> South Ural State University (National Research University)

THE CAUCHY PROBLEM FOR THE SEMILINEAR SOBOLEV TYPE EQUATION OF HIGHER ORDER

Formulation of the Problems

Let $\Omega=(0, a) \times(0, b) \times(0, c) \subset \mathbb{R}^{3}$.

$$
\begin{equation*}
(\Delta-\lambda) u_{t t t t}+\left(\Delta-\lambda^{\prime}\right) u_{t t}+\alpha \frac{\partial^{2} u}{\partial x_{3}^{2}}=\Delta\left(u^{3}\right),(x, t) \in \Omega \times \mathbb{R} \tag{1}
\end{equation*}
$$

with the Cauchy - Dirichlet conditions

$$
\begin{gather*}
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \\
u_{t t}(x, 0)=u_{2}(x), \quad u_{t t t}(x, 0)=u_{3}(x), \quad x \in \Omega, \tag{2}\\
u(x, t)=0, \quad(x, t) \in \partial \Omega \times \mathbb{R} .
\end{gather*}
$$

In suitable Banach spaces \mathfrak{U} and \mathfrak{F} mathematical model (1), (2) can be reduced to the Cauchy problem

$$
\begin{gather*}
u^{(k)}(0)=u_{k}, \quad k=0,1, \ldots, n-1, \tag{3}\\
A u^{(n)}=B_{n-1} u^{(n-1)}+B_{n-2} u^{(n-2)}+\ldots+B_{0} u+N(u), \tag{4}
\end{gather*}
$$

where the operators $A, B_{n-1}, B_{n-2}, \ldots, B_{0} \in \mathcal{L}(\mathfrak{U} ; \mathfrak{F}), N \in C^{\infty}(\mathfrak{U} ; \mathfrak{F})$.

Theory Relatively Polynomially Bounded Operator Pencils I

$\mathfrak{U}, \mathfrak{F}$ be Banach spaces, $A, B_{0}, B_{1}, \ldots, B_{n-1} \in \mathcal{L}(\mathfrak{U} ; \mathfrak{F})$.

$$
\rho^{A}(\vec{B})=\left\{\mu \in \mathbb{C}:\left(\mu^{n} A-\mu^{n-1} B_{n-1}-\ldots-\mu B_{1}-B_{0}\right)^{-1} \in \mathcal{L}(\mathfrak{F} ; \mathfrak{U})\right\} \text { and }
$$ $\sigma^{A}(\vec{B})=\overline{\mathbb{C}} \backslash \rho^{A}(\vec{B})$ are called an A-resolvent set and an A-spectrum of the pencil \vec{B} respectively. The operator-function $R_{\mu}^{A}(\vec{B})=\left(\mu^{n} A-\mu^{n-1} B_{n-1}-\ldots-\mu B_{1}-B_{0}\right)^{-1}$ is called an A-resolvent of the pencil \vec{B}.

Definition

The operator pencil \vec{B} is called polynomially bounded with respect to an operator A (or polynomially A-bounded) if $\quad \exists a \in \mathbb{R}_{+} \quad \forall \mu \in \mathbb{C} \quad(|\mu|>a) \Rightarrow\left(R_{\mu}^{A}(\vec{B}) \in \mathcal{L}(\mathfrak{F} ; \mathfrak{U})\right)$.

$$
\begin{equation*}
\int_{\gamma} \mu^{k} R_{\mu}^{A}(\vec{B}) d \mu \equiv \mathbb{O}, \quad k=0,1, \ldots, n-2,^{1} \tag{5}
\end{equation*}
$$

where $\gamma=\{\mu \in \mathbb{C}:|\mu|=r>a\}$

1. Zamyshlyaeva A.A. Linear Sobolev Type Equations of Higher Order. Chelyabinsk, Izd. Center of SUSU, 2012.

Theory Relatively Polynomially Bounded Operator Pencils II

Lemma 1^{1}

$$
P=\frac{1}{2 \pi i} \int_{\gamma} R_{\mu}^{A}(\vec{B}) \mu^{n-1} A d \mu, \quad Q=\frac{1}{2 \pi i} \int_{\gamma} \mu^{n-1} A R_{\mu}^{A}(\vec{B}) d \mu
$$

$$
\begin{aligned}
& \mathfrak{U}^{0}=\operatorname{ker} P, \mathfrak{F}^{0}=\operatorname{ker} Q, \mathfrak{U}^{1}=\operatorname{im} P, \mathfrak{F}^{1}=\operatorname{im} Q \\
& \mathfrak{U}=\mathfrak{U}^{0} \oplus \mathfrak{U}^{1}, \mathfrak{F}=\mathfrak{F}^{0} \oplus \mathfrak{F}^{1} \\
& A^{k}\left(B_{l}^{k}\right)-\text { restriction of operators } A\left(B_{l}\right) \text { on } \mathfrak{U}^{k}, k=0,1 ; l=0,1, \ldots, n-1 .
\end{aligned}
$$

