South Ural State University (National Research University)

Sviridyuk G.A., Zagrebina S.A.
SOBOLEV TYPE MATHEMATICAL MODELS WITH RELATIVELY POSITIVE OPERATORS IN THE SEQUENCE SPACES

University of Pretoria, South Africa, 09-13 April 2018

$$
L u_{t}=M u+f, \operatorname{ker} L \neq\{0\}
$$

Solovyova N.N., Zagrebina S.A., Sviridyuk G.A. Sobolev type mathematical models with relatively positive operators in the sequence spaces, Bulletin of the South Ural State University Series "Mathematics. Mechanics. Physics", 2017, vol. 9, no. 4, pp. 27-35. DOI: $10.14529 / m m p h 170404$

Sviridyuk G.A., Fedorov V.E. Linear Sobolev type equations and degenerate semigroups of operators. VSP, Utrecht-Boston-Köln-Tokyo, 2003, 216 p.

Banasiak J., Arlotti L. Perturbations of Positive Semigroups with Applications, Springer-Verlag, London Limited, 2006, 438 p.

Relatively p-bounded operators

Let \mathfrak{U} and \mathfrak{F} be Banach spaces, operators $L \in \mathcal{L}(\mathfrak{U} ; \mathfrak{F})$ (i.e. linear and continuous), $M \in \mathcal{C} I(\mathfrak{U} ; \mathfrak{F})$ (i.e. linear, closed and densely defined). Sets $\rho^{L}(M)=\left\{\mu \in \mathbb{C}:(\mu L-M)^{-1} \in \mathcal{L}(\mathfrak{F} ; \mathfrak{U})\right\}$ and $\sigma^{L}(M)=\mathbb{C} \backslash \rho^{L}(M)$ are called L-resolvent set and L-spectrum of operator M respectively. Operator M is (L, σ)-bounded, if

$$
\exists a \in \mathbb{R}_{+} \forall \mu \in \mathbb{C}(|\mu|>a) \Rightarrow\left(\mu \in \rho^{L}(M)\right)
$$

If operator is (L, σ)-bounded, then operators

$$
P=\frac{1}{2 \pi i} \int_{\gamma} R_{\mu}^{L}(M) d \mu \in \mathcal{L}(\mathfrak{U}), Q=\frac{1}{2 \pi i} \int_{\gamma} L_{\mu}^{L}(M) d \mu \in \mathcal{L}(\mathfrak{F})
$$

are the projectors. Here $R_{\mu}^{L}(M)=(\mu L-M)^{-1} L$ is called a right L-resolvent, and $L_{\mu}^{L}(M)=L(\mu L-M)^{-1}$ is called a left L-resolvent of operator M; contour $\gamma=\{\mu \in \mathbb{C}:|\mu|=r>a\}$. Here and below, all integrals are understood in the sense of Riemann.

Relatively p-bounded operators

We consider subspaces $\mathfrak{U}^{0}=\operatorname{ker} P, \mathfrak{U}^{1}=\operatorname{im} P, \mathfrak{F}^{0}=\operatorname{ker} Q, \mathfrak{F}^{1}=\operatorname{im} Q$; and denote operator of the contraction $L(M)$ on $\mathfrak{U}^{k}\left(\mathfrak{U}^{k} \cap \operatorname{dom} M\right)$ by $L_{k}\left(M_{k}\right)$, $k=0,1$.

Theorem 1.1.

Let operator $M(L, \sigma)$-bounded. Then
(i) operators $L_{k} \in \mathcal{L}\left(\mathfrak{U}^{k} ; \mathfrak{F}^{k}\right), k=0,1$; and there exist the operator
$L_{1}^{-1} \in \mathcal{L}\left(\mathfrak{F}^{1} ; \mathfrak{U}^{1}\right)$;
(ii) operators $M_{k} \in \mathcal{C} I\left(\mathfrak{U}^{k} ; \mathfrak{F}^{k}\right), k=0,1$; and there exist the operator $M_{0}^{-1} \in \mathcal{L}\left(\mathfrak{F}^{0} ; \mathfrak{U}^{0}\right)$.

