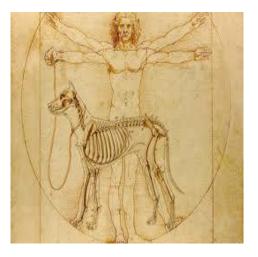
One Healthday Symposium November, 2021

The contribution of zoonotic arboviruses to Acute Fevers of unknown cause with or without neurological signs in humans and animals in Southern Africa


> Prof Marietjie Venter (PhD) Head: Zoonotic arbo and respiratory virus program Centre for Viral Zoonoses Department for Medical Virology

Make today matter

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA Faculty of Health Sciences

Fakulteit Gesondheidswetenskappe Lefapha la Disaense tša Maphelo

Emerging and Reemerging infections - 70% vector-borne or zoonotic

UNIVERSITEIT VAN PRETORI. UNIVERSITY OF PRETORI. YUNIBESITHI YA PRETORI.

Zoonotic diseases: Modes of transmission

Direct transmission through bodily

fluids of animals or infected humans

Insect vectors

Rickettsia, Q-fever and Chrimean Congo-Crimean

West Nile virus

Culex univintates/C, pipiens

Hyalomma ticks

Q-fever

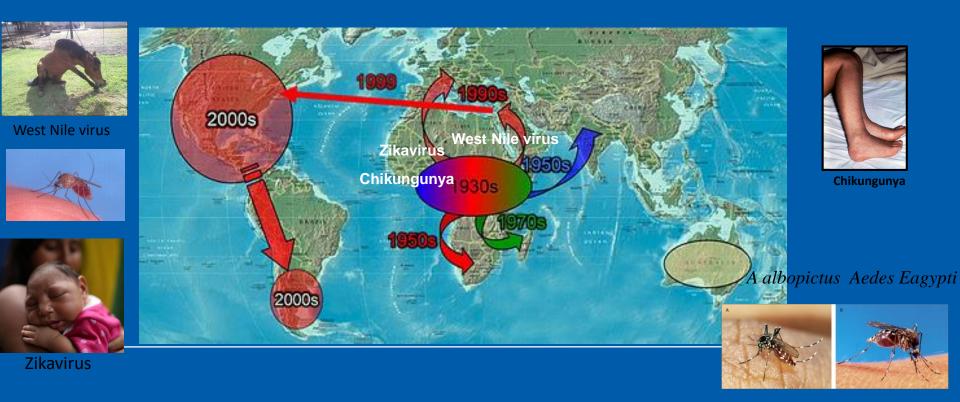
Brucellosis

Rabies

Egyptian Tomb Bat

Aerosol/droplet transmission

Swine Influenza & Pandemic H1N1



Dengue; Zika; Chikungunyavirus

Rift Valley Feve

Vectorborne viruses endemic to Africa, some of the most important emerging diseases in Western hemisphere:

Chikungunya

Dengue

Typical zoonotic Arbovirus symptoms

Humans:

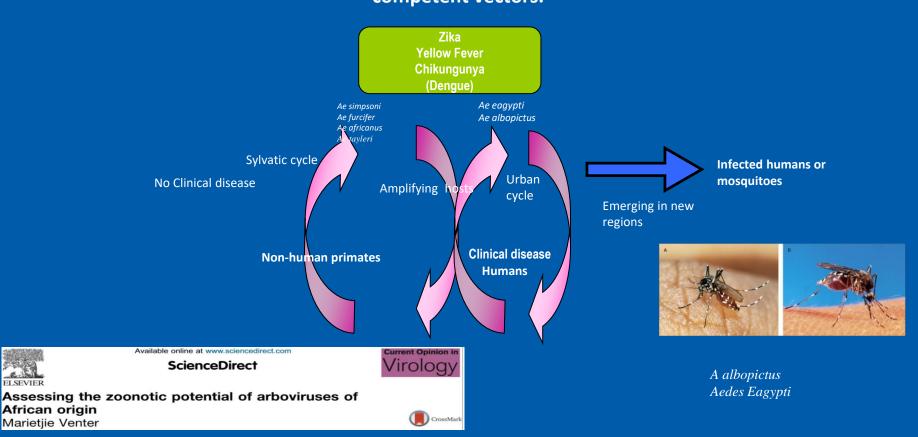
- Fever, headache, myalgia, arthralgia, morbilliform rash and conjunctivitis.
- Complications such as encephalitis, paralysis and haemorrhagic fever, death can also occur.
- **Animals**: Febrile; Abortion, encephalitis, paralysis, haemorrhagic manifestations, death
- zoonosis risk humans or insect vector transmitted

