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Formulation of the Problems

Let Ω = (0, a)× (0, b)× (0, c) ⊂ R3.

(∆− λ)utttt + (∆− λ′)utt + α
∂2u

∂x23
= ∆(u3), (x, t) ∈ Ω× R (1)

with the Cauchy – Dirichlet conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x),
utt(x, 0) = u2(x), uttt(x, 0) = u3(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× R.
(2)

In suitable Banach spaces U and F mathematical model (1), (2) can be reduced to the Cauchy
problem

u(k)(0) = uk, k = 0, 1, . . . , n− 1, (3)

Au(n) = Bn−1u
(n−1) +Bn−2u

(n−2) + . . .+B0u+N(u), (4)

where the operators A,Bn−1, Bn−2, . . . , B0 ∈ L(U;F), N ∈ C∞(U;F).
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Theory Relatively Polynomially Bounded Operator Pencils I
U,F be Banach spaces, A,B0, B1, . . . , Bn−1 ∈ L(U;F).

ρA(
−→
B ) = {µ ∈ C : (µnA− µn−1Bn−1 − . . .− µB1 −B0)−1 ∈ L(F;U)} and

σA(
−→
B ) = C \ ρA( ~B) are called an A-resolvent set and an A-spectrum of the pencil

−→
B

respectively. The operator-function RAµ (
−→
B ) = (µnA− µn−1Bn−1 − . . .− µB1 −B0)−1 is called

an A-resolvent of the pencil
−→
B .

Definition
The operator pencil ~B is called polynomially bounded with respect to an operator A (or
polynomially A-bounded) if ∃a ∈ R+ ∀µ ∈ C (|µ| > a)⇒ (RAµ ( ~B) ∈ L(F;U)).

∫
γ

µkRAµ ( ~B)dµ ≡ O, k = 0, 1, . . . , n− 2, 1 (5)

where γ = {µ ∈ C : |µ| = r > a}

1. Zamyshlyaeva A.A. Linear Sobolev Type Equations of Higher Order. Chelyabinsk, Izd. Center of SUSU, 2012.
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Theory Relatively Polynomially Bounded Operator Pencils II
Lemma 11

P =
1

2πi

∫
γ

RAµ ( ~B)µn−1Adµ, Q =
1

2πi

∫
γ

µn−1ARAµ ( ~B)dµ

U0 = kerP, F0 = kerQ, U1 = im P, F1 = imQ
U = U0 ⊕ U1, F = F0 ⊕ F1

Ak (Bkl ) – restriction of operators A (Bl) on Uk, k = 0, 1; l = 0, 1, . . . , n− 1.

Theorem 11

Let the operator pencil ~B be polynomially A-bounded and condition (5) be fulfilled. Then
( i) Ak ∈ L(Uk;Fk), k = 0, 1;
( ii) Bkl ∈ L(Uk;Fk), k = 0, 1, l = 0, 1, . . . , n− 1;
( iii) operator (A1)−1 ∈ L(F1;U1) exists;
( iv) operator (B0

0)−1 ∈ L(F0;U0) exists.

Using last theorem construct operators H0 = (B0
0)−1A0 ∈ L(U0), H1 = (B0

0)−1B0
1 ∈ L(U0),. . .,

Hn−1 = (B0
0)−1B0

n−1 ∈ L(U0) and S0 = (A1)−1B1
0 ∈ L(U1), S1 = (A1)−1B1

1 ∈ L(U1), . . .,
Sn−1 = (A1)−1B1

n−1 ∈ L(U1).

1. Zamyshliaeva A.A. Linear Sobolev Type Equations of Higher Order. Chelyabinsk, Izd. Center of SUSU, 2012.
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Theory Relatively Polynomially Bounded Operator Pencils III

Definition
Define the family of operators {K1

q ,K
2
q , . . . ,K

n
q } as follows:

Ks
0 = O, s 6= n, Kn

0 = I,
K1

1 = H0, K2
1 = −H1, . . . ,Ks

1 = −Hs−1, . . . ,Kn
1 = Hn−1,

K1
q = Kn

q−1H0, K2
q = K1

q−1 −Kn
q−1H1, . . . ,Ks

q = Ks−1
q−1 −Kn

q−1Hs−1, . . . ,

Ks
q = Kn−1

q−1 −Kn
q−1Hn−1, q = 1, 2, . . . .

The A-resolvent can be represented by a Laurent series1

RAµ (
−→
B ) = −

∞∑
q=0

µqKn
q (B0

0)−1(I−Q) +
∞∑
q=1

µ−q(µn−1Sn−1 + · · ·+ µS1 + S0)qL−1
1 Q.

