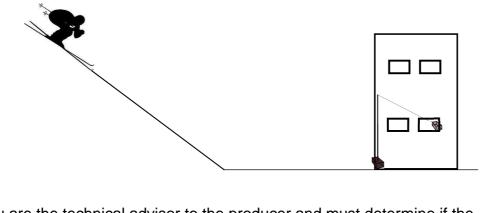


Different methods to calculate W_q A 10 kg toy car is pulled 3 m up an inclined plane. The plane is at a 30° angle to the ground and the height is 1,5 m. Calculate the work done by gravity. Method 2 Method 1 Method 3 Accoding to definition F_g components F_g conservative force 3 M BII 1,5 m route B 30° 30 30 90° [∳]F_g $W_{g \ routeA} = W_{g \ routeB}$ $W_g = W_{g||} + W_{g\perp}$ $W_a = F_a \Delta x \cos \theta$ $W_g = W_{q(BI)} + W_{q(BII)}$ $= F_{q||}\Delta x\cos\theta + 0$ $= 98(3)\cos(90^{\circ} + 30^{\circ})$ $= (98 \sin 30^{\circ})(3) \cos 180^{\circ}$ $= 0 + F_q(h) \cos 180^\circ$ $= 98(3)\cos(120^{\circ})$ $= 49(3) \cos 180^{\circ}$ $= 98(1,5) \cos 180^{\circ}$ = -147,00J= -147,00J= -147,00J

A man pulls a 50 kg-washing machine 3 m up an inclined plane by exerting a force of 2000 N parallel to the plane. The plane makes an angle of 40° with the horizon. The washing machine experiences 20 N frictional force.

		r	
a.	Draw a free body-diagram of all the forces acting on the machine. (No components)	a. Draw a free body-diagram of all the forces on the machine. Use components of F_g .	
b.	Calculate the work done by every force.	b. Calculate the net force on the machine.	
	Calculate the work done by every force. Use the previous answers to calculate the net work.	 b. Calculate the net force on the machine. c. Use the F_{net} to calculate the net work. 	
The washing machine starts from rest. Use the work-energy principle to prove that after 3 m the magnitude of the velocity is 14,14 m $\cdot s^{-1}$.			
	lculate the average power of the man with $= \frac{W}{\Delta t}$	Calculate the average power of the man with $p_{ave} = F v_{ave}$	


Closed system No friction or applied force	Any system With or without friction
Conservation of mechanical energy	Work-energy principle
$E_{mech(i)} = E_{mech(f)}$ $E_{pi} + E_{ki} = E_{pf} + E_{kf}$ $mgh_i + \frac{1}{2}mv_i^2 = mgh_f + \frac{1}{2}mv_f^2$ $gh_i + \frac{1}{2}v_i^2 = gh_f + \frac{1}{2}v_f^2$	$\Delta x \text{ given}$ $W_{net} = \Delta E_K$ $\underbrace{W_T + W_f + W_N + W_g}_{Every \ W = F\Delta x \cos \theta} = \frac{1}{2}m(v_f{}^2 - v_i{}^2)$ No components
Pendulums & free fall Inclined planes & curved planes v and g only magnitude (no sign)	$\begin{array}{ll} or & W_{net} = \Delta E_K \\ \underbrace{F_{net}\Delta x\cos\theta}_{Use\ components} = \frac{1}{2}m({v_f}^2 - {v_i}^2) \\ \text{v only magnitude (no sign)} \end{array}$
Conservation of momentum	Impulse-momentum principle
Collisions and explosions NB: Directions!!! $\Sigma p_i = \Sigma p_f$ $p_{1i} + p_{2i} = p_{1f} + p_{2f}$ $m_1 v_{i1} +_2 m v_{i2} = m_1 v_f + m_2 v_f$	$\Delta t \text{ given}$ NB: Directions!!! $F_{net}\Delta t = \Delta p$ $F_{net}\Delta t = p_f - p_i$ $F_{net}\Delta t = m(v_f - v_i)$
Sometimes Elastic collisions (Conservation of kinetic energy)	Work-energy principle for non-conservative forces
$\begin{split} \Sigma E_{k(i)} &= \Sigma E_{k(f)} \\ E_{k1i} + E_{k2i} &= E_{k1f} + E_{k2f} \\ \frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 &= \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 \\ \text{v only magnitude (no sign)} \\ \text{If collision is elastic:} \Sigma E_{k(i)} &= \Sigma E_{k(f)} \\ \text{Is the collision elastic? Calculate} \\ \Sigma E_{k(i)} \text{ and } \Sigma E_{k(f)} \text{ and compare} \end{split}$	$W_{net} = \Delta E_K$ $W_{nc} = \Delta E_K + \Delta E_P$ $\underbrace{W_T + W_f + W_N}_{All \ W \ except \ W_g} = \frac{1}{2}m(v_f{}^2 - v_i{}^2) + mg(h_f - h_i)$ v and g only magnitude (no sign) Inclined planes with no angle

The script of a new James Bond movie includes the following scenario:

James Bond (80 kg) starts from rest and skis down a 25 m slope with a villain at his heels. The slope makes an 38° angle with the ground and James experiences a frictional force of

10 N. At the bottom of the slope he covers a horizontal plane for 15 s and experiences a 15 N frictional force. It brings him to a parcel (1 kg) fixed to an inelastic rope. He grabs the parcel and swings up to the window on the second floor 5,2 m above the ground. He releases the parcel, breaks the window and escapes through the building. $5,4 \times 10^5$ J is required to break the window.

You are the technical advisor to the producer and must determine if the scenario is possible.