RVF

CCHF

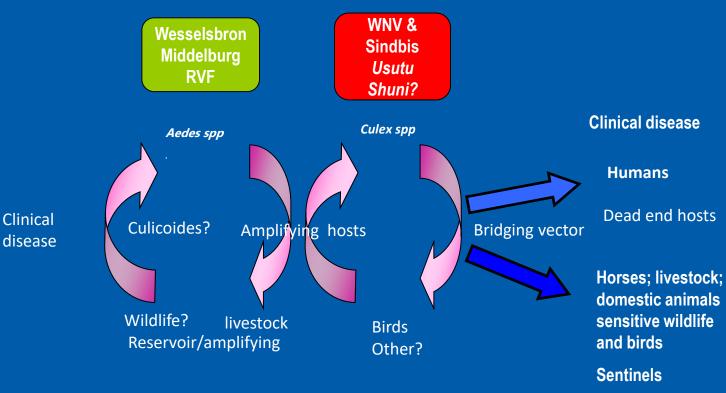
WNV

Sindbis/WNV

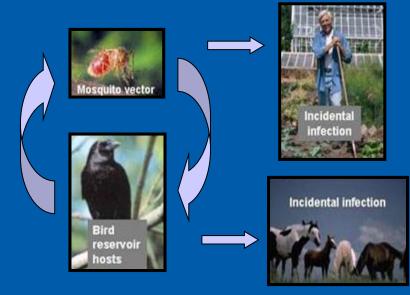

	SELECTED ARBOVIE	RUSES OF MEDICAL (and vete	erinary) IMPORTANCE in Southerr	Africa
Family	Virus (Examples)	Vector	Distribution	Clinical disease
Togaviridae (Genus: Alphavirus)	Chikungunya virus	Aedes mosquito	Africa, Asia, Caribbean, Americas	Polyarthritis & rash
	Sindbis virus	Culex mosquito	Europe, Africa, Asia	Acute fever \pm skin rash
Flaviviridae <i>(Genus: Flavivirus)</i>	Zika virus	Aedes mosquito	Southeast Asia, Africa, Philippines, Americas	Acute fever \pm skin rash, polyarthritis, neurological infections, microcephaly
	West Nile virus	Culex mosquito	Africa, Europe, North America, West Asia	Acute fever \pm skin rash / Encephalitis
	Wesselsbron virus	Culex mosquito	Africa (China)	Meningitis/ hepatitis/abortions(animals)
	Yellow fever virus	Aedes mosquito	Tropical Africa, South America	Haemorrhagic fever
	Dengue virus	Aedes mosquito	Asia, Americas, Africa	Acute fever \pm skin rash / Haemorrhagic fever
Bunyavirales: Phenuiviridae	Rift valley fever	Aedes mosquito	Africa Arabian peninsula	Retinitis/ encephalitis/ VHF Fever/meningoencephalites
Nairoviridae	Crimean-Congo haemorrhagic fever	Hyalomma tick	Africa, Middle East, Europe, Asia	Haemorrhagic fever
Peribunyaviridae (orthobunyavirus)	Shunivirus	Aedes/Culex/Cullicoides	Africa/Middle East	Neurological signs in humans/animals Abortions in livestock

Lesser known/Emerging Medically (and veterinary) important arboviral diseases of Southern Africa classified by virus family

Genus Major vector	virusses
Alphavirus (Mosquito borne)	Sindbis; Chikungunya; Middelburg virus (<i>Semlikiforrest; Ndumu;</i> O'njong njong)
Flavivirus	West Nile; Wesselsbron; Banzi; Usutu, Bagaza
(Mosquito borne)	(dengue, yellow fever; Zika)
Nairovirus	Crimean-Congo hemorrhagic fever
(Tick borne)	Dugby, Nairobe sheep disease
Phlebovirus (Mosquito borne)	Rift Valley fever
Orthobunya	Shuni, Ngari, Bunyamwera, Ilesha, Shokwe,
(Mosquitoes; cullicoides?)	Germiston,


ECOLOGY OF ARBOVIRUSES

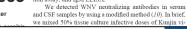
A. Yellow fever, chikungunya and Zikavirus utilise non-human primates as natural host in a sylvatic cycle with endemic *Aedes* mosquitoes but may use humans as only host in an urban cycle with competent vectors.

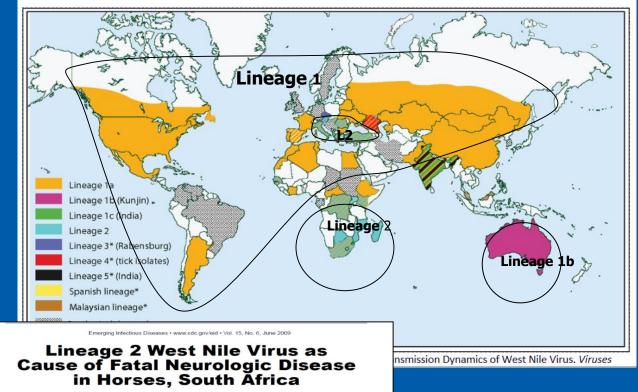

ELSEVIER

Zoonotic/epizootic: follow climatic events, eg. floods; rainy year following drought

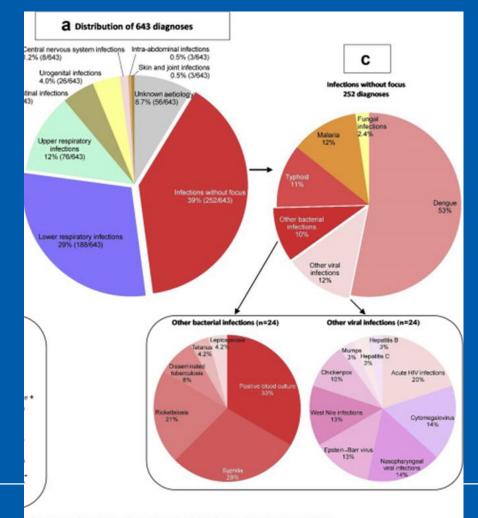
West Nile Virus/ Sindbis

Endemic: few bird deaths


- Circulate between Birds and Culex mosquitoes,
- Humans, horses and some other animals dead end hosts
- WNV/Sindbis majority human cases fever, headache, malaise, rash, pain in tendons & joints
- WNV: Severe neurological disease may occur in 90% of horses; 1-10% of humans
- Illness 3-10 days
- 1-10% WNV cases can develop meningoencephalitis, Gullian Barre syndrome (WNV)
- Every year in the rainy season in SA, other?
- Likely under reported in Africa


West Nile virus Global distribution

West Nile Virus Neurologic Disease in Humans, South Africa, September 2008–May 2009


hospitals in northern South Africa. To select samples for testing, we reviewed laboratory submission requests for patients with clinical conditions consistent with WNV infection: fever, headache, rash, or neurologic signs (7,8). A total of 260 patient samples (15 CSF and 191 serum) were selected. During September 2008–May 2009, we screened samples for the presence of WNV by using real-time reverse transcription PCR (rRT-PCR) (9), virus neutralization assay, and IgM ELISA.

