Introduction to Biostatistics 1

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Health Sciences

Fakulteit Gesondheidswetenskappe Lefapha la Disaense tša Maphelo

Dr Kuhlula Maluleke School of Health Systems & Public Health University of Pretoria Email: kuhlula.maluleke@up.ac.za

Make today matter

Outline for this session

- What is statistics?
- Statistic versus parameter
- Descriptive versus Inferential statistics
- What is involved in Descriptive statistics?
- What is involved in Inferential Statistics?
- Descriptive statistics for categorical data
- Descriptive statistics for numerical data

Part I: Introduction to Statistics and Types of Data

Definition of statistics

Statistics is the discipline that involves the collection, organization, analysis, interpretation and presentation of data

A statistic versus parameter

- What is a statistic?

- A statistic is a measure calculated from a sample (subset of population), e.g. sample mean, sample standard deviation, sample proportion
- We use Roman letters for statistics (e.g. s for sample standard deviation)

- What is a parameter?

- A parameter is a measure calculated from a population, e.g. population mean(μ), population standard deviation (σ), population proportion (π)
- We use Greek letters for parameters

Why sample or Representative sample?

- We always want to know about some measurements in the population
- E.g. proportion of people living with HIV in South Africa
- However, because of limited resources we are not able to test everyone for HIV in South Africa
- Therefore, we select a subset of the population, called a sample, and calculate *statistics* from that sample
- How we select the sample is important for us to be able to generalize from *sample* to *population*

Two branches of statistics

Descriptive statistics

- Descriptive statistics deals with describing, summarizing, and presenting data, to show patterns in the data
- Categorical data frequency tables, pie/bar charts
- Numerical data Mean (SD) or Median (IQR), Histograms, Box-andwhisker plots

Inferential statistics

- Inferential statistics allows the use of sample data to generalize about the populations from which the samples were drawn
- 95% Confidence Intervals (95%CI)
- *Hypothesis Testing P-values*

What is involved in Descriptive statistics?

- Data analysis for categorical data
- tabulation of data
- Frequency tables, Bar charts, Pie charts
- Data analysis for numerical data
- measures of average or central tendency mean, median, mode
- measures of variation or spread standard deviation, variance, percentiles, quartiles, ranges, interquartile ranges

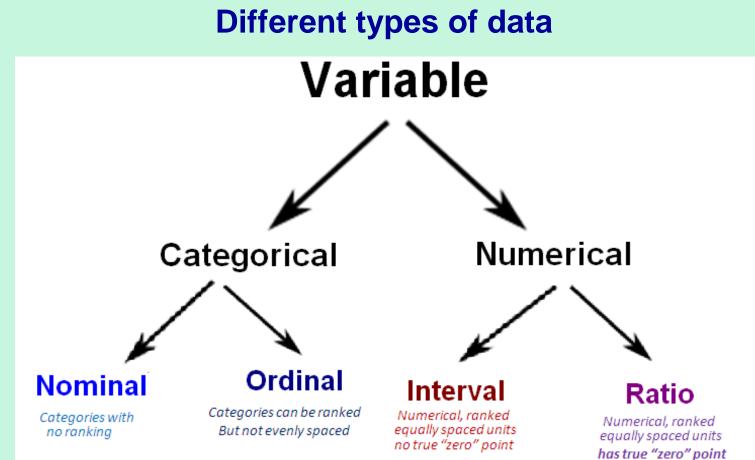
Examples of descriptive statistics

1.1	A	8	C	D	Age		1922	
1	Respondent #	Age	Gender	Favorite Ice Cream Flavor	100-000		20	
2	1	3	6 m	Vanilla	Mean	42.6	15	
3	2	2	21	Chocolate	Standard Dev.	21.9		
1 2 3 4 5 6	3	6	1 m	Strawberry			10	1
5	4	8	8 m	Other		N/A_	Male	Female
6	5	3	1 m	N/A	NO.	6%		
7	6	5	3 m	N/A	ALC: NOT			
8	7	3	0 f	Chocolate				
7 8 9 10 11	8	6	41	Chocolate		Other		
10	9	1	8 m	Vanilla		14%	Vanilla	
	10	1	61	Vanilla			37%	
12	11	8	3 m	Strawberry			3776	
13	12	1	6 f	Strawberry	20 X 1	1		
14	13	9	4 m	Strawberry	Strawberry	1		
15	14	5	5 m	Varvilla	17%			
16 17	15	4	2 f	Chocolate		1	- V	
17	16	1	8 f	Vanilla		Chor	olate	
18	17		1.0	Vanilla			18	

