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Chapter 1

Basic ideas about
mathematical modelling

1.1 Introduction: what is mathematical modelling?

Engineers, natural scientists and, increasingly, researchers and practitioners
working in economical and social sciences, use mathematical models of the
systems they are investigating. Models give simplified descriptions of real-
life problems so that they can be expressed in terms of mathematical equa-
tions which can be, hopefully, solved in one way or another. Mathematical
modelling is a subject difficult to teach but it is what applied mathematics
is about. The difficulty is that there are no set rules, and the understanding
of the ’right’ way to model can be only reached by familiarity with a number
of examples. This, together with basic techniques for solving the resulting
equations, is the main content of this course.

Despite these difficulties, applied mathematicians have a procedure that
should be applied when building models. First of all, there must be a phe-
nomenon of interest that one wants to describe or, more importantly, to
explain and make predictions about. Observation of this phenomenon al-
lows to make hypotheses about which quantities are most relevant to the
problem and what are the relations between them so that one can devise
a hypothetical mechanism that can explain the phenomenon. The purpose
of a model is then to formulate a description of this mechanism in quan-
titative terms, that is, as mathematical equations, and the analysis of the
resulting equations. It is then important to interpret the solutions or other
information extracted from the equations as the statements about the orig-
inal problem so that they can be tested against the observations. Ideally,
the model also leads to predictions which, if verified, lend authenticity to
the model. It is important to realize that modelling is usually an iterative
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2 Chapter 1

procedure as it is very difficult to achieve a balance between simplicity and
meaningfulness of the model: often the model turns out to be too compli-
cated to yield itself to an analysis, and often it is over-simplified so that
there is insufficient agreement between the actual experimental results and
the results predicted from the model. In both these cases we have to return
to the first step of modelling and try to remedy the ills.

The first step in modelling is the most creative but also the most difficult,
involving often a concerted effort of specialists in many diverse fields. Hence,
though we describe a number of models in detail, starting from first princi-
ples, the main emphasis of the course is on the later stages of the modelling
process, that is: introducing mathematical symbols and writing assumptions
as equations, analysing and/or solving these equations and interpreting their
solutions in the language of the original problem and reflecting on whether
the answers seem reasonable.

In most cases discussed here a model is a representation of a process, that
is, it describes a change of the states of some system in time. There are
two ways of describing what happens to a system: discrete and continuous.
Discrete models correspond to the situation in which we observe a system
in regular finite time intervals, say, every second or every year and relate
the observed state of the system to the states at the previous instants. Such
a system is modelled through difference equations. In the continuous cases
we treat time as a continuum allowing observation of the system at any
instant. In such a case the model expresses relations between the rates of
change of various quantities rather than between the states at various times
and, as rates of change are given by derivatives, the model is represented by
differential equations.

In the next two sections of this chapter we shall present some simple discrete
and continuous models. These models are presented here as an illustration
of the above discussion. Their analysis, and discussion of more advanced
models, will appear later in the course.

1.2 Simple difference equation models

1.2.1 Basic difference equations of finance mathematics

Compound interest
Compound interest is relevant to loans or deposits made over longer periods.
The interest is added to the initial sum at regular intervals, called conversion
periods, and the new amount, rather than the initial one, is used for cal-
culating the interest for the next conversion period. The fraction of a year
occupied by the conversion period is denoted by α so that the conversion pe-
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riod of 1 month is given by α = 1/12. Instead of saying that the conversion
period is 1 month we say that the interest is compounded monthly.

For an annual interest rate of p% and conversion period equal to α, the
interest earned for the period is equal to αp% of the amount on deposit at
the start of the period, that is





amount on
deposit

after k + 1
conversion

periods





=





amount on
deposit
after k

conversion
periods





+
αp

100





amount on
deposit
after k

conversion
periods





To express this as a difference equation, for each k let Sk denote the amount
on deposit after k conversion periods. Thus

Sk+1 = Sk +
αp

100
Sk = Sk

(
1 +

αp

100

)

which is a simple first-order (that is, expressing the relation only between
the consecutive values of the unknown sequence) difference equation. Here,
Sk follows the geometric progression so that

Sk =
(
1 +

αp

100

)k
S0 (1.2.1)

gives the so-called compound interest formula. However, as we shall see
below, in general this is not the case, even for first order equations.

Loan repayments

A slight modification of the above argument can be used to find the equation
governing a loan repayment. The scheme described here is usually used
for the repayment of house or car loans. Repayments are made at regular
intervals and usually in equal amounts to reduce the loan and to pay the
interest on the amount still owing.

It is supposed that the compound interest at p% is charged on the out-
standing debt with the conversion period equal to the same fraction α of
the year as the period between the repayments. Between payments, the debt
increases because of the interest charged on the debt still outstanding after
the last repayment. Hence
{

debt after
k + 1 payments

}
=

{
debt after

k payments

}
+

{
interest

on this debt

}
− {payment}

To write this as a difference equation, let D0 be the initial debt to be repaid,
for each k let the outstanding debt after the kth repayment be Dk, and let
the payment made after each conversion period be R. Thus

Dk+1 = Dk +
αp

100
Dk −R = Dk

(
1 +

αp

100

)
−R. (1.2.2)
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This equation is more difficult to solve. We shall discuss general methods of
solving first order difference equations in Section 4.1.

The modelling process in these two examples was very simple and involved
only translation of given rules into mathematical symbols. This was due to
the fact that there was no need to discover these rules as they are explicitly
stated in bank’s regulations. In the next subsection we shall attempt to
model behaviour of living organisms and then we shall have to make some
hypotheses about the rules.

1.2.2 Difference equations of population theory

In many fields of human endeavour it is important to know how populations
grow and what factors influence their growth. Knowledge of this kind is
important in studies of bacterial growth, wildlife management, ecology and
harvesting.

Many animals tend to breed only during a short, well-defined, breeding
season. It is then natural to thing of the population changing from season
to season and therefore time is measured discretely with positive integers
denoting breeding seasons. Hence the obvious approach for describing the
growth of such a population is to write down a suitable difference equation.
Later we shall also look at populations that breed continuously (e.g. human
populations).

We start with population models that are very simple and discuss some of
their more realistic variants.

Exponential growth – linear first order difference equations
In nature, species typically compete with other species for food and are
sometimes preyed upon. Thus the population of different species interact
with each other. In the laboratory, however, a given species can be studied
in isolation. We shall therefore concentrate, at first, on models for a single
species.

We are looking at large populations in which individuals give birth to new
offspring but also die after some time. Since we deal with large populations,
we can treat population as a whole and therefore we can assume that the
population growth is governed by the average behaviour of its individual
members. Thus, we make the following assumptions:

• Each member of the population produces in average the same number
of offspring.

• Each member has an equal chance of dying (or surviving) before the
next breeding season.
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• The ratio of females to males remains the same in each breeding season

We also assume

• Age differences between members of the population can be ignored.

• The population is isolated - there is no immigration or emigration.

Suppose that on average each member of the population gives birth to the
same number of offspring, α, each season. The constant α is called per-
capita birth rate. We also define β as the probability that an individual will
die before the next breeding season and call it the per-capita death rate.
Thus

(a) the number of individuals born in a particular breeding season is directly
proportional to the population at the start of the breeding season, and

(b) the number of individuals who have died during the interval between
the end of consecutive breeding seasons is directly proportional to the
population at the start of the breeding season.

Denoting by Nk the number of individuals of the population at the start of
the kth breeding season, we obtain

Nk+1 = Nk − βNk + αNk,

that is
Nk+1 = (1 + α− β)Nk. (1.2.3)

We have seen this equation before, modelling the compound interest. Since
it is the equation for the geometric progression, we immediately obtain

Nk = (1 + α− β)kN0, k = 0, 1, 2 . . . (1.2.4)

Note first that though our modelling referred to the size of the population,
that is an integer, the number Nk given by (1.2.4) usually is not an integer.
This is due to the fact that we operate with average rates α and β. To
circumvent this apparent paradox, we can always round Nk to the nearest
integer. Another look at this is that in modelling we often use the population
density, that is, the number of individuals per unit area. Population density
usually is not an integer.

Returning to (1.2.4), we see that the behaviour of the model depends on the
combination

r = α− β (1.2.5)

that is called the growth rate. If r < 0, then the population decreases
towards extinction, but with r > 0 it grows indefinitely. Such a behaviour
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over long periods of time is not observed in any population so that we see
that the model is over-simplified and requires corrections.

Another over-simplification is lack of the age structure in the model – we
assume that offspring immediately enter into the breeding cycle. In the
next two examples we shall present two the population models that take the
above aspects into account.

Fibonacci sequence and difference equations of second order
Suppose that we have a rabbit population and that in this population each
pair of rabbits produces a new pair every month and the pair of newborns
becomes productive two month after birth. Assuming that no deaths occur,
we can write for the end of month k + 1

{
number present
in month k + 1

}
=

{
number present

in month k

}
+

{
number born

in month k + 1

}

Since rabbits become productive only two months after birth and produce
only one pair per month, we can write

{
number born

in month k + 1

}
=

{
number present
in month k − 1

}

Denoting by Nk the number of pairs at the end of month k and combining
the two equations above, we obtain the so-called Fibonacci equation

Nk+1 = Nk + Nk−1, k = 1, 2, . . . . (1.2.6)

This is a second order equation as it gives the value of Nk at time k in terms
of its values at two times immediately preceding k.

Restricted growth - non-linear difference equations
As we said earlier, the linear difference equation is not generally suitable as a
model for population growth since it predicts unbounded growth if we have
an expanding population. This is not what is observed in nature. However,
over some periods of time populations tend to follow an exponential growth.
Therefore, rather than reject the model outright we shall try to build into
it modifications so that it better approximates the observed behaviour.

Studies show that typically as a population increases, the per-capita death
rate goes up and the per-capita birth rate goes down. This is due to over-
crowding and competition for food. Typically, for each population and habi-
tat there is a number of individuals that a given environment can support.
This number is known as the carrying capacity of the environment. It can be
alternatively described as the number of individuals in the population when
the birth and death rate are equal. Recalling the linear difference equation
for population growth

Nk+1 = Nk + rNk,
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where the constant r is the growth rate, we can incorporate the discussion
above by writing

Nk+1 = Nk + R(Nk)Nk (1.2.7)

where R(Nk) is the population dependent growth rate. This equation is
an example of a non-linear difference equation since the unknown function
appears in the equation as the argument of a function that is not linear: in
this case as the argument of the function xR(x).

Though the function R can have different forms, it must satisfy the following
requirements

(a) Due to overcrowding, R(Nk) must decrease as Nk increases until Nk

equals the carrying capacity K; then R(K) = 0.

(b) Since for Nk much smaller than K we observe an exponential growth
of the population so that R(Nk) → r as Nk → 0, where r is a constant
called the unrestricted growth rate.

Constants r and N are usually determined experimentally.

In the spirit of mathematical modelling we start with the simplest function
satisfying these requirements. The simplest function is a linear function
which, to satisfy (a) and (b), must be chosen as

R(Nk) = − r

K
Nk + r.

Substituting this formula into (1.2.7) yields the so-called discrete logistic
equation

Nk+1 = Nk + rNk

(
1− Nk

K

)
, (1.2.8)

which is still one of the most often used discrete equations of population
dynamics.

Coupled model of an epidemic: system of difference equations
In nature, various population interact with each other coexisting in the
same environment. This leads to systems of difference equations. As an
illustration we consider a model for spreading of measles epidemic.

Measles is a highly contagious disease, caused by a virus and spread by
effective contact between individuals. It affects mainly children. Epidemic
of measles have been observed in Britain and the US roughly every two or
three years.

Let us look at the development of measles in a single child. A child who has
not yet been exposed to measles is called a susceptible. Immediately after
the child first catches the disease, there is a latent period where the child
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is not contagious and does not exhibit any symptoms of the disease. The
latent period lasts, on average, 5 to 7 days. After this the child enters the
contagious period. The child is now called infective since it is possible for
another child who comes in contact with the infective to catch the disease.
This period last approximately one week. After this the child recovers,
becomes immune to the disease and cannot be reinfected.

For simplicity we assume that both latent and contagious periods last one
week. Suppose also that most interactions between children occur on week-
end so that the numbers of susceptibles and infectives remains constant over
the rest of the week. Since the typical time in the model is one week, we
shall model the spread of the disease using one week as the unit of time.

To write down the equations we denote

Ik =
{

number of
infectives in week k

}

and

Sk =
{

number of
susceptibles during week k

}

To develop an equation for the number of infectives we consider the number
of infectives in week k + 1. Since the recuperation period is one week after
which an infective stops to be infective, no infectives from week k will be
present in week k + 1. Thus we have

Ik+1 =
{

number of
infectives in week k + 1

}
=

{
number of susceptibles

who caught measles in week k

}

It is generally thought that the number of new births is an important factor
in measles epidemic. Thus

Sk+1 =
{

number of
susceptibles in week k

}
−

{
number of susceptibles

who caught measles in week k

}

+
{

number of
births in week k + 1

}

We assume further that the number of births each week is a constant B.
Finally, to find the number of susceptibles infected in a week it is assumed
that a single infective infects a constant fraction f of the total number of
susceptibles. Thus, if fSk is the number of susceptibles infected by a single
infective so, with a total of Ik infectives, then

{
number of susceptibles

who caught measles in week k

}
= fSkIk.

Combining the obtained equations we obtain the system

Ik+1 = fSkIk,

Sk+1 = Sk − fSkIk + B, (1.2.9)
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where B and f are constant parameters of the model.

1.3 Basic differential equations models

As we observed in the previous section, the difference equation can be used
to model quite a diverse phenomena but their applicability is limited by
the fact that the system should not change between subsequent time steps.
These steps can vary from fraction of a second to years or centuries but they
must stay fixed in the model. There are however numerous situations when
the changes can occur instantaneously. These include growth of populations
in which breeding is not restricted to specific seasons, motion of objects
where the velocity and acceleration changes every instant, spread of epidemic
with no restriction on infection times, and many others. In such cases it is
not feasible to model the process by relating the state of the system at
a particular instant to the earlier states (though this part remains as an
intermediate stage of the modelling process) but we have to find relations
between the rates of change of quantities relevant to the process. Rates
of change are typically expressed as derivatives and thus continuous time
modelling leads to differential equations that express relations between the
derivatives rather than to difference equations that express relations between
the states of the system in subsequent moments of time.

In what follows we shall derive basic differential equations trying to provide
continuous counterparts of some discrete systems described above.

1.3.1 Continuously compounded interest

Many banks now advertise continuous compounding of interest which means
that the conversion period α of Subsection 1.2.1 tends to zero so that the
interest is added to the account on the continual basis. If we measure now
time in years, that is, ∆t becomes the conversion period, and p is the annual
interest rate, then the increase in the deposit between time instants t and
t + ∆t will be

S(t + ∆t) = S(t) + ∆t
p

100
S(t),

which, dividing by ∆t and passing with ∆t to zero, as suggested by the def-
inition of continuously compounded interest, yields the differential equation

dS

dt
= p̄S, (1.3.1)

where p̄ = p/100. This is a first order (only the first order derivative of
the unknown function occurs) linear (the unknown function appears only
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by itself, not as an argument of any function) equation. It is easy to check
that it has the solution

S(t) = S0e
p̄t (1.3.2)

where S0 is the initial deposit made at time t = 0.

To compare this formula with the discrete one (1.2.1) we note that in t years
we have k = t/α conversion periods

S(t) = Nk = (1 + p̄α)kS0 = (1 + p̄α)t/αS0 =
(
(1 + p̄α)1/p̄α

)p̄t
.

From Calculus we know that

lim
x→0+

(1 + x)1/x = e,

and the sequence is monotonically increasing. Thus, if the interest is com-
pounded very often (almost continuously), then practically

S(t) = S0e
p̄t,

which is exactly (1.3.2). Typically, the exponential can be calculated even
on a simple calculator, contrary to (1.2.1). Due to monotonic property of
the limit, the continuously compounded interest rate is the best one can get,
and that is why banks are advertising it. However, the differences in return
are negligible. A short calculation reveals that if one invests R10000 at p =
15% in banks with conversion periods 1 year, 1 day and with continuously
compounded interest, then the return will be, respectively, R11500, R11618
and R11618.3.