Theorem 1^{1}

Let the operator pencil \vec{B} be polynomially A-bounded and condition (5) be fulfilled. Then (i) $A^{k} \in \mathcal{L}\left(\mathfrak{U}^{k} ; \mathfrak{F}^{k}\right), k=0,1$;
(ii) $B_{l}^{k} \in \mathcal{L}\left(\mathfrak{U}^{k} ; \mathfrak{F}^{k}\right), k=0,1, l=0,1, \ldots, n-1$;
(iii) operator $\left(A^{1}\right)^{-1} \in \mathcal{L}\left(\mathfrak{F}^{1} ; \mathfrak{U}^{1}\right)$ exists;
(iv) operator $\left(B_{0}^{0}\right)^{-1} \in \mathcal{L}\left(\mathfrak{F}^{0} ; \mathfrak{U}^{0}\right)$ exists.

Using last theorem construct operators $H_{0}=\left(B_{0}^{0}\right)^{-1} A^{0} \in \mathcal{L}\left(\mathfrak{U}^{0}\right), H_{1}=\left(B_{0}^{0}\right)^{-1} B_{1}^{0} \in \mathcal{L}\left(\mathfrak{U}^{0}\right), \ldots$, $H_{n-1}=\left(B_{0}^{0}\right)^{-1} B_{n-1}^{0} \in \mathcal{L}\left(\mathfrak{U}^{0}\right)$ and $S_{0}=\left(A^{1}\right)^{-1} B_{0}^{1} \in \mathcal{L}\left(\mathfrak{U}^{1}\right), S_{1}=\left(A^{1}\right)^{-1} B_{1}^{1} \in \mathcal{L}\left(\mathfrak{U}^{1}\right), \ldots$, $S_{n-1}=\left(A^{1}\right)^{-1} B_{n-1}^{1} \in \mathcal{L}\left(\mathfrak{U}^{1}\right)$.

Theory Relatively Polynomially Bounded Operator Pencils III

Definition

Define the family of operators $\left\{K_{q}^{1}, K_{q}^{2}, \ldots, K_{q}^{n}\right\}$ as follows:

$$
\begin{gathered}
K_{0}^{s}=\mathbb{O}, s \neq n, K_{0}^{n}=\mathbb{I}, \\
K_{1}^{1}=H_{0}, K_{1}^{2}=-H_{1}, \ldots, K_{1}^{s}=-H_{s-1}, \ldots, K_{1}^{n}=H_{n-1} \\
K_{q}^{1}=K_{q-1}^{n} H_{0}, K_{q}^{2}=K_{q-1}^{1}-K_{q-1}^{n} H_{1}, \ldots, K_{q}^{s}=K_{q-1}^{s-1}-K_{q-1}^{n} H_{s-1}, \ldots, \\
K_{q}^{s}=K_{q-1}^{n-1}-K_{q-1}^{n} H_{n-1}, q=1,2, \ldots
\end{gathered}
$$

The A-resolvent can be represented by a Laurent series ${ }^{1}$
$R_{\mu}^{A}(\vec{B})=-\sum_{q=0}^{\infty} \mu^{q} K_{q}^{n}\left(B_{0}^{0}\right)^{-1}(\mathbb{I}-Q)+\sum_{q=1}^{\infty} \mu^{-q}\left(\mu^{n-1} S_{n-1}+\cdots+\mu S_{1}+S_{0}\right)^{q} L_{1}^{-1} Q$.

Definition

The point ∞ is called

- a pole of order $p \in\{0\} \cup \mathbb{N}$ of an A-resolvent of the pencil \vec{B}, if $\exists p$ such that $K_{p}^{s} \not \equiv \mathbb{O}, s=1,2, \ldots, n$, but $K_{p+1}^{s} \equiv \mathbb{O}, s=1,2, \ldots, n$;
- an essential singularity of an A-resolvent of the pencil \vec{B}, if $K_{q}^{n} \not \equiv \mathbb{O}$ for all $q \in \mathbb{N}$.

