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Abstract 

 
This study investigates the asymmetric and time-varying causality between inflation and 
inflation uncertainty in South Africa within a conditional Gaussian Markov switching vector 
autoregressive (MS-VAR) model framework. The MS-VAR model is capable of determining 
both the sign and direction of causality. We account for the nonlinear, long memory and 
seasonal features of inflation series simultaneously by measuring inflation uncertainty as the 
conditional variance of inflation generated by recursive estimation of a Seasonal Fractionally 
Integrated Smooth Transition Autoregressive Asymmetric Power GARCH 
(SEA-FISTAR-APGARCH) model using monthly data for the period 1921:01 to 2012:12. The 
recursive, rather than a full-sample, estimation allows us to obtain a time-varying measure of 
uncertainty and better mimics the real-time scenario faced by economic agents and/or policy 
makers. The inferred probabilities from the four-state MS-VAR model show evidence of a 
time-varying relationship. The conditional (i.e. lead-lag) and regime-prediction Granger 
causality provide evidence in favour of Friedman’s hypothesis. This implies that past 
information on inflation can help improve the one-step-ahead prediction of inflation 
uncertainty but not vice versa. Our results have some important policy implications.  
 
 
Keywords: Inflation, inflation uncertainty, seasonality, long memory, time-varying causality, 
Markov switching model 
 

JEL Classification: C12,C32, E31 
 
 
1. Introduction 

Historically, inflation has been a major concern in South Africa, with inflation rates 
consistently within the double-digit range (Amusa et al., 2013). However, through an informal 
inflation targeting regime during the decade of 1990, considerable success was achieved in 
bringing down the inflation rate to lower levels. Given this success of informal inflation 
targeting, the South African Reserve Bank (SARB) decided to move to a formal 
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inflation-targeting framework in February 2000, with the Finance Minister declaring that the 
sole objective of the SARB would be to maintain inflation within a target band of 3–6% 
(Mboweni, 2003; van der Merwe, 2004). The inflation rate averaged 9.5% from 1968 to 2014, 
with a maximum of 20.9% in January 1986 and a minimum of 0.2% in January 2004. As at 
May 2014, the inflation rate was 6.6%, the highest increase since July 2009 when it stood at 
6.8% (Statistics South Africa, 2014; Trading Economics, 2014). Subsequently, due to 
monetary policy intervention, price increases have slowed down to 6.4% in August 2014, but 
still remain outside the target band of 3-6%. Inflation and its volatility can impose costs on the 
real economic output, and hence on the welfare of the citizens of any nation (Chowdhoury 
2014). Minimizing the adverse economic consequences and welfare costs of increases in the 
inflation rate would require policy makers to have a clear understanding of the major channels 
through which inflation may affect the real economy. This paper contributes to this 
understanding by considering the effects that higher inflation may have on inflation 
uncertainty. We also test for reverse causal effects. 

The real effect of inflation was first postulated by Friedman (1977). Since then, there 
has been a considerable interest in the topic both theoretically and empirically with both 
producing conflicting results. According to Friedman’s theory, there are two channels to this 
effect. First, an increase in the average rate of inflation may encourage unpredictable policy 
response by the monetary authority, thus leading to more nominal uncertainty about future 
inflation. Second, the growing inflation uncertainty would distort the effectiveness of the price 
mechanism in allocating resources efficiently, consequently causing adverse effects on real 
economic activities. Ball (1992) using an asymmetric information game and focusing mainly 
on Friedman’s first channel, demonstrates that high inflation uncertainty is caused mainly by 
inflation, thus supporting Friedman’s hypothesis. Contrary to Friedman and Ball, Pourgerani 
and Maskus (1987) and Ungar and Zilberfab (1993) show that the effect may actually be the 
opposite. While Pourgerani and Maskus (1987) show that agents may invest more resources to 
forecast inflation when it is rising, thus decreasing inflation uncertainty, Ungar and Zilberfab 
(1993) show that high inflation does not necessarily imply high inflation uncertainty.  

Cukierman and Meltzer (1987) argue that high inflation uncertainty leads to high 
inflation levels. This emphasises a reverse causality running from inflation uncertainty to 
inflation. The government differ in their stabilization objectives with a trade-off between a 
desire to increase output through monetary surprises and a desire to keep the inflation rate low. 
Hence, Cukierman and Meltzer (1987) show that high inflation uncertainty may create the 
incentives for the monetary authority to surprise the public to have output gains by increasing 
the optimal average rate of inflation. However, Holland (1995) postulates that higher nominal 
inflation uncertainty has a negative effect on average inflation rate (i.e. increase in inflation 
uncertainty lowers average inflation), a hypothesis popularly known as ‘stabilization Fed 
hypothesis’. He shows that an increase in inflation would precede or Granger cause an increase 
in uncertainty which would constrain the monetary authority to contract the money supply 
growth in order to eliminate inflation uncertainty and related negative welfare effects. This is 
because an increase in inflation uncertainty is perceived as costly by policy makers, thus 
inducing them to reduce inflation in the future. 

These different hypotheses on the relationship between inflation and inflation 
uncertainty have given rise to a large empirical literature as will be seen in the next section. The 
relationship between inflation and inflation uncertainty may be sensitive to how inflation 
uncertainty is measured. Therefore, accurate specification of the inflation dynamics is critical. 
In this study we use a Seasonal Fractionally Integrated Smooth Transition Autoregressive 
Asymmetric Power GARCH (SEA-FISTAR-APGARCH) model to generate the conditional 
variance of inflation as a proxy for inflation uncertainty. This approach has some appealing 
advantages in that it is capable of handling nonlinearity, long memory and seasonal 
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fluctuations simultaneously. It is the capability of this model that distinguishes the current 
study from previous studies on inflation and inflation uncertainty. In addition, unlike the 
standard practice in the literature, where a measure of uncertainty would be obtained based on 
full-sample estimation of the SEA-FISTAR-APGARCH model, we use a recursive estimation 
scheme to obtain a time-varying measure of uncertainty to capture for possible breaks in the 
parameters measuring the uncertainty – a likely event in an emerging market, but also, mimic 
better the real-time situation faced by agents and policy makers who would construct a measure 
of uncertainty based on new information and updating their previous estimates at each point in 
time.  Further, a conditional Guassian Markov switching vector autoregression (MS-VAR) 
model is employed to test for causality between inflation and inflation uncertainty. The 
MS-VAR model is capable of handling nonlinearities in the relationship that may arise due to 
structural breaks or regime changes unlike the standard Granger causality test employed in 
most of the previous studies. Moreover, it provides information about the signs and direction of 
causality.  
 
 

2. Literature Review 

 
The empirical literature encompasses numerous approaches to estimating inflation uncertainty 
and testing the relationship between this and inflation. While a number of studies use the 
cross-sectional dispersion of individual forecasts from surveys or a moving average standard 
deviation of inflation as a proxy for inflation uncertainty, others have considered the nonlinear 
and long memory properties of inflation rates (Baillie et al., 1996a, 1996b, 2002; Hwang, 
2001). In general, the results are mixed. For example, Ballie et al. (1996a) analyse the 
relationship between inflation and its uncertainty using maximum likelihood estimates of 
ARFIMA-GARCH models on monthly post World WAR II CPI data for ten countries. They 
find that for low inflation countries such as Canada, Germany, Italy, Japan and USA, there 
appear to be no relationship between the conditional mean and variance of inflation whereas 
for high inflation countries such as Argentina, Israel, Brazil, and UK, there is strong evidence 
of joint feedback between the two series. 

Grier and Perry (2000) use GARCH-M methods to test the effects of real and nominal 
uncertainty on average inflation and output growth in the United States from 1948:07 to 
1996:12. They find evidence in support of the Friedman hypothesis but find no evidence in 
support of the Cukierman-Meltzer hypothesis. Also, Karananos et al. (2004) examine the 
relationship between inflation and inflation uncertainty in the USA using a GARCH model on 
monthly CPI covering the period 1960:01 to 1999:02 and find strong evidence for a positive 
bidirectional relationship between inflation and inflation uncertainty, thus supporting both the 
Friedman and Cukierman-Meltzer hypotheses. 

Conrad and Karanasos (2005) use long memory models (ARFIMA-FIGARCH) to 
generate inflation uncertainty from USA, Japan and UK CPI series for the period 1962:01 to 
2001:12 and find that inflation significantly raises inflation uncertainty in line with Friedman. 
While increased nominal uncertainty increased inflation in Japan in line with 
Cukierman-Meltzer hypothesis, the impact in the UK is mixed depending on the lag structure 
and order of the VAR. For the USA, inflation uncertainty does not Granger cause inflation. 
Fountas and Karanasos (2007) use monthly data for the G7 countries, covering the period 
1957-2000, and generate inflation uncertainty using a univariate GARCH model. They find 
mixed evidence of the Cukierman-Meltzer hypothesis but strong evidence in favour of the 
Friedman hypothesis, except for Germany.  

Ozdemir (2010), using a fractionally integrated vector ARMA-BEKK MGARCH 
model on the UK data, finds mixed evidence in the case of the Friedman hypothesis and strong 
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evidence in favour of Cukierman-Meltzer hypothesis for the 1957:02–2006:04 period, while 
the evidence found following the late 1980s indicates no linkages between inflation and its 
uncertainty. Jiranyakul and Opiela (2010) investigates the linkage between inflation and 
inflation uncertainty in the ASEAN-5 countries over the period 1970:01–2007:12 with 
inflation uncertainty estimated as a conditional variance in an AR-EGARCH model. Their 
Granger causality tests show that rising inflation increases inflation uncertainty and that rising 
inflation uncertainty increases inflation in all five countries thus supporting both the Friedman 
and Cukierman-Meltzer hypotheses.  

Payne (2008) uses ARMA-GARCH models to estimate inflation uncertainty and test 
for the relationship between inflation and inflation uncertainty using Granger causality tests for 
three Caribbean countries: the Bahamas, Barbados, and Jamaica. The results indicate that an 
increase in inflation leads to an increase in inflation uncertainty for the Bahamas and Barbados, 
supporting the Friedman-Ball hypothesis. However, an increase in inflation uncertainty leads 
to a decrease in inflation in the case of Jamaica thus supporting Holland’s stabilization-motive 
hypothesis. 