Let operator M be (L, σ)-bounded, construct the operator $H=M_{0}^{-1} L_{0}$, $H \in \mathcal{L}\left(\mathfrak{U}^{0}\right)$. Operator M is called (L, p)-bounded, $p \in \mathbb{N}((L, 0)$-bounded $)$, if $H^{p} \neq \mathbb{O}$, a $H^{p+1}=\mathbb{O}(H=\mathbb{O})$.

Phase space

Let operator M be (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$, we consider the equation

$$
\begin{equation*}
L \dot{u}=M u . \tag{1.1}
\end{equation*}
$$

Vector function $u=u(t), t \in \mathbb{R}$, is solution of equation (1.1) if it satisfies this equation. Decision $u=u(t)$ is called solution of the Cauchy problem

$$
\begin{equation*}
u(0)=u_{0}, \tag{1.2}
\end{equation*}
$$

if it satisfies condition (1.2) at some $u_{0} \in \mathfrak{U}$.

The set $\mathfrak{P} \subset \mathfrak{U}$ is phase space of equation (1.1) if its any solution $u(t) \in \mathfrak{P}$ at each $t \in \mathbb{R}$; and for any $u_{0} \in \mathfrak{P}$ there exists a unique solution $u \in C^{1}(\mathbb{R} ; \mathfrak{U})$ of problem (1.2) for equation (1.1).

Phase space

Finally, we introduce a degenerate (if $\operatorname{ker} L \neq\{0\}$) holomorphic (in the whole plane \mathbb{C}) group of operators

$$
U^{t}=\frac{1}{2 \pi i} \int_{\gamma} R_{\mu}^{L}(M) e^{\mu t} d \mu, t \in \mathbb{C}
$$

Notice, that $U^{0}=P$, where ker $P \supset$ kerL.

Theorem 1.2.

Let operator M be (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$. Then
(i) any solution $u \in C^{1}(\mathbb{R} ; \mathfrak{U})$ of equation (1.1) has the form $u(t)=U^{t} u_{0}$, $t \in \mathbb{R}$, and some $u_{0} \in \mathfrak{U}$;
(ii) the phase space of equation (1.1) is subspace \mathfrak{U}^{1}.

Degenerate holomorphic group of operators

Thus, under the conditions of the theorem 1.2 L-resolvent $(\mu L-M)^{-1}$ of operator M in the ring $|\mu|>$ a decomposes into a Laurent series

$$
(\mu L-M)^{-1}=\sum_{k=1}^{\infty} \mu^{-k} S^{k-1} L_{1}^{-1} Q-\sum_{k=0}^{p} \mu^{k} H^{k} M_{0}^{-1}(\mathbb{I}-Q)
$$

where operators $S=L_{1}^{-1} M_{1} \in \mathcal{L}\left(\mathfrak{U}^{1}\right), H=M_{0}^{-1} L_{0} \in \mathcal{L}\left(\mathfrak{U}^{0}\right)$. Hence the resolving degenerate group U^{t} of equation (1.1) is as follows

$$
U^{t}=(\mathbb{I}-Q)+e^{S t} Q,
$$

where

$$
e^{S t}=\frac{1}{2 \pi i} \int_{\gamma}(\mu \mathbb{I}-S) e^{\mu t} d \mu=\sum_{k=0}^{\infty} \frac{(S t)^{k}}{k!}
$$

is the group of operators of equation (1.1), given on the phase space \mathfrak{U}^{1}.

Banach lattice

Next, we give an order relation $<\geq \gg$, compatible with both vector and metric structures, to \mathfrak{U}^{1}. In other words, we assume that $\left(\mathfrak{U}^{1} ; \geq\right)$ is a Banach lattice.

Spaces $C(\Omega), C(\bar{\Omega})$ and $L_{q}(\Omega)$, as well as space I_{q}, where domain $\Omega \subset \mathbb{R}^{n}$, $q \in[1,+\infty]$ are examples of Banach lattices.