Banach Manifolds I

Let \mathfrak{M} be a C^{k}-manifold modelled by a Banach space \mathfrak{U}. By $T \mathfrak{M}$ denote a tangent bundle of the manifold \mathfrak{M} and by $T^{n} \mathfrak{M}$ denote a tangent bundle of order n. The set $T \mathfrak{M}$ has the structure of a smooth C^{k-1}-manifold, modelled by Banach space \mathfrak{U} by construction, and tangent bundle $T^{n} \mathfrak{M}$ is a manifold of class C^{k-n}.

By π^{l} denote a canonical projection from a tangent bundle of order l to a tangent bundle of order $l-1$ where $l=1,2, \ldots, n$ and by π_{*}^{l} denote projection from tangent bundle of order l to a manifold \mathfrak{M}, i.e. $\pi_{*}^{l}=\pi^{1} \pi^{2} \ldots \pi^{l}$.

Consider a curve $\alpha: J \rightarrow \mathfrak{M}$ of class $C^{s},(s \leq k)$ where J is some interval containing zero. By canonical lifting of the curve α we call a curve α^{1} in $T \mathfrak{M} \alpha^{1}: J \rightarrow T \mathfrak{M}$ such that $\pi^{1} \alpha^{1}=\alpha$. Similarly, by the lifting of order l of curve α in $T^{l} \mathfrak{M}$ we call a curve $\alpha^{l}: J \rightarrow T^{l} \mathfrak{M}$ such that $\pi_{*}^{l} \alpha^{l}=\alpha$. Therefore lifting of order l of the curve is a mapping of class $s-l \geq 1$.

On the basis of the definition of a second-order differential equation ${ }^{1}$ introduce

Definition

A differential equation of order n on a manifold \mathfrak{M} is a vector field ξ of class C^{k-n} on the tangent bundle $T^{n-1} \mathfrak{M}$ such that for all $v \in T^{n-1} \mathfrak{M}$ the equality

$$
\pi^{n} \xi(v)=v
$$

holds.

1. Leng S. Introduction to Differentiable Manifolds. N. Y., Springer-Verlag, 2002.
$6 / 13$

Banach Manifolds II

Let \mathfrak{M} be an open set in the Banach space \mathfrak{U}. In this case, for any vector field on $T^{n-1} \mathfrak{M}$, the main part of differential equation

$$
f: T^{n-1} \mathfrak{M} \rightarrow \mathfrak{U}^{n}
$$

has n components $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ each of which maps $T^{n-1} \mathfrak{M}$ into \mathfrak{U}.

Lemma 2^{1}

The mapping f of class C^{k-n} is the main part of a differential equation of order n iff

$$
f\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\left(g_{2}, g_{3}, \ldots, g_{n}, f_{n}\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right) .
$$

Theorem 3

Let \mathfrak{M} be a Banach C^{k}-manifold, ξ be a differential equation of order n of class C^{k-n}. Then for any point $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in T^{n-1} \mathfrak{M}$ there exists a unique curve $u \in C^{l}((-\tau, \tau) ; \mathfrak{M})$, $\tau=\tau\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)>0, l \geq n$, lying in \mathfrak{M}, passing through the point ($u_{0}, u_{1}, \ldots, u_{n-1}$) such that

$$
\begin{align*}
u^{(n)} & =f_{n}\left(u, \dot{u}, \ddot{u}, \ldots, u^{(n-1)}\right) \\
u^{(k)}(0) & =u_{k}, \quad k=0,1, \ldots, n-1 \tag{6}
\end{align*}
$$

1. Leng S. Introduction to Differentiable Manifolds. N. Y., Springer-Verlag, 2002.

Abstract Problem I

$$
\begin{gather*}
u^{(k)}(0)=u_{k}, \quad k=0,1, \ldots, n-1, \tag{3}\\
A u^{(n)}=B_{n-1} u^{(n-1)}+B_{n-2} u^{(n-2)}+\ldots+B_{0} u+N(u), \tag{4}
\end{gather*}
$$

Definition

If a vector-function $u \in C^{\infty}((-\tau, \tau) ; \mathfrak{U}), \tau \in \mathbb{R}_{+}$satisfies equation (4) then it is called a solution of this equation. If the vector-function satisfies in addition condition (3) then it is called a solution of (3), (4).

Definition

The set \mathfrak{P} is called a phase space of (4), if
(i) for all $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in T^{n-1} \mathfrak{P}$ there exists a unique solution of (3), (4);
(ii) a solution $u=u(t)$ of (4) lies in \mathfrak{P} as a trajectory, i.e. $u(t) \in \mathfrak{P}$ for all $t \in(-\tau, \tau)$.