Raw Data

Descriptive Statistics

https://www.google.com/search?g=descriptive+statistics+examples&rlz=1C1GCEU_enZA859ZA859&so urce=lnms&tbm=isch&sa=X&ved=2ahUKEwi3xlygiP7nAhURJBoKHSW9BsYQ_AUoAXoECA8QAw&biw= 1920&bib=969#imgrc=ga-Id0fCZK0DtM


What is involved in Inferential statistics?

- Hypothesis testing
- State null and alternative hypothesis
- Use sample data to calculate p-value, which is
- Probability the observed is only due to chance
- Make a generalization from sample to population (interpreting results)
- 95% Confidence Intervals
- Use the sample to calculate 95%CI, which is
- The interval in which we are 95% confident that the true population value lies within

Summary so far

- Statistics has two branches
- Descriptive statistics
- Inferential statistics
- Descriptive statistics deals with describing, summarizing, and presenting data
- Inferential statistics deals with generalizing from sample to population
- In most studies, we will do both descriptive and inferential statistics

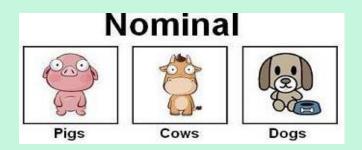
Types of Data

ie zero por

A "variable"

- Any characteristic that can take on *different values* for different individuals or items.
 - Age varies from person to person
 - Height, gender, wellness/illness etc

• A characteristic that we measure and describe in epidemiology


Scales of measurement of variables

Variables – scales of measurement

- Variables are classified into *four (4) types* depending on type of scale used to characterize them
- Variable can be measured using the
- 1. 'nominal' or
- 2. 'ordinal' or
- 3. 'interval' or
- 4. 'ratio' scale

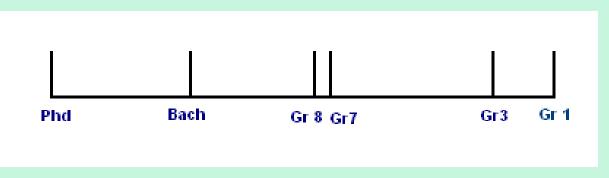
Nominal scale variable

- Has two or more categories
 - But there is no basis for ordering or ranking the categories
 - One category is not any better or worse than the other
- Examples
 - Province of residence
 - Sex (male, female)
 - Marital status

• Each observation falls into one *mutually exclusive* and *exhaustive category*

Binary variable

- A nominal variable with *two mutually exclusive* categories is also called
 - Binary variable
- Examples:
 - Alive or dead,
 - Response to question (Yes/No)
 - Sex (male/female),
 - Vaccination status (vaccinated/unvaccinated)



Ordinal scale variable

- Variable has two or more categories
 - Categories can be ordered along a pre-established dimension
 - But no way of knowing how different the categories are from one another
 - We do not have equal intervals between the items
- Categories can be ranked but are not evenly spaced

Ordinal scale variable

- Example:
 - Level of education can be categorized into Tertiary, High School, Primary school, None, etc
 - But can we say that those who attended "high school" are *twice* as educated as those who only went to "primary"?

Ordinal scale variable

- Considered stronger scale compared to nominal
 - Provides information about *relative ranking* of observations
 - Gives some idea on which observation is *better* than the other (s)
 - But does not tell us about the absolute magnitude of the difference between categories

Interval scale variable

- Variable has a numerical value,
- Distance between units on the scale is equal over all levels (equally spaced units)
- Has no true (absolute) zero point
- Example: Temperature
 - Difference between 20 and 40 °C, is the same as the distance between 55 and 75 °C
 - But 0^oC does not mean absence of temperature

°C	°F
=	=
50	120
40	100
30	80
20	60
10	
0 ॑॑	40
-10	<u></u> 20
-20	0
-30	-20
-40	-40
(

Ratio scale variable

- Considered the strongest scale
- Has a numerical value
- Distance between units on the scale is equal over all levels (equally spaced)
- Has a meaningful true zero point -
 - Zero (0) of measurement indicates absence of variable
- Allows for the interpretation of ratio comparisons