In a study on the G3 countries (USA, Japan and UK), Balicilar, Ozdemir and Cakan 
(2011) use GARCH to generate inflation uncertainty from monthly CPI series for the period 
1957:01 to 2006:10 and linear and nonlinear Granger causality tests to examine the causal 
relationship between inflation and its uncertainty. Results from both parametric and 
non-parametric tests support both the Friedman and Cukierman-Meltzer hypotheses in all 
countries meaning that inflation and inflation uncertainty have predictive content for each 
other. 

Chen, Shen and Xie (2008) examine the Friedman and Cukierman-Meltzer hypotheses 
for four economies in East Asia, namely Taiwan, Hong Kong, Singapore, and South Korea, 
using both linear and nonlinear flexible regression models. Using moving average standard 
deviation as a proxy for inflation uncertainty, their findings show that for the linear model, the 
Friedman hypothesis is rejected for all four economies.  The nonlinear model supports the 
Friedman hypothesis for all economies except Hong Kong. Inferences from the nonlinear 
model support the Cukierman-Meltzer hypothesis for all economies, with Hong Kong, 
Singapore and South Korea showing the positive effect of inflation uncertainty on inflation 
while Taiwan exhibit an inverted-U shaped relationship. The linear model rejects the 
Cukierman-Meltzer hypothesis for Hong Kong and Singapore.  

Balcilar and Ozdemir (2013a) examine the asymmetric and time-varying causality 
between inflation and inflation uncertainty using data for the G7 countries, covering the period 
1959:12 to 2008:10. Inflation uncertainty is generated from a Fractionally Integrated Smooth 
Transition Autoregressive Moving Average Asymmetric Power ARCH 
(FISTARMA-APARCH) model which captures both the nonlinear and long memory features. 
Using a conditional Guassian Markov switching vector autoregression (MS-VAR) model to 
test for causality, they find strong evidence in favour of the Holland’s ‘stabilization Fed 
hypothesis’ for Canada, France, Germany, Japan, UK, and USA, while the Friedman 
hypothesis is supported in Canada and USA. 

Chowdhury (2014) investigates the relationship between inflation and inflation 
uncertainty for India using Granger causality tests. He uses a GARCH model for estimating 
inflation uncertainty from monthly wholesale price index (WPI) from 1954:04 to 2010:04. The 
maximum likelihood estimate of the GARCH model provides strong evidence of a positive 
relationship between inflation and inflation uncertainty while the causality test indicates a 
bidirectional causality between the two series. 

Other recent international literature on inflation and inflation uncertainty includes 
Ozdemir and Fisunoğlu (2008) on Jordan, Philippines and Turkey, Coporale and Kontonikas 
(2009) on 12 EMU countries, Hasanov and Omay (2011) on selected CEE countries, Karahan 
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(2012) on Turkey, Viorica et al. (2014) on the newest EU countries.  
As far as Africa is concerned, there is a dearth of studies on the relationship between 

inflation and inflation uncertainty. The only known studies are those of Thornton (2007), 
Valdovinos and Gerling (2011), Hegerty (2012), Barimah and Amuakwa-Mensah (2012), 
Pretorius (2012), Oteng-Abayie and Doe (2013) and Barimah (2014). Thornton (2007) 
employs GARCH models to construct the variance of inflation as a measure of monthly 
inflation uncertainty in 12 emerging market economies, which includes South Africa, and 
examine the direction of causality between inflation and inflation uncertainty using standard 
Granger causality tests. In general, he finds stronger support for the Friedman hypothesis that 
higher inflation rates raise inflation uncertainty, but the results concerning the effect of 
inflation uncertainty on average inflation are mixed. For South Africa specifically, he finds 
evidence of inflation Granger causing inflation uncertainty but not vice versa. 

Valdovinos and Gerling (2011) examine the relationship for eight member countries of 
the West African Economic and Monetary Union (WAEMU), namely Benin, Burkina Faso, 
Côte d’Ivoire, Guinea-Bissau, Mali, Niger, Senegal and Togo, using monthly CPI data 
covering 1994 to 2009. They obtain the time-varying conditional variance of the error term as 
the measure of inflation uncertainty for each country based on a GARCH model.  The Granger 
causality test results support the Friedman-Ball hypothesis for all WAEMU countries. They 
also find that the overall effect of inflation on inflation uncertainty is positive, as the sum of the 
coefficients on lagged inflation is positive. However, they also find some evidence for the 
Cukierman hypothesis, as the null hypothesis that inflation uncertainty does not Granger cause 
inflation is rejected for Benin, Senegal, and Togo.  

Hegerty (2012) employs exponential GARCH (EGARCH and EGARCH-M) models to 
measure inflation uncertainty from monthly CPI covering January 1976 to late 2011 or 2012 
for 9 sub-Saharan African countries, including Bukina Faso, Botswana, Côte d’Ivoire, 
Ethiopia, Gambia, Kenya, Nigeria, Niger and South Africa. Subsequently the relationship 
between inflation and its uncertainty for each country is investigated using Granger causality 
tests and impulse response functions. The impulse responses show that shocks to inflation lead 
to increases in inflation uncertainty in all cases while the responses of inflation to inflation 
uncertainty was more ambiguous. The Granger causality test also supports the Friedman 
hypothesis for all countries as inflation causes inflation uncertainty; the reverse is, however, 
not true for half of the countries including South Africa. Also the multi-country Granger 
causality tests shows that regional spill-overs occur mainly among Western African 
neighbours.  

Using inflation uncertainty data generated from GARCH(1,2)-M type models,  
Barimah and Amuakwa-Mensah (2012) examine the relationship between inflation and 
inflation uncertainty in Ghana from 1964:04 to 2012:12. The results from the Granger causality 
tests show that inflation significantly raises inflation uncertainty over the full sample and two 
subsamples at different lag lengths, thus supporting the Friedman-Ball hypothesis. Further, 
they find that inflation uncertainty affect inflation as suggested by Cukierman-Meltzer 
hypothesis only in the long run (i.e. at lags exceeding 7 months). In a related study on Ghana,  
Oteng-Abayie and Doe (2013) use a GARCH model and Granger causality tests to investigate 
the relationship for the period 1984 to 2011. They find that inflation uncertainty rises in the 
high inflationary periods  and that inflation uncertainty Granger causes inflation in support of 
the Cukierman-Meltzer hypothesis. Employing a Full Information Maximum Likelihood 
(FIML) technique to estimate an alternative GARCH-M model, they find that inflation 

uncertainty in the inflation equation is significant − thus confirming the Granger causality 
results that higher inflation uncertainty raises inflation. 

Pretorius (2012) examines the relationship between inflation, inflation uncertainty and 
economic growth in South Africa using quaterly data for the period 1960:01 to 2012:01. 
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Inflation uncertainty is estimated from a GARCH-M model for the period. The Granger 
causality test indicates that inflation uncertainty has a negative impact on inflation, thus 
supporting Holland’s hypothesis of stabilizing central bank’s behaviour. Conversely, he find 
evidence that high inflation leads to increased inflation uncertainty in line with Friedman’s 
hypothesis. 

Barimah (2014) investigates the relationship for Ghana using more updated monthly 
CPI data (1963:4 to 2014:2) and different methods (AR-EGARCH models) than used in 
Barimah and Amuakwa-Mensah (2012) to generate inflation uncertainty. Including an 
inflation dummy in a variance equation and also using Granger cauality tests, he finds  strong 
support for both Friedman-Ball and Cukierman-Meltzer hypotheses for both the full sample 
and the inflation targeting period.  

From the foregoing, it is very clear that the inflation and inflation uncertainty 
hypotheses have not been adequately examined for African countries in general and South 
Africa in particular. Therefore, the current study aims at examining the dynamic relationship 
between inflation and inflation uncertainty in South Africa. This issue is particularly important 
in South Africa given the recent surge in inflation. We contribute by employing a recursively 
estimated Seasonal Fractionally Integrated Smooth Transition Autoregressive Asymmetric 
Power GARCH (SEA-FISTAR-APGARCH) model to generate the conditional variance of 
inflation as a proxy for inflation uncertainty, thereby accounting for the nonlinear, long 
memory and seasonal features of inflation simultaneously. Subsequently, we follow Balcilar 
and Ozdemir (2013a, 2013b) and test Granger causality using a conditional Gaussian Markov 
switching vector autoregressive (MS-VAR) model. The MS-VAR model is not only capable of 
handling nonlinearities in the relationship that may arise due to structural breaks or regime 
changes unlike the standard Granger causality test employed in most of the previous studies, 
but also, it provides information about the signs, along with the direction of causality. So our 
paper, not only improves the South African literature on inflation uncertainty and inflation 
technically, but also analysing the causal relationship over the longest possible sample of 
inflation data available, provides us to track the causality historically between these two 
variables.  

 
 

 

3. Methodology 

 
 
3.1 Estimation of Inflation Uncertainty 

 
3.1.1 The Seasonal FISTAR-APGARCH model 

 
A large number of possible specifications are available incorporating many stylized features 
of economic time series. Empirical studies by Glosten et al. (1989), Nelson (1991), and Engle 
and Ng (1992) show that it is crucial to capture asymmetry in economic time series models. 
Ball and Mankiw (1994) show that sticky prices with a positive trend in inflation imply 
asymmetric (nonlinear) inflation adjustment, because forward-looking firms setting their 
prices for several periods will incorporate the effects of the inflation. Enders and Hurn (2002) 
also obtain evidence of asymmetric inflation adjustment. The seasonal FISTAR model 
(SEA-FISTAR) proposed by Ajmi et al. (2008) is able to capture nonlinearity, long memory 
and seasonal fluctuations simultaneously. The SEA-FISTAR model represent an extension of 
the FISTAR model introduced by Van Dijk et al. (2002) by allowing for an explicit description 
of the seasonal pattern of the series, i.e. using seasonal dummy variables. 
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The SEA-FISTAR model is given by: 
 

 �1 − ����� = 
� (1) 
 
with 
 

											
� = �∑  ���� ��,���,�� �1 − ����,�; ��, ���� + �∑  ���� ��,���,�� × ����,�; ��, ��� (2) 

											+ !"  

#

$��
%�,$
�&$'�1 − (��),�; �) , �)�� + !"  