Further, let \mathfrak{X} is vector space. Convex set $\mathfrak{C} \subset \mathfrak{X}$ we call a cone if (ic) $\mathfrak{C}+\mathfrak{C} \subset \mathfrak{C}$; (iic) $\alpha \mathfrak{C} \subset \mathfrak{C}$ for any $\alpha \in\{0\} \cup \mathbb{R}_{+}$; (iiic) $\mathfrak{C} \cap(-\mathfrak{C})=\{0\}$.

The cone \mathfrak{C} is called generative if (ivc) $\mathfrak{C}-\mathfrak{C}=\mathfrak{X}$.

Degenerate positive holomorphic groups of operators

Let \mathfrak{X} be Banach lattice with generative cone \mathfrak{X}_{+}. Linear bounded operator $A \in \mathcal{L}(\mathfrak{X})$ is positive if $A u \geq 0$ for all $u \in \mathfrak{X}_{+}$. Holomorphic group of operators $X=\left\{X^{t}: X^{t} \in \mathcal{L}(\mathfrak{X})\right.$ for all $\left.t \in \mathbb{R}\right\}$ is called positive if $X^{t} u \geq 0$ for all $u \in \mathfrak{X}_{+}$and $t \in \mathbb{R}$.

Finally, let us return to the abstract problem

$$
\begin{align*}
& L \dot{u}=M u \tag{1.1}\\
& u(0)=u_{0} \tag{1.2}
\end{align*}
$$

We will be interested in its positive solution $u=u(t)$ i.e. such that $u(t) \geq 0$ for all $t \in \mathbb{R}$. Therefore, we consider the phase space of equation (1.1) \mathfrak{U}^{1} Banach lattice, generated by a cone \mathfrak{U}_{+}^{1}.

Degenerate positive holomorphic groups of operators

(L, p)-bounded operator M is positive (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$, if $S u \in \mathfrak{U}_{+}^{1}$ for any $u \in \mathfrak{U}_{+}^{1}$.

The degenerate holomorphic group $U \in C^{\infty}(\mathbb{R} ; \mathcal{L}(\mathfrak{U}))$, generated by positive (L, p)-bounded operator M is called a degenerate positive holomorphic group.

Theorem 1.3.

Let operator M is positive (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$. Then for any $u_{0} \in \mathfrak{U}_{+}^{1}$ there is the unique positive solution $u=u(t), t \in \mathbb{R}$, of problem (1.1), (1.2), and it has the form $u(t)=U^{t} u_{0}$.

Showalter - Sidorov problem

Let \mathfrak{U} and \mathfrak{F} be Banach spaces, operators $L \in \mathcal{L}(\mathfrak{U} ; \mathfrak{F}), M \in \mathcal{C} I(\mathfrak{U} ; \mathfrak{F})$, and operator M is (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$. Consider a linear inhomogeneous equation of Sobolev type

$$
\begin{equation*}
L \dot{u}=M u+f \tag{2.1}
\end{equation*}
$$

Vector function $u \in C([0, \tau) ; \mathfrak{U}) \cap C^{1}((0, \tau) ; \mathfrak{U}), \tau \in \mathbb{R}_{+}$, is called solution of equation (2.1) if it satisfies this equation for some $f=f(t)$. The solution $u=u(t)$ of equation (2.1) is called solution of the Showalter - Sidorov problem ${ }^{a}$

$$
\begin{equation*}
P\left(u(0)-u_{0}\right)=0 \tag{2.2}
\end{equation*}
$$

if it also satisfies the initial condition (2.2). Here $P: \mathfrak{U} \rightarrow \mathfrak{U}^{1}$ along \mathfrak{U}^{0} is projector. Further, let \mathfrak{U} be a Banach lattice generated by the cone \mathfrak{U}_{+}. The solution $u=u(t)$ of problem (2.1), (2.2) is positive if $u(t) \in \mathfrak{U}_{+}$for any $t \in[0, \tau)$.