Ratio scale variable - weight

- Equal intervals
 - Difference between 3kgs & 5kgs is the same as between 8kgs & 10kgs
- Ratio comparison
 - We can say that 10kgs is twice as heavy as 5kgs
- True zero point
 - Zero (0kgs) indicates absence of variable

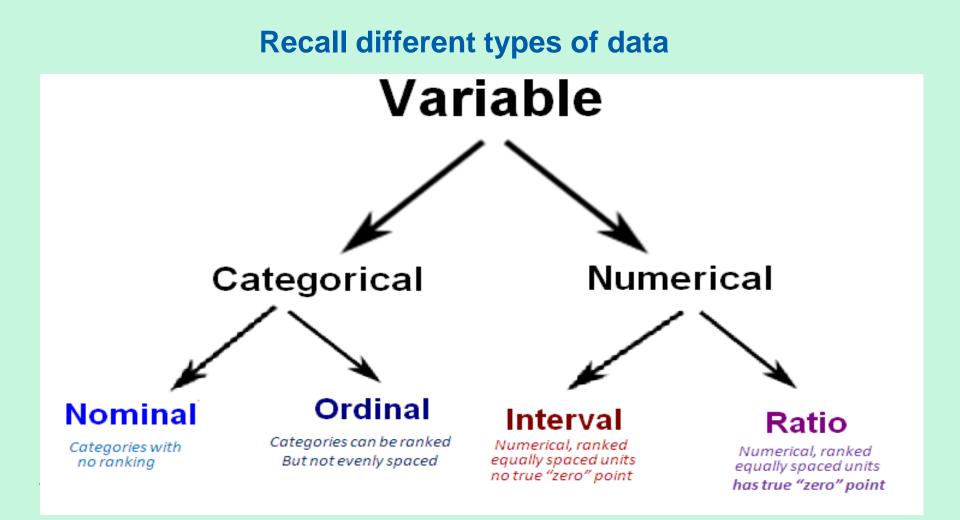
Scales of measurement - summary

Provides:	Nominal	Ordinal	Interval	Ratio
"Counts," aka "Frequency of Distribution"	~	v	~	~
Mode, Median		~	~	~
The "order" of values is known		v	~	~
Can quantify the difference between each value			~	~
Can add or subtract values			~	~
Can multiple and divide values				V
Has "true zero"				~
	Inc	Increasing level of information		

Summary for types of data & scale of measurement

- Type of data determines the statistical methods to be used
- We have numerical and categorical data
- Numerical data are either measured or counted
- Categorical data are observed
- Scales of measurement start from nominal, ordinal, interval, to ratio scale

Exercise


What types of variables are the following?

- 1. Number of episodes of disease in a patient per year?
- 2. Viral load level in a patient on antiretroviral therapy?
- 3. Patient's marital status?
- 4. Severity haemophilia (mild/moderate/severe)?
- 5. Reduction in blood pressure after antihypertensive treatment?
- 6. Sex (Male/Female)

Part II: Descriptive statistics for categorical and numerical data

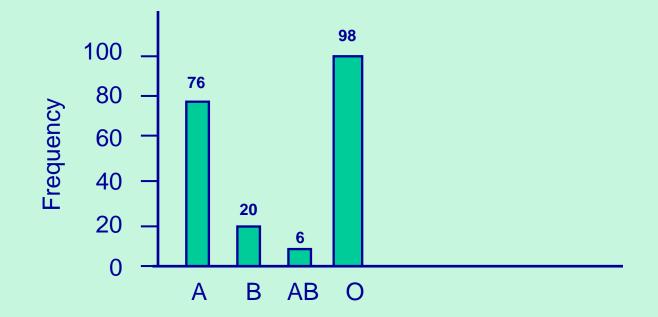
Descriptive statistics for categorical data