If $\operatorname{ker} A=\{0\}$ then equation (4) can be reduced to an equivalent equation

$$
u^{(n)}=F\left(u, \dot{u}, \ldots, u^{(n-1)}\right),
$$

where $F\left(u, \dot{u}, \ldots, u^{(n-1)}\right)=A^{-1}\left(B_{n-1} u^{(n-1)}+B_{n-2} u^{(n-2)}+\ldots+B_{0} u+N(u)\right)$ is a mapping of class C^{∞} by construction. The existence of a unique solution u of (3), (4) for all ($u_{0}, u_{1}, \ldots, u_{n-1}$) follows from theorem 3.

Abstract Problem II

Let ker $A \neq\{0\}$ and operator pencil \vec{B} be $(A, 0)$-bounded.

$$
\left\{\begin{array}{c}
0=(\mathbb{I}-Q)\left(B_{0}+N\right)\left(u^{0}+u^{1}\right) \tag{7}\\
\frac{d^{n}}{d t^{n}} u^{1}=A_{1}^{-1} Q\left(B_{n-1} \frac{d^{n-1}}{d t^{n-1}}+B_{n-2} \frac{d^{n-2}}{d t^{n-2}}+\ldots+B_{0}+N\right)\left(u^{0}+u^{1}\right)
\end{array}\right.
$$

where $u^{1}=P u, u^{0}=(I-P) u$.
Now consider a set $\mathfrak{M}=\left\{u \in \mathfrak{U}:(I-Q)\left(B_{0} u+N(u)\right)=0\right\}$. Let the set \mathfrak{M} be not empty, i.e. there is a point $u_{0} \in \mathfrak{M}$. Denote $u_{0}{ }^{1}=P u \in \mathfrak{U}^{1}$.

$$
\begin{equation*}
(\mathbb{I}-Q)\left(B_{0}+N_{u_{0}}^{\prime}\right): \mathfrak{U}^{0} \rightarrow \mathfrak{F}^{0} \quad \text { is a toplinear isomorfism. } \tag{8}
\end{equation*}
$$

Lemma

The set $\mathfrak{M}=\left\{u \in \mathfrak{U}:(\mathbb{I}-Q)\left(B_{0} u+N(u)\right)=0\right\}$ under condition (8) is a C^{∞}-manifold at point u_{0}.

Abstract Problem III

Lets act with the Frechet derivative $\delta_{\left(u_{0}^{1}, u_{1}^{1}, \ldots, u_{n-1}^{1}\right)}^{(n)}$ of order n on the second equation of system (7). Since $\delta\left(u^{1}\right)=u$ and

$$
\delta_{\left(u_{0}^{1}, u_{1}^{1}, \ldots, u_{n-1}^{1}\right)}^{(n)} u^{1(n)}=\frac{d^{n}}{d t^{n}}\left(\delta\left(u^{1}\right)\right)
$$

we obtain equation $u^{(n)}=F\left(u, \dot{u}, \ldots, u^{(n-1)}\right)$, where

$$
\begin{gathered}
F\left(u, \dot{u}, \ldots, u^{(n-1)}\right)=\delta_{\left(u_{0}^{1}, u_{1}^{1}, \ldots, u_{n-1}^{1}\right)}^{(n)} A^{-1} Q\left(B_{n-1} u^{(n-1)}+B_{n-2} u^{(n-2)}+\ldots\right. \\
\left.+B_{0} u+N(u)\right) \in C^{\infty}(\mathfrak{U}) .
\end{gathered}
$$

By virtue of theorem 3, we get

Theorem 4

Let the operator pencil \vec{B} be $(A, 0)$-bounded, $N \in C^{\infty}(\mathfrak{U} ; \mathfrak{F})$ and condition (8) be fulfilled. Then for any $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in T^{n-1} \mathfrak{M}$ there exists a unique solution of (3), (4) lying in \mathfrak{M} as trajectory.

Mathematical Model I

$$
\begin{gather*}
(\Delta-\lambda) u_{t t t t}+\left(\Delta-\lambda^{\prime}\right) u_{t t}+\alpha \frac{\partial^{2} u}{\partial x_{3}^{2}}=\Delta\left(u^{3}\right),(x, t) \in \Omega \times \mathbb{R} \tag{9}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \\
u_{t t}(x, 0)=u_{2}(x), \quad u_{t t t}(x, 0)=u_{3}(x), \quad x \in \Omega \tag{10}\\
u(x, t)=0, \quad(x, t) \in \partial \Omega \times \mathbb{R}
\end{gather*}
$$

$$
\mathfrak{U}=\left\{u \in W_{2}^{l+2}(\Omega): u(x)=0, x \in \partial \Omega\right\}, \quad \mathfrak{F}=W_{2}^{l}(\Omega) .
$$