#

$��
%�,$
�&$' × (��),�; �) , �)� + *� 

 +	is the fractional integration order of the process (see Granger and Joyeux, 1980). �	is the 
backshift operator such that ��� = ��&�. 	��,�	are the seasonal dummy variables with ��,� = 1 

in season -, 0 elsewhere. �	is the number of seasons in one year, �/,� are the seasonal means 

in regime 0, 0 = 1,2. 			%/,$ , 2 = 1, . . . , 3  are the autoregressive parameters in 

regime 0.		*�~2. 2. +. �0, 56��	, ����,�; ��, ��� and (��),�; �) , �)�  are two logistic transition 

functions which are defined as (see van Dijk et al. (2002)): 
 

 ����,�; ��, ��� = 71 + exp !− ;<=><,? ���,� − ���'@
&�

  (3) 

 ��,�	is the transition variable of the transition function �. ��is the parameter which determines 

the smoothness of the function �. 5�<,? is the standard deviation of the transition variable ��,�. Finally, �� is the threshold of the transition from one regime to another. The second 

transition function (��),�; �) , �)� is described in the same way. 

Equations (1)-(2) are the general representation of the seasonal FISTAR model. 
However, some particular cases can be discussed according to the variables and the parameter 
values of the transition functions. First, when �� = �) = 0,	equation �2�	reduces to a linear 

seasonal autoregressive model. Second, if �� = 0, then ����,�; �� , ��� = �
� for all values of ��,�  and only the autoregressive parameters change between regimes. There is no regime 

switching in the seasonal component. Third, when ����,�; ��, ��� = (��),�; �) , �)� , the 

seasonal FISTAR model is restricted in a way that both seasonal and autoregressive parameters 

change simultaneously, and with the same speed of transition from ��,� and %�,$ to ��,� and %�,$ respectively, - = 1, . . . , � and 2 = 1, . . . , 3.1 
Ajmi et al. (2008) introduced an empirical specification of the Seasonal FISTAR model 

using the "specific to general" procedure (see Granger, 1993). To this aim, Ajmi et al. (2008) 
extend the specification procedure elaborated by Teräsvirta (1994) for STAR models and van 
Dijk et al. (2002) for FISTAR models to specify the empirical representation of the seasonal 
FISTAR model in equations (1)-(2). 

We obtain the inflation uncertainty by allowing *�	in equation (2) to follow a GARCH 
process. Parametric GARCH models have emerged as the archetype for modelling 
time-varying and predictable volatility.  

Baillie (2002) shows that the long memory not only exists in the mean, it also exists in 
the second moment of inflation rates. He finds that the squared and absolute values of 
inflation residuals estimated using a fractional filter applied to the conditional mean, also 

                                                      
1 For more details, see Ajmi et al. (2008). 
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have memory properties. Therefore, conditional variance of inflation rates should possibly be 
modelled as a long memory autoregressive conditional heteroscedastic process. One such 
model is the asymmetric power GARCH model (APGARCH) proposed by Ding et al. (1993). 
The APGARCH had considerable success in modelling time-varying conditional 
heteroskedasticity with asymmetry. Furthermore the simulated autocorrelation function 
mirrors the long memory features. The general structure is as follows: 

 

εt = htvt,      εt  ~N (0,1)

ht

δ = ω + αi εt−i −θiεt−i( )
i=1

n

∑
δ

+ βiσ t−i

δ

i=1

r

∑
    (4) 

where δ> 0 plays the role of a Box-Cox transformation of the conditional standard deviation 

ht , while the θi ’s reflect the so-called leverage effect. A positive (negative) value of the θi’s 
means that past negative (positive) shocks have a stronger impact on current conditional 
volatility than past positive shocks (see Black, 1976). 

 
For a given data series, our empirical specification consists of the following steps: 

 
1. Specify the autoregressive order 3 for the adequate seasonal ARFI model using the 

BIC criterion. 
 
2. Test the null hypothesis of linearity against seasonal FISTAR model and select the 

appropriate transition function. 
 
3. Estimate the seasonal FISTAR model. 
 
4. Evaluate the model using diagnostic tests.  

 
 
Nonlinearity test 

 
The null hypothesis of linearity holds if the seasonal and the autoregressive parameters are 

constant over the different regimes, i.e., GH: ��,� = ��,�  and %�,$ = %�,$ , 2 = 1, . . . , 3  and - = 1, . . . , �. This null hypothesis can be expressed in another way: GHJ : �� = �) = 0. The 
alternative hypothesis of nonlinearity is given by G�: ��,� ≠ ��,� and/or %�,$ ≠ %�,$, for at 

least one value of 2, -. However, under the null hypothesis GHJ , the model is not identified. To 
resolve this problem, we follow the approach of Luukkonen et al. (1988) by replacing the 
transition functions by their first order Taylor expansion with respect to � around 0. 

This null hypothesis of linearity, for general representation equations (1)-(2), can be 
tested using a Lagrange Multiplier L�MNO statistic by following the next stages: 

 
1. Estimate the seasonal ARFI model and compute the residuals *�̂ and the sum of squared 

residuals ��QH = ∑  R/�� *�̂�. 
2. Regress *�̂  on ����,�$ , S��),�$  and −∑  �&�/�� 6T?UV/ , 2 = 0,1,2,3; and compute the sum of 

squared residuals from this regression, ��Q�. 
3. The �MN statistic is given by 

 

 �MN = ��XY&��XZ>>[Z\
Î^��3�3 + ���    (5) 
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The nonlinearity LM test for particular cases can be performed as for the general model. Once 
the null hypothesis is rejected, we select the most appropriate transition variable based on the 
LM statistic values. That is, we select the one with the smallest p-value. 
 
Estimation of the SEA-FISTAR-APGARCH Model 

 
When the transition variable is selected from the nonlinearity test, we can estimate the seasonal 
FISTAR model using Beran’s (1995) approximate maximum likelihood estimator for the 
ARFIMA model which was adapted by van Dijk et al. (2002) to estimate the FISTAR model. 

The estimated parameters _̀ are obtained by minimizing the sum of squared residuals: 
 

 aR�_� = ∑  R��� b���_�     (6) 
 

where _ = ���J , ��J , %�J , %�J , ��, �) , ��, �) , +�J, �/ = ��/,�, . . . , �/,��Jand	%/ = �%/,�, . . . , %/,#�J,0 = 1,2. Starting values needed in the optimization algorithm can be obtained using five 
dimensional grid search over +, ��, �) , �� and �) . The selected starting values are those that 
give the smallest estimator for the residuals variance 5T����, �) , �� , �) , +�. For the cases when �� = 0 or when ����,�; �� , ���� = (��),�; �) , �)�, the estimation procedure is performed in a 

straightforward manner. 
For simplicity, we adopt a two-step estimation procedure for the 

SEA-FISTAR-APGARCH model. We first estimate the Seasonal FISTAR parameters in 
equations (1)-(3); subsequently the parameters of the APGARCH part in equation (4) are 
estimated based on the residuals of the Seasonal FISTAR part. However, unlike the standard 
practice in the literature where the full-sample is used to obtain a measure of uncertainty, we 
undertake a recursive estimation of the SEA-FISTAR-APGARCH model to mimic the 
real-time situation faced by an agent and/or policymakers for measuring uncertainty. 
Specifically, we first estimate the SEA-FISTAR model recursively and obtain the recursively 
generated residuals, which in turn are used to estimate recursively the AGARCH model, to 
obtain a recursive measure of uncertainty. In other words, our recursive approach allows us to 
obtain a time-varying measure of uncertainty, with the estimate of the same being updated as 
new data comes in on inflation. Ideally, one would need a real-time data set with all the 
vintages of inflation; however given the length of the period under investigation, no such data 
is available.  
 
 
Misspecification Test 

 
To evaluate the fitted seasonal FISTAR model, it is required to perform some diagnostic tests 
on the resulting residuals, specifically testing the residuals for serial correlation. To this aim, 
Ajmi et al. (2008) extended the LM test for STAR model residual serial correlation proposed 
by Eitrheim and Teräsvirta (1996). The null hypothesis of no residual serial correlation for 
seasonal FISTAR model can be tested against the alternative of serial dependence up to order d, given by 
 

 *� = �∑  e/�� f/�/�*� + g� , (7) 

 

with	g�~22+�0, 5�� and �  the lag operator. The hypothesis of serial independence of *� , GH: f� = f� =. . . = fe = 0 can be tested by an	�M test (see Eirtheim and Teräsvirta, 1996). 
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The no residual correlation LM test for STAR model was modified by including the gradients 
of g�  with respect to the seasonal parameters, the parameters of transition function ����,�; ��, ��� and the fractional differencing parameter + .For the cases when �� = 0 or 

when ����,�; ��, ���� = (��),�; �) , �)�, the no residual serial correlation LM test can be 

modified in a straightforward manner. 
 

3.2 Asymmetric and Time-varying Granger Causality 

 
The starting point of this paper is not to assume a permanent causal relation between inflation 
and its uncertainty, but rather adopt a notion of ‘temporary’ Granger causality, that is 
causality that holds during some periods but not in others following Balcilar and Ozdemir 
(2013a, 2013b). Previous researchers have noted that results from Granger causality tests 
tend to be sensitive with respect to changes in the sample period2. They have also noted that 
the direction of causality is sensitive to the choice of the sample period. Further, there are 
periods with no causality along with periods with bidirectional causality between inflation 
and inflation uncertainty. Based on these findings, our strategy then consists of identifying 
the periods during which a particular type of causality holds, i.e., a period in which inflation 
Granger causes inflation uncertainty and vice versa. This approach also allows us to identify 
the periods of causality, bidirectional causality, and non-causality. The methodology we 
adopt is based on a VAR model with time-varying parameters where, given our objectives, 
parameter time-variation directly reflects changes in causality. In this approach, changes in 
causality are treated as random events governed by an exogenous Markov process, leading to 
the MS-VAR model. In the MS-VAR model inferences about changes in the causality can be 
made on the basis of the estimated probability that each observation in the sample comes 
from a particular regime of causality.  