The type of statistical methods to be used depend on the type of data

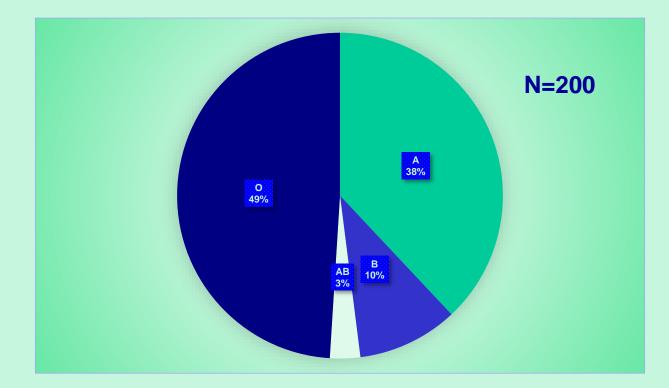
Categorical variables

Several categories with no order

- blood group: A, B, AB, O

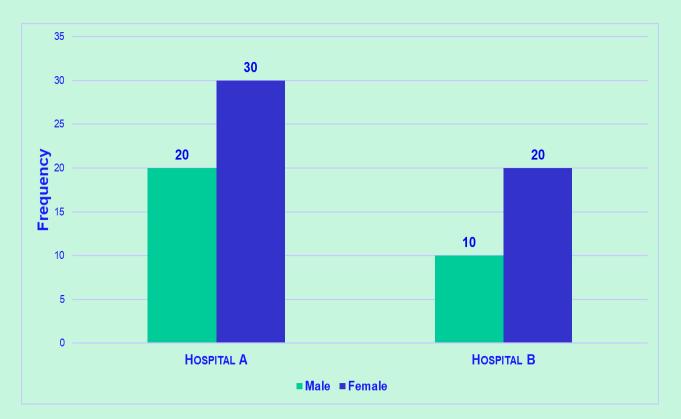

Several categories with order

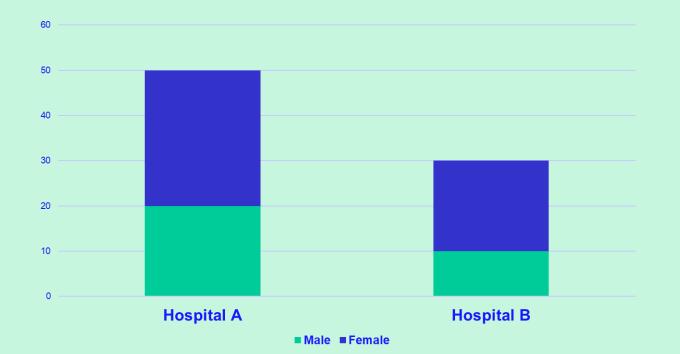
- health status: poor/ moderate/ good/ excellent
- Two categories only (also called a binary variable)
- dead/ alive


Frequency distribution of blood group

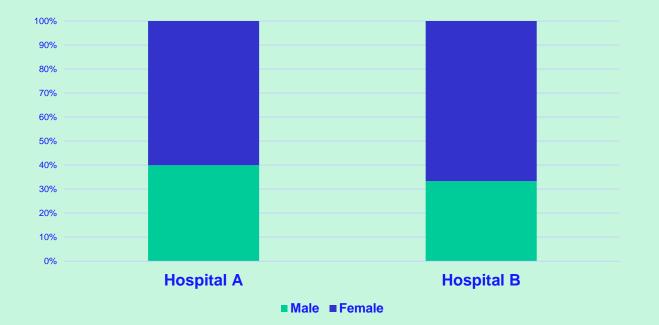
Blood grou	ip Frequency	%
А	76	38
В	20	10
AB	6	3
0	98	49
Total	200	100

Bar chart of blood group


Pie chart for blood group


Two categorical variables

	Hospital A	Hospital B
Male	20	10
Female	30	20


Clustered bar chart

Stacked bar chart

100% Stacked bar chart

Descriptive statistics for numerical data

The type of statistical methods to be used depend on the type of data

Now let's consider numerical variables...

Numerical variables

Measured (continuous variable)

- Where a measuring instrument is used e.g.
- birth weight in kg Variable can take any values within a range

Count (discrete variable)

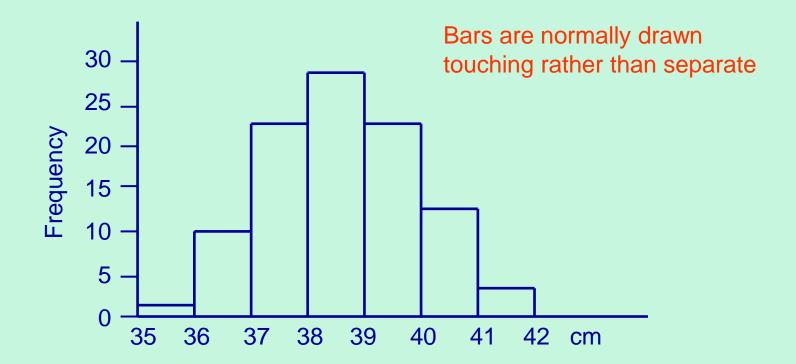
Variable can only take certain discrete values, e.g.
Number of hospital admissions last year
0,1,2,3,....