1.3.2 Continuous population models: first order equations

In this subsection we will study first order differential equations which ap-
pear in the population growth theory. At first glance it appears that it
is impossible to model the growth of species by differential equations since
the population of any species always change by integer amounts. Hence
the population of any species can never be a differentiable function of time.
However, if the population is large and it increases by one, then the change
is very small compared to a given population. Thus we make the approxima-
tion that large populations changes continuously (and even differentiable)in
time and, if the final answer is not an integer, we shall round it to the nearest
integer. A similar justification applies to our use of t as a real variable: in
absence of specific breeding seasons, reproduction can occur at any time and
for sufficiently large population it is then natural to think of reproduction
as occurring continuously.
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Let N(t) denote the size of a population of a given isolated species at time
t and let ∆t be a small time interval. Then the population at time t + ∆t
can be expressed as

N(t + ∆t)−N(t) = number of births in ∆t− number of deaths in ∆t.

It is reasonable to assume that the number of births and deaths in a short
time interval is proportional to the population at the beginning of this in-
terval and proportional to the length of this interval. Taking r(t,N) to be
the difference between the birth and death rate coefficients at time t for the
population of size N we obtain

N(t + ∆t)−N(t) = r(t, N(t))∆tN(t).

Dividing by ∆t and passing with ∆t → 0 gives the equation

dN

dt
= r(t, N)N. (1.3.3)

Because of the unknown coefficient r(t,N), depending on the unknown func-
tion N , this equation is impossible to solve. The form of r has to be deduced
by other means.

The simplest possible r(t,N) is a constant and in fact such a model is used
in a short-term population forecasting. So let us assume that r(t, N(t)) = r
so that

dN

dt
= rN. (1.3.4)

It is exactly the same equation as (1.3.1). A little more general solution to
it is given by

N(t) = N(t0)er(t−t0), (1.3.5)

where N(t0) is the size of the population at some fixed initial time t0.

To be able to give some numerical illustration to this equation we need the
coefficient r and the population at some time t0. We use the data of the U.S.
Department of Commerce: it was estimated that the Earth population in
1965 was 3.34 billion and that the population was increasing at an average
rate of 2% per year during the decade 1960-1970. Thus N(t0) = N(1965) =
3.34× 109 with r = 0.02, and (1.3.5) takes the form

N(t) = 3.34× 109e0.02(t−1965). (1.3.6)

To test the accuracy of this formula let us calculate when the population of
the Earth is expected to double. To do this we solve the equation

N(T + t0) = 2N(t0) = N(t0)e0.02T ,
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Fig 1.1. Comparison of actual population figures (points) with those
obtained from equation (1.3.6).

thus
2 = e0.02T

and
T = 50 ln 2 ≈ 34.6 years.

This is an excellent agreement with the present observed value of the Earth
population and also gives a good agreement with the observed data if we
don’t go too far into the past. On the other hand, if we try to extrapolate
this model into a distant future, then we see that, say, in the year 2515, the
population will reach 199980 ≈ 200000 billion. To realize what it means,
let us recall that the Earth total surface area 167400 billion square meters,
80% of which is covered by water, thus we have only 3380 billion square
meters to our disposal and there will be only 0.16m2 (40cm × 40cm) per
person. Therefore we can only hope that this model is not valid for all
times. Indeed, as for discrete models, it is observed that the linear model
for the population growth is satisfactory as long as the population is not
too large. When the population gets very large (with regard to its habitat),
these models cannot be very accurate, since they don’t reflect the fact that
the individual members have to compete with each other for the limited
living space, resources and food available. It is reasonable that a given
habitat can sustain only a finite number K of individuals, and the closer the
population is to this number, the slower is it growth. Again, the simplest
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way to take this into account is to take r(t,N) = r(K − N) and then we
obtain the so-called continuous logistic model

dN

dt
= rN

(
1− N

K

)
, (1.3.7)

which proved to be one of the most successful models for describing a single
species population. This equation is still first order equation but a non-
linear one (the unknown function appears as an argument of the non-linear
(quadratic) function rx(1 − x/K). Since this model is more difficult to
solve, we shall discuss it in detail later. However, even now we can draw
from (1.3.7) a conclusion that is quite important in fishing (or other animal)
industry. The basic idea of sustainable economy is to find an optimal level
between too much harvesting, that would deplete the animal population
beyond a possibility of recovery and too little, in which case the human
population would not get enough return from the industry. It is clear that
to maintain the animal population at a constant level, only the increase in
population should be harvested during any one season. Hence, to maximize
the harvest, the population should be kept at the size N for which the rate
of increase dN/dt is a maximum. However, dN/dt is given by the right-hand
side of (1.3.7) which is a quadratic function of N . It is easy to find that the
maximum is attained at N = K/2, that is, the population should be kept
at around half of the carrying capacity. Further, maximum of dN/dt is then
given by (

dN

dt

)

max

=
rK

4
and this is the maximum rate at which fish can be harvested, if the popula-
tion is to be kept at a constant size N/2.

It is interesting to note that the same (mathematically) equation (1.3.7) can
be obtained as a model of a completely different process: spreading informa-
tion in a fixed size community. Let us suppose that we have a community
of constant size C and N members of this community have some important
information. How fast this information is spreading? To find an equation
governing this process we state the following assumptions: the information
is passed when a person knowing it meets a person that does not know it.
Let us assume that the rate at which one person meets other people is a
constant f so that in a time interval ∆t this particular person will meet
f∆t people and, in average, ∆tf(C − N)/C people who do not know the
news. If N people had the information at time t, then the increase will be

N(t + ∆t)−N(t) = fN(t)
(

1− N(t)
C

)
∆t

so that, as before,
dN

dt
= fN

(
1− N

C

)
.
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1.3.3 Equations of motion: second order equations

Second order differential equations appear often as equations of motion.
This is due to the Newton’s law of motion that relates the acceleration of
the body, that is, the second derivative of the position y with respect to
time t, to the body’s mass m and the forces F acting on it:

d2y

dt2
=

F

m
. (1.3.8)

We confined ourselves here to a scalar, one dimensional case with time in-
dependent mass. The modelling in such cases concern the form of the force
acting on the body. We shall consider two such cases in detail.

A waste disposal problem
In many countries toxic or radioactive waste is disposed by placing it in
tightly sealed drums that are then dumped at sea. The problem is that these
drums could crack from the impact of hitting the sea floor. Experiments
confirmed that the drums can indeed crack if the velocity exceeds 12m/s
at the moment of impact. The question now is to find out the velocity of
a drum when it hits the sea floor. Since typically the waste disposal takes
place at deep sea, direct measurement is rather expensive but the problem
can be solved by mathematical modelling.

As a drum descends through the water, it is acted upon by three forces
W,B, D. The force W is the weight of the drum pulling it down and is
given by mg, where g is the acceleration of gravity and m is the mass of the
drum. The buoyancy force B is the force of displaced water acting on the
drum and its magnitude is equal to the weight of the displaced water, that
is, B = gρV , where ρ is the density of the sea water and V is the volume of
the drum. If the density of the drum (together with its content) is smaller
that the density of the water, then of course the drum will be floating. It is
thus reasonable to assume that the drum is heavier than the displaced water
and therefore it will start drowning with constant acceleration. Experiments
(and also common sense) tell us that any object moving through a medium
like water, air, etc. experiences some resistance, called the drag. Clearly,
the drag force acts always in the opposite direction to the motion and its
magnitude increases with the increasing velocity. Experiments show that in
a medium like water for small velocities the drag force is proportional the
velocity, thus D = cV . If we now set y = 0 at the sea level and let the
direction of increasing y be downwards, then from (1.3.8)

d2y

dt2
=

1
m

(
W −B − c

dy

dt

)
. (1.3.9)

This is a second order (the highest derivative of the unknown function is of
second order) and linear differential equation.
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Motion in a changing gravitational field

According to Newton’s law of gravitation, two objects of masses m and M
attract each other with force of magnitude

F = G
mM

d2

where G is the gravitational constant and d is the distance between objects’
centres. Since at Earth’s surface the force is equal (by definition) to F = mg,
the gravitational force exerted on a body of mass m at a distance y above
the surface is given by

F = − mgR2

(y + R)2
,

where the minus sign indicates that the force acts towards Earth’s centre.
Thus the equation of motion of an object of mass m projected upward from
the surface is

m
d2y

dt2
= − mgR2

(y + R)2
− c

(
dy

dt

)2

where the last term represents the air resistance which, in this case, is taken
to be proportional to the square of the velocity of the object. This is a
second order nonlinear differential equation.

1.3.4 Equations coming from geometrical modelling

Satellite dishes
In many applications, like radar or TV/radio transmission it is important to
find the shape of a surface that reflects parallel incoming rays into a single
point, called the focus. Conversely, constructing a spot-light one needs a
surface reflecting light rays coming from a point source to create a beam of
parallel rays. To find an equation for a surface satisfying this requirement
we set the coordinate system so that the rays are parallel to the x-axis and
the focus is at the origin. The sought surface must have axial symmetry,
that is, it must be a surface of revolution obtained by rotating some curve
C about the x-axis. We have to find the equation y = y(x) of C. Using the
notation of the figure, we let M(x, y) be an arbitrary point on the curve and
denote by T the point at which the tangent to the curve at M intersects the
x-axis. It follows that the triangle TOM is isosceles and

tan^OTM = tan^TMO =
dy

dx

where the derivative is evaluated at M . On the other hand

tan^OTM =
|MP |
|TP | ,
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Fig 1.2. Geometry of a reflecting surface.

but |MP | = y and, since the triangle is isosceles, |TP | = |OT | − |OP | =
|OM | − |OP | =

√
x2 + y2 + x. Thus, the differential equation of the curve

C is
dy

dx
=

y√
x2 + y2 + x

. (1.3.10)

This is a nonlinear, so called homogeneous, first order differential equation.
As we shall see later, it is not difficult to solve, if one knows appropriate
techniques, yielding a parabola, as expected from the Calculus course.

The pursuit curve
What is the path of a dog chasing a rabbit or the trajectory of self-guided
missile trying to intercept an enemy plane? To answer this question we must
first realize the principle used in controlling the chase. This principle is that
at any instant the direction of motion (that is the velocity vector) is directed
towards the chased object.

To avoid technicalities, we assume that the target moves with a constant
speed v along a straight line so that the pursuit takes place on a plane. We
introduce the coordinate system in such a way that the target moves along
the y-axis in the positive direction, starting from the origin at time t = 0,
and the pursuer starts from a point at the negative half of the x-axis, see
Figure 1.3. We also assume that the pursuer moves with a constant speed
u.
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Fig 1.3. The pursuit curve.

Let M = M(x(t), y(t)) be a point at the curve C, having the equation
y = y(x), corresponding to time t of the pursuit. At this moment the
position of the target is (0, vt). Denoting y′ = dy

dx , from the principle of the
pursuit we obtain

y′ = −vt− y

x
(1.3.11)

In this equation we have too many variables and we shall eliminate t as
we are looking for the equation of the trajectory in x, y variables. Solving
(1.3.11) with respect to t we obtain

t =
y − xy′

v
,

whereupon, using the assumption that v is a constant,

dt

dx
= −1

v
xy′′

or, using the formula for differentiation of the inverse,

dx

dt
= − v

xy′′
. (1.3.12)

On the other hand, since we know that the speed of an object moving
according to parametric equation (x(t), y(t)) is given by

u =

√(
dx

dt

)2

+
(

dy

dt

)2

=
√

1 + (y′)2
∣∣∣∣
dx

dt

∣∣∣∣ , (1.3.13)
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where we used the formula for parametric curves

dy

dx
=

dy
dt
dx
dt

,

whenever dx/dt 6= 0. From the problem it is reasonable to expect that
dx/dt > 0 so that we can drop the absolute value bars in (1.3.12). Thus,
combining (1.3.12) and (1.3.13) we obtain the equation of the pursuit curve

xy′′ = −v

u

√
1 + (y′)2. (1.3.14)

This is a nonlinear second order equation having, however, a nice property
of being reducible to a first order equation and thus yielding a closed form
solutions. We shall deal with such equations later on.

1.3.5 Modelling interacting quantities – systems of differen-
tial equations

In many situations we have to model evolutions of two (or more) quantities
that are coupled in the sense that the state of one of them influences the
other and conversely. We have seen this type of interactions in the discrete
case when we modelled the spread of a measles epidemic. It resulted then in
a system of difference equations. Similarly, in the continuous case the evolu-
tion of interacting populations will lead to a system of differential equations.
In this subsection we shall discuss modelling of such systems that result in
both linear and non-linear systems.

Two compartment mixing – a system of linear equations
Let us consider a system consisting of two vats of equal capacity containing
a diluted dye: the concentration at some time t of the dye in the first vat is
c1(t) and in the second is c2(t). Suppose that the pure dye is flowing into
the first vat at a constant rate r1 and water is flowing into the second vat
at a constant rate r2 (in, say, litres per minute). Assume further that two
pumps exchange the contents of both vats at constant rates: p1 from vat 1
to vat 2 and conversely at p2. Moreover, the diluted mixture is drawn off vat
2 at a rate R2. The flow rates are chosen so that the volumes of mixture in
each vat remain constant, equal to V , that is r1 +p2−p1 = r2−p2−R2 = 0.
We have to find how the dye concentration in each vat changes in time.

Let x1(t) and x2(t) be the volumes of dye in each tank at t ≥ 0. Thus, the
concentrations c1 and c2 are defined by c1 = x1/V and c2 = x2/V . We shall
consider what happens to the volume of the dye in each vat during a small
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time interval from t to ∆t. In vat 1

x1(t + ∆t)− x1(t) =





volume of
of pure dye

flowing into vat 1



 +





volume of
dye in mixture 2

flowing into vat 1





−




volume of
dye in mixture 1

flowing out of vat 1





= r1∆t + p2
x2(t)

V
∆t− p1

x1(t)
V

∆t,

and in vat 2, similarly,

x2(t + ∆t)− x2(t) =





volume of
dye in mixture 1

flowing into vat 2



−





volume of
dye in mixture 2

flowing out of vat 2





−




volume of
dye in mixture 2

flowing from vat 2 vat 1





= p1
x1(t)

V
∆t−R2

x2(t)
V

∆t− p2
x2(t)

V
∆t.

Dividing by ∆t and passing with it to zero we obtain the following simulta-
neous system of linear differential equations

dx1

dt
= r1 + p2

x2

V
− p1

x1

V
dx2

dt
= p1

x1

V
− (R2 + p2)

x2

V
. (1.3.15)

Continuous model of epidemics – a system of nonlinear differential equa-
tions
A measles epidemic discussed earlier was modelled as a system of non-linear
difference equations. The reason for the applicability of difference equations
was the significant latent period between catching the disease and becoming
contagious. If this period is very small (ideally zero) it it more reasonable to
construct a model involving coupled differential equations. For the purpose
of formulating the model we divide the population into three groups: sus-
ceptibles (who are not immune to the disease), infectives (who are capable
of infecting susceptibles) and removed (who have previously had the disease
and may not be reinfected because they are immune, have been quarantined
or have died from the disease). The symbols S, I, R will be used to denote
the number of susceptibles, infectives and removed, respectively, in the pop-
ulation at time t. We shall make the following assumptions on the character
of the disease:
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(a) The disease is transmitted by close proximity or contact between an
infective and susceptible.

(b) A susceptible becomes an infective immediately after transmission.

(c) Infectives eventually become removed.

(d) The population of susceptibles is not altered by emigration, immigra-
tion, births and deaths.

(e) Each infective infects a constant fraction β of the susceptible population
per unit time.

(f) The number of infectives removed is proportional to the number of
infectives present.

As mentioned earlier, it is assumption (b) that makes a differential rather
than difference equation formulation more reasonable. Diseases for which
this assumption is applicable include diphtheria, scarlet fever and herpes.
Assumption (e) is the same that used in difference equation formulation.
It is valid provided the number of infectives is small in comparison to the
number of susceptibles.

To set up the differential equations, we shall follow the standard approach
writing first difference equations over arbitrary time interval and then pass
with the length of this interval to zero. Thus, by assumptions (a), (c) and
(d), for any time t

S(t + ∆t) = S(t)−
{

number of susceptibles
infected in time ∆t

}
,

by assumptions (a), (b) and (c)

I(t+∆t) = I(t)+
{

number of susceptibles
infected in time ∆t

}
−

{
number of infectives
removed in time ∆t

}
,

and by assumptions (a), (c) and (d)

R(t + ∆t) = R(t) +
{

number of infectives
removed in time ∆t

}
.