To be concrete, let t
π  and t

h  represent inflation rate and inflation uncertainty, 

respectively, and let the time series of these variables up to and including period t be given by 

ℑt  ≡ { h
τ
: τ = t, t-1,...,1−p} and ℜt  ≡ { π

τ
: τ = t, t-1,...,1-p}, where p is a nonnegative 

integer. Define the vector of time series of X t  up to and including period t as ],[ ′′′= ttt hX π  

and let ℵt ≡ {ℑt ,ℜt} , correspondingly. For the vector valued time series X t  of random 

variables assume that there exists a probability density function f (X tℵt −1,θ)for each t∈ 

{1,2,...,T}. The parameters and the parameter space are denoted by θ and Θ, respectively. The 

true value of θ is denoted by θ0∈ Θ.  
A Markov switching vector autoregressive (MS-VAR) model for inflation rate and 

inflation uncertainty which is nested within the class of autoregressive models is studied by 
Hamilton (1990) and Krishnamurthy and Rydén (1998) and allows asymmetric (regime 
dependent) inference for causality. The structure of the MS-VAR model we use is analogues 
to the one used in Warne (2000). However, our model is more general and allows inference 
on all types of causality relationships3. Our analysis is based on the following MS-VAR 
model: 
 

                                                      
2 Several studies (Okun, 1971; Kontinokas, 2004; Grier and Ye, 2007) noted that the inflation-inflation uncertainty relationship is not stable. 
Okun (1971) argues that the relationship between inflation and inflation variability was much weaker during the 1960s. Using breakpoint tests, 
Kontinokas (2004) concludes that the relationship breaks around 1992 due to the introduction of inflation targeting in several countries. Using 
structural stability tests, Grier and Ye (2007) identifies 2 to3 structural breaks. 
3Warne’s (2000) model is a restricted version of our model and allows testing for conditional Granger causality assuming that the regime of 
one of the series is given. Therefore, Warne tests whether a variable does not Granger cause another variable conditional on the known regime. 
Our model allows Granger causality testing without conditioning on a known regime for a variable, although it is possible to restrict the model 
on a given regime and obtain the tests in Warne (2000). 
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X t = µSt
Dt + ΦSt

(k )

k=1

p

∑ X t −1 + ε t

    
(8) 

 

where p is the order of the MS-VAR model, εt St ~ N(0,ΩSt
) and ΩSt

 is positive definite. 

The vector Dt is d dimensional and deterministic, e.g. a constant, centred seasonal dummies, 

and other dummies corresponding to outliers. The random state or regime variable St  is 

unobserved, conditional on St −1 independent of past X, and assumed to follow a 4-state 

Markov process. In other words, Pr[S
t
= j S

t−1
= i,S

t−2
= h

2
,...,ℵ

t−1
] = p

ij
, for all t and hl , i,j = 

1, 2, ..., q, l ≥ 2. In our particular application, the maintained hypothesis is that q=4, that is 
four states or regimes for each variable are sufficient to describe the causality between 
inflation and inflation uncertainty. For instance in the first state one variable (say inflation) 
may be causal for the other variable (inflation uncertainty). Analogously, in the second state 

that variable is not causal for the other variable, etc. When q=4, St  is a 4-state Markov 

process, i.e. for both variables the MS-VAR model does indeed allow four types of regimes 
in terms of causality classification4. That is, the 4-state MS-VAR defined in equation (8) 

accommodates four causality results, that t
π  Granger causing t

h ( )
t t

hπ ⇒ , t
h  Granger 

causing t
π ( )

t t
h π⇒ , t

π  and t
h  both Granger causing each other (a feedback system or 

bidirectional causality) ( )
t t

hπ ⇔ , and no Granger causality between t
π  and t

h

( )
t t

hπ <≠> . How these four regimes are inferred will be explained below. 

The Markov transition probabilities satisfy pijj =1

4

∑ = 1 for all i. It is also assumed 

that the Markov process is irreducible (no absorbing states) with parameters 
 

         

    

   

P =

p
11

L p
14

M

p
41

p
44



















     (9) 

  

 

One eigenvalue of P is always equal to unity by construction and to ensure that St  is 

ergodic, the remaining eigenvalues are assumed to lie inside the unit circle. The ergodic 

probabilities, Pr[St = j] = π j
, are collected into λ, where P′λ = λ.  The ergodicity of St  

guarantees the ergodicity of µSt
, ΦSt

(k)
, and ΩSt

. The parameters of the MS-VAR model, 

µSt
, ΦSt

(k)
, and ΩSt

 in equation (8) depend only on the regime variable St . That is, if St = j

, then µS t
= µ j

, ΦSt

(k) = Φ j

(k)
 and ΩSt

= Ω j
. 

We assume that the two subsystems, one in which t
π  Granger causing t

h  and the 

other in which t
h  Granger causing t

π , of the Granger causality regimes are independent. 

This implies coefficients in two subsystems of equation (8) vary with the regime and, at the 

                                                      
4 An MS-VAR model in which each of two variables following two independent states has a total of four inferred states.  Such an MS-VAR 
model can be reformulated in terms of a latent state variable with four states, where each variable follows a separate and independent 2-state 
Markov process. This 4-state classification allows an intuitive interpretation of the four possible causality regimes. We later reformulate the 
MS-VAR model in a 4-state form using two independent Markov processes for a clear representation of the causal classification between 
inflation and its uncertainty series. Indeed, each variable follows two states, which may characterize expansions and contractions. Our 
representation flexibly does not restrict both variables to the same regime at any point in time.  
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same time are independent. A Markov chain that splits into two independent processes each 
with two regimes will have this property.  

Let S1,t  and S2,t  be a q1=2 and a q2=2 state Markov process, respectively, with q = 

q1q2=4 and S1,t and S2,t independent, i.e. pij = pi1 j1

(1)
pi2 j2

(2)
 where Pr[Sl,t = jl Sl ,t −1 = il ] = pil j l

(l )   

and pil jl

(l )

jl =1

ql∑ = 1 for il=1,…, ql . Collecting the probabilities of two states into P(1) and P(2) 

and defining St = S2,t + q2(S1,t −1) for the pair ( S1,t , S2,t ) we have that P = (P(1)⊗P
(2)). Thus, 

S1,t and S2,t  are latent random variables that reflect the state or regime of the system at date t 

and take their values in the set {1,2}. Two independent subsystems do indeed define four 

alternative states of the nature5, which are conveniently indexed by St  as 

 

  

  

S
t
=

1, if S
1,t

= 1 and S
2,t

= 1

2, if S
1,t

= 2 and S
2,t

= 1

3, if S
1,t

= 1 and S
2,t

= 2

4, if S
1,t

= 2 and S
2,t

= 2














        (10) 

 
Using the above definition of the MS-VAR model we can link inference about the Markov 

regime with Granger causality. Consider the MS-VAR in equation (8) for ],[ ′′′= ttt hX π : 

 

π t

ht









=

µ1,St

µ2,St












Dt +

φ11,St

k     φ12,St

k

φ21,St

k     φ22,St

k











k=1

p

∑
π t−k

ht−k









+

ε1,t

ε2,t









       (11) 

 
  

Here ε t = [ ′ ε 1,t , ′ ε 2,t ′ ]  is a white noise process, independent of St with mean zero and 

covariance matrix ΩSt
, partitioned conformably with ε i,t , i.e., ][ ,,, ttjtiSij SE

t
εε ′=Ω .  

Let ε1,t +1 denote the 1-step ahead forecast error for one-period-ahead inflation 
1+tπ

conditional on ℵt  and the known parameter vector θ0 when the predictor is given by the 

expectations operator, E. That is,  
 

 ],[ 0111,1 θππε tttt E ℵ−= +++     (12) 

 

ε1,t +1satisfies the usual assumptions, that it has a zero conditional mean and positive finite 

conditional variance σ t

2 . The causality defined in Granger (1969) concerns the optimal 

(minimum MSE) unbiased 1-step ahead linear least squares predictor and cannot be directly 
applied to nonlinear models. For our purpose it is sufficient to adopt a generalization of 
Granger causality, which is applicable to nonlinear models (see Warne, 2000). Inflation 
uncertainty is said to be noncausal (in the mean) for inflation if and only if for all t 
 

 ∞<= ++ ]~[][ 0

2

1,10

2

1,1 θεθε tt EE     (13) 

 

                                                      
5 These four states correspond four types of causality regimes relating to our model defined in equation (8). Defining these regimes in terms of 
two independent states gives us the flexibility of fixing one of the variables in a particular state while allowing the other variable to follow two 
states. 
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where ],[~
011

2

1,1 θππε tttt E ℜ−= +++
6 . An analogous definition could be given for the 

noncausality of inflation for inflation uncertainty. The definition in equation (13) may hold in 
two instances: firstly when the Markov process is serially uncorrelated, that is 

Pr[St +1 St ] = Pr[St +1]; and secondly when Pr[Stℵt ] = Pr[St ℜt ]. These two cases exemplify 

the two channels in an MS-VAR model through which the inflation uncertainty can Granger 
cause inflation and vice versa. 
 The first channel leads to the regime-prediction Granger causality test, which 
investigates whether the shocks to the inflation uncertainty is helpful in predicting the regime 
of the inflation (an indirect prediction channel). In this case inflation uncertainty becomes 
useful in predicting the inflation. The second channel leads to the conditional Granger 
causality test, which investigates the lead–lag relationship assuming the regime is known. 
This test is conditional on the known regime, and therefore, it is a test of whether inflation 
uncertainty helps improve the one-step-ahead forecast of inflation. For instance, if the regime 
is known and inflation uncertainty cannot help to improve the one-step-ahead prediction of 
inflation, then inflation uncertainty does not Granger cause inflation conditional on the given 
regime. This test is analogous to the traditional Granger causality test conditional on the 
given regime. If either of the conditional Granger noncausality or regime-prediction Granger 
noncausality is rejected, the null hypothesis of Granger noncausality will also be rejected. 

This definition of Granger noncausality of inflation uncertainty for inflation given in 
equation (13) presumes that the coefficients in the inflation equation vary freely with the 

regime. It is possible, however, that these coefficients vary with S1,t +1  but not with S2,t +1. 

