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Relatively p-bounded operators

Let U and F be Banach spaces, operators L ∈ L(U;F) (i.e. linear and
continuous), M ∈ Cl(U;F) (i.e. linear, closed and densely defined). Sets
ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F;U)} and σL(M) = C \ ρL(M) are called
L-resolvent set and L-spectrum of operator M respectively. Operator M is
(L, σ)-bounded, if

∃a ∈ R+ ∀µ ∈ C (|µ| > a)⇒ (µ ∈ ρL(M)).

If operator is (L, σ)-bounded, then operators

P =
1

2πi

∫
γ

RL
µ(M)dµ ∈ L(U), Q =

1

2πi

∫
γ

LL
µ(M)dµ ∈ L(F).

are the projectors. Here RL
µ(M) = (µL−M)−1L is called a right L-resolvent,

and LL
µ(M) = L(µL−M)−1 is called a left L-resolvent of operator M; contour

γ = {µ ∈ C : |µ| = r > a}. Here and below, all integrals are understood in the
sense of Riemann.



Relatively p-bounded operators

We consider subspaces U0 = kerP, U1 = imP, F0 = kerQ, F1 = imQ; and
denote operator of the contraction L (M) on Uk(Uk ∩ domM) by Lk (Mk),
k = 0, 1.

Theorem 1.1.

Let operator M (L, σ)-bounded. Then
(i) operators Lk ∈ L(Uk ;Fk), k = 0, 1; and there exist the operator
L−1
1 ∈ L(F1;U1);

(ii) operators Mk ∈ Cl(Uk ;Fk), k = 0, 1; and there exist the operator
M−1

0 ∈ L(F0;U0).

Let operator M be (L, σ)-bounded, construct the operator H = M−1
0 L0,

H ∈ L(U0). Operator M is called (L, p)-bounded, p ∈ N ((L, 0)-bounded), if
Hp 6= O, а Hp+1 = O (H = O).



Phase space

Let operator M be (L, p)-bounded, p ∈ {0} ∪ N, we consider the equation

Lu̇ = Mu. (1.1)

Vector function u = u(t), t ∈ R, is solution of equation (1.1) if it satisfies this
equation. Decision u = u(t) is called solution of the Cauchy problem

u(0) = u0, (1.2)

if it satisfies condition (1.2) at some u0 ∈ U.

The set P ⊂ U is phase space of equation (1.1) if its any solution u(t) ∈ P at
each t ∈ R; and for any u0 ∈ P there exists a unique solution u ∈ C 1(R;U) of
problem (1.2) for equation (1.1).



Phase space

Finally, we introduce a degenerate (if ker L 6= {0}) holomorphic (in the whole
plane C) group of operators

U t =
1

2πi

∫
γ

RL
µ(M)eµtdµ, t ∈ C.

Notice, that U0 = P, where kerP ⊃ kerL.

Theorem 1.2.

Let operator M be (L, p)-bounded, p ∈ {0} ∪ N. Then
(i) any solution u ∈ C 1(R;U) of equation (1.1) has the form u(t) = U tu0,
t ∈ R, and some u0 ∈ U;
(ii) the phase space of equation (1.1) is subspace U1.



Degenerate holomorphic group of operators

Thus, under the conditions of the theorem 1.2 L-resolvent (µL−M)−1 of
operator M in the ring |µ| > a decomposes into a Laurent series

(µL−M)−1 =
∞∑
k=1

µ−kSk−1L−1
1 Q −

p∑
k=0

µkHkM−1
0 (I− Q),

where operators S = L−1
1 M1 ∈ L(U1), H = M−1

0 L0 ∈ L(U0). Hence the
resolving degenerate group U t of equation (1.1) is as follows

U t = (I− Q) + eStQ,

where

eSt =
1

2πi

∫
γ

(µI− S)eµtdµ =
∞∑
k=0

(St)k

k!

is the group of operators of equation (1.1), given on the phase space U1.



Banach lattice

Next, we give an order relation �≥ �, compatible with both vector and metric
structures, to U1. In other words, we assume that (U1;≥) is a Banach lattice.