$A=\Delta-\lambda, B_{2}=\left(\lambda^{\prime}-\Delta\right), B_{0}=-\alpha \frac{\partial^{2}}{\partial x_{3}^{2}}, B_{3}=B_{1}=\mathbb{O}$.
$\varphi_{k m n}=\left\{\sin \frac{\pi k x_{1}}{a} \sin \frac{\pi m x_{2}}{b} \sin \frac{\pi n x_{3}}{c}\right\}$, where $k, m, n \in \mathbb{N}$
$\lambda_{k m n}=-\sqrt{\left(\frac{\pi k}{a}\right)^{2}+\left(\frac{\pi m}{b}\right)^{2}+\left(\frac{\pi n}{c}\right)^{2}}$.

Mathematical Model II

Since $\left\{\varphi_{k m n}\right\} \subset C^{\infty}(\Omega)$ we obtain

$$
\begin{gathered}
\mu^{4} A-\mu^{3} B_{3}-\mu^{2} B_{2}-\mu B_{1}-B_{0}= \\
=\sum_{k, m, n=1}^{\infty}\left[\left(\lambda_{k m n}-\lambda\right) \mu^{4}+\left(\lambda_{k m n}-\lambda^{\prime}\right) \mu^{2}-\alpha\left(\frac{\pi n}{c}\right)^{2}\right]<\varphi_{k m n}, \cdot>\varphi_{k m n}
\end{gathered}
$$

In the case (i) when $\lambda \notin \sigma(\Delta)$ the A-spectrum of pencil \vec{B} $\sigma^{A}(\vec{B})=\left\{\mu_{r m n}^{j}: r, m, n \in \mathbb{N}, j=1, \ldots, 4\right\}$, where $\mu_{r m n}^{j}$ are the roots of equation

$$
\begin{equation*}
\left(\lambda_{r m n}-\lambda\right) \mu^{4}+\left(\lambda_{r m n}-\lambda^{\prime}\right) \mu^{2}-\alpha\left(\frac{\pi n}{c}\right)^{2}=0 . \tag{11}
\end{equation*}
$$

In the case (ii) when $(\lambda \in \sigma(\Delta)) \wedge\left(\lambda=\lambda^{\prime}\right)$ the A-spectrum of pencil \vec{B} $\sigma^{A}(\vec{B})=\left\{\mu_{l, k}^{j}: k \in \mathbb{N}\right\}$, where $\mu_{l, k}^{j}$ the roots of equation (11) with $\lambda=\lambda_{l}$.

In the case (iii) when $(\lambda \in \sigma(\Delta)) \wedge\left(\lambda \neq \lambda^{\prime}\right)$ the A-spectrum of pencil \vec{B} $\sigma^{A}(\vec{B})=\left\{\mu_{l, k}^{j}: k \in \mathbb{N}, k \neq l\right\}$.

Lemma

Let (i) $\lambda \notin \sigma(\Delta))$ or (ii) $(\lambda \in \sigma(\Delta)) \wedge\left(\lambda=\lambda^{\prime}\right)$. Then pencil \vec{B} is polynomially $(A, 0)$-bounded.

Mathematical Model III

Case (i) $P=\mathbb{I}$ and $Q=\mathbb{I}$. Case (ii)

$$
P=\mathbb{I}-\sum_{\lambda=\lambda_{k m n}}<\varphi_{k m n}, \cdot>\varphi_{k m n},
$$

and the projector Q has the same form but it is defined on space \mathfrak{F}. Construct the phase space

$$
\mathfrak{M}=\left\{u \in \mathfrak{U}: \sum_{\lambda=\lambda_{k m n}}<\alpha\left(\frac{\pi n}{c}\right)^{2} u+\Delta\left(u^{3}\right), \varphi_{k m n}>\varphi_{k m n}=0\right\} .
$$

By theorem 4 we have

Theorem

(i) Let $\lambda \notin \sigma(\Delta),\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in \mathfrak{U}^{n}$. Then for some $\tau=\tau\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)>0$ there exists a unique solution $u \in C^{n}((-\tau, \tau), \mathfrak{U})$ of problem (9), (10).
(ii) Let $(\lambda \in \sigma(\Delta)) \wedge\left(\lambda=\lambda^{\prime}\right),\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in T^{n-1} \mathfrak{M}$ and condition (8) be fulfilled. Then for some $\tau=\tau\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)>0$ there exists a unique solution $u \in C^{n}((-\tau, \tau), \mathfrak{M})$ of problem (9), (10).