There may be information in the past inflation uncertainty, ℑt , for predicting S2,t +1 but not 

for predicting S1,t +1 . The prediction of inflation obtained from equation (11) may still not 

depend on the history of inflation uncertainty. Thus a formal and operational definition of 
Granger noncausality incorporating these considerations in a nonlinear model should be 
given7. Conditions for Granger noncausality are not straightforward, because there are two 
channels through which inflation uncertainty, for example, can be informative about 
inflation. Therefore, no unique set of parameter restrictions can be specified for testing the 
noncausality of inflation uncertainty for inflation, and vice versa. However, there is a finite 
number of cases and if one of these cases is true, then the inflation uncertainty, for example, 
is Granger noncausal (in mean-variance) for inflation8. 

We now give the conditions under which equation (13) holds within the context of the 
bivariate MS-VAR model in equation (11), that is, the conditions under which the regime 
prediction Granger causality is violated. Inflation uncertainty is noncausal for inflation, that 

is the regime forecasts S1,t +1and S2,t +1are independent and there is no information in ℑt  for 

predicting S1,t +1 , if and only if for all t 
 

µi,St
= µi,Si ,t

, ϕij,St

(k ) = ϕij,Si ,t

(k ) , Ωii,St
= Ωii,Si ,t

, Ω12,St
= 0,   and   P = (P (1) ⊗ P

(2) )    (14) 

 
for all i,j=1,2, k=1,…,p, and St = 1,…,4; and 
 

                                                      
6 It is quite straightforward to extend this definition to allow for causality in the variance as well as in the mean. Granger et al. (1986) gives the 
definition of causality in mean-variance in a linear model. The Granger noncausality in mean-variance can be stated as 

. 

7The Granger noncausality condition given in equation (13) cannot be directly tested and one needs to derive the conditions that need to be 
imposed on the parameters of the model under which equation (13) holds. In an MS-VAR model implied restrictions involve all parameters in 

equation (8) as well as restrictions on the covariance matrix ΩSt
and transition probabilities P.  

8 Jacobson et al. (2002) consider a 2-state MS-VAR model with three variables and lists four conditions for a variable to be noncausal. 
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 φ12

(k ) = 0 ,          (15) 

 
for k = 1,…,p, and S1,t = 1,2 (see Warne, 2000)9. The condition given in equation (15) is 
straightforward to interpret. For expositional purpose let us assume that all regimes are 
known. Then, the necessary and sufficient condition for inflation uncertainty to Granger 

cause inflation (in mean-variance, and also in distribution10) is that ( )

12

kφ in equation (11) is 

equal to zero for all k and t. When the regimes are unknown then the additional restrictions in 
equation (14) should also hold for noncausality of inflation uncertainty. These noncausality 

conditions are given as the null hypothesis 1

0H  in Table 1. The 4-state MS-VAR 

specification with conditions in (14) and (15) is the most general case and allows separation 
of four types of regime classifications. In this general case, in order for the inflation 
uncertainty to be noncausal for inflation, all coefficients in the inflation equation must be 
constant, while the coefficients on lags of inflation uncertainty are all zero; and additionally 
all error variances should be constant and covariance across the error terms should be zero. 
Note also that all restrictions in equations (14) and (15) are linear. If we change the 

restrictions in equation (15) to ( )

21 0kφ =  and change equation (14) accordingly, then there is 

no information in t
ℜ  for predicting 2, 1t

S + . This case corresponds to the noncausality of 

inflation for inflation uncertainty and given as the hypothesis 5

0H  in Table 1. 

It is also possible to consider two subcases of the Granger noncausality conditions 
given in equations (14) and (15) and impose restrictions accordingly that can be tested. The 

first case arises when πt follows a single-regime while ht follows a two-regime process (q1=1 

and q2=2). In this case, ht may be noncausal for πt, if it fails to have an effect through the 

second channel. That is, ht is noncausal for πt, if it fails to improve the one-step-ahead 

prediction of πt. Similarly, πt is noncausal for ht, if it fails to improve the one-step-ahead 
prediction of ht. This type of conditional Granger noncausality is specified under the null 

hypothesis of 2

0H  for noncausality of inflation uncertainty and 6

0H  for noncausality of 

inflation.  The second case occurs when πt follows a two-regime while ht follows a 

single-regime process (q1=2 and q2=1). Under this case, πt does not directly depend on the 

regime in addition to failure of the ht to improve the one-step-ahead prediction of πt. This is 

given as the hypothesis 3

0H  for the noncausality of inflation uncertainty for inflation and 
7

0H  for the noncausality of inflation for inflation uncertainty. 

Finally, inflation uncertainty ht can be noncausal for inflation πt when it is 

conditionally uninformative about the regime. Under conditions of the hypothesis 4

0H  given 

in Table 1, ht is conditionally uninformative about the regime and noncausal for πt. 

Analogously, 8

0H  gives the conditions for πt for being conditionally uninformative about 

the regime and noncausal for ht. We note that the states in this model arise by imposing the 
relevant conditions in Table 1 and these are restrictions for testing a specific Granger 
noncausality hypothesis. 

                                                      
9 Warne (2000) proposes conditions under which one variable is not Granger causal for the other in a 2-state MS-VAR model. The conditions 
given here are specified for a 4-state MS-VAR model where all possible causality classifications are allowed. In a 2-state MS-VAR model one 
can only test for Granger causality by allowing two regimes and discarding the possibility of other types of causal relationships. The cases 

given in Warne (2000) correspond to 2

0H , 3

0H , 6

0H ,  and 7

0H  given in Table 1. Compared to Warne’s model our specification allows for a 

more complete regime inference. That is, inferred probabilities can be computed for each of the four regimes and full sample causality tests can 
be performed. 

10 If the error term t
ε  in equation (8) is conditionally normal and that the matrix P has either full rank or equal to one, Warne (2000) shows 

that the Granger causality in mean-variance implies Granger causality in distribution. 
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Table 1:  Noncausality and conditional regime independence restrictions in 2-state and 

4-state MS-VAR(p) models with Xt = [ππππt , ht ]′′′′ 

Hypothesis Restrictions Restrictions 
1

0H  ht does not Granger cause πt 
with q1=2 and q2=2 
(St = 1,2,3,4) 

1, 2 2, 1,

1, 2, 2,

1, 2,

1,

( ) ( )

1, 1, 2, , 2, 11, 11,

( ) ( ) ( ) ( ) ( ) ( )

12, 12, 22, 22, 21, 21,

11, 11, 22, 22,

( )

12, 12,

, , ,

, , ,

, ,

0, 0,

t t t t t

t t t t t t

t t t t

t t

k k

S S S t S S S

k k k k k k

S S S S S S

S S S S

k

S S

µ µ µ µ φ φ

φ φ φ φ φ φ

φ

= = =

= = =

Ω = Ω Ω = Ω

Ω = =  
 

m=8p+12 

2

0H

 

ht does not Granger cause πt 
with q1=1 and q2=2 (St =1,3) 

µ1,St
= µ1, φ11,St

(k ) = φ11

(k ), φ12,St

(k ) = 0,

Ω11,St
= Ω11, Ω12,St

= 0
 

 

m=3p+4 

3

0H

 

ht does not Granger cause πt 
with q1=2 and q2=1 (St = 1,2) 

µ2,St
= µ2, φ21,St

(k ) = φ21

(k ), φ22,St

(k ) = φ22

(k ),

Ω22,St
= Ω22, Ω12,St

= 0, φ12,St

(k ) = 0,  
 

m=4p+4 

4

0H

 

ht does not Granger cause πt 
with q1=2 and q2=2 
(St = 1,2,3,4) with serially 
uncorrelated Markov process 
 

1,

(1) (1) (2) (2) ( ) ( )

11 21 11 21 12, 12,, , 0
t t

k k

S Sp p p p φ φ= = = =

  

m=2p+2 

5

0H

 

πt does not Granger cause ht 
with q1=2 and q2=2 
(St = 1,2,3,4) 

1, 2 2, 1,

1, 2 , 2,

1, 2 ,

2 ,

( ) ( )

1, 1, 2, , 2, 11, 11,

( ) ( ) ( ) ( ) ( ) ( )

12, 12, 22, 22, 21, 21,

11, 11, 22, 22,

( )

21, 21,

, , ,

, , ,

, ,

0, 0,

t t t t t

t t t t t t

t t t t

t t

k k

S S S t S S S

k k k k k k

S S S S S S

S S S S

k

S S

µ µ µ µ φ φ

φ φ φ φ φ φ

φ

= = =

= = =

Ω = Ω Ω = Ω

Ω = =  
 

m=8p+12 

6

0H

 

πt does not Granger cause ht 
with q1=1 and q2=2 
(St =1,3) 

( ) ( ) ( ) ( )

1, 1 11, 11 12, 12

( )

11, 11 21, 21,

, ,

, 0, 0

t t t

t t t

k k k k

S S S

k

S S S

µ µ φ φ φ φ

φ

= = =

Ω = Ω Ω = =  
 

m=3p+4 

7

0H

 

πt does not Granger cause ht 
with q1=2 and q2=1 
(St = 1,2) 

( ) ( ) ( )

2, 2 22, 22 21,

22, 22 21,

, , 0,

, 0

t t t

t t

k k k

S S S

S S

µ µ φ φ φ= = =

Ω = Ω Ω =
 

 

m=4p+4 

8

0H

 

πt does not Granger cause ht 
with q1=2 and q2=2 (St = 
1,2,3,4) with serially 
uncorrelated Markov process 
 

2,

(1) (1) (2) (2) ( ) ( )

21 22 21 22 21, 21,, , 0
t t

k k

S Sp p p p φ φ= = = =  m=2p+2 

Note: In this table, πt denotes the inflation rate, ht denotes the inflation uncertainty estimated using the model defined in equations (1)-(3) 
and (4)St is the latent state variable defined in equation (10), m is the number of restrictions, q1 and q2 indicate the number of regimes for the 
inflation and inflation uncertainty equations, respectively, other symbols are defined in the text relating to equations (8), (9), and (11).  

 



16 

 

 

4. Empirical Analysis 

 

Data 

    The data consists of monthly unadjusted consumer price index based inflation rates from 
1921:01 to 2012:12 with a total of 1104 observations. These data are obtained from the Global 
Financial Database. Inflation rates are constructed by taking 100 times the first difference of 
the natural log of the consumer price index. The first 25 observations are lost after the 
logarithmic transformation and the computation of the transition variables, reducing the total 
number to 1079 observations. 
 