Definition
The point ∞ is called

I a pole of order p ∈ {0} ∪ N of an A-resolvent of the pencil ~B, if ∃ p such that
Ks
p 6≡ O, s = 1, 2, . . . , n, but Ks

p+1 ≡ O, s = 1, 2, . . . , n;

I an essential singularity of an A-resolvent of the pencil ~B, if Kn
q 6≡ O for all q ∈ N.

1. Zamyshlyaeva A.A. The Phase Space of a High Order Sobolev Type Equation. The Bulletin of Irkutsk State
University. Series "Mathematics", 2011, vol. 4, no. 4, pp. 45–57.
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Banach Manifolds I
Let M be a Ck-manifold modelled by a Banach space U. By TM denote a tangent bundle of the
manifold M and by TnM denote a tangent bundle of order n. The set TM has the structure of a
smooth Ck−1-manifold, modelled by Banach space U by construction, and tangent bundle TnM
is a manifold of class Ck−n.

By πl denote a canonical projection from a tangent bundle of order l to a tangent bundle of order
l − 1 where l = 1, 2, . . . , n and by πl∗ denote projection from tangent bundle of order l to a
manifold M, i.e. πl∗ = π1π2 . . . πl.

Consider a curve α : J →M of class Cs, (s ≤ k) where J is some interval containing zero. By
canonical lifting of the curve α we call a curve α1 in TM α1 : J → TM such that π1α1 = α.
Similarly, by the lifting of order l of curve α in T lM we call a curve αl : J → T lM such that
πl∗α

l = α. Therefore lifting of order l of the curve is a mapping of class s− l ≥ 1.

On the basis of the definition of a second-order differential equation1 introduce

Definition
A differential equation of order n on a manifold M is a vector field ξ of class Ck−n on the
tangent bundle Tn−1M such that for all v ∈ Tn−1M the equality

πnξ(v) = v

holds.

1. Leng S. Introduction to Differentiable Manifolds. N. Y., Springer-Verlag, 2002.
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Banach Manifolds II
Let M be an open set in the Banach space U. In this case, for any vector field on Tn−1M, the
main part of differential equation

f : Tn−1M→ Un

has n components f = (f1, f2, . . . , fn) each of which maps Tn−1M into U.

Lemma 21

The mapping f of class Ck−n is the main part of a differential equation of order n iff

f(g1, g2, . . . , gn) = (g2, g3, . . . , gn, fn(g1, g2, . . . , gn)).

Theorem 3
Let M be a Banach Ck-manifold, ξ be a differential equation of order n of class Ck−n. Then for
any point (u0, u1, . . . , un−1) ∈ Tn−1M there exists a unique curve u ∈ Cl

(
(−τ, τ);M

)
,

τ = τ(u0, u1, . . . , un−1) > 0, l ≥ n, lying in M, passing through the point (u0, u1, . . . , un−1)
such that

u(n) = fn(u, u̇, ü, . . . , u(n−1))

u(k)(0) = uk, k = 0, 1, . . . , n− 1.
(6)

1. Leng S. Introduction to Differentiable Manifolds. N. Y., Springer-Verlag, 2002.
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Abstract Problem I

u(k)(0) = uk, k = 0, 1, . . . , n− 1, (3)

Au(n) = Bn−1u
(n−1) +Bn−2u

(n−2) + . . .+B0u+N(u), (4)

Definition
If a vector-function u ∈ C∞((−τ, τ);U), τ ∈ R+ satisfies equation (4) then it is called a
solution of this equation. If the vector-function satisfies in addition condition (3) then it is
called a solution of (3), (4).

Definition
The set P is called a phase space of (4), if
(i) for all (u0, u1, . . . , un−1) ∈ Tn−1P there exists a unique solution of (3), (4);
(ii) a solution u = u(t) of (4) lies in P as a trajectory, i.e. u(t) ∈ P for all t ∈ (−τ, τ).

If kerA = {0} then equation (4) can be reduced to an equivalent equation

u(n) = F (u, u̇, . . . , u(n−1)),

where F (u, u̇, . . . , u(n−1)) = A−1(Bn−1u(n−1) +Bn−2u(n−2) + . . .+B0u+N(u)) is a
mapping of class C∞ by construction. The existence of a unique solution u of (3), (4) for all
(u0, u1, . . . , un−1) follows from theorem 3.
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Abstract Problem II

Let kerA 6= {0} and operator pencil ~B be (A, 0)-bounded. 0 = (I−Q)(B0 +N)(u0 + u1),
dn

dtn
u1 = A−1

1 Q(Bn−1
dn−1

dtn−1
+Bn−2

dn−2

dtn−2
+ . . .+B0 +N)(u0 + u1),

(7)

where u1 = Pu, u0 = (I − P )u.
Now consider a set M = {u ∈ U : (I −Q)(B0u+N(u)) = 0}. Let the set M be not empty, i.e.
there is a point u0 ∈ M. Denote u01 = Pu ∈ U1.