Spaces C(Ω), C(Ω) and Lq(Ω), as well as space lq, where domain Ω ⊂ Rn,
q ∈ [1,+∞] are examples of Banach lattices.

Further, let X is vector space. Convex set C ⊂ X we call a cone if
(ic) C + C ⊂ C;
(iic) αC ⊂ C for any α ∈ {0} ∪ R+;
(iiic) C ∩ (−C) = {0}.

The cone C is called generative if
(ivc) C− C = X.



Degenerate positive holomorphic groups of operators

Let X be Banach lattice with generative cone X+. Linear bounded operator
A ∈ L(X) is positive if Au ≥ 0 for all u ∈ X+. Holomorphic group of operators
X . = {X t : X t ∈ L(X) for all t ∈ R} is called positive if X tu ≥ 0 for all
u ∈ X+ and t ∈ R.

Finally, let us return to the abstract problem

Lu̇ = Mu, (1.1)

u(0) = u0. (1.2)

We will be interested in its positive solution u = u(t) i.е. such that u(t) ≥ 0
for all t ∈ R. Therefore, we consider the phase space of equation (1.1) U1

Banach lattice, generated by a cone U1
+.



Degenerate positive holomorphic groups of operators

(L, p)-bounded operator M is positive (L, p)-bounded, p ∈ {0} ∪ N, if Su ∈ U1
+

for any u ∈ U1
+.

The degenerate holomorphic group U . ∈ C∞(R;L(U)), generated by positive
(L, p)-bounded operator M is called a degenerate positive holomorphic group.

Theorem 1.3.

Let operator M is positive (L, p)-bounded, p ∈ {0} ∪ N. Then for any u0 ∈ U1
+

there is the unique positive solution u = u(t), t ∈ R, of problem (1.1), (1.2),
and it has the form u(t) = U tu0.



Showalter – Sidorov problem

Let U and F be Banach spaces, operators L ∈ L(U;F), M ∈ Cl(U;F), and
operator M is (L, p)-bounded, p ∈ {0} ∪ N. Consider a linear inhomogeneous
equation of Sobolev type

Lu̇ = Mu + f . (2.1)

Vector function u ∈ C([0, τ);U) ∩ C 1((0, τ);U), τ ∈ R+, is called solution of
equation (2.1) if it satisfies this equation for some f = f (t). The solution
u = u(t) of equation (2.1) is called solution of the Showalter – Sidorov
problema

P(u(0)− u0) = 0, (2.2)

if it also satisfies the initial condition (2.2). Here P : U→ U1 along U0 is
projector. Further, let U be a Banach lattice generated by the cone U+. The
solution u = u(t) of problem (2.1), (2.2) is positive if u(t) ∈ U+ for any
t ∈ [0, τ).

aSviridyuk G.A., Zagrebina S.A. The Showalter–Sidorov problem as a
phenomena of the Sobolev-type equations. IIGU. Seriya �Matematika�, Vol. 3,
Issue 1, pp. 104–125. (in Russ.).



Strongly positive relatively p-bounded operators

Let F be also be a Banach lattice generated by a cone F+. If operator M is
(L, p)-bounded, p ∈ {0} ∪ N, then it is not difficult to show that the subspaces
Uk and Fk , k = 0, 1, are also Banach lattices generated by cones Uk

+ = Uk ∩ U+

and Fk
+ = Fk ∩ F+, k = 0, 1, respectively.

(L, p)-bounded operator M is called strongly positive (L, p)-bounded,
p ∈ {0} ∪ N, if
(iP) operator L0 : U0

+ → F0
+ and operator L1 : U1

+ → F1
+ is a toplinear

isomorphism;
(iiP) operator M1 : U1

+ ∩ domM → F1
+ and operator M0 : U0

+ ∩ domM → F0
+

and M−1
0 [F0

+] ⊂ U0
+.

It is easy to see that strongly positive (L, p)-bounded operator M is positive
(L, p)-bounded, p ∈ {0} ∪ N. Let be f = (I− Q)f + Qf = f 0 + f 1, where
Q : F→ F1 is projector along F0.



Positive solutions

Theorem 2.1.