Nonlinearity test 

We start the empirical analysis by selecting the autoregressive order for a seasonal linear ARFI 
model of the inflation variables. This model is estimated for different autoregressive orders p, 

where the maximum order is fixed at 3hij = 12. Based on the BIC criterion, the appropriate 
order is 3 = 5. The next step consists of testing linearity against seasonal FISTAR, based on 
LMk-type tests of nonlinearity, where l = 3 is the Taylor approximation order. Linearity is 
tested against the three specifications of the SEA-FISTAR model discussed in section 3.1. 
Transition variables should be free from seasonality (see Franses et al., 2000). Thus we use as 
potential transition variables the seasonal difference of ��, that is, ∆����&n = ��&n − ��&n&�� 
with  o = 1,⋯ ,12. We found that, for each of the three SEA-FISTAR model specifications, 
the null hypothesis of linearity is rejected at the 5% significance level under various transition 
variables. We select the transition variable that corresponds to the minimal p-value. The 
selected transition variables are ∆����&q for model 1 and ∆����&r for model 2. For model 3, 
we select ∆����&r  and ∆����&s  as transition variables in the functions F(.) and G(.) 
respectively.  
 
Estimation Results of the SEA-FISTAR-APGARCH Model 

After selecting the transitions variables using �M -type tests, the next step is the 
estimation of different specifications of the SEA-FISTAR-APGARCH model. We use the 
approximate maximum likelihood method discussed previously. The estimation results of the 
three specifications of the SEA-FISTAR-APGARCH model are reported in Table 2. Recall, we 
estimate the SEA-FISTAR-APGARCH model recursively, however, in Table 2, we report the 

full-sample estimates. For the SEA-FISTAR part, the estimated differencing parameter +t 
ranges from 0.449 to 0.483 and is significant at the 5% level. This suggests strong evidence of 
long memory in inflation rates. The estimated threshold parameter �̂ is equal to 0.5488 and 
-1.0215 in model 1 and model 2, respectively. For model 3, the threshold parameters �̂) and �̂� are equal to 0.0999 and -1.0215, respectively. All threshold parameters are significant at the 

5% level. Comparing	%̀�,$  with %̀�,$  we can observe that in all cases there are different 

regimes in the autoregressive parameters. The estimates of the seasonal means (�̂�,�  and �̂�,�, - = 1,⋯ ,12) are not reported here for space considerations but their results indicate the 

existence of seasonal behaviour in the inflation rates. 
Residual serial correlation tests based on �M statistics provide strong evidence for no 

residual serial correlation for all seasonal FISTAR model specifications. The large values of 
the estimates of threshold parameters	�{) and �T� indicate that transition from one regime to 
another occurs suddenly at the estimated threshold parameters. For the APGARCH part, the 
ARCH and GARCH terms of the variance equation are highly significant and having similar 
values for all three specification of the model. 
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Table 2: Summary of estimated models for South African inflation rates 

Model 1 Model 2 Model 3 

SEA-FISTAR part +t 0.4835*** 0.4600*** 0.4489*** �̂) 0.5488*** -1.0215*** 0.0999*** �T) 258.2647 404.2926 44.834 �̂� -1.0215*** �T� 686.6245 %̀�,� -0.3219*** -0.4638*** -0.2352*** %̀�,� -0.2204*** -0.4412*** -0.2533*** %̀�,N -0.1418*** -0.2007 -0.1879*** %̀�,| -0.1703*** -0.2689** -0.0373 %̀�,} -0.1761*** -0.1065 -0.0583 %̀�,� -0.3099*** -0.2792*** -0.3525*** %̀�,� -0.3366*** -0.1987*** -0.1421** %̀�,N -0.2984*** -0.1482*** -0.0962* %̀�,| 0.0256 -0.1144*** -0.2186*** %̀�,} 0.0368 -0.1109*** -0.1605*** 

SC(1) 0.892(0.345) 2.283(0.131) 1.819(0.178) 

SC(4) 1.428(0.222) 0.744(0.562) 1.747(0.137) 

APGARCH part 

ω 0.0508*** 0.0529*** 0.0625*** 

α 0.1779** 0.1547*** 0.1446*** 

β 0.7426*** 0.7733*** 0.7659*** 

δ 0.2736 0.1968 0.2323 

θ 0.2003 0.0688 0.1240 
Note: ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. p-values are given in parentheses.SC(q) denotes the F 
variant of LM test of no serial correlation	in	residuals	up	to	order	d.Model 1 is a SEA-FISTAR-APGARCH model, which allows only 
non-seasonal parameters to switch across regimes. Model 2 is a SEA-FISTAR-APGARCH model, which allows both seasonal and 
non-seasonal parameters to switch simultaneously across regimes with a single switching function. Model 3 is a SEA-FISTAR-APGARCH 
model, which allows both seasonal and non-seasonal parameters to switch under different regimes. 

 
 

  
 The inflation uncertainty is estimated as the conditional variance appearing in the 
SEA-FISTAR model in (1)-(3), which is specified to follow the APGARCH(1,1) model in (4).The 
South African monthly inflation rate and the estimated inflation uncertainties from the three 
SEA-FISTAR-APGARCH specifications are presented in Figure 1. As expected, the inflation 
rate appears to be less volatile than the inflation uncertainties. The impact of the depression 
during the 1930s is evident from the high levels of inflation associated with high levels of 
inflation uncertainty.  Following the oil price shocks of the 1970s inflation continue to rise, 
reaching its highest level in the mid-1980s. The period of inflation targeting, commencing in 
1990, brought about consistently lower levels of inflation. The descriptive statistics of these 
series are presented in Table 3.The mean value for the inflation variable is 0.46 and it is about 
50% larger than the mean inflation uncertainty from the different models which are about 0.24. 
The skewness is relatively greater than zero in all cases showing the series are somewhat 
skewed and the kurtosis deviates from 3 indicating they series are in general not normally 
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distributed. This is confirmed by the Jarque-Bera normality test which is rejected at the 1% 
significance level for all series. Also, the Ljung-Box Q first and fourth autocorrelation tests are 
rejected for all the series. This means that both inflation and inflation uncertainty series have 
autocorrelation of the first and fourth order. The Lagrange multiplier (LM) tests for 
autoregressive condition heteroskedasticity (ARCH) is rejected at 1% significance level for all 
series implying that all the series exhibit significant ARCH effects. 
 
Figure 1: Inflation and inflation uncertainty series 
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Note: Figure plots the inflation and inflation uncertainty series. The sample period covers March 1923-Decmber 2012 with 
n=1078 observations. Inflation is the monthly inflation rate. Inflation uncertainty is obtained from three model 
specifications defined in equations (1)-(4). Model 1 is a SEA-FISTAR-APGARCH model, which allows only non-seasonal 
parameters to switch across regimes. Model 2 is a SEA-FISTAR-APGARCH model, which allows both seasonal and 
non-seasonal parameters to switch simultaneously across regimes with a single switching function. Model 3 is a 
SEA-FISTAR-APGARCH model, which allows both seasonal and non-seasonal parameters to switch under different 
regimes. 
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Table 3: Descriptive statistics 

Inflation 

Inflation 
uncertainty from 

Model 1 

Inflation 
uncertainty from 

Model 2 

Inflation 
uncertainty from 

Model 3 

Mean 0.4612 0.2434 0.2422 0.2394 

S.D. 0.5833 0.086 0.0829 0.0712 

Min -1.9443 0.0593 0.0684 0.09 

Max 3.8772 0.578 0.5476 0.5155 

Skewness 0.7701 0.789 0.7255 0.4837 

Kurtosis 3.4561 0.8237 0.5822 0.1511 

JB 647.0830*** 143.1610*** 110.4010*** 43.2590*** 

Q(1) 255.0076*** 766.1288*** 836.5604*** 784.0646*** 

Q(4) 255.0076*** 766.1288*** 836.5604*** 784.0646*** 

ARCH(1) 8.1893*** 503.7468*** 674.9368*** 500.1503*** 

ARCH(4) 14.6041*** 512.7470*** 677.2952*** 506.2271*** 

n 1078 1078 1078 1078 
Note: This table reports the descriptive statistics for inflation and inflation uncertainty series. The sample period covers 
March 1923 to December 2012 with n=1078 observations. Inflation is the monthly inflation rate. Inflation uncertainty is 
obtained from three model specifications defined in equations (1)-(4). Model 1 is a SEA-FISTAR-APGARCH model, which 
allows only non-seasonal parameters to switch across regimes. Model 2 is a SEA-FISTAR-APGARCH model, which allows 
both seasonal and non-seasonal parameters to switch simultaneously across regimes with a single switching function. Model 
3 is a SEA-FISTAR-APGARCH model, which allows both seasonal and non-seasonal parameters to switch under different 
regimes. In addition to the mean, the table reports standard deviation (S.D.), minimum (min), maximum (max), skewness and 
kurtosis statistics, the Jarque-Bera normality test (JB), the Ljung-Box Q first [Q(1)] and the fourth [Q(4] order autocorrelation 
tests, and the first [ARCH(1)] and the fourth [ARCH(4)] order Lagrange multiplier (LM) tests for the autoregressive conditional 
heteroskedasticity (ARCH). ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 
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Granger Causality Test Results 

Prior to testing for asymmetric and time-varying causality between inflation and inflation 
uncertainty, we first present the results from the standard linear Granger causality test under 
the VAR model for each inflation uncertainty in the lower panel of Table 4.The order of the 
VAR and MS-VAR model is selected by the BIC. The BIC uniquely selects an order of 4 in 
each case. The hypothesis that inflation does not Granger cause inflation uncertainty cannot 
be rejected for models 2 and 3 but is weakly rejected for model 1. In all cases the hypothesis 
that inflation uncertainty does not Granger cause inflation cannot be rejected. Overall, the 
linear model does not appear to support either the Friedman nor the Cukierman-Meltzer 
hypotheses. However, the validity of these results depends on the validity of the linearity 
assumption in the standard Granger causality test. Therefore we present a series of model 
selection criteria (the log likelihood, Akaike information criterion and LR statistics) for linear 
bivariate VAR and MS-VAR with four states in the upper panel of Table 4. All three tests 
select the MS-VAR as the best model. Particularly, the LR statistics which tests the linear 
VAR model under the null hypothesis against the MS-VAR with 4-states under the alternative 

hypothesis is rejected at the 1% significance level based on both theχ2
p-values and p-values of 

the Davies (1987) test.  
 