However, from assumptions (c) and (f)
{

number of susceptibles
infected in time ∆t

}
= βSI∆t

{
number of infectives
removed in time ∆t

}
= γI∆t.
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Combining all these equations and dividing by ∆t and passing with it to 0
we obtain the coupled system of nonlinear differential equations

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI, (1.3.16)

where α, β are proportionality constants. Note that R does not appear in
the first two equations so that we can consider separately and then find R by
direct integration. The first two equations are then a continuous analogue
of the system (1.2.9) with B = 0. Note that a simpler form of the equation
for I in the discrete case follows from the fact that due to precisely one week
recovering time the number of removed each week is equal to the number
of infectives the previous week so that these two cancel each other in the
equation for I.

Predator–prey model – a system of nonlinear equations
Systems of coupled nonlinear differential equations similar to (1.3.16) appear
in numerous applications. One of the most famous is the Lotka-Volterra, or
predator-prey model, created to explain why in a period of reduced fishing
during the World War I, the number of sharks substantially increased. We
shall describe it on the original example of small fish – shark interaction.

To describe the model, we consider two populations: of smaller fish and
sharks, with the following influencing factors taken into account.

(i) Populations of fish and sharks display an exponential growth when con-
sidered in isolation. However, the growth rate of sharks in absence of
fish is negative due to the lack of food.

(ii) Fish is preyed upon by sharks resulting in the decline in fish popula-
tion. It is assumed that each shark eats a constant fraction of the fish
population.

(iii) The population of sharks increases if there is more fish. The additional
number of sharks is proportional to the number of available fish.

(iv) Fish and sharks are being fished indiscriminately, that is, the number
of sharks and fish caught by fishermen is directly proportional to the
present populations of fish and sharks, respectively, with the same
proportionality constant.

If we denote by x and y the sizes of fish and shark populations, then an
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argument, similar to that leading to (1.3.16), gives the following system

dx

dt
= (r − f)x− αxy,

dy

dt
= −(s + f)y + βxy (1.3.17)

where α, β, r, s, f are positive constants.
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Basic differential equations:
models and solutions

2.1 Basic information on differential equations

What precisely do we mean by a differential equation? The more familiar
notion of an algebraic equation, like for example the quadratic equation
x2 − 4x − 5 = 0, states something about a number x. It is sometimes
called an open statement since the number x is left unspecified, and the
statement’s truth depends on the value of x. Solving the equation then
amounts to finding values of x for which the open statement turns into a
true statement.

Algebraic equations arise in modelling processes where the unknown quan-
tity is a number (or a collection of numbers) and all the other relevant quan-
tities are constant. As we observed in the first chapter, if the data appearing
in the problem are variable and we describe a changing phenomenon, then
the unknown will be rather a function (or a sequence). If the changes oc-
cur over very short interval, then the modelling usually will have to balance
small increments of this function and the data of the problem and will result
typically in an equation involving the derivatives of the unknown function.
Such an equation is called a differential equation.

Differential equations are divided into several classes. The main two classes
are ordinary differential equations (ODEs) and partial differential equations
(PDEs). As suggested by the name, ODEs are equations where the unknown
function is a function of one variable and the derivatives involved in the
equation are ordinary derivatives of this function. A partial differential
equation involves functions of several variables and thus expresses relations
between partial derivatives of the unknown function.

23
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In this course we shall be concerned solely with ODEs and systems of ODEs.
Symbolically, the general form of ODE is

F (y(n), y(n−1), . . . y′, y, t) = 0, (2.1.1)

where F is a given function of n + 2 variables. For example, the equation
of exponential growth can be written as F (y′, y, t) = y′ − ry so that the
function F is a function of two variables (constant with respect to t) and
acting into r. Systems of differential equations can be also written in the
form (2.1.1) if we accept that both F and y (and all the derivatives of y)
can be vectors. For example, in the case of the epidemic spread (1.3.16) we
have a system of ODEs which can be written as

F(y, t) = 0,

with three-dimensional vector y = (S, I, R) and the vector F = (F1, F2, F3)
with F1(S, I, R, t) = −βSI, F2(S, I,R, t) = βSI−γI and F3(S, I, R, t) = γI.

What does it mean to solve a differential equation? For algebraic equations,
like the one discussed at the beginning, we can apply the techniques learned
in the high school finding the discriminant of the equation ∆ = (−4)2−4 ·1 ·
(−5) = 36 so that x1,2 = 0.5(4± 6) = 5,−1. Now, is this the solution to our
equation? How can we check it? The answer is given above – the solution
is a number (or a collection of numbers) that turns the equation into a true
statement. In our case, 52 − 20− 5 = 0 and (−1)2 − 4(−1)− 5 = 0, so both
numbers are solutions to the equation.

Though presented in a simple context, this is a very important point.

To solve a problem is to find a quantity that satisfies all the con-
ditions of this problem.

This simple truth is very often forgotten as students tend to apply me-
chanically steps they learned under say, ”techniques for solving quadratic
equations” or ”techniques of integration” labels and looking for answers or
model solutions ”out there” though the correctness of the solution in most
cases can be checked directly.

The same principle applies to differential equations. That is, to solve the
ODE (2.1.1) means to find an n-times continuously differentiable function
y(t) such that for any t (from some interval)

F (y(n)(t), y(n−1)(t), . . . y′(t), y(t), t) ≡ 0.

Once again, there are many techniques for solving differential equations.
Some of them give only possible candidates for solutions and only checking
that these suspects really turn the equation into the identity can tell us
whether we have obtained the correct solution or not.
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Example 2.1.1. As an example, let us consider which of these functions
y1(t) = 30e2t, y2(t) = 30e3t and y3(t) = 40e2t solves the equation y′ = 2y. In
the first case, LHS is equal to 60e2t and RHS is 2·30e2t so that LHS = RHS
and we have a solution. In the second case we obtain LHS = 90e3t 6=
2 · 30e3t = RHS so that y2 is not a solution. In the same way we find that
y3 satisfies the equation.

Certainly, being able to check whether a given function is a solution is not
the same as actually finding the solution. Thus, this example rises the
following three questions.

1. Can we be sure that a given equation possesses a solution at all?

2. If we know that there is a solution, are there systematic methods to
find it?

3. Having found a solution, can we be sure that there are no other solu-
tions?

Question 1 is usually referred to as the existence problem for differential
equations, and Question 3 as the uniqueness problem. Unless we deal
with very simple situations these should be addressed before attempting to
find a solution. After all, what is the point of trying to solve equation if we
do not know whether the solution exists, and whether the solution we found
is the one we are actually looking for, that is, the solution of the real life
problem the model of which is the differential equation.

Let us discuss briefly Question 1 first. Roughly speaking, we can come across
the following situations.

1. No function exists which satisfies the equation.

2. The equation has a solution but no one knows what it looks like.

3. The equation can be solved in a closed form, either

in elementary functions,

or in quadratures.

Case 1 is not very common in mathematics and it should never happen in
mathematical modelling. In fact, if a given equation was an exact reflection
of a real life phenomenon, then the fact that this phenomenon exists would
ensure that the solution to this equation exists also. For example, if we
have an equation describing a flow of water, then the very fact that water
flows would be sufficient to claim that the equation must have a solution.
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However, in general, models are imperfect reflections of real life and there-
fore it may happen that in the modelling process we missed a crucial fact,
rendering thus the final equation unsolvable. Thus, checking that a given
equation is solvable serves as an important first step in validation of the
model. Unfortunately, these problems are usually very difficult and require
quite advanced mathematics that is beyond the scope of this course. On
the other hand, all the equations we will be dealing with are classical and
the fundamental problems of existence and uniqueness for them have been
positively settled at the beginning of the 20th century.

Case 2 may look somewhat enigmatic but, as we said above, there are ad-
vanced theorems allowing to ascertain the existence of solution without ac-
tually displaying them. This should be not surprising: after all, we know
that the Riemann integral of any continuous function exists though in many
cases we cannot evaluate it explicitly.

Even if we do not know a formula for the solution, the situation is not
hopeless. Knowing that the solution exists, we have an array of approximate,
numerical methods at our disposal. Using them we are usually able to find
the numerical values of the solution with arbitrary accuracy. Also, very
often we can find important features of the solution without knowing it.
These feature include e.g. the long time behaviour of the solution, that is,
whether it settles at a certain equilibrium value or rather oscillates, whether
it is monotonic etc. These questions will be studied by in the final part of
our course.

Coming now to Case 3 and to an explanation of the meaning of the terms
used in the subitems, we note that clearly an ideal situation is if we are able
to find the solution as an algebraic combination of elementary functions

y(t) = combination of elementary functions like :
sin t, cos t, ln t, exponentials, polynomials...

Unfortunately, this is very rare for differential equation. Even the simplest
cases of differential equations involving only elementary functions may fail
to have such solutions.

Example 2.1.2. For example, consider is the equation

y′ = e−t2 .

Integrating, we find that the solution must be

y(t) =
∫

e−t2dt

but, on the other hand, it is known that this integral cannot be expressed
as a combination of elementary functions.
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This brings us to the definition of quadratures. We say that an equation is
solvable in quadratures if a solution to this equation can be written in terms
of integrals of elementary functions (as above). Since we know that every
continuous function has an antiderivative (though often we cannot find this
antiderivative explicitly), it is almost as good as finding the explicit solution
to the equation.

Having dealt with Questions 1 and 2 above, that is, with existence of solu-
tions and solvability of differential equations, we shall move to the problem
of uniqueness. We have observed in Example 2.1.1 that the differential equa-
tion by itself defines a family of solutions rather than a single function. In
this particular case this class depend on an arbitrary parameter. Another
simple example of a second order differential equation y′′ = t, solution of
which can be obtained by a direct integration as y = 1

6 t3 + C1t + C2, shows
that in equations of the second order we expect the class of solutions to
depend on 2 arbitrary parameters. It can be then expected that the class
of solutions for an nth order equation will contain n arbitrary parameters.
Such a full class is called the general solution of the differential equation.
By imposing the appropriate number of side conditions we can specify the
constants obtaining thus a special solution - ideally one member of the class.

A side condition may take all sorts of forms, like ”at t = 15, y must have
the value of 0.4” or ”the area under the curve between t = 0 and t = 24
must be 100”. Very often, however, it specifies the initial value of y(0) of
the solution and the derivatives yk(0) for k = 1, . . . , n− 1. In this case the
side conditions are called the initial conditions.

After these preliminaries we shall narrow our consideration to a particular
class of problems for ODEs.

2.2 Cauchy problem for first order equations

In this section we shall be concerned with first order ordinary differential
equations which are solved with respect to the derivative of the unknown
function, that is, with equations which can be written as

dy

dt
= f(t, y), (2.2.1)

where f is a given function of two variables.

In accordance with the discussion of the previous session, we shall be looking
for solutions to the following Cauchy problem

y′ = f(t, y),
y(t0) = y0 (2.2.2)
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where we abbreviated dy
dt = y′, and t0 and y0 are some given numbers.

Several comments are in place here. Firstly, even though in such a simplified
form, the question of solvability of the problem (2.2.2) is almost as difficult
as that of (2.1.1). Before we embark on studying this problem, we again
emphasize that to solve (2.2.2) is to find a function y(t) that is continuously
differentiable at least in some interval (t1, t2) containing t0, that satisfies

y′(t) ≡ f(t, y(t)) for all t ∈ (t1, t2)
y(t0) = y0.

Let consider the following example.

Example 2.2.1. Check that the function y(t) = sin t is a solution to the
problem

y′ =
√

1− y2, t ∈ (0, π/2),
y(π/2) = 1

Solution. LHS: y′(t) = cos t, RHS:
√

1− y2 =
√

1− sin2 t = | cos t| = cos t
as t ∈ (0, π/2). Thus the equation is satisfied. Also sinπ/2 = 1 so the
”initial” condition is satisfied.

Note that the function y(t) = sin t is not a solution to this equation on a
larger interval (0, a) with a > π/2 as for π/2 < t > 3π/2 we have LHS:
y′(t) = cos t but RHS:

√
1− y2 = | cos t| = − cos t, since cos t < 0.

How do we know that a given equation has a solution? For an equation in
the (2.2.1) form the answer can be given in relatively straightforward terms,
though it is still not easy to prove.

Theorem 2.2.2. [Peano] If the function f in (2.2.2) is continuous in some
neighbourhood of the point (t0, y0), then the problem (2.2.2) has at least one
solution in some interval (t1, t2) containing t0.

Thus, we can safely talk about solutions to a large class of ODEs of the form
(2.2.1) even without knowing their explicit formulae.

As far as uniqueness is concerned, we know that the equation itself deter-
mines a class of solutions; for first order ODE this class is a family of func-
tions depending on one arbitrary parameter. Thus, in principle, imposing
one additional condition, as e.g. in (2.2.2), we should be able to determine
this constant so that the Cauchy problem (2.2.2) should have only one solu-
tion. Unfortunately, in general this is no so as demonstrated in the following
example.
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Example 2.2.3. The Cauchy problem

y′ =
√

y, t > 0
y(0) = 0,

has at least two solutions: y ≡ 0 and y = 1
4 t2.

Fortunately, there is a large class of functions f for which (2.2.2) has exactly
one solution. This result is known as the Picard Theorem which we state
below.

Theorem 2.2.4. [Picard] Let f and ∂f/∂y be continuous in some neigh-
bourhood of (t0, y0). Then the Cauchy problem (2.2.2) has exactly one solu-
tion defined on some neighbourhood of t0.

Example 2.2.5. We have seen in Example 2.2.3 that there are two solutions
to the problem

y′ =
√

y, t ≥ 0
y(0) = 0.

In this case f(t, y) =
√

y and fy = 1/2
√

y; obviously fy is not continuous in
any neighbourhood of 0 and we may expect troubles.

Another example of a nonuniqueness is offered by

y′ = (sin 2t)y1/3, t ≥ 0
y(0) = 0, (2.2.3)

Direct substitution shows that we have at least 3 different solutions to this
problem: y1 ≡ 0, y2 =

√
8/27 sin3 t and y3 = −

√
8/27 sin3 t. These are

shown at the picture below.

In the next few sections we shall discuss some cases when an ODE can be
solved explicitly, either in elementary functions, or in quadratures.

2.3 Equations admitting closed form solutions

2.3.1 Separable equations

The simplest differential equation is of the form

dy

dt
= g(t). (2.3.1)

Its simplicity follows from the fact that the function f(t, y) of (2.2.1) here
is a function of the independent variable t only so that both sides can be



30 Chapter 2

Fig 2.1 Multiple solutions of the problem (2.2.3).

integrated with respect to t. Note, that this is impossible if the right hand
side of (2.2.1) depends on y is an unknown function of t. There is, however,
a class of equations for which a simple modification of the above procedure
works.

Consider an equation that can be written in the form

dy

dt
=

g(t)
h(y)

, (2.3.2)

where g and h are known functions. Equations that can be put into this
form are called separable equations. Firstly, we note that any constant
function y = y0, such that 1/h(y0) = 0, is a special solution to (2.3.2), as
the derivative of a constant function is equal to zero. We call such solutions
stationary or equilibrium solutions.

To find a general solution, we assume that 1/h(y) 6= 0, that is h(y) 6= ∞.
Multiplying then both sides of (2.3.2) by h(y) to get

h(y)
dy

dt
= g(t) (2.3.3)

and observe that, denoting by H(y) =
∫

h(y)dy the antiderivative of h, we
can write (2.3.2) in the form

d

dt
(H(y(t))) = g(t),

that closely resembles (2.3.1). Thus, upon integration we obtain

H(y(t)) =
∫

g(t)dt + c, (2.3.4)
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where c is an arbitrary constant of integration. The next step depends on
the properties of H: for instance, if H : R → R is monotonic, then we can
find y explicitly for all t as

y(t) = H−1

(∫
g(t)dt + c

)
.

Otherwise, we have to do it locally, around the initial values. To explain
this, we solve the initial value problem for separable equation.

dy

dt
=

g(t)
h(y)

,

y(t0) = y0, (2.3.5)

Using the general solution (2.3.4) (with definite integral) we obtain

H(y(t)) =

t∫

t0

g(s)ds + c,

we obtain

H(y(t0)) =

t0∫

t0

a(s)ds + c,

which, due
t0∫
t0

a(s)ds = 0, gives

c = H(y(t0)),

so that

H(y(t)) =

t∫

t0

g(s)ds + H(y(t0)).

We are interested in the existence of the solution at least close to t0, which
means that H should be invertible close to y0. From the Implicit Function
Theorem we obtain that this is possible if H is differentiable in a neigh-
bourhood of y0 and ∂H

∂y (y0) 6= 0. But ∂H
∂y (y0) = h(y0), so we are back at

Picard’s theorem: if h(y) is differentiable in the neighbourhood of y0 with
h(y0) 6= 0 (if h(y0) = 0, then the equation (2.3.2) does not make sense at
y0, and g is continuous, then f(t, y) = g(t)/h(y) satisfies the assumptions of
the theorem in some neighbourhood of (t0, y0).