(I−Q)(B0 +N ′u0
) : U0 → F0 is a toplinear isomorfism. (8)

Lemma
The set M = {u ∈ U : (I−Q)(B0u+N(u)) = 0} under condition (8) is a C∞-manifold at point
u0.

9 / 13



Abstract Problem III

Lets act with the Frechet derivative δ(n)
(u1

0,u
1
1,...,u

1
n−1)

of order n on the second equation of

system (7). Since δ(u1) = u and

δ
(n)

(u1
0,u

1
1,...,u

1
n−1)

u1
(n)

=
dn

dtn

(
δ(u1)

)
we obtain equation u(n) = F (u, u̇, . . . , u(n−1)), where

F (u, u̇, . . . , u(n−1)) = δ
(n)

(u1
0,u

1
1,...,u

1
n−1)

A−1Q(Bn−1u
(n−1) +Bn−2u

(n−2) + . . .

+B0u+N(u)) ∈ C∞(U).

By virtue of theorem 3, we get

Theorem 4
Let the operator pencil ~B be (A, 0)-bounded, N ∈ C∞(U;F) and condition (8) be fulfilled. Then
for any (u0, u1, . . . , un−1) ∈ Tn−1M there exists a unique solution of (3), (4) lying in M as
trajectory.
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Mathematical Model I

(∆− λ)utttt + (∆− λ′)utt + α
∂2u

∂x23
= ∆(u3), (x, t) ∈ Ω× R (9)

u(x, 0) = u0(x), ut(x, 0) = u1(x),
utt(x, 0) = u2(x), uttt(x, 0) = u3(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× R.
(10)

U = {u ∈W l+2
2 (Ω) : u(x) = 0, x ∈ ∂Ω}, F = W l

2(Ω).

A = ∆− λ, B2 = (λ′ −∆), B0 = −α ∂2

∂x23
, B3 = B1 = O.

ϕkmn =
{

sin πkx1
a

sin πmx2
b

sin πnx3
c

}
, where k, m, n ∈ N

λkmn = −
√(

πk
a

)2
+
(
πm
b

)2
+
(
πn
c

)2.
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Mathematical Model II
Since {ϕkmn} ⊂ C∞(Ω) we obtain

µ4A− µ3B3 − µ2B2 − µB1 −B0 =

=
∞∑

k,m,n=1

[(λkmn − λ)µ4 + (λkmn − λ′)µ2 − α
(πn
c

)2
] < ϕkmn, · > ϕkmn,

In the case (i) when λ 6∈ σ(∆) the A-spectrum of pencil ~B
σA( ~B) = {µjrmn : r,m, n ∈ N, j = 1, ..., 4}, where µjrmn are the roots of equation

(λrmn − λ)µ4 + (λrmn − λ′)µ2 − α
(πn
c

)2
= 0. (11)

In the case (ii) when (λ ∈ σ(∆)) ∧ (λ = λ′) the A-spectrum of pencil ~B
σA( ~B) = {µjl,k : k ∈ N}, where µjl,k the roots of equation (11) with λ = λl.

In the case (iii) when (λ ∈ σ(∆)) ∧ (λ 6= λ′) the A-spectrum of pencil ~B
σA( ~B) = {µjl,k : k ∈ N, k 6= l}.

Lemma
Let (i) λ 6∈ σ(∆)) or (ii) (λ ∈ σ(∆)) ∧ (λ = λ′). Then pencil ~B is polynomially (A, 0)-bounded.
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Mathematical Model III

Case (i) P = I and Q = I. Case (ii)

P = I−
∑

λ=λkmn

< ϕkmn, · > ϕkmn,

and the projector Q has the same form but it is defined on space F. Construct the phase space

M = {u ∈ U :
∑

λ=λkmn

< α
(πn
c

)2
u+ ∆(u3), ϕkmn > ϕkmn = 0}.

By theorem 4 we have

Theorem
(i) Let λ 6∈ σ(∆), (u0, u1, . . . , un−1) ∈ Un. Then for some τ = τ(u0, u1, . . . , un−1) > 0 there
exists a unique solution u ∈ Cn

(
(−τ, τ),U

)
of problem (9), (10).

(ii) Let (λ ∈ σ(∆)) ∧ (λ = λ′), (u0, u1, . . . , un−1) ∈ Tn−1M and condition (8) be fulfilled. Then
for some τ = τ(u0, u1, . . . , un−1) > 0 there exists a unique solution u ∈ Cn

(
(−τ, τ),M

)
of

problem (9), (10).
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