[^0]
Strongly positive relatively p-bounded operators

Let \mathfrak{F} be also be a Banach lattice generated by a cone \mathfrak{F}_{+}. If operator M is (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$, then it is not difficult to show that the subspaces \mathfrak{U}^{k} and $\mathfrak{F}^{k}, k=0,1$, are also Banach lattices generated by cones $\mathfrak{U}_{+}^{k}=\mathfrak{U}^{k} \cap \mathfrak{U}_{+}$ and $\mathfrak{F}_{+}^{k}=\mathfrak{F}^{k} \cap \mathfrak{F}_{+}, k=0,1$, respectively.
(L, p)-bounded operator M is called strongly positive (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$, if
(iP) operator $L_{0}: \mathfrak{U}_{+}^{0} \rightarrow \mathfrak{F}_{+}^{0}$ and operator $L_{1}: \mathfrak{U}_{+}^{1} \rightarrow \mathfrak{F}_{+}^{1}$ is a toplinear isomorphism;
(iiP) operator $M_{1}: \mathfrak{U}_{+}^{1} \cap \operatorname{dom} M \rightarrow \mathfrak{F}_{+}^{1}$ and operator $M_{0}: \mathfrak{U}_{+}^{0} \cap \operatorname{dom} M \rightarrow \mathfrak{F}_{+}^{0}$ and $M_{0}^{-1}\left[\mathfrak{F}_{+}^{0}\right] \subset \mathfrak{U}_{+}^{0}$.

It is easy to see that strongly positive (L, p)-bounded operator M is positive (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$. Let be $f=(\mathbb{I}-Q) f+Q f=f^{0}+f^{1}$, where $Q: \mathfrak{F} \rightarrow \mathfrak{F}^{1}$ is projector along \mathfrak{F}^{0}.

Positive solutions

Theorem 2.1.

Let \mathfrak{U} be a Banach lattice and operator M is strongly positive (L, p)-bounded, $p \in\{0\} \cup \mathbb{N}$. Then for any vector functions $f:[0, \tau) \rightarrow \mathfrak{F}$ such that $f^{0} \in C^{p+1}\left((0, \tau) ; \mathfrak{F}^{0}\right),-f^{0(k)}(t) \in \mathfrak{F}_{+}^{0}, k=\overline{0, p+1}, t \in(0, \tau)$, $f^{1} \in C\left([0, \tau) ; \mathfrak{F}_{+}^{1}\right)$, and for any vector $u_{0} \in \mathfrak{U}$, such that $u_{0}^{1} \in \mathfrak{U}_{+}^{1}$ there exists the unique positive solution $u=u(t)$, which also has the form

$$
u(t)=-\sum_{k=0}^{p} H^{k} M_{0}^{-1} f^{0(k)}(t)+U^{t} u_{0}+\int_{0}^{\tau} U^{t-\tau} L_{1}^{-1} f^{1}(\tau) d \tau
$$

Here $f^{0(k)}(t)=\frac{d^{k}}{d t^{k}} f^{0}(t), k=\overline{0, p+1}$.

Mathematical model in sequence spaces

We consider Sobolev sequence spaces

$$
I_{q}^{m}=\left\{u=\left(u_{k}\right): \sum_{k=0}^{\infty} \lambda_{k}^{\frac{m q}{2}}\left|u_{k}\right|^{q}<\infty\right\}, m \in \mathbb{R}, q \in[1,+\infty)
$$

First of all, we note that these spaces are Banach spaces with the norm

$$
\|u\|_{m, q}=\left(\sum_{k=1}^{\infty} \lambda_{k}^{\frac{m q}{2}}\left|u_{k}\right|^{q}\right)^{1 / q}
$$

Then pay attention to dense and continuous embeddings $I_{q}^{m} \hookrightarrow I_{q}^{n}$ at $m \geq n$. Finally, we set operator $\Lambda u=\left(\lambda_{k} u_{k}\right)$, where $u=\left(u_{k}\right)$.

$$
\|\Lambda u\|_{m, q}=\left(\sum_{k=1}^{\infty} \lambda_{k}^{\frac{m q}{2}+q}\left|u_{k}\right|^{q}\right)^{1 / q}=\|u\|_{m+2, q} \Rightarrow \Lambda \in \mathcal{L}\left(l_{q}^{m+2} ; l_{q}^{m}\right)
$$

Mathematical model in sequence spaces

Let's construct operators $L=L(\Lambda)$ and $M=M(\Lambda)$, where $L(s)$ and $M(s)$ are polynomials with real (for simplicity) coefficients.