Table 4: Model selection criteria, linearity, and linear Granger causality tests  

Model 1 Model 2 Model 3 

log L of linear VAR(4) model  1063.9758 1241.6195 1301.4708 

log L of 4-state MS-VAR(4) model 1455.1411 1672.3876 1693.5243 

AIC for linear VAR(4) model -1.8713 -2.2034 -2.3152 

AIC for 4-state MS-VAR(4) model -2.531 -2.9355 -2.9749 

LR test of linearity (H0: VAR(4),  
H1: MS-VAR(4)   

782.4918*** 
(0.000) [0.000] 

861.644*** 
(0.000) [0.000] 

784.2263*** 
(0.000) [0.000] 

VAR order (p) 4 4 4 

H0: Inflation uncertainty (ht) does 

not Granger cause inflation (πt) 

0.7493   

H0: Inflation (πt) does not Granger 
cause Inflation uncertainty (ht)  

2.1385*   

H0: Inflation uncertainty (ht) does 

not Granger cause inflation (πt) 
 1.7876  

H0: Inflation (πt) does not Granger 
cause Inflation uncertainty (ht)  

 1.7622  

H0: Inflation uncertainty (ht) does 

not Granger cause inflation (πt) 
  1.1300 

H0: Inflation (πt) does not Granger 
cause Inflation uncertainty (ht)  

  1.4986 

Note: This table reports selection criteria and linear Granger causality tests. Statistics under columns 2-4 are for bivariate VAR 
models or MS-VAR models, which include inflation and inflation uncertainty series. Inflation uncertainty is obtained in each case 
from the three models given in equations (1)-(4). Model 1, Model 2, and Model 3 are explained in the note to Table 3. In the table, 
log L is the log likelihood and AIC is the Akaike information criterion. The LR statistics tests the linear VAR model under the null 
H0 against the MS-VAR with 4-states under the alternative H1. LR test is nonstandard since there are unidentified parameters under the 

null. The χ2p-values with degrees of freedom equal to the number of parameters unidentified are given in parentheses and p-values of 
the Davies (1987) test are given in square brackets. Linear Granger causality F tests performed under the VAR model are also 
reported. ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 
 
 

Having established the adequacy of the MS-VAR(4) model, the subsequent discussion 
presents the results for the asymmetric and time-varying causality using inflation uncertainty 
from Model 3 and the inflation rate. Results for Models 1 and 2 are analogues and available 
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from the authors upon request. The parameters of the Markov switching model is estimated 
using the expectation maximization (EM) algorithm (Lindgren 1978; Hamilton 1990, 1994) 

assuming that the conditional distribution of Xt given {ℵ
t
,S

t
,S

t−1
,...,S

0
; ′θ } is normal. The 

likelihood function is numerically approximated using the EM algorithm and the ML estimates 
are found by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm. The 
asymptotic standard errors of estimates are computed using the Sandwich estimator. Table 5 
reports the transition probabilities, the ergodic probabilities, the expected duration of system 
in each regime, and the direction of the causal relationship between inflation and its 
uncertainty in the four-regime MS-VAR model. The causal links between inflation and its 
uncertainty are different in the four regimes. In regime 4, the causal link between inflation 
and its uncertainty is bi-directional. Inflation uncertainty has predictive power for inflation in 
regime 2, while inflation has predictive power for its uncertainty in regime 3. There is no 
causal link between the series in regime 1.  

The expected duration of the system in regimes 1, 2, 3, and 4 are 13.57, 2.31, 5.59 and 
1.06 months, respectively. These indicate that the expected duration of bi-directional causal 
links between the series considered is about 1.06 months. Also, the expected duration of 
causal link from inflation to its uncertainty is about 2.31 months, while the duration for the 
link from inflation uncertainty to inflation is about 5.59 months. According to the results of 
the expected duration of system in regimes 2 and 3, inflation seems to have a very strong 
predictive content for inflation uncertainty compared to causality from inflation uncertainty 
to inflation. The results indicate that the impact of inflation on its uncertainty is positive in 
regime 4 and the effect of inflation uncertainty on inflation is also positive in regime 4. The 
effect of inflation on its uncertainty is positive in regime 3, and the effect of inflation 
uncertainty on inflation is positive in regime 2. We also compute the weighted coefficients for 
the sign of the effect. Since the total impact will depend on the combination of regimes 2 and 4 
for the effect of inflation uncertainty on inflation and the combination of regimes 3 and 4 for 
the effect of inflation on inflation uncertainty, we calculate the weighted sums of the impacts in 
different regimes. These weighted impacts are calculated by weighting the corresponding 
regime coefficient sums with the normalized ergodic probabilities. The results indicate that the 
sign of the total weighted effect between the series is positive for lead-lag relationship in both 
directions. The regime inference reported in Table 5 shows that the number of observation is 
zero for inflation uncertainty Granger causing inflation and is 313 for inflation Granger 
causing inflation uncertainty. 

 
Table 5: Estimates of the 4-state MS-VAR model 

 

  Transition Probabilities 

  p1j p2j p3j p4j 
Regime 1 0.926 0.428 0.179 0.480 
Regime 2 0.000 0.567 0.000 0.000 
Regime 3 0.073 0.000 0.821 0.465 
Regime 4 0.000 0.005 0.000 0.054 

     

  
Ergodic 

Probabilities 
Duration ni   

Regime 1 0.709 13.569 761   
Regime 2 0.000 2.307 0   
Regime 3 0.291 5.586 313   
Regime 4 0.000 1.057 0   
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Effect of Inflation Uncertainty on 

Inflation 
Effect of Inflation on Inflation 

Uncertainty 

Regime 1 -- -- 
Regime 2 0.440 -- 
Regime 3 -- 0.002 
Regime 4 1.160 0.032 
Weighted Coefficients 0.836 0.002 

  

  Regime Inference 

  
Inflation Uncertainty Granger 

Causes Inflation 
Inflation Granger Causes 

Inflation Uncertainty 

Ergodic Probability 0.000 0.291 
Number of Observations 0 313 

Note: This table reports the estimates of the transition probabilities, the ergodic probabilities, the expected duration of system in each regime, and 
the impact between inflation and inflation uncertainty in the four-regime MS-VAR model. pij, i,j=1,2,3,4, denote the transition probabilities 
defined in equation (9). ni denote the number of observation falling in regime i estimated from the limiting ergodic probabilities. The weighted 
coefficients for the impacts of inflation uncertainty on inflation and inflation on inflation uncertainty are calculated by weighting the 
corresponding regime coefficient sums with the normalized ergodic probabilities. 

 
Further insight about the changes in causality throughout the sample period may be 

obtained by looking at the inferred probabilities for the Granger causality regime between 
inflation and inflation uncertainty from the MS-VAR model in Figure 2. The plots shown in 
Panel A of Figure 2, is the inferred probability of inflation Granger causing inflation 
uncertainty, which are the sum of the filtered probabilities of regime 3 and regime 4. The plots 
given in Panel B of Figure 2 is the inferred probability of inflation uncertainty Granger causing 
inflation, which are the sum of the filtered probabilities of regime 2 and regime 4. The plot of 
the inferred probabilities shown in Panel A of Figure 1 indicates that inflation has positive 
predictive content for inflation uncertainty for most of sample period. This finding suggests 
strong evidence for the Friedman hypothesis during the subsamples of the study period. The 
probability estimates for Panel B are essentially almost all zero. This indicates that inflation 
uncertainty has no predictive content for inflation. 
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Figure 2: Estimates of the inferred filtered probabilities for the Granger Causality 

 
Notes: Panels A plots the inferred probability of inflation Granger causing inflation uncertainty, which is the sum of the regime 3 and regime 
4 filtered probabilities. Similarly, Panel B reports the filtered probability of inflation uncertainty Granger causing inflation, which is the sum of 
the regime 2 and regime 4 filtered probabilities. The regions corresponding to maximum probability are shaded.  

 
 

We test for conditional Granger causality between inflation and inflation uncertainty 
using the four sufficient conditions. The F statistics and corresponding p-values from testing 

the hypothesis that th ≠> tπ ( ( )

1 0kα = and 
( )

12, 0
t

k

Sφ = , {1,2,3,4}
t

S = ) and that tπ ≠> th ( ( )

2 0kα =

and 
( )

21, 0
t

k

Sφ = , {1,2,3,4}
t

S = ) are reported in Table 6. For testing that th ≠> tπ ,the evidence 

obtained from the F statistics, shows that the hypothesis that the coefficients on the lagged 
inflation uncertainty are zero in the inflation equation cannot be rejected. Hence, we find no 
evidence of conditional (i.e., lead-lag relationship) Granger causality from inflation 



25 

 

uncertainty to inflation. The same holds when either of the variables is restricted to follow a 

single known regime. Conversely, for testing that tπ ≠> th , the evidence obtained from the F 

statistics shows that the hypothesis that the coefficients on the lagged inflation are zero in the 
inflation uncertainty equation is rejected at the 1% significance level. Thus, there is strong 
evidence of conditional (i.e., lead-lag relationship) Granger causality from inflation to inflation 
uncertainty. The same holds when either of the variables is restricted to follow a single known 
regime as well as whether the regimes are identified by causality direction or unidentified. 
These findings corroborate the evidence obtained from the inferred probabilities given in 
Figure 2. 
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Table 6: Conditional Granger noncausality in 2-state and 4-state MS-VAR(4) 

model of inflation and inflation uncertainty 

 

Hypothesis m S F
a 

p value of F 
   

q1=2, q2=2 
  

  
H0 :α1

(k ) = 0  4 38 0.7432 0.5626 

  
H0 :α2

(k ) = 0  4 38 5.6702*** 0.0002 

q1=1, q2=2 
  

  
H0 :α1

(k ) = 0  4 14 0.9080 0.4585 

  
H0 :α2

(k ) = 0  4 12 6.9292*** < 0.0001 

q1=2, q2=1 
  

  
H0 :α1

(k ) = 0  4 12 0.8584 0.4884 

  
H0 :α2

(k ) = 0  4 14 5.5428*** 0.0002 

q1=2, q2=2 
  

  
H0 :φ12,St

(k ) = 0
b 16 40 1.2450 0.2264 

  
H0 :φ21,St

(k ) = 0
c
 16 40 3.1437*** < 0.0001 

Note: m denotes the number restrictions. ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. < 
designates less than the number it precedes. 
aFor the F statistic the reference distribution is F(m, n–s) and  the F statistic is computed from F=((n–s)/(mn))W, where W is 
the Wald statistic, n is the number of observations, s is the closest integer to the average number of free parameters per 
equation under H0, i.e., s=int[(k–m)/2], where k is the total number of parameters estimated. 
b Test of the null hypothesis that inflation uncertainty does not Granger cause inflation in an unrestricted MS-VAR(4) model 
with 4 states. 
c Test of the null hypothesis that inflation does not Granger cause inflation uncertainty in an unrestricted MS-VAR(4) model 
with 4 states. 