Example 2.3.1. Find the general solution of the equation

y′ = t2/y2.
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This equation is equivalent to

d

dt

(
y(t)3

3

)
= t2,

hence y3(t) = t3 + c, where c is an arbitrary constant and, since the cubic
function is monotonic,

y(t) = (t3 + c)1/3.

Remark 2.3.2. Note that Picard’s theorem gives only a sufficient condition
for the existence of the unique solution. In the example above the assump-
tions are obviously violated at t = 0 and y = 0, that is, the theorem doesn’t
give an answer as to whether there exists a unique solution to the problem

y′ = t2/y2, y(0) = 0.

However, direct computation shows that y(t) = t is the unique solution to
this problem. This is possible due to the cancellation of singularities.

On the other hand, consider a similar problem

y′ = t/y, y(0) = 0.

Then the general solution is given by

y2(t) = t2 + c,

and with the initial condition we obtain

y2(t) = t2.

Quadratic function is not invertible close to 0 and it produces two solutions
y(t) = t and y(t) = −t.

Example 2.3.3. Solve the initial value problem

y′ = 1 + y2, y(0) = 0.

We transform the equation as

d

dt
tan−1 y(t) = 1

which gives
tan−1 y = t + c,

and from the initial condition c = 0. Therefore, the solution is given by

y = tan t.

We point out that y → ±∞ as t → ±π/2. In other words the solution exists
only on the interval (−π/2, π/2) but there is seemingly nothing at all in the
form of the equation which would suggest such a behaviour.
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In the previous example the solution ceased to exist beyond π/2 and −π/2
as it becomes infinite at these point. We call such a situation a blow up.
The next example shows that there might be another way for a solution to
cease to exist.

Example 2.3.4. Find the solution to the following initial value problem

yy′ + (1 + y2) sin t = 0, y(0) = 1.

In a standard way we obtain

y∫

1

rdr

1 + r2
= −

t∫

0

sin sds,

which gives
1
2

ln(1 + y2)− 1
2

ln 2 = cos t− 1.

Solving this equation for y(t) gives

y(t) = ±(2e−4 sin2 t/2 − 1)1/2.

To determine which sign we should take we note that y(0) = 1 > 0, thus
the solution is given by

y(t) = (2e−4 sin2 t/2 − 1)1/2.

Clearly, this solution is only defined when

2e−4 sin2 t/2 − 1 ≥ 0,

that is
e4 sin2 t/2 ≤ 2.

Since the natural logarithm is increasing we may take logarithms of both
sides preserving the direction of inequality. We get this way

4 sin2 t/2 ≤ ln 2

and consequently ∣∣∣∣
t

2

∣∣∣∣ ≤ sin−1

√
ln 2
2

.

Therefore, the solution y(t) exists only on the open interval (−2 sin−1
√

ln 2
2 , 2 sin−1

√
ln 2
2 ).

However, contrary to the previous example, the solution does not blow up
at the end-points, but simply vanishes.

In the last example we shall see that sometimes it is sensible to adopt a little
different approach to the solutions of a differential equation.
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Fig 2.2 The graph of the solution in Example 2.3.4.

Example 2.3.5. Find all solutions of the differential equation

dy

dt
= − t

y
. (2.3.6)

Standard approach gives
∫

d

dt

(
1
2
y2(t)

)
dt = −

∫
tdt

which gives
y2 + t2 = c2. (2.3.7)

The curves described by equation (2.3.7) are closed (they are, in fact, circles),
thus we don’t have single valued solutions. However, if (2.3.6) describes a
motion of a point in (t, y)-plane, then we can interpret (2.3.7) as traces of
this motion and therefore solution in such an implicit form has a physical
sense.

Thus, it is not always necessary or desirable to look for the solution in
functional form y = y(t) as, depending on the problem, the solution in the
implicit form F (y, t) = c may be the proper one. In such a case curves
F (y, t) = c are called solution curves of the equation.

2.3.2 Linear ordinary differential equations of first order

Definition 2.3.6. The general first order linear differential equation is

dy

dt
+ a(t)y = b(t). (2.3.8)

Functions a and b are known continuous functions of t.
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Let us recall that we call this equation ”linear” because the dependent vari-
able y appears by itself in the equation. In other words, y′ and y appear in
the equation only possibly multiplied by a known function and not in the
form yy′, sin y or (y′)3.

It is not immediate how to solve (2.3.8), therefore we shall simplify it even
further by putting b(t) = 0. The resulting equation

dy

dt
+ a(t)y = 0, (2.3.9)

is called the reduced first order linear differential equation. We observe that
the reduced equation is a separable equation and thus can be solved easily.
As in (2.3.3) we obtain that if y(t) 6= 0 for any t, then

1
y(t)

dy

dt
=

d

dt
ln |y(t)|,

so that
d

dt
ln |y(t)| = −a(t),

and, by direct integration,

ln |y(t)| = −
∫

a(t)dt + c1

where c1 is an arbitrary constant of integration. Taking exponentials of both
sides yields

|y(t)| = exp
(
−

∫
a(t)dt + c1

)
= c2 exp

(
−

∫
a(t)dt

)

where c2 is an arbitrary positive constant: c2 = exp c1 > 0. We have to
get rid of the absolute value bars at y(t). To do this observe that in the
derivation we required that y(t) 6= 0 for any t, thus y, being a continuous
function, must be of a constant sign. Hence,

y(t) = ±c2 exp
(
−

∫
a(t)dt

)
= c3 exp

(
−

∫
a(t)dt

)
(2.3.10)

where this time c3 can be either positive ore negative.

Are these all the possible solutions to (2.3.9)? Solution (2.3.10) was derived
under provision that y 6= 0. We clearly see that y ≡ 0 is a solution to (2.3.9)
but, fortunately, this solution can be incorporated into (2.3.10) by allowing
c3 to be zero.

However, we still have not ruled out the possibility that the solution can
cross the x-axis at one or more points. To prove that this is impossible, we
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must resort to the Picard theorem. First of all we note that the function
f(t, y) is here given by

f(t, y) = a(t)y

and ∂f/∂y = a(t) so that, if a is a continuous function, the assumptions of
Picard’s theorem are satisfied in any neighbourhood of any pair (t0, y0). If
there was a solution satisfying y(t0) = 0 for some t0, then from uniqueness
part of Picard’s theorem, this solution should be identically zero, as y(t) ≡ 0
is a solution to this problem.. In other words, if a solution to (2.3.9) is zero
at some point, then it is identically zero.

After this considerations we can claim that all the solutions to (2.3.9) are
of the form

y(t) = c exp
(
−

∫
a(t)dt

)
, (2.3.11)

where c is an arbitrary real constant.

How this solution can help us with solving the nonhomogeneous equation

dy

dt
+ a(t)y = b(t)? (2.3.12)

If we could repeat the trick used in the solution of (2.3.9) and write the
above equation in the form

d

dt
(”something”) = b(t),

then the solution would be easy. However, the expression dy/dt+a(t)y does
not appear to be a derivative of any simple expression and we have to help
it a little bit. We shall multiply both sides of (2.3.12) by some continu-
ous nonzero function µ (for a time being, unknown) to get the equivalent
equation

µ(t)
dy

dt
+ µ(t)a(t)y = µ(t)b(t), (2.3.13)

and ask the question: for which function µ the left-hand side of (2.3.13) is
a derivative of some simple expression? We note that the first term on the
left-hand side comes from

dµ(t)y
dt

= µ(t)
dy

dt
+

dµ(t)
dt

y,

thus, if we find µ in such a way that

µ(t)
dy

dt
+

dµ(t)
dt

y = µ(t)
dy

dt
+ µ(t)a(t)y,

that is
dµ(t)

dt
y = µ(t)a(t)y,
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then we are done. Note that an immediate choice is to solve the equation

dµ(t)
dt

= µ(t)a(t),

but this is a separable equation, the general solution of which is given by
(2.3.11). Since we need only one such function, we may take

µ(t) = exp
(∫

a(t)dt

)
.

The function µ is called an integrating factor of the equation (2.3.12). With
such function, (2.3.12) can be written as

d

dt
µ(t)y = µ(t)b(t),

thus
µ(t)y =

∫
µ(t)b(t)dt + c

where c is an arbitrary constant of integration. Finally

y(t) =
1

µ(t)

(∫
µ(t)b(t)dt + c

)

= exp
(
−

∫
a(t)dt

)(∫
b(t) exp

(∫
a(t)dt

)
dt + c

)
(2.3.14)

It is worthwhile to note that the solution consists of two parts: the general
solution to the reduced equation associated with (2.3.12)

c exp
(
−

∫
a(t)dt

)

and, what can be checked by direct differentiation, a particular solution to
the full equation.

If we want to find a particular solution satisfying y(t0) = y0, then we write
(2.3.14) using definite integrals

y(t) = exp


−

t∫

t0

a(s)ds







t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds + c




and use the fact that
t0∫
t0

f(s)ds = 0 for any function f . This shows that the

part of the solution satisfying the nonhomogeneous equation:

yb(t) = exp


−

t∫

t0

a(s)ds




t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds
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takes on the zero value at t = t0. Thus

y0 = y(t0) = c

and the solution to the initial value problem is given by

y(t) = y0 exp


−

t∫

t0

a(s)ds


+exp


−

t∫

t0

a(s)ds




t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds.

(2.3.15)
Once again we emphasize that the first term of the formula above solves
the reduced (b(t) = 0) equation with the desired initial value (y(0) = y0)
whereas the second solves the full equation with the initial value equal to
zero.

Again, Picard’s theorem shows that there are no more solutions to than
those given by (2.3.15). Why? Let y1(t) be a solution to (2.3.12). For some
t = t0 this will take on the value y1(t0). But we know that there is a solution
to (2.3.12) given by

y(t) = y1(t0) exp


−

t∫

t0

a(s)ds


+exp


−

t∫

t0

a(s)ds




t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds,

and by Picard’s theorem (this time f(t, y) = −a(t)y + b(t) but the assump-
tions are still satisfied), y1(t) = y(t).

Example 2.3.7. Find the general solution of the equation

y′ − 2ty = t.

Here a(t) = −2t so that

µ(t) = exp


−2

∫
tdt


 = e−t2 .

Multiplying both sides of the equation by µ we obtain

e−t2y′ − 2te−t2 = te−t2 ,

which can be written as
d

dt
(e−t2y) = te−t2 .

Upon integration we get

e−t2y =
∫

te−t2dt = −e−t2

2
+ c.

Thus the general solution is given by

y(t) = −1
2

+ cet2 .
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Example 2.3.8. Find the solution of the equation

y′ + 2ty = t,

satisfying y(1) = 2. Here a(t) = 2t so that

µ(t) = exp


2

∫
tdt


 = et2 .

As above, we obtain

et2y′ + 2tet2 =
d

dt
(et2y) = tet2 . (2.3.16)

General solution is
y(t) =

1
2

+ ce−t2

and to find c we have
2 = y(1) =

1
2

+ ce−1

which gives

c =
3e

2
and

y(t) =
1
2

+
3
2
e1−t2 .

Alternatively, we can integrate (2.3.16) from 1 to t to get

es2
y(s)

∣∣∣
t

1
=

es2

2

∣∣∣∣∣
t

1

and further
et2y − 2e = et22− e

2
.

Thus again

y(t) =
1
2

+
3
2
e1−t2 .

2.3.3 Equations of homogeneous type

In differential equations, as in integration, a smart substitution can often
convert a complicated equation into a manageable one. For some classes of
differential equations there are standard substitutions that transform them
into separable equations. We shall discuss one such a class in detail.
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A differential equation that can be written in the form

dy

dt
= f

(y

t

)
, (2.3.17)

where f is a function of the single variable z = y/t is said to be of homoge-
neous type. Note that in some textbooks such equations are called homoge-
neous equations but this often creates confusion as the name homogeneous
equation is generally used in another context.

How one can recognize that given a function F (t, y) can be written as a
function of y/t only. We note that such functions have the following property
of homogeneity: for any constant λ 6= 0

f

(
λy

λt

)
= f

(y

t

)
.

The converse is also true: if for any λ 6= 0

F (λt, λy) = F (t, y) (2.3.18)

then F (t, y) = f (y/t) for some function f . In fact, taking in (2.3.18) λ = 1/t
we obtain

F (t, y) = F (λt, λy) = F
(
1,

y

t

)
= f

(y

t

)
,

that is, f(z) = F (1, z).

To solve (2.3.17) let us make substitution

y = tz (2.3.19)

where z is the new unknown function. Then, by the product rule for deriva-
tives

dy

dt
= z + t

dz

dt

and (2.3.17) becomes

z + t
dz

dt
= f(z),

or

t
dz

dt
= f(z)− z. (2.3.20)

In (2.3.20) the variables are separable so it can be solved as in Subsection
2.3.1.

Example 2.3.9. Find the general solution of the equation

(3t− y)y′ + t = 3y.
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Writing this equation in the form (2.2.1) we obtain

y

dt
=

3y − t

3t− y

and F (λt, λy) = 3λy−λt
3λt−λy = 3y−t

3t−y = F (t, y) so that the equation is of homoge-
neous type. Using the substitution (2.3.19), we find

z + t
dz

dt
=

3z − 1
3− z

,

so that

t
dz

dt
=

z2 − 1
3− z

.

We observe that z = ±1 (or y = ±t) are stationary solutions. Assuming
z 6= ±1 we find the general solution is

∫
3− z

z2 − 1
dz =

∫
dt

t
.

Using partial fraction decomposition

3
z2 − 1

=
3
2

(
1

z − 1
− 1

z + 1

)
,

we obtain
3
2

ln
∣∣∣∣
z − 1
z + 1

∣∣∣∣−
1
2

ln |z2 − 1| − ln t + C

for some constant C. Consequently,

|z − 1|
(z + 1)2

= Dt

for the constant D defined as D = eC . Returning to the original variable y
we get

y = t + D(y + t)2, (2.3.21)

where we dropped absolute value bars allowing D to be an arbitrary real
constant. Note that the special solution y = t can be recovered from (2.3.21)
by putting D = whilst y = −t cannot be recovered from it (unless we agree
to write (2.3.21) as (y + t)2 = 1

D (y − t) and put D = ∞).

2.3.4 Equations that can be reduced to first order equations

Some higher order equations can be reduced to equations of the first order.
We shall discuss two such cases for second order equations.

Equations that do not contain the unknown function
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If we have the equation of the form

F (y′′, y′, t) = 0, (2.3.22)

then the substitution z = y′ reduces this equation to an equation of the first
order

F (z′, z, t) = 0. (2.3.23)

If we can solve this equation

z = φ(t, C),

where C is an arbitrary constant, then, returning to the original unknown
function y, we obtain another first order equation

y′ = φ(t, C),

which is immediately solvable as

y(t) =
∫

φ(t, C)dt + C1.

Example 2.3.10. Find solutions to the equation

(y′′)2 = 4(y′ − 1) (2.3.24)

satisfying initial conditions: a) y(0) = 0 and y′(0) = 2, b) y(0) = 0 and
y′(0) = 1.

Eq. (2.3.24) does not contain y so it can be integrated following the method
described above. Setting z = y′ we get

(z′)2 = 4(z − 1)

which gives two equations

z′ = ±2
√

z − 1.

Each of these is a separable equation. There is a particular stationary solu-
tion z = 1 that is common to both equations. For z 6= 1 we obtain

±
∫

dz

2
√

z − 1
=

∫
dt,

integrating which yields

±√z − 1 = t + C1.

Squaring, we find
z = 1 + (t + C1)2
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Returning to the original unknown function y we find the particular solution
solving y′ = 1, that is,

y = t + C. (2.3.25)

The general solution is obtained by solving

y′ = 1 + (t + C1)2 (2.3.26)

which gives

y = t +
1
3
(t + C1)3 + C2. (2.3.27)

To find solutions to the Cauchy problem a), we take the general solution
(2.3.27) and substitute t = 0 getting

0 = y(0) =
1
3
C3

1 + C2,

and, using the condition for the derivative

2 = y′(0) = 1 + C2
1 .

Solving, we obtain C2
1 = ±1 and C2 = ∓1

3 . Therefore we obtain two solu-
tions to the Cauchy problem

y = t +
1
3
(t + 1)3 − 1

3
,

y = t +
1
3
(t− 1)3 +

1
3
.

There are no other solutions, as there is no constant C in (2.3.25) that allows
both initial conditions to be satisfied.

