

'HI YA PRETORIA

ng Minds • Dikgopolo tša Dihlalefi

Crystal Structure of a Carbohydrate Esterase 7 Family Enzyme from a Desert Metagenome

Fiyinfoluwa Adesioye¹, Thulani Makhalanyane¹, Surendra Vikram¹, Trevor Sewell², Wolf-Dieter Schubert³ and Don Cowan¹

¹Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria. ²Institute of Infectious Disease and Molecular Medicine, University of Cape Town. ³Department of Biochemistry, University of Pretoria.

INTRODUCTION

- Acetyl xylan esterases (AcXEs) hydrolyse acetyl groups that sterically hinder the breakdown of xylans by endoxylanases during bioconversion of lignocellulose.
- Some AcXEs in the carbohydrate esterase (CE) 7 family preferably act on acetylated xylooligosaccharides and/or substrates with ≤C4 acyl groups.
- Novel AcXEs are important for engineering efforts towards

R	<u>ES</u>	U	<u>LT</u>	S

Enzyme Kinetics						
Substrate	p-NPA	4-MUA	2-NA	7-ACA	P-NPB	
<i>k</i> _{cat} /K _M (M⁻¹s⁻¹)	3.26 x 10 ⁶	3.03 x 10 ⁶	7.84 x 10 ⁵	2.6 x 10 ⁵	1.1 x 10 ⁴	

NaM1 cleaves artificial esterase substrates such as acetates of p-nitrophenol (p-NP),

- improving enzymatic hydrolysis of hemicellulose [1].
- The Namib Desert hypolith metagenome possesses cell walldegrading enzyme-encoding genes potentially capable of activity under conditions of low water activity and high temperature and alkalinity.

Mechanism of action of acetyl xylan esterases

OBJECTIVES

• To study the structural and mechanistic properties of a novel

4-methylumbelliferyl (4-MUA), 2-naphthol (2-NA), p-NP butyrate, 7-aminocephalosporanic acid and acetylated xylan, with lowest activity for the latter.

Data collection

P2₁2₁2₁

99.9%

21.8%

16.6%

0.89 Å

20.9 Å²

2.0

89.32 – 2.03 Å

Space Group:

Completeness:

Redundancy:

Refinement

RMSD (angles):

Average B-factor:

NaM1 quaternary structure

R-free:

R-work:

Resolution:

Structural characterisation

Substrate specificity

The residues at the base [2] and around [3] the S2 binding site determine the length of the acyl moiety of substrates to be catalysed by CE7 enzymes.

- AcXE of metagenomic origin.
- To identify the structural determinants of thermostability in CE7 AcXEs.
- To investigate the structural properties that drive the substrate specificity of CE7 AcXEs.

MATERIALS AND METHODS

Protein identification, isolation and characterization

- *In-silico* mining and gene synthesis
- Cloning and expression
- Western blotting and protein purification
- Enzyme activity assays

Crystallization

•	Crystallization:	Sitting drop
•	pH:	8.5
•	Temperature:	18°C
•	Buffer:	0.1 M Tris HCI / 0.1 M MES
•	Precipitant:	20% PEG

Data collection and structure solution

Beamline ID23; ESRF, Grenoble France • Data collection:

NaM1 tertiary structure

Thermal stability

a. Superposition of NaM1 (light orange) with thermostable CE7 enzymes from Thermoanaerobacterium sp. (PDB: 3FCY, cyan) and Thermotoga maritima (PDB: 3M81, salmon) showing active site residues (red) and oxyanion hole residues (blue).

CONCLUSIONS AND HYPOTHESIS

- First metagenome-derived CE crystal structure in the PDB.
- NaM1 is a doughnut shaped, homo-hexameric, halophilic and mesophilic AcXE with broad substrate specificity.
- Several structural elements, including a Val \rightarrow Glu replacement in a strictly hydrophobic region, contribute to make NaM1 the most thermolabile CE7 AcXE analysed.
- Phe210 allows binding of substrates with ≤C4 acyl moieties as opposed to Tyrosine in the same position.

REFERENCES

[1] Biely, Biotechnol. Adv. **2012**, 30, 1575-1588

[2] Montoro-Garcia *et al.*, Biochem. J. **2011**, 436, 321–330

[3] Singh and Manoj, Biochem. Biophys. Res. Comm. **2016**, 476, 63-68

ACKNOWLEDGEMENTS

b. A hydrophobic valine in the strictly conserved PPSTVFAAYN motif of thermostable

CE7 enzymes (cyan) is replaced by a polar Gln283 in NaM1 (light orange) resulting

in a water-mediated hydrogen bond to catalytic Asp275.