Continuous measured variable

An example is head circumference in new-born babies, measured in cm.

Note that the precision of the measurement depends on the instrument used

Creating a frequency distribution needs some preliminary work


Head circumference of 100 babies (cm)

38.6, 39.1, 38.0, 36.2, 37.7, 39.0, 38.4, 40.3, 39.8, 38.9, 37.5, 39.5, 37.2, 40.4, 37.5, 38.8, 37.5, 36.8, 37.3, 39.2, 38.1, 37.9, 38.8, 39.0, 39.3, 40.7, 38.8, 38.1, 37.5, 38.1, 38.3, 38.7, 38.5, 39.0, 38.1, 38.5, 39.2, 37.9, 40.6, 36.2, 37.2, 36.2, 37.4, 35.8, 41.0, 39.4, 38.5, 38.6, 40.9, 39.5, 39.9. 39.6. 39.4. 38.9. 38.6. 36.1. 39.0. 38.5. 40.1. 36.4. 40.4, 38.6, 39.7, 41.0, 37.5, 39.5, 38.1, 37.7, 40.7, 40.6, 37.6, 40.4, 37.5, 38.5, 38.5, 36.5, 37.8, 40.0, 37.5, 36.8, 38.0, 36.8, 39.0, 36.2, 37.7, 37.8, 37.5, 37.1, 38.6, 38.7, 41.0, 39.5, 38.3, 39.1, 40.9, 37.3, 38.7, 38.8, 39.3, 39.0

Frequency distribution

Head circumf (cm)	Frequency
35.0 - 35.9	1
36.0 - 36.9	10
37.0 - 37.9	23
38.0 - 38.9	28
39.0 - 39.9	23
40.0 - 40.9	12
41.0 - 41.9	3
Total	100

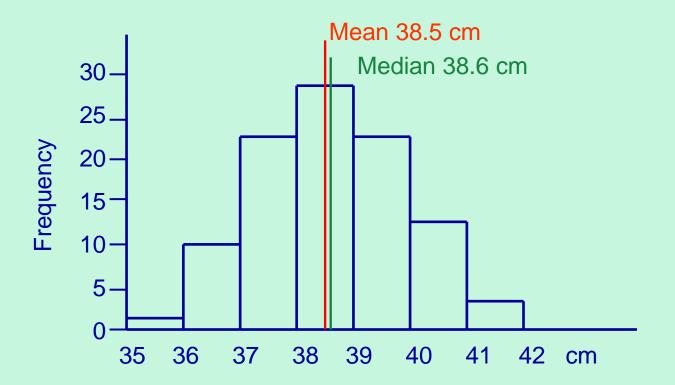
Histogram of head circumference

Measure of average

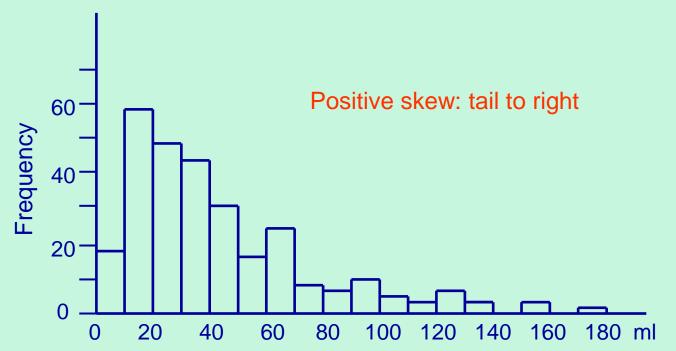
- We want this to represent all the observations in a single value
- Mean and median are common measures
- Mode is a measure that is rarely useful