Dewald Zaayman and Marietjie Venter

Marietjie Venter, Stacey Human, Dewald Zaayman, Gertruida H. Gerdes, June Williams, Johan Steyl, Patricia A. Leman, Janusz Tadeusz Paweska, Hildegard Setzkorn, Gavin Rous, Sue Murray, Rissa Parker, Cynthia Donnellan, and Robert Swanepoel

Clinical Microbiology and Infection 27 (2021) 913.e1-913.e7

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com

Original article

ELSEVIER

Causes of fever in Tanzanian adults attending outpatient clinics: a prospective cohort study

N. Boillat-Blanco ^{1, 2, 3, *}, Z. Mbarack ⁴, J. Samaka ¹, T. Mlaganile ¹, T. Kazimoto ¹, A. Mamin ⁵, B. Genton ^{2, 6}, L. Kaiser ⁵, V. D'Acremont ^{2, 6}

СМІ

CLINICAL

MICROBIOLOGY AND INFECTION

ESEMID (RANGe

Vector-Borne and Zoonotic Diseases VOL. 18, NO. 6 |

Prevalence of Selected Zoonotic Diseases and Risk Factors at a Human-Wildlife-Livestock Interface in Mpumalanga Province, South Africa

<u>Gregory J.G. Simpson</u>; <u>Vanessa Quan;</u>, <u>John Frean;</u>, <u>Darryn L. Knobel</u>; <u>Jennifer Rossouw;</u>, <u>Jacqueline Weyer;</u>, <u>Tanguy</u> <u>Marcotty</u>

Study group: Mnisi area of Bushbuckridge, Mpumalanga,

malaria-negative acute febrile illness (AFI) patients, at three clinics (n=74) & farmers, herders, and veterinary staff found at five government cattle dip-tanks, called dip-tanksters (n=64) Methods: Blood samples tested by PCR (Bartonella spp.) and eight antibody-ELISAs

Results:. Bartonella spp. (PCR 9.5%), spotted fever group (SFG) Rickettsia spp. (IgM 24.1%), Coxiella burnetii. (IgM 2.3%), and Leptospira spp. (IgM 6.8%) were present in AFI patients. Dip-tanksters and febrilers had evidence of past infection to Rickettsia spp. (IgG 92.2% and 63.4%, respectively) and C. burnetii (IgG 60.9% and 37.8%, respectively). No Brucella infection or current Bartonella infection was found in the dip-tanksters, although they had higher levels of recent exposure to Leptospira spp. (IgM 21.9%) compared to the febrilers. Low levels of West Nile and Sindbis, and no Rift Valley fever virus exposure were found in either

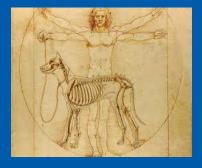
One Health strategy for zoonotic arbovirus surveillance at the ZARV program, University of Pretoria (2009-2021)

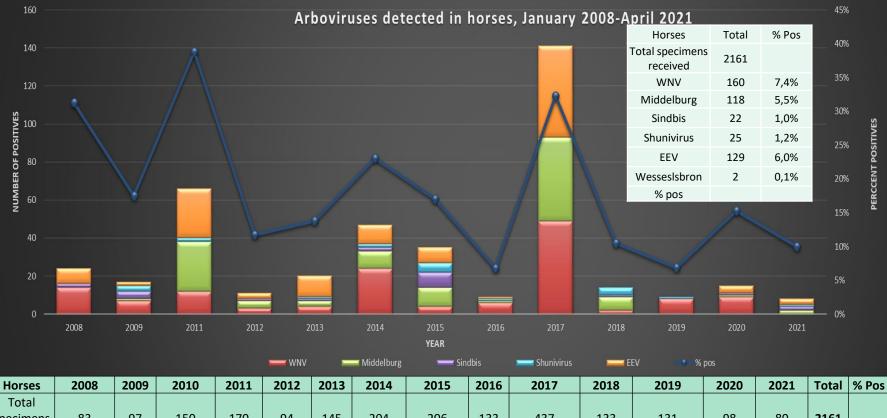
SENTINEL ANIMALS

Bird Fatalities

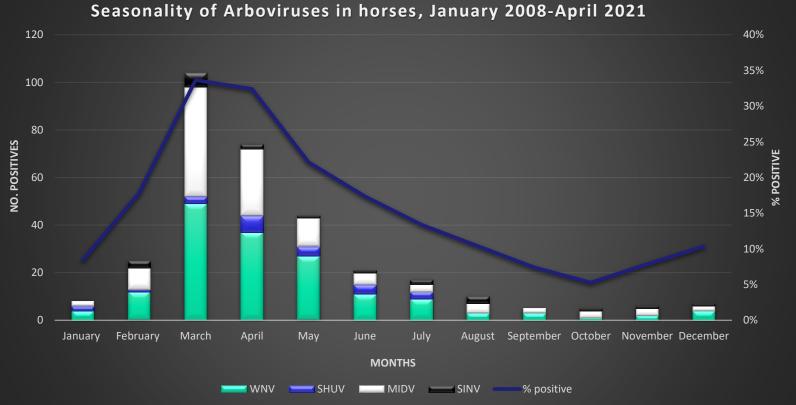
Neurological signs in horses livestock and wildlife

Abortion, death in young animals; VHF signs




VECTOR SURVEILLANCE Ticks; culicoides; mosquitoes; sandflies

HUMAN SYNDROMIC SURVEILLANCE


Febrile; arthralgia; rash neurological; VHF

Arboviruses associated with febrile and neurological disease in horses 2008-2021

1101303	2000	2005	2010		LOIL	2010	2014	2013	2010	2017	2010	2015	2020	2021	Total	/01 05
Total																
specimens	83	97	150	170	94	145	204	206	133	437	133	131	98	80	2161	
received																
WNV	14	7	18	12	3	4	24	4	6	49	2	8	9	0	160	7,4%

Wildlife, livestock and domestic (2008-2021)											
		Total	# of positives	% any positive	MIDV Positives	SINV Positives	SHUV/SH UV-like Positives	WNV Positives	EEV Positives	Co-infection	BAGV
Category	Species		i.		N (%)	N (%)	N (%)	N (%)	N (%)		Positive N (%)
Wildlife	Buffalo	55	4	7,27	1 (2.1)	-	3 (6%)	-	-	-	-
	Rhinoceros	70	10	14,29	8 (9.52)	1 (1.58)	1 (1.58)	-	2 (3,17)	MIDV/EEV MIDV/SHUV	-
	Sable	52	5	9,62	2 (3,92)	2 (3,92)	1 (1,96)	-	-	-	-
	Warthog	21	3	14,29	2 (9.52)	-	1 (4.76)	-	-	-	-
	Lion	22	3	13,64	2 (16.67)		-	1 (8.33)	-	-	-
	Genet	2	2	100	1 (50.0)	1 (50.0)		-	-	MIDV/SINV	-
	Giraffe	7	2	28,57	-	1 (33,33)	1 (33,33)	1 (33,33)	-	WNV/SHUV	-
	Crocodile	28	1	3,57	-	-	1 (8.33)	-	-	-	-
	Deer	3	1	33,33	-	-	-	1 (33,33)	-	-	-
	Roan	61	3	4,92	1	-	-	2 (6,89)	-	-	-
	Avian	59	9	16,67	1 (1,69)	-	1 (1,69)	-	-	-	8 (13,55)
	Flamingo	3	2	66,67	-	-	-	2 (66.67)	-	-	-
	Other carnivores	18	-		-	-	-	-	-	-	-
	Seal	8	-	-	-	-	-	-	-	-	-
Livestock	Caprine	14	1	7,14	-	-	1	1 (10,00)	-	-	-
	Bovine	116	9	7,76	4 (4,21)	-	2 (1,05)	1 (1.05)	-	MIDV/WNV	-
	Ovine	2	1	50			1	1			
Domestic	Canine	23	4 (3 AHSV)	17,39	-	0	-	1 (4,76)	-	-	-
	Feline	2	-	-	-	-	-	-	-	-	-
	Total	566	56	0,10	22	5	13	10	2	4	8
%			10		39,29	8,93	23,21	17,86	3,57	7,14	14,29

Article

Epidemiology and Clinical Presentation of West Nile Virus Infection in Horses in South Africa, 2016–2017

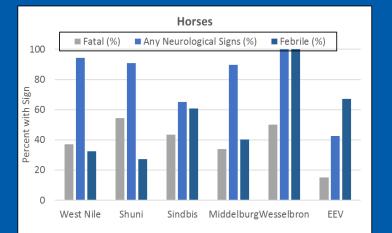
Freude-Marié Bertram 1,+, Peter N. Thompson 1 and Marietjie Venter 2,*

Table 4. Final logistic regression model of factors associated with WNV-infection in South African horses with acute febrile or neurological disease detected by the Zoonotic Arbo- and Respiratory Virus (ZARV) programme at the Centre for Viral Zoonoses (CVZ), 2016–2017.

Variable	Level	Odds Ratio	95% CI	<i>p</i> -Value
Month	January–February	5.4	0.6, 49.9	0.134
F	March–April	18.0	2.2, 149.5	0.007
	May–June	4.2	0.4, 44.9	0.241
	July-December	1*	_	-
Altitude	16–1056 m	1*	-	-
	1057–1292 m	1.2	0.4, 3.9	0.807
F	1293–1466 m	6.0	1.9, 19.1	0.003
	1467–1784 m	1.2	0.3, 4.3	0.764
WNV vaccinated	Yes vs. no	0.1	0.0, 1.0	0.047
Age in years	Continuous	0.9	0.9, 1.0	0.041
Breed	Highly Purebred	3.0	0.9, 9.7	0.068
	Intermediate Hybrid vigour	4.9	1.3, 18.2	0.019
	Mixed and Local	1*	-	-
Equine influenza virus vaccinated	Yes vs. no	2.1	0.8, 5.6	0.153

Clinical signs reported in equines submitted for West Nile virus diagnosis in 2017-2020, including odds ratios, 95% confidence interval and the associated p-value

Dutch warmblood: West Nile Lineage 2 case: tongue tied in due to tongue paralysis; horse eventually fell over dead after 3 days in hospital


- Dr June Williams

WNV Lineage 2: Outside Pretoria, backleg paralysis Dr Hildegard Setzkorn

Symptom	WNV positive (N=77)	WNV negative (N=758)	Odds ratio [95% CI]	p-value
Fever only	5 (6.49%)	147 (19.39%)	0.28 [0.11-0.72]	<0.05
Neurological symptoms	71 (92.21%)	514 (67.81%)	5.62 [2.40-13.10]	0
Ataxia	49 (63.64%)	294 (38.79%)	2.76 [1.69-4.49]	0
Hyperreactive	2 (2.60%)	1 (0.13%)	20.18 [1.80-225.25]	<0.05
lcterus	15 (19.48%)	70 (1.01%)	23.81 [12.90-43.86]	0
Lethargy	4 (5.19%)	9 (1.19%)	4.56 [1.37-15.17]	<0.05
Muscle fasciculations	3 (3.90%)	1 (0.13%)	30.69 [3.15-298.77]	<0.05
Paralysis	10 (13.16%)	33 (4.35%)	3.32 [1.57-7.05]	<0.05
Paresis	23 (29.87%)	101 (13.93%)	2.63 [1.54-4.47]	0
Recumbency	25 (32.47%)	106 (14.62%)	2.81 [1.66-4.72]	0
Weak	2 (2.60%)	12 (1.66%)	1.58 [0.34-7.21]	0.6
Blindness	1 (1.30%)	9 (1.24%)	1.04 [0.13-8.37]	1
Congested mucous membranes	4 (5.19%)	37 (5.10%)	1.02 [0.35-2.93]	1
Depressed	2 (2.60%)	10 (1.32%)	1.99 [0.42-9.27]	0.3
Dyspnoea	1 (1.30%)	43 (5.93%)	0.20 [0.02-1.53]	0.11
Head tilt	1 (1.30%)	12 (1.66%)	0.78 [0.10-6.09]	1
Seizure	2 (2.60%)	36 (4.75%)	0.53 [1.2-2.26]	0.56
Tongue paralysis	1 (1.20%)	6 (0.79%)	1.62 [0.19-13.69]	0.49
Fatal	22 (28.57%)	227 (29.95%)	0.93 [0.55-1.57]	0.89
Vaccination present	1 (1.30%)	21 (2.77%)	0.46 [0.061-3.84]	0.71
No vaccination	76 (98.70%)	737 (97.23%)	2.17 [0.28-16.32]	0.71

Clinical presentation of arboviruses identified in horses with febrile and neurological disease 2008-2015

Virus	Number Positive	Fatal %	Any Neurological Signs %	Febrile %	% of Positives	%Total
West Nile	86	5 36,05	94,19	33,72	33,33	7,66
Shuni	18	3 44,44	. 88,89	33,33	6,98	1,60
Sindbis	18	3 27,78	55,56	72,22	6,98	1,60
Middelburg	62	2 22,58	87,1	46,77	24,03	5,52
Wesselbron	2	2 50	100	100	0,78	0,18
EEV	72	2 13,89	41,67	68,06	27,91	6,41
Total:	258	3				22,97

Complete paralysis Shuni

Hind leg paralysis: WNV

Tongue paralysis: WNV)

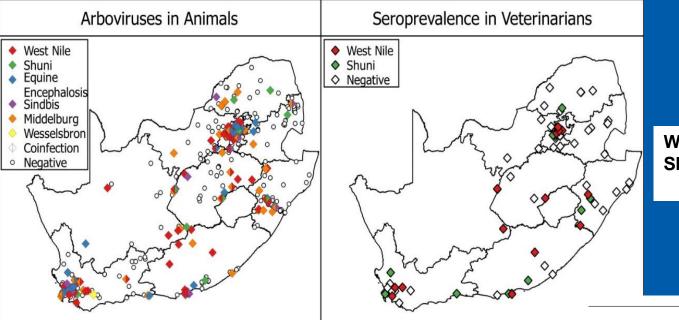
Clinical presentation of arboviruses identified in horses wildlife and cattle with febrile and neurological disease

Shunivirus in Rhino calf

Complete paralysis Shuni

Middelburg in Sable

Middelburg in Nguni Cow



WNV in exotic flamingo

Hind leg paralysis: WNV

Arbovirus cases in animals relative to sero-prevelance in veterinarians (2008-2016)

WNV: 7.9% Shunivirus:3,9%

LETTERS Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 20, No. 8, August 2014

Bosserman Wilson M. Josis in the Cases. Ann -19. http:// 819-155-8-

and Prevenseases Surpotifiable

Antibodies against West Nile and Shuni Viruses in Veterinarians, South Africa

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 18, No. 12, December 2012

West Nile Virus Neurologic Disease in Humans, South Africa, September 2008–May 2009

Dewald Zaayman and Marietjie Venter

0.000.0

hospitals in northern South Africa. To select samples for testing, we reviewed laboratory submission requests for patients with clinical conditions consistent with WNV in-

^f Table 1. Clinical information for the 7 acutely ill patients that tested positive for WNV antigen or antibody (Zaayman and Venter, unpublished)

45 (M)	Mantaalization Des (CCE)	
	Neutralization Pos (CSF)	Suspected HIV Encephalopathy or
		PML
		TPHA Neg
		HIV Neg
		Paraparesis
35 (F)	Neutralization Pos (CSF)	Hepatomegaly, Lymphadenopathy
		Fever
		Vomiting
		Epigastric pain
		EBV IgM Neg, EBV IgG Pos
		Malaria Neg, Hepatitis Neg
36 (M)	Neutralization Pos (CSF)	Acute paresis of lower limbs
		Delirium
		HSV-1 and 2 PCR Neg
		HTLV-1 Neg
		TPHA Neg
5 (M)	Neutralization Pos (CSF)	Meningitis
		Enterovirus PCR Pos
11 (M)	Neutralization Pos/ IgM Pos (Serum)	Rash
		Brucella PCR Neg
		CMV IgM Neg, CMV IgG Pos
26 (M)	Neutralization Pos/ IgM Pos (Serum)	Severe headache
		Rickettsia conorii Neg
		EBV IgM Neg
2 (M)	PCR Pos (CSF)	Decreased LOC
		Measles Neg
		Mumps Neg
	36 (M) 5 (M) 11 (M) 26 (M) 2 (M)	36 (M) Neutralization Pos (CSF) 5 (M) Neutralization Pos (CSF) 11 (M) Neutralization Pos/ IgM Pos (Serum) 26 (M) Neutralization Pos/ IgM Pos (Serum)

Pos: Positive; Neg: Negative; LOC: Level of consciousness; CSF: Cerebrospinal fluid; HSV-1 and 2: Herpes simplex virus type 1 and 2; EBV: Epstein-Barr virus; CMV: Cytomegalovirus; HTLV: Human T-lymphotropic virus; HIV: Human immunodeficiency virus; TPHA: *Treponema pallidum* haemagglutination assay

Human surveillance for febrile disease of unknown origin and neurological infections

Government/ Public Hospitals in Gauteng and Mpumalanga

ANDEMIA: African network for improved diagnostics and epidemiology in Africa: Funding: Robert Koch Institute (BMBF)

University of Pretoria Faculty of Health ethics committee protocol: 101/2017

Investigation of arboviruses in humans in SA

NHLS pilot study:

- CSF samples from patients with acute neurological symptoms, submitted to NHLS Tshwane virology lab, hospitals in the Tshwane region);
- January-June (Arbovirus season) 2017
- Screened for
 - flaviviruses nested real-time RT-PCR with WNV probes; Euromune WNV IgM ELISA;VNT
 - Sindbis/Middelburg: (Real time PCR); Sindbisvirus Euromune IgM IFA,
 VNT
 - Shunivirus: Sinbuvirus genus(ortbobunyavirus realtime PCR

ANDEMIA: African Network for improved Diagnostics, Epidemiology and Management of Common Infectious Agents

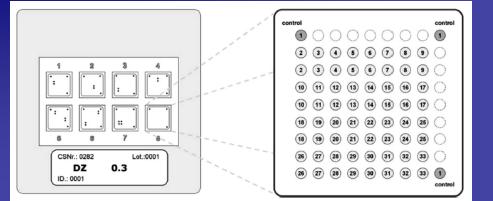
- Active surveillance in humans:
- 3 Sentinel sites: 1x urban, Kalafong hospital (Gauteng province),

2 x rural sites, in Mpumalanga (rural), namely Matikwana and Mapulaneng

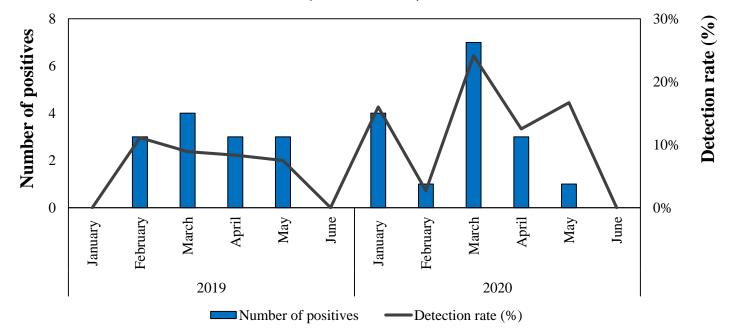
- Both sites agricultural exposure, Zoonotic diseases/One Health in SA;
- Patients enrolled with informed consent; detailed case investigation forms with epidemiological information;
- From January 2019 to December 2020
- Acute febrile disease of unknown cause (AFDUC) inclusion criteria:
- 1. Fever (≥38°C) or history of fever in last 10 days
- 2. And/or Acute neurological signs or symptoms
- 3. No obvious cause, other suspicion of haemorrhagic fever or acute neurological disease
- 4. Any signs of myalgia/ arthralgia/ rash

The FEVER CHIP

Target Pat	hogen	Target Pathogen		
West Nile Virus	Mumps virus	Dengue virus	Coxiella burnetti	
Rift Valley Fever	Herpes simples virus-1	Ehrlichia	Mycobacterium	
Chikungunya virus	Herpes simples virus-2		tuberculosis	
Sindbis virus	Varicella Zoster virus	Rickettsia spp.	Neisseria meningitides	
Rubella virus	Rabies virus	Borrelia burgdorferi	Plasmodium falciparum	
CCHF	Epstein-Barr virus	Brucella spp.	Flavivirus genus	
Cytomegalo-virus	JC virus	Adenovirus	Hepatitis A virus	
Measles virus	Enterovirus	Leptospira spp.	Hepatitis B virus	


Contents lists available at ScienceDirect

Journal of Clinical Virology


- Macroarray assay for differential diagnosis of meningoencephalitis in southern Africa
- QI Marietjie Venter^{a, c, *}, Dewald Zaayman^a, Stephanie van Niekerk^a, Voula Stivaktas^a,
- Shivani Goolab^a, Jacqueline Weyer^b, Janusz T. Paweska^b, Robert Swanepoel^a ^aZoonoses Research Unit, University of Pretoria, South Africa
- Special Virol Pathogens Reference Laboratory, Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- ^c Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa

West Nile virus IgM positivity in patients experiencing acute febrile disease of unknown cause, South Africa (2019-2020)

Sindbis in ANDEMIA AFDUC patients (2019-2021)

	Gau	teng	Mpuma	anga	Total
	2019	2020	2019	2020	
<u>Molecular tests</u>					
N multiplex PCR tested (%)	263 (41.2)	162 (25.4)	148 (23.1)	66 (10.3)	639 (100)
N multiplex PCR positive	0	0	0	0	0
<u>Serologic tests</u>					
Enrolled Jan – June (%)	141 (37.3)	93 (24.6)	82 (21.7)	62 (16.4)	378 (100)
IFA IgM tested (%) [95% CI]	73 (52) [43.2- 60.3]	47 (51) [40.0- 61.1]	42 (51) [39.9- 62.4]	35 (56 [43.3- 69.0])	197 (52) [47.1-57.1]
IFA IgM positive (%) [95% CI]	14 (19.2) [10.9- 30.1]	4 (8.5) [15.6- 42.6]	13 (31.0) [17.6- 47.1]	7 (20) [8.4- 39.9]	38 (19.3) [14.0-25.5]
SINV micro-NTs					
Percentage positivity per samples (%) [95%CI]	10/73 (13,7) [6.8-23.8]	3/47 (6,4) [1.3- 17.5]	9/42 (21.4) [10.3-36.8]	3/35 (8.6) [1.8-23.1]	25/197 (12,7) [8.4-18.2]

Sindbis in hospitalised AFDUC patients

Table 3: Clinical symptoms reported in AFDUC patients upon enrolment from January to June, 2019-2020. The percentage (%), 95.0 % Confidence interval (CI) and P value is also indicated.

	SINV	SINV		
Sign	positive	negative	Odds ratio	² P-value
	N=38	N=159		
Fatigue	29 (76.3%)	109 (68.6%)	1.48[0.65-3.35]	0.3
Headache	22 (57.9%)	60 (37.7%)	2.27[1.11-4.66]	<0.05
Chills	9 (23.7%)	40 (25.2%)	0.92[0.40-2.12]	0.9
Weight loss	9 (23.7%)	50 (31.5%)	0.68[0.30-1.54]	0.3
Meningitis	21 (55.3%)	52 (32.7%)	2.54[1.24-5.22]	<0.05
Acute flaccid paralysis	2 (5.3%)	17 (10.7%)	0.46[0.10-2.10]	0.3
Seizure	11 (28.9%)	58 (36.5%)	0.71[3.33-1.54]	0.4
Arthralgia	8 (21.1%)	15 (9.4%)	2.56[1.00-6.58]	<0.05
¹ Dermatological signs	7 (18.4%)	22 (13.8%)	1.41[0.55-3.58]	0.5
Fever	15 (39.5%)	70 (44.0%)	0.83[0.4-1.71]	0.6
Nausea	8 (21.1%)	18 (11.3%)	2.09[0.83-5.25]	0.11
HIV positive	12 (31.8%)	37 (23.3%)	1.52[0.70-3.31]	0.3

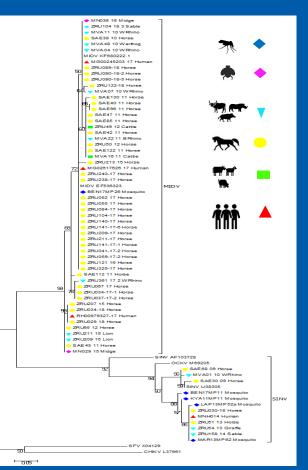
¹Dermatological signs: Pruritus (itching), Skin rash, Skin patches.

²P-values less than 0.05 is regarded as significant.

Age (%)	
0-5	19/112 (17.0)
	[10.5-25.2]
6-29	5/27 (18.5)
	[6.3-38.1]
30-49	14/49 (28.6)
	[16.6-43.3]
50+	0/9 (0.0)
Sex (%)	
Female	24/104 (23.1)
	[15.4-32.4]
Male	14/93 (15.1)
	[8.5-23.9]
OR	1,69 [0.82-3,51], p=0,2

NHLS: Middelburg alphavirus in patients with neurological signs in Tshwane

 CSF samples from patients submitted for virus testing to the NHLS Virology laboratory during the arbovirus season


- (January –May 2017).
- MIDV RTPCR +: (4/189) 2%
- 3 from hospitalized patients submitted to NHLS
- 1 from 2 veterinary student referred to the infectious disease specialist at Steve Biko hospital, submitted directly to the ZARV, department of Medical Virology.

Sample ID	Sample collection	Age	Sex	Symptoms	Other diagnosis	HIV status	Other tests (result)	Location
ZRU 099/17	Ad hoc veterinary student	24	F	Cough, fever, neck stiffness, myalgia, nausea, severe headaches	None (history of brain tumour, in remission, no treatment at suspected time of infection)	(-):	Meningochip (31 pathogens Chipron LCD macroarray) (27) (all (-))	Vereeniging (weekends) Onderstepoort veterinary Faculty, Pretoria (weekdays)
ZRUH 177/17	Retrospective NHLS sample	49	М	Acute blindness, general weakness, body pains	VZV, syphilis, Devic's disease	(+)	VZV (+) syphilis (+) JC-virus (-)	Small holding Zwavelpoort, Pretoria East, Gauteng
ZRUH 248/17	Retrospective NHLS sample	30	F	(?)	(?)	(?)	HSV 1& 2 (-)	Unknown
ZRUH 399/17	Retrospective NHLS sample	2	M	Tonic- clonic seizures, diarrhoea, vomiting	Acute gastric enteritis, dysentery	(-):	Enterovirus (-) Shigella dysentery (+)	Centurion, Gauteng

Table 1: Patient information for Middelburg virus positive human cases.

Middelburgvirus and Sindbis cases detected in humans, animals and mosquitoes

Maximum Likelihood method on nsp4 gene, Model=Kimura 2 model 74 sequences, 129 nts, 1000bts

PLOS Neglected Tropical Diseases

- Title: Detection and genome characterization of Middelburg virus strains isolated from
- 2 CSF and whole blood samples of humans with neurological manifestations in South
- 3 Africa.
- 4 Authors
- 5 Isabel Fourie, June Williams, Arshad Ismail, Petrus Jansen van Vuren, Marietjie Venter⊠

EMERGING INFECTIOUS DISEASES°

EID Journal > Volume 26 > Number 6—June 2020 > Main Article > Figure 3	6
--	---

Volume 26, Number 6—June 2020

Research

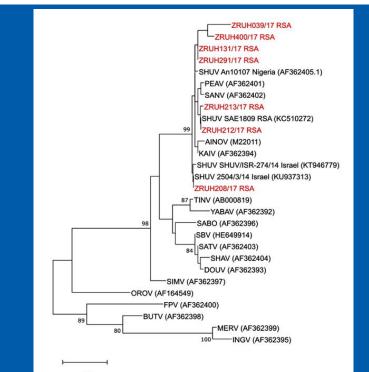
Zoonotic Alphaviruses in Fatal and Neurologic Infections in Wildlife and Nonequine Domestic Animals, South Africa

Jumari Steyn, Isabel Fourie, Johan Steyl, June Williams, Voula Stivaktas, Elizabeth Botha, Stefanie van Niekerk, Bjorn Reininghaus, and Marietije Venterco

EMERGING INFECTIOUS DISEASES°

ISSN: 1080-60

CDC A-Z INDEX ~



Shuni Virus in Cases of Neurologic Disease in Humans, South Africa

Thopisang P. Motlou, Marietjie Venter

(NHLS) CSF (2017) specimens from hospitals in Tshwane; 7/129=5.4%

Shuni Virus in Humans, South Africa

Table 1. Demographic and clinical information of SHUV-positive CSF samples from 7 patients hospitalized with neurologic signs, Gauteng Province. South Africa. 2017*

Sample	Patient		Clinical				Reason for	
ID	age/sex	Other symptoms	diagnoses	HIV status	Other tests	Vaccination	discharge	Locatio
ZRUNH 039/17	29 y/F	Not stated	Meningitis	Unknown	Not stated	Unknown	Unknown	JHB
ZRUNH 131/17	1y9 moM	Not stated	TB, meningitis	Unknown	Not stated	Unknown	Unknown	JHB
ZRUNH	6 mo/F	Vomiting, diamhea,	Acute	Mother	H. Influenzae	Mother did not	Stable	Eastlyn
219/17		fine maculopapular	gastroententis	(positive), on	Ag (negative),	have clinic		Pretor
		rash	and shock	HAART/ PMTCT, ART	N. meningitid/s ACV W135	card		
				(FDC); baby	(negative), E.			
				received	coll (negative),			
				nevirapine	S. pneumonia (negative),			
					GBS			
					(negative), cryptococcal			
					Ag (negative)			
ZRUNH	2 y 8	Coughing blood,	Upper	Mother	Not stated	Up to date:	Stable	Pretor
212/17	mo/M	ottis media, simple	respiratory	negative; baby		BGG,		
		febrile seizures,	tract infection/	received		pollo+DPT		
		fever (38°C),	hemoptysis/ febrile	nevirapine		(3-18 mo),		
		difficulty breathing, vomiting, diamea;	convulsions			DT (5 y) not done		
		had second episode of seizure	conversions			oone		
ZRUNH	4 y 11	Seizures, ICU	Encephaltis	Negative	Microbiology:	Incomplete:	Not stated	Eastlyn
208/17	molM	patient, decreased	and aspiration	The growthe	negative for	no polio+DPT	THOSE STREETS	Pretor
		LOC, vomiting.	pneumonia		bacteria	(4.5 mo)		
		seizures, fever, diarrhea						
ZRUNH	13 d/F	ICU patient, baby	Nonimmune	Not stated	HSV (positive;	Up to date	Stable	Mamei
213/17		delivered normally,	hydrops fetalls		patient tested			East
		neonatal			negative			Pretor
		encephalopathy,			following			
		second-degree			treatment),			
		congenital			rubella PCR			
		sepsis/TORCH, poor			(IgG positive,			
		sucking, premature,			IgM negative),			
		low birthweight, nonimmune.			CMV (IgG positive, IgM			
		subcutaneous			negative)			
		edema, abdominal			negative)			
		distension (HC.						
		chest, AC),						
		abdominal U/S						
		(ascites, bilateral						
		dense kidneys)						
	4 moM		Viral	Not stated	Not stated	Up to date	Not stated	Olieve
400/17		vomiting blie	pneumonia					Pretor

HC, hepattis C; HSV, herpes simplex virus; ICU, intensive care unit; ID, identification; JHB, Johannesburg; LOC, level of consciousness; N. meningitis; Networks meningitids; PMTCT, prevention of mother-to-child transmission; SHUV, Shuni virus; TB, tuberculosis; TORCH, Toxoplasme gondi;

U/S, ultrasound.

DISPATCHES

Shuni Virus as Cause of Neurologic Disease in Horses

Charmaine van Eeden, June H. Williams, Truuske G.H. Gerdes, Erna van Wilpe, Adrianne Viljoen, Robert Swanepoel, and Marietjie Venter

To determine which agents cause neurologic disease in norses, we conducted reverse transcription PCR on isolates

In January 2009, a crossbreed yearling horse (case SAE 18/00) was found wandering a inilessly in its paddock in the Vanlware District of Limopo Province, South Africa. The horse became progressively ataxic and, when recumbent, was referred to the hospital at the Faculty of Veterinary Science, University of Pretoria. When examined, the horse was unaware of its surroundings and paddee constantly (front legs swinging inward in their trajectory). Sedation, including the use of ketamine as a last resort, failed to calm the animal. The yearling experienced several episodes of muscle spasm interspresed with tremos and was eudumized when its condition was deemed terminal. Cytologic examination of a creerborspinal fluid sample taken

MDPI

On T

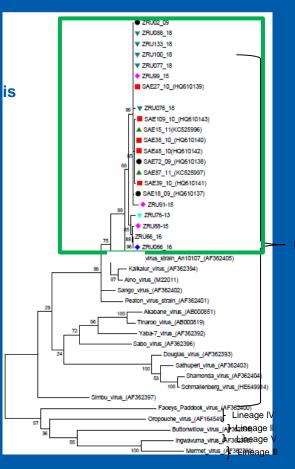
The S

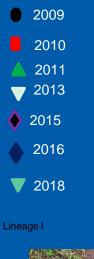
2021, 13, 937. https://doi.org/10.3390/v13050937

Article Epidemiology of Shuni Virus in Horses in South Africa

Thopisang P. Motlou 10, June Williams 2 and Marietjie Venter 1,*0

EMERGING INFECTIOUS DISEASES°


EID Journal > Volume 26 > Number 7—July 2020 > Main Article


Volume 26, Number 7—July 2020

Dispatch

Shuni Virus in Wildlife and Nonequine Domestic Animals, South Africa

Jumari Steyn, Pebetsi Motlou, Charmaine van Eeden, Marthi Pretorius, Voula I. Stivaktas, June Williams, Louwtjie P. Snyman, Peter E. Buss, Brianna Beechler, Anna Jolles, Eva Perez-Martin, Jan G. Myburgh, Johan Steyl, and Marietjie Venter

Gail Foxcroft achieved national colour in both eventing and show jumping (Photo courtesy TB Images)

Discussion

- Aetiologies of AFDUC and Neurological disease often not identified due to many potential cause, lack of diagnostic tests.
- Both common pathogens and zoonotic diseases and arboviruses in diff diagnoses
- WNV, Sindbis and lesser known alpha (Middelburg); orthobunya (Shuni) missed as causes of febrile and neurological disease in humans and animals in SA
- During late summer and autumn, important missed cause of acute febrile disease of unknown origin and neurological signs.
- One Health approach of syndromic surveillance in animals and humans and arthropod vectors in areas where cases are detected effective in detecting outbreaks, reservoir hosts and vectors.
- Availability of specific diagnostic test, surveillance programs and awareness major limiting factors for detection

Dr June Williams (895) MSc (Necical Vinology)

Dr Johan Steyl

Prof Paulo Almeida (Pob) Associate Professor in Medical Entomology/ Parasitology -IHMT Extraordinary Professor -University of Pretoria

BMBF; G7

PATOLOGIE PATHOLOGY

CONTACT: marietjie.venter@up.ac.za

Acknowledgements

Main Collaborators SA:

- Dr Johan Steyl and Dr June Williams and, Prof Allan Guthrie, Faculty of Veterinary Science, Onderstepoort, South Africa.
- OVI, Dr Marco Romito, Allison Lusibi
- >150 Private and State vets that has supplied us with specimens across the country.
- Dr Leo Braack, Centre for Sustainable Malaria Control, UP
- CEZD, NICD: Prof Janusz Paweska; CRDM : Cheryl Cohen

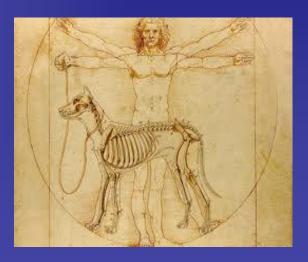
International:

Dr Joel Montgomory, Rachel Eidex, Global Disease Detection, CDC

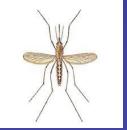
Dr Rosemary Sang, KEMRI; ISIPE; Kenya

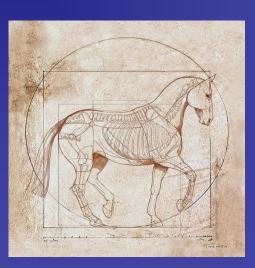
ANDEMIA: Dr Fabian Leendertz, Robert Koch Institute and ANDEMIA network, DRC, Cote d'Ivore. Burkina Faso Leap Agri: Dr Jeroen Kortekaas, Wageningen Bioveterinary Research, the Netherlands; Martin Groschup, FLI Germany Dr Paulo Almeida, University of Lisbon; Dr Anton Cornel, UC Davis, California, Erin Gorsich, Briana Beechler, Oregon state University, Maarten Schrama, Institute of Environmental Sciences, University of Leiden, Leiden, NL Ab Osterhaus, One Health Platform

Emerging arbo and respiratory virus program


Centre for Viral Zoonoses Department Medical Virology

University of Pretoria


https://www.up.ac.za/centre-for-viral-zoonoses/article/2541034/zoonotic-


arbo-and-respiratory-virus-program

marietjie.venter@up.ac.za