To find solution for the Cauchy problem b), we obtain from (2.3.27) and
(2.3.26)

0 =
1
3
C3

1 + C2,

1 = 1 + C2
1 .

This gives C1 = C2 = 0 which yields the solution

y = t +
1
3
t3.

Moreover, we can check that the particular solution (2.3.25) can be made to
satisfy these conditions by taking C = 0. Hence, the second solution to the
Cauchy problem is given by

y = t.
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Equations that do not contain the independent variable

Let us consider the equation

F (y′′, y′, y) = 0, (2.3.28)

that does not involve the independent variable t. Such an equation can be
also reduced to a first order equation, the idea, however, is a little more
complicated. Firstly, we note that the derivative y′ is uniquely defined by
the function y. This means that we can write y′ = g(y) for some function g.
Using the chain rule we obtain

y′′ =
d

dt
y′ =

dg

dy
(y)

dy

dt
= y′

dg

dy
(y) = g(y)

dg

dy
(y). (2.3.29)

Substituting (2.3.29) into (2.3.28) gives the first order equation with y as an
independent variable

F

(
g
dg

dy
, g, y

)
= 0. (2.3.30)

If we solve this equation in the form g(y) = φ(y, C), then to find y we have
to solve one more first order equation with t as the independent variable

dy

dt
= φ(y, C).

Example 2.3.11. Find the general solution to the equation

yy′′ = (y′)2. (2.3.31)

As the equation does not contain t, we can use the technique described
above. Denoting y′ = g(y) we get y′′ = g dg

dy , so that the equation (2.3.31)
turns into

yg
dg

dy
= g2.

We obtain the particular solution in the form g = 0. If g 6= 0, we can
separate the variables, getting

1
g

dg

dy
=

1
y
.

Integration gives
ln |g| = ln |y|+ C

or
g = ±Cy

for some constant C 6= 0. Since g(y) = y′, we have either the solution y = C1

for some constant C1, or we have to solve the following equation

y′ = ±Cy.
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Assuming y 6= 0, we separate variables getting
∫

dy

y
= ±C

∫
dt,

so that
y = C2e

±Ct.

Note that for C2 = 0 we recover the particular solution y ≡ 0 and for C = 0
we obtain the particular constant solutions coming from g = 0.

2.4 Miscellaneous applications

Here we shall use the theory developed in the previous subsections to provide
solutions to some models introduced in Chapter 1. We start with the logistic
equation.

Logistic equation

Let as recall the logistic equation

dN

dt
= rN

(
1− N

K

)
, (2.4.1)

where r denotes the unrestricted growth rate and K the carrying capacity
of the environment. Since the right-hand side does not contain t, we imme-
diately recognize (2.4.1) as a separable equation. Let us consider the related
Cauchy problem

dN

dt
= rN

(
1− N

K

)
,

N(t0) = N0 (2.4.2)

Separating variables and integrating we obtain

K

r

N∫

N0

ds

(K − s)s
= t− t0.

To integrate the left-hand side we use partial fractions

1
(K − s)s

=
1
K

(
1
s

+
1

K − s

)

which gives

K

r

N∫

N0

ds

(K − s)s
=

1
r

t∫

t0

(
1
s

+
1

K − s

)
ds

=
1
r

ln
N

N0

∣∣∣∣
K −N0

K −N

∣∣∣∣ .
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From the above equation we see that N(t) cannot reach K in any finite time,
so if N0 < K, then N(t) < K for any t, and if N0 > K, then N(t) > K for
all t > 0 (note that if N0 = K, then N(t) = K for all t – this follows from
Picard’s theorem). Therefore (K −N0)/(K −N(t)) is always positive and

r(t− t0) = ln
N

N0

K −N0

K −N
.

Exponentiating, we get

er(t−t0) =
N(t)
N0

K −N0

K −N(t)

or
N0(K −N(t))er(t−t0) = N(t)(K −N0).

Bringing all the terms involving N to the left-hand side and multiplying by
−1 we get

N(t)
(
N0e

r(t−t0) + K −N0

)
= N0Ker(t−t0),

thus finally

N(t) =
N0K

N0 + (K −N0)e−r(t−t0)
. (2.4.3)

Let us examine (2.4.3) to see what kind of population behaviour it predicts.
First observe that we have

lim
t→∞N(t) = K,

hence our model correctly reflects the initial assumption that K is the max-
imal capacity of the habitat. Next, we obtain

dN

dt
=

rN0K(K −N0)e−r(t−t0)

(N0 + (K −N0)e−r(t−t0))2

thus, if N0 < K, the population monotonically increases, whereas if we start
with the population which is larger then the capacity of the habitat, then
such a population will decrease until it reaches K. Also

d2N

dt2
= r

d

dt
(N(K −N)) = N ′(K − 2N) = N(K −N)(K − 2N)

from which it follows that, if we start from N0 < K, then the population
curve is convex down for N < K/2 and convex up for N > K/2. Thus,
as long as the population is small (less then half of the capacity), then the
rate of growth increases, whereas for larger population the rate of growth
decreases. This results in the famous logistic or S-shaped curve which is



Differential Equations 47

presented below for particular values of parameters r = 0.02,K = 10 and
t0 = 0 resulting in the following function:

N(t) =
10N0

N0 + (10−N0)e−0.2t
.

Fig 2.3 Logistic curves with N0 < K (dashed line) and N0 > K (solid line)
for K = 10 and r = 0.02.

To show how this curve compare with the real data and with the exponential
growth we take the experimental coefficients K = 10.76 billion and r =
0.029. Then the logistic equation for the growth of the Earth population
will read

N(t) =
N0(10.76× 109)

N0 + ((10.76× 109)−N0)e−0.029(t−t0)
.

We use this function with the value N0 = 3.34 × 109 at t0 = 1965. The
comparison is shown on Fig. 2.4.

The waste disposal problem

Let us recall that the motion of a drum of waste dumped into the sea is
governed by the equation (1.3.9)

d2y

dt2
=

1
m

(
W −B − c

dy

dt

)
. (2.4.4)

The drums are dropped into the 100m deep sea. Experiments show that the
drum could brake if its velocity exceeds 12m/s at the moment of impact.
Thus, our aim is to determine the velocity of the drum at the sea bed level.
To obtain numerical results, the mass of the drum is taken to be 239 kg,
while its volume is 0.208 m3. The density of the sea water is 1021 kg/m3

and the drag coefficient is experimentally found to be c = 1.18kg/s. Thus,
the mass of water displaced by the drum is 212.4 kg.
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Fig 2.4 Human population on Earth. Comparison of observational data
(points), exponential growth (solid line) and logistic growth (dashed line).

Equation (2.4.4) can be re-written as the first order equation for the velocity
V = dy/dt.

V ′ +
c

m
V = g − B

m
. (2.4.5)

Since the drum is simply dumped into the sea, its initial velocity V (0) = 0.
Since (2.4.5) is a linear equation, we find the integration factor µ(t) = etc/m

and the general solution of the full equation is obtained as

V (t) = e−tc/m

(
g − B

m

) ∫
etc/mdt =

mg −B

c
(1 + Ce−tc/m)

for some constant C. Using the initial condition V (0) = 0, we find C = −1
so that

V (t) =
mg −B

c
(1− e−tc/m). (2.4.6)

Integrating once again, we find

y(t) =
mg −B

c

(
t +

m

c
e−tc/m

)
+ C1.

To determine C1 we recall that the coordinate system was set up in such a
way that y = 0 was at the sea surface so we can take the initial condition
to be y(0) = 0. Thus we obtain the equation

0 = y(0) =
mg −B

c

m

c
+ C1,

so that
y(t) =

mg −B

c

(
t +

m

c
e−tc/m

)
− m(mg −B)

c2
. (2.4.7)
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Equation (2.4.6) expresses the velocity of the drum as a function of time t.
To determine the impact velocity, we must compute the velocity at time t
at which the drum hits the ocean floor, that is we have to solve for t the
equation (2.4.7) with y(t) = 100m. Explicit solution of this equation is
obviously impossible so let us try some other method.

As a first attempt, we notice from (2.4.6) that V (t) is an increasing function
of time and that it tends to a finite limit as t →∞. This limit is called the
terminal velocity and is given by

VT =
mg −B

c
. (2.4.8)

Thus, for any time t the velocity is smaller that VT and if VT < 12m/s, we
can be sure that the velocity of the drum when it hits the sea floor is also
smaller that 12 m/s and it will not crack upon the impact. Substituting the
data to (2.4.8) we obtain

VT =
(239− 212.4)9.81

1.18
≈ 221m/s,

which is clearly way too large.

However, the approximation that gave the above figure is far too crude -
this is the velocity the drum would eventually reach if it was allowed to
descend indefinitely. As this is clearly not the case, we have to find the way
to express the velocity as a function of the position y. This velocity, denoted
by v(y), is very different from V (t) but they are related through

V (t) = v(y(t)).

By the chain rule of differentiation

dV

dt
=

dv

dy

dy

dt
= V

dv

dy
= v

dv

dy
.

Substituting this into (2.4.5) we obtain

mv
dv

dy
= (mg −B − cv) . (2.4.9)

We have to supplement this equation with an appropriate initial condition.
For this we have

v(0) = v(y(0)) = V (0) = 0.

This is a separable equation which we can solve explicitly. Firstly, we note
that since v < VT = (mg − B)/c, mg − B − cv > 0 all the time. Thus, we
can divide both sides of (2.4.9) by mg −B − cv and integrate, getting

v∫

0

rdr

mg −B − cr
=

1
m

y∫

0

ds =
y

m
.
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Fig 2.5 The depth as a function of velocity of the drum.

To find the left-hand side integral, we note that the degree of the numerator
is the same as the degree of the denominator so that we have to decompose

r

mg −B − cr
= −1

c

−cr

mg −B − cr
= −1

c

−mg + B + mg −Bcr

mg −B − cr

= −1
c

( −mg + B

mg −B − cr
+ 1

)
.

Thus
v∫

0

rdr

mg −B − cr
= −1

c

v∫

0

dr +
mg −B

c

v∫

0

dr

mg −B − cr

= −v

c
− mg −B

c2
ln

mg −B − cv

mg −B
,

and we obtain the solution

y

m
= −v

c
− mg −B

c2
ln

mg −B − cv

mg −B
. (2.4.10)

It seems that the situation here is as hopeless as before as we have y = y(v)
and we cannot find v(y) explicitly. However, at least we have a direct relation
between the quantities of interest, and not through intermediate parameter
t that is irrelevant for the problem, as before. Thus, we can easily graph y
as a function of v and estimate v(100) from the graph shown at the Figure
2.5. We can also answer the question whether the velocity at y = 100m is
higher that the critical velocity v = 12m/s. To do this, we note that from
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(2.4.9) and the fact that v < VT we can infer that v is an increasing function
of y. Let us find what y corresponds to v = 12m/s. Using the numerical
data, we obtain

y(12) = 239
(
− 12

1.18
− (239− 212.4)9.81

(1.18)2
ln

(239− 212.4)9.81− 1.18 · 12
(239− 212.4)9.81

)

≈ 68.4m,

that is, the drum will reach the velocity of 12m/s already at the depth of
68.4m. Since v is a strictly increasing function of y, the velocity at 100m
will be much higher and therefore the drum could crack on impact.

The satellite dish

In Chapter 1 we obtained the equation (1.3.10) for a reflecting surface:

dy

dx
=

y√
x2 + y2 + x

. (2.4.11)

Now we shall solve this equation. We observe that the right-hand side can
be written as

y
x√

1 + ( y
x)2 + 1

,

for x > 0. This suggest the substitution used for homogeneous equations
z = y/x. Since y′ = z′x + z, we obtain

z′x
√

1 + z2 + z′x + z
√

1 + z2 + z = z,

which, after a simplification, can be written as

z′
(

1
z

+
1

z
√

z2 + 1

)
= −1

x
.

Integrating, we obtain

ln |z|+
∫

dz

z
√

1 + z2
= − ln |x|+ C ′. (2.4.12)

To integrate the second term, we use the hyperbolic substitution z = sinh ξ

so that dz = cosh ξdξ and
√

1 + z2 =
√

1 + sinh2 ξ =
√

coshξ = cosh ξ, as
cosh ξ is always positive. Thus we obtain

∫
dz

z
√

1 + z2
=

∫
dξ

sinh ξ
=

1
2

∫
dξ

sinh ξ/2 cosh ξ/2

=
1
2

∫
dξ

tanh ξ/2 cosh2 ξ/2
=

1
2

∫
du

u
,
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where in the last integral we used the change of variables u = tanh ξ/2 so
that du = dξ/2 cosh2 ξ. Continuing, we obtain

∫
du

u
= ln |u| = ln | tanh ξ/2|+ C.

But
tanh ξ/2 =

sinh ξ/2
cosh ξ/2

=
sinh ξ/2 cosh ξ/2

cosh2 ξ/2
.

But

sinh ξ/2 cosh ξ/2 =
1
4
(eξ/2 + e−ξ/2)(eξ/2 − e−ξ/2) =

1
4
(eξ + e−ξ) =

1
2

sinh ξ,

and

cosh2 ξ/2 =
1
4
(eξ/2 + e−ξ/2)2 =

1
4
(eξ + e−ξ + 2) =

1
2
(cosh ξ + 1),

so that returning to the original variable z = sinh ξ we obtain

tanh ξ/2 =
z

1 +
√

z2 + 1
.

Thus ∫
dz

z
√

1 + z2
= ln |z| − ln(1 +

√
z2 + 1) + C ′.

Returning to (2.4.12) we obtain

ln
z2

1 +
√

z2 + 1
= − ln x/C

for some constant C > 0. Thus

z2

1 +
√

z2 + 1
=

C

x
,

and, returning to the original unknown function z = y/x,

y2

x +
√

y2 + x2
= C,

which, after some algebra, gives

y2 − 2Cx = C2. (2.4.13)

This is an equation of the parabola with the vertex at x = −C/2 and with
focus at the origin.

We note that this equation was obtained under the assumption that x > 0 so,
in fact, we do not have the full parabola at this moment. The assumption
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Fig 2.6 Different shapes of parabolic curves corresponding to various values
of the constant C. In each case the focus is at the origin.

x > 0 was, however, purely technical and by direct substitution we can
check that (2.4.13) determines the solution also for −C/2 ≤ x ≤ 0. In fact,
y = ±√2Cx + C2 so that

LHS =
dy

dx
= ± C√

2Cx + C2
,

and

RHS =
y√

y2 + x2 + x
=

±√2Cx + C2

√
x2 + 2Cx + C2 + x

=
±√2Cx + C2

√
(x + C)2 + x

= ± C√
2Cx + C2

,

where we used the fact that x ≥ −C/2 so that x + C > 0. Thus LHS =
RHS for any x ≥ −C/2 and (2.4.13) gives the solution to the equation in
the whole range of independent variables.

Pursuit equation

In this paragraph we shall provide the solution to the pursuit equation

xy′′ = −v

u

√
1 + (y′)2. (2.4.14)

Firstly, we observe that this a second order equation that, however, does
not contain the unknown function but only its higher derivatives. Thus,
following the approach of Subsection 2.3.4 we introduce the new unknown
z = y′ reducing thus (2.4.14) to a first order equation:

xz′ = −k
√

1 + z2
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where we denoted k = v/u. This is a separable equation with non-vanishing
right-hand side, so that we do not have stationary solutions. Separating
variables and integrating, we obtain

∫
dz

1 + z2
= −k ln(−C ′x)

for some constant C ′ > 0, where we used the fact that in the model x < 0.
Integration (for example as in the previous paragraph) gives

ln(z +
√

z2 + 1) = lnC(−x)−k,

with C = (C ′)−k, hence

z +
√

z2 + 1 = C(−x)−k,

from where, after some algebra,

z =
1
2

(
C(−x)−k − 1

C
(−x)k

)
. (2.4.15)

Returning to the original unknown function y, where y′ = z, and integration
the above equation, we find

y(x) =
1
2

(
1

C(k + 1)
(−x)k+1 − 1C

(1− k)
(−x)−k+1

)
+ C1.

Let us express the constants C1 and C2 through initial conditions. We
assume that the pursuer started from the position (x0, 0), x0 < 0 and that
at the initial moment the target was at the origin (0, 0). Using the principle
of the pursuit, we see that the initial direction was along the x-axis, that is,
we obtain the initial conditions in the form

y(x0) = 0, y′(x0) = 0.