Measures of average

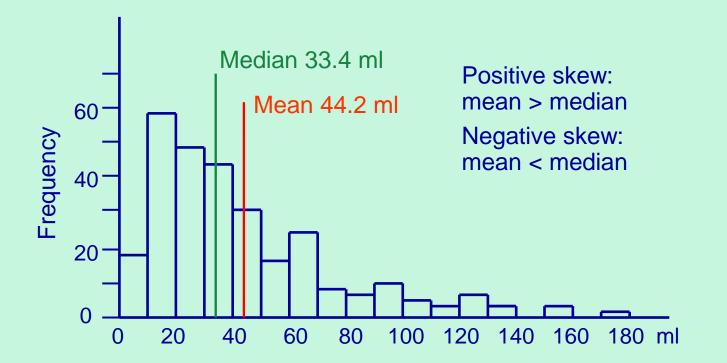
Mean: sum of values = $\sum x_i$ Number of obs N


Median: value of middle observation when all observations are arranged in size order

3,4,5,6,8,8,9,10,11,11,12,14,15,16,16,18,19,21


median of these 18 observations is midway between the 9th and 10th observation

Mode: most common value


Histogram of head circumference

Compare histogram of menstrual blood loss (ml)

Histogram of menstrual blood loss (ml)

Mean vs. median (1)

Mean is calculated using arithmetic, so variable should be in an interval scale (but we sometimes calculate means for ordinal scales)

If used with discrete variables the mean can produce odd results. e.g. mean number of children in family = 3.2

Mean vs. median (2)

Mean is much affected by outlying values - median is not. For very skewed data, the median is the more stable measure and gives a better picture of the 'average' than the mean.

Median can be calculated even if you don't know precisely what the extreme values are

Mean is much more useful than median in further statistical calculations

Measures of variation

There are several measures to encapsulate the variation in a set of observations

- Range, percentiles, and interquartile range are all derived from ranking the observations
- **Standard deviation** is calculated from the values of the observations

Range

The difference between the maximum and minimum values in a dataset.

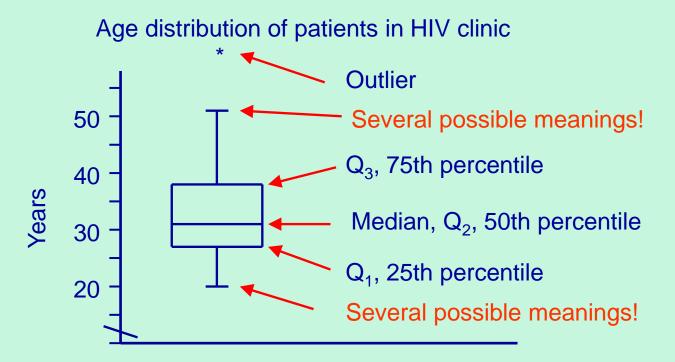
E.g. for head circumference Maximum value = 41.0 cm Minimum value = 35.8 cm

The range = max value – min value = 41.0 - 35.8 = 5.2

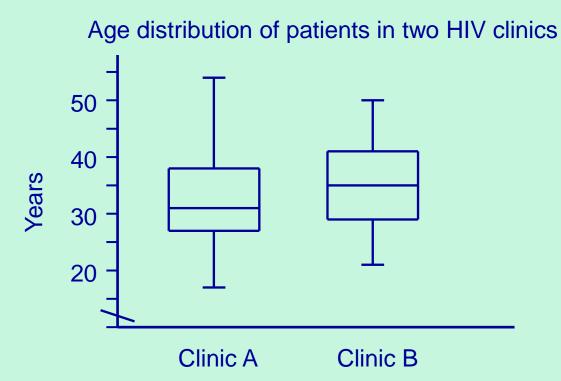
Percentiles

Arrange the N observations in order of size. Common percentiles are 5th, 25th, 50th, 75th, 95th The 25th percentile is the value with rank 25% of N+1

e.g. Suppose you have 23 observations: 1,3,3,3,5,5,6,7,8,8,8,9,10,11,12,13,14,14,15,17,20,22,25 25th 50th 75th percentile: percentile: percentile: value with value with rank 6 rank 12 rank 18


Interquartile Range (IQR)

The 25th percentile is often referred to as Q_1 and the 75th percentile as Q_3


The IQR is the range from Q_1 to Q_3 : in our example 5 to 14

The IQR includes the middle 50% of observations, and excludes extreme (perhaps unrepresentative) values

Box-and-whisker plot

Box-and-whisker plot

Standard deviation (SD)