If the condition

$$
\begin{equation*}
\operatorname{deg} L \geq \operatorname{deg} M \tag{2.3}
\end{equation*}
$$

is satisfied, that operators $L, M \in \mathcal{L}\left(I_{q}^{m+\operatorname{deg} L} ; I_{q}^{m}\right), m \in \mathbb{R}, q \in[1,+\infty)$.

Lemma 2.1.

Let
(i) the condition (2.3) is satisfied;
(ii) polynomials $L=L(s)$ and $M=M(s)$ have only real roots and have no common roots.
Then operator M is $(L, 0)$-bounded.

Mathematical model in sequence spaces

> We introduce in spaces $I_{q}^{m}, m \in \mathbb{R}, q \in[1,+\infty)$ Banach lattices. In each of them we choose a family of vectors $\left\{e_{k}\right\}$, all components of which are zero except for the component k that is equal to unity. We construct the linear span of these families consisting of linear combinations of these vectors with positive coefficients. The closure of this linear shell in the norm of the space I_{q}^{m} we denote by $C_{q}^{m}, m \in \mathbb{R}, q \in[1,+\infty)$. As is easy to see, C_{q}^{m} is generating cone in space $I_{q}^{m}, m \in \mathbb{R}, q \in[1,+\infty)$.

Lemma 2.2.

Let the conditions of the lemma 2.1 are satisfied, and all the coefficients of the polynomials $L(S)$ and $M(S)$ are positive. Then operator M is strongly positive (L, 0)-bounded.

Mathematical model in sequence spaces

Theorem 2.2.

Let the conditions of Lemmas 2.1 and 2.2 are satisfied. Then for any vector function $f=f(t)$ such that $f^{0} \in C^{1}\left((0, \tau) ; I_{q, 0}^{m+\operatorname{deg} L}\right)$ and
$-f^{0}(t) \in\left(C_{q}^{m+\operatorname{deg} L} \cap I_{q}^{m+\operatorname{deg} L}\right), t \in(0, \tau)$ and $f^{1} \in C\left([0, \tau) ; C_{q}^{m+\operatorname{deg} L} \cap I_{q, 1}^{m+\operatorname{deg} L}\right)$ and any vector $u_{0} \in C_{q}^{m+\operatorname{deg} L}$, such that $u_{0}^{1} \in C_{q}^{m+\operatorname{deg} L} \cap I_{q, 1}^{m+\operatorname{deg} L}$, there exists a unique positive solution of the problem (2.1), (2.2) $u=u(t)$, which also has the following form

$$
u(t)=-M_{0}^{-1} f^{0}(t)+U^{t} u_{0}+\int_{0}^{t} U^{t-s} L_{1}^{-1} f^{1}(s) d s, \quad t \in(0, \tau)
$$

Here

$$
\begin{gathered}
M_{0}^{-1} f^{0}(t)=\sum_{\lambda=\lambda_{k}} \frac{f_{k}(t) e_{k}}{M\left(\lambda_{k}\right)}, \\
U^{t} u_{0}=\sum_{k=1}^{\prime} \exp \left(\frac{M\left(\lambda_{k}\right)}{L\left(\lambda_{k}\right)} t\right) u_{0 k} e_{k}, \\
L_{1}^{-1} f^{1}(t)=\sum_{k=1}^{\infty}, \frac{f_{k}(t) e_{k}}{L\left(\lambda_{k}\right)},
\end{gathered}
$$

and the prime at the sum sign means that the summation is over the set $\left\{k \in \mathbb{N}: \lambda_{k} \neq \lambda\right\}$.

Thank you for your attention!

[^0]: ${ }^{\text {a }}$ Sviridyuk G.A., Zagrebina S.A. The Showalter-Sidorov problem as a phenomena of the Sobolev-type equations. IIGU. Seriya <Matematika», Vol. 3, Issue 1, pp. 104-125. (in Russ.).