Let U be a Banach lattice and operator M is strongly positive (L, p)-bounded,
p ∈ {0} ∪ N. Then for any vector functions f : [0, τ)→ F such that
f 0 ∈ C p+1((0, τ);F0), −f 0(k)(t) ∈ F0

+, k = 0, p + 1, t ∈ (0, τ),
f 1 ∈ C([0, τ);F1

+), and for any vector u0 ∈ U, such that u1
0 ∈ U1

+ there exists
the unique positive solution u = u(t), which also has the form

u(t) = −
p∑

k=0

HkM−1
0 f 0(k)(t) + U tu0 +

∫ τ

0

U t−τL−1
1 f 1(τ)dτ.

Here f 0(k)(t) =
dk

dtk
f 0(t), k = 0, p + 1.



Mathematical model in sequence spaces

We consider Sobolev sequence spaces

lmq = {u = (uk) :
∞∑
k=0

λ
mq
2

k |uk |
q <∞}, m ∈ R, q ∈ [1,+∞).

First of all, we note that these spaces are Banach spaces with the norm

||u||m,q =

(
∞∑
k=1

λ
mq
2

k |uk |
q

)1/q

.

Then pay attention to dense and continuous embeddings lmq ↪→ lnq at m ≥ n.
Finally, we set operator Λu = (λkuk), where u = (uk).

||Λu||m,q =

(
∞∑
k=1

λ
mq
2

+q

k |uk |q
)1/q

= ||u||m+2,q ⇒ Λ ∈ L(lm+2
q ; lmq ).



Mathematical model in sequence spaces

Let’s construct operators L = L(Λ) and M = M(Λ), where L(s) and M(s) are
polynomials with real (for simplicity) coefficients.

If the condition
deg L ≥ degM, (2.3)

is satisfied, that operators L, M ∈ L(lm+deg L
q ; lmq ), m ∈ R, q ∈ [1,+∞).

Lemma 2.1.

Let
(i) the condition (2.3) is satisfied;
(ii) polynomials L = L(s) and M = M(s) have only real roots and have no
common roots.
Then operator M is (L, 0)-bounded.



Mathematical model in sequence spaces

We introduce in spaces lmq , m ∈ R, q ∈ [1,+∞) Banach lattices. In each of
them we choose a family of vectors {ek}, all components of which are zero
except for the component k that is equal to unity. We construct the linear span
of these families consisting of linear combinations of these vectors with positive
coefficients. The closure of this linear shell in the norm of the space lmq we
denote by Cm

q , m ∈ R, q ∈ [1,+∞). As is easy to see, Cm
q is generating cone in

space lmq , m ∈ R, q ∈ [1,+∞).

Lemma 2.2.

Let the conditions of the lemma 2.1 are satisfied, and all the coefficients of the
polynomials L(S) and M(S) are positive. Then operator M is strongly positive
(L, 0)-bounded.



Mathematical model in sequence spaces

Theorem 2.2.

Let the conditions of Lemmas 2.1 and 2.2 are satisfied. Then for any vector
function f = f (t) such that f 0 ∈ C 1((0, τ); lm+deg L

q,0 ) and
−f 0(t) ∈ (Cm+deg L

q ∩ lm+deg L
q ), t ∈ (0, τ) and f 1 ∈ C([0, τ);Cm+deg L

q ∩ lm+deg L
q,1 )

and any vector u0 ∈ Cm+deg L
q , such that u1

0 ∈ Cm+deg L
q ∩ lm+deg L

q,1 , there exists a
unique positive solution of the problem (2.1), (2.2) u = u(t), which also has
the following form

u(t) = −M−1
0 f 0(t) + U tu0 +

∫ t

0

U t−sL−1
1 f 1(s)ds, t ∈ (0, τ).



Here
M−10 f 0(t) =

∑
λ=λk

fk(t)ek
M(λk)

,

Utu0 =
∞∑
k=1

′ exp

(
M(λk)

L(λk)
t

)
u0kek ,

L−11 f 1(t) =
∞∑
k=1

′ fk(t)ek
L(λk)

,

and the prime at the sum sign means that the summation is over
the set {k ∈ N : λk 6= λ}.



Thank you for your attention!