Since y′ = z, substituting z = 0 and x = x0 in (2.4.15), we obtain

0 = y′(x0) = z(x0) = C(−x0)−k − 1
C

(−x0)k

which gives
C = (−x0)k,

so that

y(x) = −x0

2

(
1

k + 1

(
x

x0

)k+1

− 1
1− k

(
x

x0

)−k+1
)

+ C1.
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Fig 2.7 Pursuit curve for different values of k. k = 0.5 (solid line), k = 0.9
(dashed line), k = 0.99 (dot-dashed line).

To determine C1 we substitute x = x0 and y(x0) = 0 above getting

0 = −x0

2

(
1

k + 1
+

1
k − 1

)
+ C1

thus

C1 =
kx0

k2 − 1
.

Finally,

y(x) = −x0

2

(
1

k + 1

(
x

x0

)k+1

− 1
1− k

(
x

x0

)−k+1
)

+
kx0

k2 − 1
.

This formula can be used to obtain two important pieces of information:
the time and the point of interception. The interception occurs when x = 0.
Thus

y(0) =
kx0

k2 − 1
=

vux0

v2 − u2
.

Since x0 < 0 and the point of interception must by on the upper semi-axis,
we see that for the interception to occur, the speed of the target v must
be smaller that the speed of the pursuer u. This is of course clear from
the model, as the pursuer moves along a curve and has a longer distance to
cover.

The duration of the pursuit can be calculated by noting that the target
moves with a constant speed v along the y axis from the origin to the
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interception point (0, y(0)) so that

T =
y(0)
v

=
ux0

v2 − u2
.

Escape velocity

The equation of motion of an object of mass m projected upward from the
surface of a planet was derived at the end of Subsection 1.3.3. The related
Cauchy problem reads

m
d2y

dt2
= − mgR2

(y + R)2
− c(y)

(
dy

dt

)2

y(0) = R, y′(0) = v0,

where the initial conditions tell us that the missile was shot from the surface
with initial velocity v0 and we allow the air resistance coefficient to change
with height. Rather than solve the full Cauchy problem, we shall address
the question of the existence of the escape velocity, that is, whether there
exists an initial velocity which would allow the object to escape from planet’s
gravitational field.

The equation is of the form (2.3.28), that is, it does not contain explicitly
the independent variable. To simplify calculations, firstly we shall change
the unknown function according to z = y+R (so that z is the distance from
the centre of the planet) and next introduce F (z) = z′ so that z′′ = FzF ,
see (2.3.29). Then the equation of motion will take the form

FzF + C(z)F 2 = −gR2

z2
, (2.4.16)

where C(z) = c(z −R)/m. Noting that

FzF =
1
2

d

dz
F 2

and denoting F 2 = G we reduce (2.4.16) to the linear differential equation

Gz + 2C(z)G = −2gR2

z2
. (2.4.17)

We shall consider three forms for C.

Case 1. C(z) ≡ 0 (airless moon).

In this case (2.4.17) becomes

Gz = −2gR2

z2
.
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which can be immediately integrated from R to z giving

G(z)−G(R) = 2gR2

(
1
z
− 1

R

)
.

Returning to the old variables G(z) = F 2(z) = v2(z), where v is the velocity
of the missile at the distance z from the centre of the moon, we can write

v2(z)− v2(R) = 2gR2

(
1
z
− 1

R

)
.

The missile will escape from the moon if it’s speed remains positive for all
times – if it stops at any finite z, then the gravity pull will bring it back to
the moon. Since v(z) is decreasing, its minimum value will be the limit at
infinity so that, passing with z →∞, we must have

v2(R) ≥ 2gR

and the escape velocity is
v(R) =

√
2gR.

Case 2. Constant air resistance.

If we are back on Earth, it is not reasonable to assume that there is no
air resistance during motion. Let us investigate the next simple case with
c = constant. Then we have

Gz + 2CG = −2gR2

z2
, (2.4.18)

where C = c/m. The integrating factor equals e2cz so that we obtain

d

dz

(
e2czG(z)

)
= −2gR2 e2Cz

z2
,

and, upon integration,

e2Czv2(z)− e2CRv2
0 = −2gR2

z∫

R

e2Css−2ds,

or

v2(z) = e−2Cz


e2CRv2

0 − 2gR2

z∫

R

e2Css−2ds


 . (2.4.19)

Consider the integral

I(z) =

z∫

R

e2Css−2ds.
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Since lim
s→∞ e2Css−2 = ∞, we have also

lim
s→∞

z∫

R

e2Css−2 = ∞.

Since
R∫
R

e2Css−2ds = 0 and because e2CRv2(R) is independent of z, from the

Darboux theorem we see that, no matter what the value of v0 is, for some
z0 ∈ [R,∞) the right-hand side of (2.4.19) becomes 0 and thus v2(z0) = 0.
Thus, there is no initial velocity v0 for which the missile will escape the
planet.

Case 3. Variable air resistance.

By passing from no air resistance at all (c = 0) to a constant air resistance
we definitely overshot since the air becomes thinner with height and thus its
resistance decreases. Let us consider one more case with C(z) = k/z where
k is a proportionality constant. Then we obtain

Gz +
2k

z
G = −2gR2

z2
. (2.4.20)

The integrating factor equals z2k so that we obtain

d

dz

(
z2kG(z)

)
= −2gR2z2k−2,

and, upon integration,

z2kv2(z)−R2kv2
0 = −2gR2

z∫

R

s2k−2ds.

Using the same argument, we see that the escape velocity will exist if and
only if

lim
z→∞

z∫

R

s2k−2ds < +∞

and from the properties of improper integral we infer that we must have
2k − 2 < −1 or

k <
1
2
.

Of course, from physics k ≥ 0. Thus, the escape velocity is given by

v0 =

√
2gR

1− 2k
.
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Simultaneous systems of
equations and higher order
equations

3.1 Systems of equations

3.1.1 Why systems?

Two possible generalizations of the first order scalar equation

y′ = f(t, y)

are: a differential equation of a higher order

y(n) = F (t, y′, y′′, . . . , y(n−1)) = 0, (3.1.1)

(where, for simplicity, we consider only equations solved with respect to the
highest derivative), or a system of first order equations, that is,

y′ = f(t,y) (3.1.2)

where,

y(t) =




y1(t)
...

yn(t)


 ,

and

f(t,y) =




f1(t, y1, . . . , yn)
...

fn(t, y1, . . . , yn)


 ,

59
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is a nonlinear function of t and y. It turns out that, at least from the theo-
retical point of view, there is no need to consider these two cases separately
as any equation of a higher order can be always written as a system (the
converse, in general, is not true). To see how this can be accomplished, we
introduce new unknown variables z1(t) = y(t), z2(t) = y′(t), zn = y(n−1)(t)
so that z′1(t) = y′(t) = z2(t), z′2(t) = y′′(t) = z3(t), . . . and (3.1.1) converts
into

z′1 = z2,

z′2 = z3,

...
...

...
z′n = F (t, z1, . . . , zn)

Clearly, solving this system, we obtain simultaneously the solution of (3.1.1)
by taking y(t) = z1(t).

3.1.2 Linear systems

At the beginning we shall consider only systems of first order differential
equations that are solved with respect to the derivatives of all unknown
functions. The systems we deal with in this section are linear, that is, they
can be written as

y′1 = a11y1 + a12y2 + . . . + a1nyn + g1(t),
...

...
..., (3.1.3)

y′n = an1y1 + an2y2 + . . . + annyn + gn(t),

where y1, . . . , yn are unknown functions, a11, . . . ann are constant coefficients
and g1(t) . . . , gn(t) are known continuous functions. If g1 = . . . = gn = 0,
then the corresponding system (3.1.3) is called the associated homogeneous
system. The structure of (3.1.3) suggest that a more economical way of
writing it is to use the vector-matrix notation. Denoting y = (y1, . . . , yn),
g = (g1, . . . , gn) and A = {aij}1≤i,j≤n, that is

A =




a11 . . . a1n
...

...
an1 . . . ann


 ,

we can write (3.1.3) in a more concise way as

y′ = Ay + g. (3.1.4)
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Here we have n unknown functions and the system involves first derivative
of each of them so that it is natural to consider (3.1.4) in conjunction with
the following initial conditions

y(t0) = y0, (3.1.5)

or, in the expanded form,

y1(t0) = y0
1, . . . , yn(t0) = y0

n, (3.1.6)

where t0 is a given argument and y0 = (y0
1, . . . , y

0
n) is a given vector.

As we noted in the introduction, systems of first order equations are closely
related to higher order equations. In particular, any nth order linear equa-
tion

y(n) + an−1y
(n−1) + . . . + a1y

′ + a0y = g(t) (3.1.7)

can be written as a linear system of n first order equations by introducing
new variables z1 = y, z2 = y′ = z′1, z3 = y′′ = z′2, . . . zn = y(n−1) = z′n−1 so
that z′n = y(n) and (3.1.7) turns into

z′1 = z2,

z′2 = z3,

...
...

z′n = −an−1zn − an−2zn−1 − . . .− a0z1 + g(t).

Note that if (3.1.7) was supplemented with the initial conditions y(t0) =
y0, y

′(t0) = y1, . . . y
(n−1) = yn−1, then these conditions will become natural

initial conditions for the system as z1(t0) = y0, z2(t0) = y1, . . . zn(t0) = yn−1.
Therefore, all the results we shall prove here are relevant also for nth order
equations.

In some cases, especially when faced with simple systems of differential equa-
tions, it pays to revert the procedure and to transform a system into a single,
higher order, equation rather than to apply directly a heavy procedure for
full systems. We illustrate this remark in the following example.

Example 3.1.1. Consider the system

y′1 = a11y1 + a12y2,

y′2 = a21y1 + a22y2. (3.1.8)

Firstly, note that if either a12 or a21 equal zero, then the equations are
uncoupled, e.g., if a12 = 0, then the first equation does not contain y2

and can be solved for y1 and this solution can be inserted into the second
equation which then becomes a first order nonhomogeneous equation for y2.
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Assume then that a12 6= 0. We proceed by eliminating y2 from the first
equation. Differentiating it, we obtain

y′′1 = a11y
′
1 + a12y

′
2,

so that, using the second equation,

y′′1 = a11y
′
1 + a12(a21y1 + a22y2).

To get rid of the remaining y2, we use the first equation once again obtaining

y2 = a−1
12 (y′1 − a11y1), (3.1.9)

y′′1 = (a11 + a22)y′1 + (a12a21 − a22a11)y1

which is a second order linear equation. If we are able to solve it to obtain
y1, we use again (3.1.9) to obtain y2.

However, for larger systems this procedure becomes quite cumbersome unless
the matrix A of coefficients has a simple structure.

3.1.3 Algebraic properties of systems

In this subsection we shall prove several results related to the algebraic
structure of the set of solutions to

y′ = Ay, y(t0) = y0. (3.1.10)

An extremely important rôle here is played by the uniqueness of solutions.
In Section 2.2 we discussed Picard’ theorem, Theorem 2.2.4, that dealt with
the existence and uniqueness of solution to the Cauchy problem

y′ = f(t, y), y(t0) = y0

where y and f were scalar valued functions. It turns out that this theorem
can be easily generalized to the vector case, that is to the case where f is a
vector valued function f(t,y) of a vector valued argument y. In particular,
it can be applied to the case when f(t,y) = Ay + g(t). Thus, we can state

Theorem 3.1.2. Let g(t) be a continuous function from R to Rn. Then
there exists one and only one solution of the initial value problem

y′ = Ay + g(t), y(t0) = y0. (3.1.11)

Moreover, this solution exists for all t ∈ R.
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One of the important implications of this theorem is that if y is a non-trivial,
that is, not identically equal to zero, solution to the homogeneous equation

y′ = Ay, (3.1.12)

then y(t) 6= 0 for any t. In fact, as y∗ ≡ 0 is a solution to (3.1.12) and
by definition y∗(t̄) = 0 for any t̄, the existence of other solution satisfying
y(t̄) = 0 for some t̄ would violate Theorem 3.1.2.

Let us denote by X the set of all solutions to (3.1.12). Due to linearity of
differentiation and multiplication by A, it is easy to see that X is a vector
space. Moreover

Theorem 3.1.3. The dimension of X is equal to n.

Proof. We must exhibit a basis of X that contains exactly n elements.
Thus, let zj(t), j = 1, . . . , n be solutions of special Cauchy problems

y′ = Ay, y(0) = ej, (3.1.13)

where ej = (0, 0, . . . , 1, . . . , 0) with 1 at jth place is a versor of the coordinate
system. To determine whether the set {z1, . . . , zn} is linearly dependent, we
ask whether from

c1z1(t) + . . . + cnzn(t) = 0,

it follows that c1 = . . . = cn = 0. If the linear combination vanishes for
any t, then it must vanish in particular for t = 0. Thus, using the initial
conditions zj(0) = ej we see that we would have

c1e1 + . . . + cne2 = 0,

but since the set {e1, . . . , en} is a basis in Rn, we see that necessarily
c1 = . . . = cn = 0. Thus {z1(t), . . . , zn(t)} is linearly independent and
dimX ≥ n. To show that dimX = n we must show that X is spanned by
{z1(t), . . . , zn(t)}, that is, that any solution y(t) can be written as

y(t) = c1z1(t) + . . . + cnzn(t)

for some constants c1, . . . , cn. Let y(t) be any solution to (3.1.12) and define
y0 = y(0) ∈ Rn. Since {e1, . . . , en} is a basis Rn, there are constants
c1, . . . , cn such that

y0 = c1e1 + . . . + cne2.

Consider
x(t) = c1z1(t) + . . . + cnzn(t).

Clearly, x(t) is a solution to (3.1.12), as a linear combination of solutions,
and x(0) = c1e1 + . . . + cnen = y0 = y(0). Thus, x(t) and y(t) are both
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solutions to (3.1.12) satisfying the same initial condition and therefore x(t) =
y(t) by Theorem 3.1.2. Hence,

y(t) = c1z1(t) + . . . + cnzn(t).

and the set {z1(t), . . . , zn(t)} is a basis for X.

Next we present a convenient way of determining whether solutions to
(3.1.12) are linearly independent.

Theorem 3.1.4. Let y1, . . . ,yk be k linearly independent solutions of y′ =
Ay and let t0 ∈ R be an arbitrary number. Then, {y1(t), . . . ,yk(t)} form a
linearly independent set of functions if and only if {y1(t0), . . . ,yk(t0)} is a
linearly independent set of vectors in R.

Proof. If {y1(t), . . . ,yk(t)} are linearly dependent functions, then there
exist constants c1, . . . , ck, not all zero, such that for all t

c1y1(t) + . . . + cnyk(t) = 0.

Taking this at a particular value of t, t = t0, we obtain that

c1y1(t0) + . . . + cnyk(t0) = 0,

with not all ci vanishing. Thus the set {y1(t0), . . . ,yk(t0)} is a set of linearly
dependent vectors in Rn.

Conversely, suppose that {y1(t0), . . . ,yk(t0)} is a linearly dependent set of
vectors. Then for some constants

c1y1(t0) + . . . + cnyk(t0) = 0,

where not all ci are equal to zero. Taking these constants we construct the
function

y(t) = c1y1(t) + . . . + cnyk(t),

which is a solution to (3.1.12) as a linear combination of solutions. However,
since y(t0) = 0, by the uniqueness theorem we obtain that y(t) = 0 for all t
so that {y1(t), . . . ,yk(t)} is a linearly dependent set of functions.

Remark 3.1.5. To check whether a set of n vectors of Rn is linearly indepen-
dent, we can use the determinant test: {y1, . . . ,yk} is linearly independent
if and only if

det{y1, . . . ,yk} =

∣∣∣∣∣∣∣

y1
1 . . . yn

1
...

...
y1

n . . . yn
n

∣∣∣∣∣∣∣
6= 0.
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If {y1(t), . . . ,yk(t)} is a set of solution of the homogeneous system, then
the determinant

det{y1(t), . . . ,yk(t)} =

∣∣∣∣∣∣∣

y1
1(t) . . . yn

1 (t)
...

...
y1

n(t) . . . yn
n(t)

∣∣∣∣∣∣∣

is called wronskian. The theorems proved above can be rephrased by saying
that the wronskian is non-zero if it is constructed with independent solutions
of a system of equations and, in such a case, it is non-zero if and only if it
is non-zero at some point.

Example 3.1.6. Consider the system of differential equations

y′1 = y2,

y′2 = −y1 − 2y2, (3.1.14)

or, in matrix notation

y′ =
(

0 1
−1 −2

)
y.

Let us take two solutions:

y1(t) = (y1
1(t), y

1
2(t)) = (φ(t), φ′(t)) = (e−t,−e−t) = e−t(1,−1)

and

y2(t) = (y2
1(t), y

2
2(t)) = (ψ(t), ψ′(t)) = (te−t, (1− t)e−t) = e−t(1, 1− t).