- 1. Find the mean \overline{x}
- 2. Find the deviation of each observation from the mean $(x_i \overline{x})$
- 3. Square each deviation $(x_i \overline{x})^2$
- 4. Add up the squared deviations $\Sigma(x_i \overline{x})^2$
- 5. Divide by n-1. This is the variance

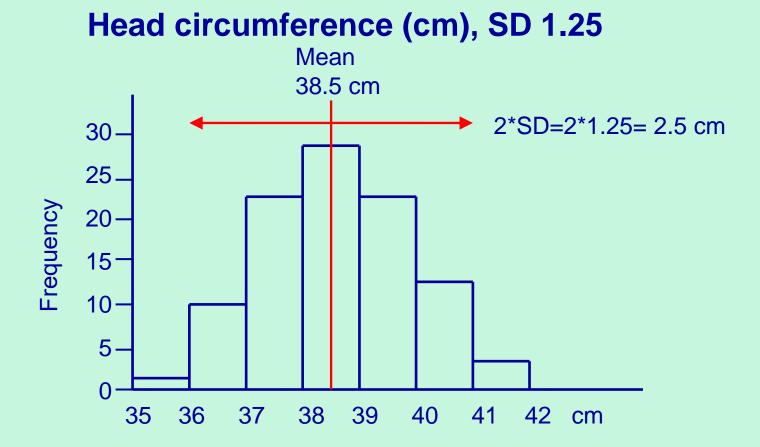
6. Take the square root. **SD** = $\int \frac{\Sigma(x_i - \overline{x})^2}{n - 1}$

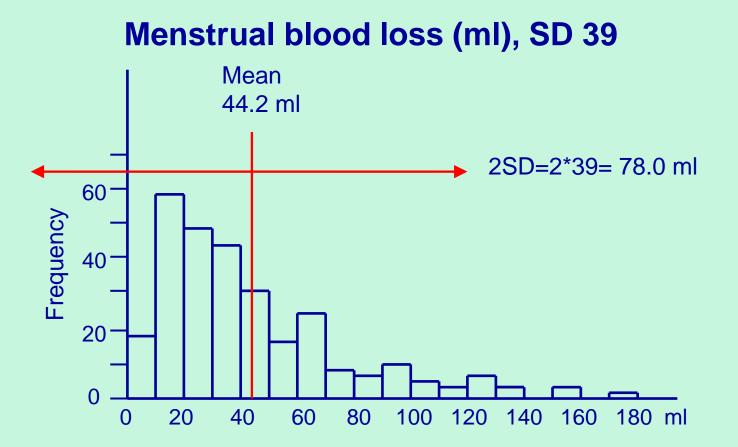
Calculating SD

X	(x- x)	(x- x) ²
10	(10-14)=-4	(-4) ² =16
12	(12-14)=-2	(-2) ² =4
20	(20-14)=6	(6) ² =36
Total		Σ(x-x) ² = 16+4+36=56

Mean = \overline{x} = (10+12+20)/3 = 42/3 = 14 Variance =[$\Sigma(x-\overline{x})^2$]/(n-1) =56/(3-1) = 56/2 = 28 Standard Deviation = SD = $\sqrt{28}$ = 5.29

How do you interpret the SD? (1)


The SD has no immediately obvious interpretation, but understanding it comes with experience


The bigger the SD the more variability in the data

How do you interpret the SD? (2)

If the distribution of the data is symmetrical, the large majority of a set of observations will usually be within 2 SD of the mean

If the data come from a Normal distribution, 95% of observations will be within 2 SD of the mean (more on this next session)

SD in a skew distribution

For the blood loss data, mean + 2SD = 122.2 ml, but mean - 2SD = -33.8 ml, an impossible value! Simply from knowing the mean and SD you can tell that this distribution is skewed

Comparison of IQR and SD

For describing the variability of the data, the SD is useful for symmetrical distributions, but the IQR is more informative for very skewed distributions.

For further statistical calculations the SD is essential.

Summary

- There are two branches of statistics: Descriptive and Inferential
- Descriptive statistics is what we have covered deals with data summary and presentation
- The type of analysis depends on whether variables are categorical or numerical
- Categorical data are summarized using frequency tables, pie charts and bar charts
- For normally distributed numerical data, use Mean and SD
- For skewed data, use Median and IQR

Thank You

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA