Reverse Zoonosis and Covid-19

Prof Katja Koeppel Department of Production Anima Studies Faculty of Veterinary Science

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Veterinary Science

Pathogens

- **Bacteria:** TB, Shigella, Salmonella, Heliobacter, MRSA, Lyme disease
- Viruses: Influenza, SARS, Covid19, Rotavirus, Measles Hepatitis E, Ebola, Pox, Rabies
- Parasites: Isopera, Giardia, Strongyloides
- Fungi: Candida, Trichophyton, Mircosporum

Distribution of reverse zoonotic events

Tuberculosis in human, 2014

Estimated TB mortality rates excluding TB deaths among HIV–positive people, 2014

Tuberculosis in human, 2014

Estimated TB mortality rates excluding TB deaths among HIV–positive people, 2014

Journal of Zoo and Wildlife Medicine 34(4): 364-370, 2003 Copyright 2003 by American Association of Zoo Veterinarians

C

Reverse Zoonosis of N1H1 influenza

Sooksawasdi Na Ayudhya, 2021

Reverse Zoonosis of N1H1 influenza

Sooksawasdi Na Ayudhya, 2021

Reverse Zoonosis of Covid19

Sooksawasdi Na Ayudhya, 2021

Reverse Zoonosis of Covid19

Denver Zoo reports world's first coronavirus cases in hyenas, ksawasdi Na Ayudhya, 2021

By THOMAS PEIPERT November 6, 2021

Reverse Zoonosis of Covid19

Multiple spillovers and onward transmission of SARS-Cov-2 in free-living and captive White-tailed deer (Odocoileus virginianus)

Authors: Suresh V. Kuchipudi,^{1#} Meera Surendran-Nair¹, Rachel M. Ruden^{2,3}, Michelle Yon⁴, Ruth H. Nissly¹, Rahul K. Nelli³, Lingling Li⁴, Bhushan M. Jayarao⁴, Kurt J. Vandegrift⁵, Costas D. Maranas⁶, Nicole Levine⁷, Katriina Willgert⁸, Andrew J. K. Conlan⁸, Randall J. Olsen^{9,10}, James J. Davis¹¹, James M. Musser^{9,10}, Peter J. Hudson⁵, and Vivek Kapur^{7#}

Denver Zoo reports world's first coronavirus cases in hyenas, ksawasdi Na Ayudhya, 2021

By THOMAS PEIPERT November 6, 2021

?

Recent Pandemics

Pandemic (years and common name)	Reference	Causative agent	Area Of emergence	Estimated reproductive number	Secondary attack rates (%)	Estimated case-fatality rate	Age groups most affected
1918–1919 (Spanish flu)	[6]	Influenza A (H1N1)	Unclear	1.7–2.8	-	NA	Adult, pregnant
1957–1958 (Asian flu)	[8]	Influenza A (H2N2)	Southern Chine	1.8	18.5–26.8	NA	Children, elderly
1968–1969 (Hong Kong flu)	[11]	Influenza A (H3N2)	Southern Chine	1.06-2.06	15.0	NA	Elderly
2009 (swine flu)	[18]	Influenza A (H1N1)	Mexico	1.4–1.6	17,5	NA	Adolescent, young adults
2019–(COVID-19)		A Novel Coronavirus (SARS-CoV-2)	Wuhan, Chine	5.7	< 2	2.3	Elderly

Akin abd Gökhan, 2020

Cases of Covid-19 in animals

OIE situation report 30 September 2021

Animal species affected

Russia

Australi

Canada

United States

Cat

- Dog
- Gorilla
- Lion
- Mink
- Otter
- Pet Ferret
- 🔺 Tiger
- White tailed deer

No of outbreaks in animals

Species Region	Cats	Dogs	Mink	Otter	Pet ferrets	Lions	Tigers	Pumas	Snow leopards	Gorillas	White- tailed deer	Amur leopard
Africa						(1)		(1)				
Americas	67	69	20	2	1	3**	10+	2	2+	2	1	+
Asia	11	16					1					
Europe	24	7	340		1	2*	1*					
TOTAL	102	92	360	2	2	5	12	3	2	2	1	+

OIE, Sept 2021

Covid-19 South Africa

Koeppel et al, in prep

Covid-19 South Africa

С

	ORF1a							OR	F1b		S													ORF3a	м	ORF6	ORF7a			7a		RF8	ORF9b	N					
	82	83	84	85	1640	3055	3209	3718	3750	314	662	765	1000	19	142	156	157	158	222	250	338	452	478	614	681	950	26	82	60	5	82	95	120	119	120	60	63	203	377
ZRU125/21					P/L		A/V	V/A	Т/І	P/L	G/S	G/C	P/L	T/R	G/D	del	del	R/G	A/V	T/S		L/R	т/к	D/G	P/R	D/N	S/L	і/Т			V/A		Т/І	del	del	T/A	D/G	R/M	D/Y
ZRU127/21					•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•			•		•	•	•	•	•	•	•
ZRU128/21					•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•			•		•	•	•	•	•	•	•
ZRUCWL005					•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	I/V		•		•	•	•	•	•	•	•
ZRUCWL012	del	del	del	M/V	•	I/T	•	•		•	•		•	•	•	•	•	•	•		F/L			•		•		•		L/F	•	E/A		•	•	•	•	Ì	

Black dots: identical change; Grey blocks: no data

Koeppel et al, in prep

Causes of spillover

- Sufficient contact between human and animal species
- Compatibility between pathogen and new host
- Transmission in new host = pathogen persist or die out
- Reservoir species

86.640

Imperial College London News by Dr Sabine van Elsland

Collaborators: Marietjie Venter Adriano Mendes Amy Strydom Lia Rotherham Misheck Mulumba

Questions ?

Faculty of Veterinary Science

Zoonotic Arbo– and Respiratory Virus Program Centre for Viral Zoonoses Department Medical Virology

University of Pretoria