To check whether these are linearly in dependent solutions to the system and
thus whether they span the space of all solutions, we use Theorem 3.1.4 and
check the linear dependence of vectors y1(0) = (1,−1) and y2(0) = (0, 1).
Using e.g. the determinant test for linear dependence we evaluate

∣∣∣∣
1 −1
0 1

∣∣∣∣ = 1 6= 0,

thus the vectors are linearly independent. Consequently, all solutions to
(3.1.14) can be written in the form

y(t) = C1

(
e−t

−e−t

)
+ C2

(
te−t

(1− t)e−t

)
=

(
(C1 + C2t)e−t

(C2 − C1 − C2t)e−t

)
.

Assume now that we are given this y(t) as a solution to the system. The
system is equivalent to the second order equation

y′′ + 2y′ + y = 0 (3.1.15)
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under identification y(t) = y1(t) and y′(t) = y2(t). How can we recover
the general solution to (3.1.15) from y(t)? Remembering that y solves
(3.1.15) if and only if y(t) = (y1(t), y2(t)) = (y(t), y′(t)) solves the sys-
tem (3.1.14), we see that the general solution to (3.1.15) can be obtained
by taking first components of the solution of the associated system (3.1.14).
We also note the fact that if y1(t) = (y1

1(t), y
1
2(t)) = (y1(t), dy1

dt (t)) and
y1(t) = (y2

1(t), y
2
2(t)) = (y2(t), dy2

dt (t)) are two linearly independent solu-
tions to (3.1.14), then y1(t) and y2(t) are linearly independent solutions to
(3.1.15). In fact, otherwise we would have y1(t) = Cy2(t) for some constant
C and therefore also dy1

dt (t) = C dy2

dt (t) so that the wronskian, having the
second column as a scalar multiple of the first one, would be zero, contrary
to the assumption that y1(t) and y2(t) are linearly independent.

3.1.4 The eigenvalue-eigenvector method of finding solutions

We start with a brief survey of eigenvalues and eigenvectors of matrices.
Let A be an n× n matrix. We say that a number λ (real or complex) is an
eigenvalue of A is there exist a non-zero solution of the equation

Av = λv. (3.1.16)

Such a solution is called an eigenvector of A. The set of eigenvectors corre-
sponding to a given eigenvalue is a vector subspace. Eq. (3.1.16) is equiv-
alent to the homogeneous system (A − λI)v = 0, where I is the identity
matrix, therefore λ is an eigenvalue of A if and only if the determinant of
A satisfies

det(A− λI) =

∣∣∣∣∣∣∣

a11 − λ . . . a1n
...

...
an1 . . . ann − λ

∣∣∣∣∣∣∣
= 0. (3.1.17)

Evaluating the determinant we obtain a polynomial in λ of degree n. This
polynomial is also called the characteristic polynomial of the system (3.1.3)
(if (3.1.3) arises from a second order equation, then this is the same poly-
nomial as the characteristic polynomial of the equation). We shall denote
this polynomial by p(λ). From algebra we know that there are exactly n,
possibly complex, roots of p(λ). Some of them may be multiple, so that in
general p(λ) factorizes into

p(λ) = (λ1 − λ)n1 · . . . · (λk − λ)nk , (3.1.18)

with n1+. . .+nk = n. It is also worthwhile to note that since the coefficients
of the polynomial are real, then complex roots appear always in conjugate
pairs, that is, if λj = ξj + iωj is a characteristic root, then so is λ̄j =
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ξj − iωj . Thus, eigenvalues are roots of the characteristic polynomial of
A. The exponent ni appearing in the factorization (3.1.18) is called the
algebraic multiplicity of λi. For each eigenvalue λi there corresponds an
eigenvector vi and eigenvectors corresponding to distinct eigenvalues are
linearly independent. The set of all eigenvectors corresponding to λi spans
a subspace, called the eigenspace corresponding to λi which we will denote
by Eλi . The dimension of Eλi is called the geometric multiplicity of λi. In
general, algebraic and geometric multiplicities are different with geometric
multiplicity being at most equal to the algebraic one. Thus, in particular,
if λi is a single root of the characteristic polynomial, then the eigenspace
corresponding to λ1 is one-dimensional.

If the geometric multiplicities of eigenvalues add up to n, that is, if we have
n linearly independent eigenvectors, then these eigenvectors form a basis
for Rn. In particular, this happens if all eigenvalues are single roots of
the characteristic polynomial. If this is not the case, then we do not have
sufficiently many eigenvectors to span Rn and if we need a basis for Rn,
then we have to find additional linearly independent vectors. A procedure
that can be employed here and that will be very useful in our treatment of
systems of differential equations is to find solutions to equations of the form
(A− λiI)kv = 0 for 1 < k ≤ ni, where ni is the algebraic multiplicity of λi.
Precisely speaking, if λi has algebraic multiplicity ni and if

(A− λiI)v = 0

has only νi < ni linearly independent solutions, then we consider the equa-
tion

(A− λiI)2v = 0.

It follows that all the solutions of the preceding equation solve this equation
but there is at least one more independent solution so that we have at
least νi + 1 independent vectors (note that these new vectors are no longer
eigenvectors). If the number of independent solutions is still less than ni,
we consider

(A− λiI)3v = 0,

and so on, till we get a sufficient number of them. Note, that to make sure
that in the step j we select solutions that are independent of the solutions
obtained in step j − 1 it is enough to find solutions to (A− λiI)jv = 0 that
satisfy (A− λiI)j−1v 6= 0.

Now we show how to apply the concepts discussed above to solve systems
of differential equations. Consider again the homogeneous system

y′ = Ay. (3.1.19)

Our goal is to find n linearly independent solutions of (3.1.19). We have seen
that solutions of the form eλt play a basic rôle in solving first order linear
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equations so let us consider y(t) = eλtv for some vector v ∈ Rn. Since

d

dt
eλtv = λeλtv

and
A(eλtv) = eλtAv

as eλt is a scalar, y(t) = eλtv is a solution to (3.1.19) if and only if

Av = λv. (3.1.20)

Thus y(t) = eλtv is a solution if and only if v is an eigenvector of A corre-
sponding to the eigenvalue λ.

Thus, for each eigenvector vj of A with eigenvalue λj we have a solution
yj(t) = eλjtvj. By Theorem 3.1.4 these solutions are linearly independent if
and only if the eigenvectors vj are linearly independent in Rn. Thus, if we
can find n linearly independent eigenvectors of A with eigenvalues λ1, . . . , λn

(not necessarily distinct), then the general solution of (3.1.19) is of the form

y(t) = C1e
λ1tv1 + . . . + Cneλntvn. (3.1.21)

Distinct real eigenvalues

The simplest situation is of course if the characteristic polynomial p(λ) has
n distinct roots, that is, all roots are single and in this case the eigenvectors
corresponding to different eigenvalues (roots) are linearly independent, as
we mentioned earlier. However, this can also happen if some eigenvalues
are multiple ones but the algebraic and geometric multiplicity of each is
the same. In this case to each root of multiplicity n1 there correspond n1

linearly independent eigenvectors.

Example 3.1.7. Find the general solution to

y′ =




1 −1 4
3 2 −1
2 1 −1


y.

To obtain the eigenvalues we calculate the characteristic polynomial

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ −1 4
3 2− λ −1
2 1 −1− λ

∣∣∣∣∣∣
= −(1 + λ)(1− λ)(2− λ) + 12 + 2− 8(2− λ) + (1− λ)− 3(1 + λ)
= −(1 + λ)(1− λ)(2− λ) + 4λ− 4 = (1− λ)(λ− 3)(λ + 2),

so that the eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 = −2. All the
eigenvalues have algebraic multiplicity 1 so that they should give rise to 3
linearly independent eigenvectors.
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(i) λ1 = 1: we seek a nonzero vector v such that

(A− 1I)v =




0 −1 4
3 1 −1
2 1 −2







v1

v2

v3


 =




0
0
0


 .

Thus

−v2 + 4v3 = 0, 3v1 + v2 − v3 = 0, 2v1 + v2 − 2v3 = 0

and we get v2 = 4v3 and v1 = −v3 from the first two equations and
the third is automatically satisfied. Thus we obtain the eigenspace
corresponding to λ1 = 1 containing all the vectors of the form

v1 = C1



−1

4
1




where C1 is any constant, and the corresponding solutions

y1(t) = C1e
t



−1

4
1


 .

(ii) λ2 = 3: we seek a nonzero vector v such that

(A− 3I)v =



−2 −1 4

3 −1 −1
2 1 −4







v1

v2

v3


 =




0
0
0


 .

Hence

−2v1 − v2 + 4v3 = 0, 3v1 − v2 − v3 = 0, 2v1 + v2 − 4v3 = 0.

Solving for v1 and v2 in terms of v3 from the first two equations gives
v1 = v3 and v2 = 2v3. Consequently, vectors of the form

v2 = C2




1
2
1




are eigenvectors corresponding to the eigenvalue λ2 = 3 and the func-
tion

y2(t) = e3t




1
2
1




is the second solution of the system.
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(iii) λ3 = −2: We have to solve

(A+ 2I)v =




3 −1 4
3 4 −1
2 1 1







v1

v2

v3


 =




0
0
0


 .

Thus

3v1 − v2 + 4v3 = 0, 3v1 + 4v2 − v3 = 0, 2v1 + v2 + v3 = 0.

Again, solving for v1 and v2 in terms of v3 from the first two equations
gives v1 = −v3 and v2 = v3 so that each vector

v3 = C3



−1

1
1




is an eigenvector corresponding to the eigenvalue λ3 = −2. Conse-
quently, the function

y3(t) = e−2t



−1

1
1




is the third solution of the system. These solutions are linearly inde-
pendent since the vectors v1,v2,v3 are linearly independent as eigen-
vectors corresponding to distinct eigenvalues. Therefore, every solu-
tion is of the form

y(t) = C1e
t



−1
4
1


 + C2e

3t




1
2
1


 + C3e

−2t



−1
1
1


 .

Distinct complex eigenvalues

If λ = ξ + iω is a complex eigenvalue, then also its complex conjugate
λ̄ = ξ − iω is an eigenvalue, as the characteristic polynomial p(λ) has real
coefficients. Eigenvectors v corresponding to a complex complex eigenvalue
λ will be complex vectors, that is, vectors with complex entries. Thus, we
can write

v =




v1
1 + iv2

1
...

v1
n + iv2

n


 =




v1
1
...

v1
n


 + i




v2
1
...

v2
n


 = <v + i=v.

Since (A− λI)v = 0, taking complex conjugate of both sides and using the
fact that matrices A and I have only real entries, we see that

(A− λI)v = (A− λ̄I)v̄ = 0
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so that the complex conjugate v̄ of v is an eigenvector corresponding to the
eigenvalue λ̄. Since λ 6= λ̄, as we assumed that λ is complex, the eigen-
vectors v and v̄ are linearly independent and thus we obtain two linearly
independent complex valued solutions

z1(t) = eλtv, z2(t) = eλ̄tv̄ = z1(t).

Since the sum and the difference of two solutions are again solutions, by
taking

y1(t) =
z1(t) + z2(t)

2
=

z1(t) + z1(t)
2

= <z1(t)

and

y2(t) =
z1(t)− z2(t)

2i
=

z1(t)− z1(t)
2i

= =z1(t)

we obtain two real valued (and linearly independent) solutions. To find
explicit formulae for y1(t) and y2(t), we write

z1(t) = eλtv = eξt(cosωt + i sinωt)(<v + i=v)
= eξt(cosωt<v − sinωt=v) + ieξt(cosωt=v + sin ωt<v)
= y1(t) + iy2(t)

Summarizing, if λ and λ̄ are single complex roots of the characteristic equa-
tion with complex eigenvectors v and v̄, respectively, then the we can use
two real linearly independent solutions

y1(t) = eξt(cos ωt<v − sinωt=v)
y2(t) = eξt(cos ωt=v + sin ωt<v) (3.1.22)

Example 3.1.8. Solve the initial value problem

y′ =




1 0 0
0 1 −1
0 1 1


y, y(0) =




1
1
1




The characteristic polynomial is given by

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ 0 0
0 1− λ −1
0 1 1− λ

∣∣∣∣∣∣
= (1− λ)3 + (1− λ) = (1− λ)(λ2 − 2λ + 2)

so that we have eigenvalues λ1 = 1 and λ2,3 = 1± i.

It is immediate that

v =




1
0
0



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is an eigenvector corresponding to λ1 = 1 and thus we obtain a solution to
the system in the form

y1(t) = et




1
0
0


 .

Let us take now the complex eigenvalue λ2 = 1 + i. We have to solve

(A− (1 + i)I)v =



−i 0 0
0 −i −1
0 1 −i







v1

v2

v3


 =




0
0
0


 .

Thus
−iv1 = 0, −iv2 − v3 = 0, v2 − iv3 = 0.

The first equation gives v1 = 0 and the other two yield v2 = iv3 so that each
vector

v2 = C2




0
i
1




is an eigenvector corresponding to the eigenvalue λ2 = 1 + i. Consequently,
we obtain a complex valued solution

z(t) = e(1+i)t




0
i
1


 .

To obtain real valued solutions, we separate z into real and imaginary parts:

e(1+i)t




0
i
1


 = et(cos t + i sin t)







0
0
1


 + i




0
1
0







= et


cos t




0
0
1


− sin t




0
1
0


 + i sin t




0
0
1


 + i cos t




0
1
0







= et




0
− sin t

cos t


 + iet




0
cos t
sin t


 .

Thus, we obtain two real solutions

y1(t) = et




0
− sin t
cos t




y2(t) = et




0
cos t
sin t



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and the general solution to our original system is given by

y(t) = C1e
t




1
0
0


 + C2e

t




0
− sin t
cos t


 + C3e

t




0
cos t
sin t


 .

We can check that all these solutions are independent as their initial values



1
0
0


 ,




0
0
1


 ,




0
1
0


 ,

are independent. To find the solution to our initial value problem we set
t = 0 and we have to solve for C1, C2 and C3 the system




1
1
1


 = C1




1
0
0


 +




0
0
1


 + C3




0
1
0


 =




C1

C2

C3


 .

Thus C1 = C2 = C3 = 1 and finally

y(t) = et




1
0
0


 + et




0
− sin t
cos t


 + et




0
cos t
sin t


 = et




1
cos t− sin t
cos t + sin t


 .

Multiple eigenvalues

If not all roots of the characteristic polynomial of A are distinct, that is,
there are multiple eigenvalues of A, then it may happen that A has less
than n linearly independent eigenvectors. Precisely, let us suppose that an
n × n matrix A has only k < n linearly independent solutions. Then, the
differential equation y′ = Ay has only k linearly independent solutions of
the form eλtv. Our aim is to find additional n − k independent solutions.
We approach this problem by introducing an abstract framework for solving
systems of differential equations.

Recall that for a single equation y′ = ay, where a is a constant, the general
solution is given by y(t) = eatC, where C is a constant. In a similar way,
we would like to say that the general solution to

y′ = Ay,

where A is an n × n matrix, is y = eAtv, where v is any constant vector
in Rn. The problem is that we do not know what it means to evaluate
the exponential of a matrix. However, if we reflect for a moment that the
exponential of a number can be evaluated as the power (Maclaurin) series

ex = 1 + x +
x2

2
+

x3

3!
+ . . . +

xk

k!
+ . . . ,
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where the only involved operations on the argument x are additions, scalar
multiplications and taking integer powers, we come to the conclusion that
the above expression can be written also for a matrix, that is, we can define

eA = I +A+
1
2
A2 +

1
3!
A3 + . . . +

1
k!
Ak + . . . . (3.1.23)

It can be shown that if A is a matrix, then the above series always converges
and the sum is a matrix. For example, if we take

A =




λ 0 0
0 λ 0
0 0 λ


 = λI,

then
Ak = λkIk = λkI,

and

eA = I + λI +
λ2

2
I +

λ3

3!
I + . . . +

λk

k!
+ . . .

=
(

1 + λ +
λ2

2
+

λ3

3!
+ . . . +

λk

k!
+ . . .

)
I

= eλI. (3.1.24)

Unfortunately, in most cases finding the explicit form for eA directly is
impossible.

Matrix exponentials have the following algebraic properties
(
eA

)−1
= e−A

and
eA+B = eAeB (3.1.25)

provided the matrices A and B commute: AB = BA.

