting shows that F is a vector of dimension M+(S−K)×(K−1)+S, with the unknowns (p,V,α) belonging
to RM

++×R(S−K)×K ×RK−1, a manifold of dimension M +(S−K)K +K−1.

Let Fw(p,V,α) = F(p,V,α,w). We claim that F−1
w (0) is empty for almost every w. Indeed, taking the derivative

of Eq. (A.2) with respect to e0 shows that it has rank M−1; taking the derivative of Eq. (A.3) with respect to p shows
that it has rank 1; taking the derivative of Eq. (A.4) with respect to A−i shows that it has rank (S−K)(K− 1); and,
finally, taking the derivative of Eq. (A.5) with respect to Ai shows that it has rank S. Therefore 0 is a regular value of
F(p,V,α,w). From the transversality theorem it then follows that 0 is a regular value of Fw for almost every w ∈W .
By means of the implicit function theorem we have that F−1

w (0) is a manifold of dimension

[M +(S−K)K +K−1]− [M +(S−K)× (K−1)+S] =−1.

This means that F−1
w (0) is generically empty, hence that (p∗,1) /∈ Ew is generically impossible. From this we conclude

that H−1
w (0) is closed, hence compact, for almost every w ∈W . Q.E.D

LEMMA 3. For generic (e,A) ∈W , the economy (Zh,e,A) has an equilibrium. Moreover, if multiple equilibria exist,
they are locally unique and odd in number.

PROOF. The proof of this lemma is similar to (but simpler than) that of Theorem VI of Brown et al. (1996), so it
is omitted here. Q.E.D
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