 
 

It is observed that the filtered probabilities (Panel A of Figure 2) indicate occasional shifts 
in the causal links between inflation and its uncertainty. The inferred probability estimates presents 
strong evidence of time varying causal relationships between the two series. Therefore, there is a 
need to test whether the four types of causal relationships hold for the whole sample. This can be 
done using the four types of restrictions given in Table 1 and corresponding Wald tests. In the first 

case, we test the null hypothesis that the inflation uncertainty does not Granger cause inflation, 1

0H

, and both inflation and inflation uncertainty are allowed to follow two independent states. The 

second hypothesis is that the inflation uncertainty does not Granger cause inflation, 2

0H , when 

inflation follows a fixed single regime and inflation uncertainty is free to follow two regimes.  In 
the third case, we test the hypothesis that inflation uncertainty does not Granger cause inflation,

3

0H , when inflation uncertainty follows a single regime while inflation has two regimes. In the 

fourth case, the hypothesis 4

0H , inflation uncertainty is conditionally uninformative about the 

regime and noncausal for inflation. When we wish to test the hypothesis that inflation uncertainty 
is Granger noncausal in mean (and variance) for inflation, the restrictions given under the 

hypotheses 1

0H , 2

0H , and 3

0H imply that inflation uncertainty is conditionally uninformative 

about the regime, while 4

0H implies that inflation does not directly depend on the regime (other than 

the dependence via residual covariance). Moreover, the 1

0H , 2

0H , and 3

0H restrictions allow the 
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Markov process to be serially correlated, while 4

0H does not. The four cases given in Table 1 are 

also extended to the case where under the null hypothesis inflation does not Granger cause inflation 
uncertainty. The corresponding null hypothesis is again tested under the four cases. In the first 

case, 5

0H , both inflation and inflation uncertainty follow two regimes. In the second case, inflation 

is restricted to a single fixed regime, 6

0H . The third case, 7

0H , restricts inflation uncertainty to a 

single fixed regime while inflation is free to follow two regimes. The fourth case, 8

0H , restricts 

inflation uncertainty not to depend on the regime directly. 
The estimation results of the Wald tests for each of the eight hypotheses are given in Table 

7. With regard to the hypothesis th ≠> tπ , the four sets of sufficiency restrictions relating to 1

0 ,H

2

0 ,H
3

0 ,H  and 4

0H  cannot be rejected at any of the conventional significance levels. Therefore, the 

null hypotheses that inflation uncertainty is conditionally uninformative about the regime ( 1

0 ,H

2

0 ,H  and 3

0H ), and the null hypothesis that inflation does not directly depend on the regime (other 

than via the residual covariances) cannot be rejected. Overall, the non-rejection of all four 
hypothesis suggest the non-existence of regime-prediction Granger causality. Conversely, the four 

sets of sufficiency restrictions relating to 5

0H , 6

0H , 7

0H and 8

0H  are strongly rejected at the 1% 

significance level. The overall rejections suggest the existence of regime-prediction Granger 
causality. Thus, inflation helps to predict the regime of inflation uncertainty. That is, the inflation 
process contains unique information for predicting the regime process of inflation uncertainty. 
These findings are robust to the cases where either of the series is restricted to follow a single 
regime (i.e. whole sample) and the cases where they are allowed to follow a two regime process. 

  
Table 7: Wald tests of the Granger noncausality restrictions in the 2-state and 4-state 

MS-VAR(4) model of inflation and inflation uncertainty 

Hypothesis m s F
a
 p-value of F 

  
H

0
1 ht does not Granger cause πt with q1=2 

and q2=2 (St = 1,2,3,4) 

44 26 0.9782 0.5136 

  
H

0
2  ht does not Granger cause πt with q1=1 

and q2=2 (St =1,3) 

16 16 1.0135 0.4391 

  
H

0
3 ht does not Granger cause πt with q1=2 

and q2=1 (St = 1,2) 

20 14 1.0326 0.4194 

  
H

0
4  ht does not Granger cause πt with q1=2 

and q2=2 (St = 1,2,3,4) with serially 
uncorrelated Markov process 

10 43 0.8248 0.6047 

  
H

0
5 πt does not Granger cause ht with q1=2 

and q2=2 (St = 1,2,3,4) 

44 26 1.8812*** 0.0005 

  
H

0
6 πt does not Granger cause ht with q1=1 

and q2=2 (St =1,3) 

20 14 2.5533*** 0.0002 

  
H

0
7  πt does not Granger cause ht with q1=2 

and q2=1 (St = 1,2) 

16 16 2.7220*** 0.0003 

  
H

0
8 πt does not Granger cause ht with q1=2 

and q2=2 (St = 1,2,3,4) with serially 
uncorrelated Markov process 

10 43 3.2863*** 0.0003 
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Note:m denotes the number restrictions. ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. < designates less than the 
number it precedes.  
a For the F statistic the reference distribution is F(m, m–s) and  the F statistic is computed from F=((T–s)/(mT))W, where W is the Wald statistic, 
T is the number of observations, s is the closest integer to the average number of free parameters per equation under H0, i.e., s=int[(k–m)/2], where 
k is the total number of parameters estimated. 

 
 
5. Conclusion 

 
This paper uses the recursively-estimated SEA-FISTAR-APGARCH type model to estimate 
inflation uncertainty as the conditional variance of the unanticipated shocks to the South Africa’s 
monthly (seasonally) unadjusted consumer price index based inflation rates covering the period 
1921-1 to 2012-12. The SEA-FISTAR-APGARCH type model is flexible and capable of 
simultaneously dealing with the long memory behaviour, nonlinearity, seasonality and structural 
breaks in the mean of the inflation series. Further, a recursive, rather than a full-sample, estimation 
of the SEA-FISTAR-GARCH model allows us to obtain a time-varying measure of uncertainty, 
which is not only a more realistic depiction of how agents form the uncertainty variable as new data 
becomes available, but this approach also allows us to tackle for possible structural breaks in the 
parameter estimates of the APGARCH part of the model, from which the measure of uncertainty is 
formed. The latter is equally important, since in an emerging country like South Africa, structural 
changes are not an unlikely event to affect decision making processes.  Subsequently, we examine 
the causal links between inflation and inflation uncertainty. Specifically, the validity of the popular 
hypotheses by Friedman, Cukierman-Meltzer, Holland, Pourgerani-Maskus and Ungar-Zilberfab 
about dynamic linkages between inflation and inflation uncertainty are tested.  A VAR model with 
time-varying parameters in which changes in the causality are reflected by time-varying 
parameters is used. The causality changes are regarded as random events that are controlled by an 
exogenous Markov switching VAR (MS-VAR) model, where inferences on the causality changes 
are based on the estimated probability that each observation belongs to a specific causality regime. 
We estimate the MS-VAR model assuming a nonlinear relationship with asymmetry. This 
procedure provides information on the direction and sign of the Granger causality relationship 
between inflation and its uncertainty. The estimates of the four-state MS-VAR model show that 
inflation uncertainty has a positive effect on inflation in regime 2 while inflation has a positive 
effect on inflation uncertainty in regime 3. In regime 4, there is a bidirectional causality between 
inflation and inflation uncertainty while the sign of the effects are zero in regime 1.  One can 
conclude that inflation and inflation uncertainty are positive determinants of each other depending 
on which regime is considered. However, evidence based on the inferred probabilities, which is a 
sum of the filtered probabilities for regimes 2 and 4 for inflation uncertainty Granger causing 
inflation, and sum of filtered probabilities from regimes 3 and 4 for inflation Granger causing 
inflation uncertainty shows a strong positive causality from inflation to inflation uncertainty in 
various subsamples but basically no visible form of causality from the latter to the former. When 
we implement a conditional Granger non-causality, we observe  strong evidence of conditional 
(i.e. lead-lag relationship) Granger causality from inflation to inflation uncertainty but not vice 
versa. Further, evidence from the Wald tests shows that inflation has strong regime prediction 
power for inflation uncertainty irrespective of whether the series are restricted to follow a single 
regime (i.e. whole sample) or allowed to follow a two regime process. Thus, the inflation process 
contains unique information for predicting the regime process of inflation uncertainty. However, 
we could not establish any regime-prediction causality from inflation uncertainty to inflation. 
Therefore, we conclude evidence in favour of the Friedman’s hypothesis while accounting for 
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regime changes. 
The results have important policy implications. Since inflation increases inflation 

uncertainty, the importance of keeping inflation low, stable, and predictable cannot be 
overemphasized. The monetary authority need to ensure quick, effective and efficient policy 
response to inflation development in South Africa since this will help to reduce inflation and hence 
minimize its marginal effect on inflation uncertainty. Moreover, in order to rationalize as well as 
anchor the public’s inflation expectations, information on the various drivers of inflation in South 
Africa and inflation forecasts needs to be given adequate publicity. These will also assist in 
communicating the monetary policy stance and hence improve South Africa’s Reserve Bank’s 
transparency and accountability. While much is expected from the monetary policy authority, there 
is need for fiscal policy response as well since both demand and supply shocks may contribute to 
rising inflation in the economy. Therefore, both monetary and fiscal policies need to be 
co-ordinated to effectively reduce inflation to a desirable minimum. 
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