Let us define a function of t by

etA = I + tA+
t2

2
A2 +

t3

3!
A3 + . . . +

tk

k!
Ak + . . . . (3.1.26)

It follows that this function can be differentiated with respect to t by
termwise differentiation of the series, as in the scalar case, that is,

d

dt
eAt = A+ tA2 +

t2

2!
A3 + . . . +

tk−1

(k − 1)!
Ak + . . .

= A
(
I + tA+

t2

2!
A2 + . . . +

tk−1

(k − 1)!
Ak−1 + . . .

)

= AetA = etAA,
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proving thus that y(t) = etAv is a solution to our system of equations for
any constant vector v.

As we mentioned earlier, in general it is difficult to find directly the explicit
form of etA. However, we can always find n linearly independent vectors
v for which the series etAv can be summed exactly. This is based on the
following two observations. Firstly, since λI and A− λI commute, we have
by (3.1.24) and (3.1.25)

etAv = et(A−λI)etλIv = eλtet(A−λI)v.

Secondly, if (A− λI)mv = 0 for some m, then

(A− λI)rv = 0, (3.1.27)

for all r ≥ m. This follows from

(A− λI)rv = (A− λI)r−m[(A− λI)mv] = 0.

Consequently, for such a v

et(A−λI)v = v + t(A− λI)v + . . . +
tm−1

(m− 1)!
(A− λI)m−1v.

and

etAv = eλtet(A−λI)v = eλt

(
v + t(A− λI)v + . . . +

tm−1

(m− 1)!
(A− λI)m−1v

)
.

(3.1.28)
Thus, to find all solutions to y′ = Ay it is sufficient to find n independent
vectors v satisfying (3.1.27) for some scalars λ. To check consistency of this
method with our previous consideration we observe that if λ = λ1 is a single
eigenvalue of A with a corresponding eigenvector v1, then (A−λ1I)v1 = 0,
thus m of (3.1.27) is equal to 1. Consequently, the sum in (3.1.28) terminates
after the first term and we obtain

y1(t) = eλ1tv1

in accordance with (3.1.21). From our discussion of eigenvalues and eigen-
vectors it follows that if λi is a multiple eigenvalue of A of algebraic mul-
tiplicity ni and the geometric multiplicity is less then ni, that is, there is
less than ni linearly independent eigenvectors corresponding to λi, then the
missing independent vectors can be found by solving successively equations
(A − λiI)kv = 0 with k running at most up to n1. Thus, we have the
following algorithm for finding n linearly independent solutions to y′ = Ay:

1. Find all eigenvalues of A;
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2. If λ is a single real eigenvalue, then there is an eigenvector v so that
the solution is given by

y(t) = eλtv (3.1.29)

3. If λ is a single complex eigenvalue λ = ξ + iω, then there is a complex
eigenvector v = <v + i=v such that two solutions corresponding to λ
(and λ̄) are given by

y1(t) = eξt(cos ωt<v − sinωt=v)
y2(t) = eξt(cos ωt=v + sin ωt<v) (3.1.30)

4. If λ is a multiple eigenvalue with algebraic multiplicity k (that is,
λ is a multiple root of the characteristic equation of multiplicity k),
then we first find eigenvectors by solving (A − λI)v = 0. For these
eigenvectors the solution is again given by (3.1.29) (or (3.1.30), if λ is
complex). If we found k independent eigenvectors, then our work with
this eigenvalue is finished. If not, then we look for vectors that satisfy
(A − λI)2v = 0 but (A − λI)v 6= 0. For these vectors we have the
solutions

etAv = eλt (v + t(A− λI)v) .

If we still do not have k independent solutions, then we find vectors
for which (A− λI)3v = 0 and (A− λI)2v 6= 0, and for such vectors
we construct solutions

etAv = eλt

(
v + t(A− λI)v +

t2

2
(A− λI)2v

)
.

This procedure is continued till we have k solutions (by the properties
of eigenvalues we have to repeat this procedure at most k times).

If λ is a complex eigenvalue of multiplicity k, then also λ̄ is an eigen-
value of multiplicity k and we obtain pairs of real solutions by taking
real and imaginary parts of the formulae presented above.

Remark 3.1.9. Once we know that all solutions must be of the form (3.1.28)
with the degree of the polynomial being at most equal to the algebraic
multiplicity of λ, we can use the method of undetermined coefficients to find
the solutions. Namely, if λ is an eigenvalue of multiplicity k, the we can
look for a solutions in the form

y(t) = eλt
(
a0 + a1t + . . .ak−1tk−1

)

where unknown vectors a0, . . . ,ak−1 are to be determined by inserting y(t)
into the equation and solving the resulting simultaneous systems of algebraic
equations.
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Example 3.1.10. Find three linearly independent solutions of the differen-
tial equation

y′ =




1 1 0
0 1 0
0 0 2


y.

To obtain the eigenvalues we calculate the characteristic polynomial

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ 1 0
0 1− λ 0
0 0 2− λ

∣∣∣∣∣∣
= (1− λ)2(2− λ)

so that λ1 = 1 is eigenvalue of multiplicity 2 and λ2 = 2 is an eigenvalue of
multiplicity 1.

(i) λ = 1: We seek all non-zero vectors such that

(A− 1I)v =




0 1 0
0 0 0
0 0 1







v1

v2

v3


 =




0
0
0


 .

This implies that v2 = v3 = 0 and v1 is arbitrary so that we obtain
the corresponding solutions

y1(t) = C1e
t




1
0
0


 .

However, this is only one solution and λ1 = 1 has algebraic multiplicity
2, so we have to look for one more solution. To this end we consider

(A− 1I)2v =




0 1 0
0 0 0
0 0 1







0 1 0
0 0 0
0 0 1







v1

v2

v3




=




0 0 0
0 0 0
0 0 1







v1

v2

v3


 =




0
0
0




so that v3 = 0 and both v1 and v2 arbitrary. The set of all solutions
here is a two-dimensional space spanned by




v1

v2

0


 = v1




1
0
0


 + v2




0
1
0


 .

We have to select from this subspace a vector that is not a solution to
(A − λI)v = 0. Since for the later the solutions are scalar multiples
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of the vector (1, 0, 0) we see that the vector (0, 1, 0) is not of this
form and consequently can be taken as the second independent vector
corresponding to the eigenvalue λ1 = 1. Hence

y2(t) = et (I + t(A− I))




0
1
0


 = et







0
1
0


 + t




0 1 0
0 0 0
0 0 1







0
1
0







= et




0
1
0


 + tet




1
0
0


 = et




t
1
0




(ii) λ = 2: We seek solutions to

(A− 2I)v =



−1 1 0
0 −1 0
0 0 0







v1

v2

v3


 =




0
0
0


 .

This implies that v1 = v2 = 0 and v3 is arbitrary so that the corre-
sponding solutions are of the form

y3(t) = C3e
2t




0
0
1


 .

Thus we have found three linearly independent solutions.

Fundamental solutions and nonhomogeneous problems

Let us suppose that we have n linearly independent solutions y1(t), . . . ,yn(t)
of the system y′ = Ay, where A is an n×n matrix, like the ones constructed
in the previous paragraphs. Let us denote by Y(t) the matrix

Y(t) =




y1
1(t) . . . yn

1 (t)
...

...
y1

n(t) . . . yn
n(t)


 ,

that is, the columns of Y(t) are the vectors yi, i = 1, . . . , n. Any such matrix
is called a fundamental matrix of the system y′ = Ay.

We know that for a given initial vector y0 the solution is given by

y(t) = etAy0

on one hand, and, by Theorem 3.1.3, by

y(t) = C1y1(t) + . . . + Cnyn(t) = Y(t)C,
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on the other, where C = (C1, . . . , Cn) is a vector of constants to be deter-
mined. By putting t = 0 above we obtain the equation for C

y0 = Y(0)C

Since Y has independent vectors as its columns, it is invertible, so that

C = Y−1(0)y0.

Thus, the solution of the initial value problem

y′ = Ay, y(0) = y0

is given by
y(t) = Y(t)Y−1(0)y0.

Since etAy0 is also a solution, by the uniqueness theorem we obtain explicit
representation of the exponential function of a matrix

etA = Y(t)Y−1(0). (3.1.31)

Let us turn our attention to the non-homogeneous system of equations

y′ = Ay + g(t). (3.1.32)

The general solution to the homogeneous equation (g(t) ≡ 0) is given by

yh(t) = Y(t)C,

where Y(t) is a fundamental matrix and C is an arbitrary vector. Using the
technique of variation of parameters, we will be looking for the solution in
the form

y(t) = Y(t)u(t) = u1(t)y1(t) + . . . + un(t)yn(t) (3.1.33)

where u(t) = (u1(t), . . . , un(t)) is a vector-function to be determined so
that (3.1.33) satisfies (3.1.32). Thus, substituting (3.1.33) into (3.1.32), we
obtain

Y ′(t)u(t) + Y(t)u′(t) = AY(t)u(t) + g(t).

Since Y(t) is a fundamental matrix, Y ′(t) = AY(t) and we find

Y(t)u′(t) = g(t).

As we observed earlier, Y(t) is invertible, hence

u′(t) = Y−1(t)g(t)
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and

u(t) =

t∫
Y−1(s)g(s)ds + C.

Finally, we obtain

y(t) = Y(t)C + Y(t)

t∫
Y−1(s)g(s)ds (3.1.34)

This equation becomes much simpler if we take etA as a fundamental matrix
because in such a case Y−1(t) =

(
etA)−1 = e−tA, that is, to calculate the

inverse of etA it is enough to replace t by −t. The solution (3.1.34) takes
then the form

y(t) = etAC +
∫

e(t−s)Ag(s)ds. (3.1.35)

Example 3.1.11. Find the general solution to

y′1 = 5y1 + 3y2 + 2te2t,

y′2 = −3y1 − y2 + 4.

Writing this system in matrix notation, we obtain

y′ = Ay + g(t)

with

A =
(

5 3
−3 −1

)

and

g(t) =
(

2te2t

4

)
.

We have to find etA. The first step is to find two independent solutions to
the homogeneous system. The characteristic polynomial is

p(λ) =
∣∣∣∣

5− λ 3
−3 −1− λ

∣∣∣∣ = λ2 − 4λ + 4 = (λ− 2)2

We have double eigenvalue λ = 2. Solving

(A− 2I)v =
(

3 3
−3 −3

) (
v1

v2

)
=

(
0
0

)
,

we obtain v1 = −v2 so that we obtain the eigenvector v1 = (1,−1) and the
corresponding solution

y1(t) = C1e
2t

(
1

−1

)
.
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Since λ1 = 2 has algebraic multiplicity 2, we have to look for another solu-
tion. To this end we consider

(A− 2I)2v =
(

3 3
−3 −3

)(
3 3

−3 −3

)(
v1

v2

)
=

(
0 0
0 0

)(
v1

v2

)

=
(

0
0

)
,

so that v1 and v2 arbitrary. We must simply select a vector linearly inde-
pendent of y1 – to make things simple we can take

y2 =
(

1
0

)

so that the second solution is given as

y2(t) = e2t (I + t(A− I))
(

1
0

)
= e2t

((
1
0

)
+ t

(
3 3

−3 −3

)(
1
0

))

= e2t

(
1
0

)
+ te2t

(
3

−3

)
= e2t

(
1 + 3t
−3t

)

Thus, the fundamental matrix is given by

Y(t) = e2t

(
1 1 + 3t

−1 −3t

)

with

Y(0) =
(

1 1
−1 0

)
.

The discriminant of Y(0) is equal to 1 and we immediately obtain

Y−1(0) =
(

0 −1
1 1

)
.

so that

etA = Y(t)Y−1(0) = e2t

(
1 + 3t 3t
−3t 1− 3t

)
.

Thus

e−tA = e−2t

(
1− 3t −3t

3t 1 + 3t

)

and

e−tAg(t) = e−2t

(
1− 3t −3t

3t 1 + 3t

)(
2te2t

4

)
=

(
2t− 6t2 − 12te−2t

6t2 + 4e−2t + 12te−2t

)
.

To find the particular solution, we integrate the above, getting
∫

e−tAg(t)dt =
( ∫

(2t− 6t2 − 12te−2t)dt∫
(6t2 + 4e−2t + 12te−2t)dt

)
=

(
t2 − 2t3 + 3(2t + 1)e−2t

2t3 − (6t + 5)e−2t

)
,
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and multiply the above by etA to obtain

e2t

(
1 + 3t 3t
−3t 1− 3t

)(
t2 − 2t3 + 3(2t + 1)e−2t

2t3 − (6t + 5)e−2t

)
=

(
(t2 + t3)e2t + 3
−t3e2t − 5

)
.

Therefore, the general solution is given by

y(t) = e2t

(
1 + 3t 3t
−3t 1− 3t

)(
C1

C2

)
+

(
(t2 + t3)e2t + 3
−t3e2t − 5

)

where C1 and C2 are arbitrary constants.

3.1.5 An application

In Subsection 1.3.5 we have derived the system

dx1

dt
= r1 + p2

x2

V
− p1

x1

V
dx2

dt
= p1

x1

V
− (R2 + p2)

x2

V
. (3.1.36)

describing mixing of components in two containers. Here, x1 and x2 are the
amount of dye in vats 1 and 2, respectively. We re-write these equations
using concentrations c1 = x1/V and c2 = x2/V , getting

dc1

dt
=

r1

V
+

p2

V
c2 − p1

V
c1

dc2

dt
=

p1

V
c1 − R2 + p2

V
c1. (3.1.37)

We solve this equations for numerical values of the flow rates r1/V = 0.01,
p1/V = 0.04, p2/V = 0.03 and (R2 + p2)/V = 0.05,

dc1

dt
= 0.01− 0.04c1 + 0.03c2

dc2

dt
= 0.04c1 − 0.05c2, (3.1.38)

and assume that at time t = 0 there was no dye in either vat, that is, we
put

c1(0) = 0, c2(0) = 0.

To practice another technique, we shall solve this system by reducing it to
a second order equations, as described in Example 3.1.1. Differentiating the
first equation and using the second we have

c′′1 = −0.04c′1 + 0.03c′2
= −0.04c′1 + 0.03(0.04c1 − 0.05c2)

= −0.04c′1 + 0.03
(

0.04c1 − 0.05 · 100
3

(c′1 − 0.01 + 0.04c1)
)



Differential Equations 83

so that, after some algebra,

c′′1 + 0.09c′1 + 0.008c1 = 0.005.

We have obtained second order non-homogenous equation with constant
coefficients. To find the characteristic roots we solve the quadratic equation

λ2 + 0.09λ + 0.008 = 0

getting λ1 = −0.08 and λ2 = −0.01. Thus, the space of solutions of the
homogeneous equations is spanned by e−0.01t and e−0.08t. The right hand
side is a constant and since zero is not a characteristic root, we can look for a
solution to the nonhomogeneous problem in the form yp(t) = A, which imme-
diately gives yp(t) = 5/8 so that the general solution of the non-homogeneous
equation for c1 is given by

c1(t) = C1e
−0.08t + C2e

−0.01t +
5
8
,

where C1 and C2 are constants whose values are to be found from the initial
conditions.

Next we find c2 by solving the first equation with respect to it, so that

c2 =
100
3

(
c′1 + 0.04c1 − 0.01

)

=
100
3

(−0.08C1e
−0.08t − 0.01C2e

−0.01t

+ 0.04
(

C1e
−0.08t + C2e

−0.01t +
5
8

)
− 0.01

)

and
c2(t) = −4

3
C1e

−0.08t + C2e
−0.01t + 0.5.

Finally, we use the initial conditions c1(0) = 0 and c2(0) = 0 to get the
system of algebraic equations for C1 and C2

C1 + C2 = −5
8
,

4
3
C1 − C2 =

1
2
.

From these equations we find C1 = −3/56 and C2 = −4/7. Hence

c1(t) = − 3
56

e−0.08t − 4
7
e−0.01t +

5
8

c2(t) =
1
14

e−0.08t − 4
7
e−0.01t +

1
2
.

From the solution formulae we obtain that lim
t→∞ c1(t) = 5

8 and lim
t→∞ c2(t) = 1

2 .
This means that the concentrations approach the steady state concentration
as t becomes large. This is illustrated in Figures 2.10 and 2.11
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Fig 2.10 Approach to the steady-state of the concentration c1.
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Fig 2.11 Approach to the steady state of the concentration c2.
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3.2 Second order linear equations

Second order equations occur very often in practice so that it is useful to
specify the general theory of systems for this particular case.

d2y

dt2
+ a1

dy

dt
+ a0y = f(t) (3.2.1)

where a1, a0 are real constants and f is a given continuous function. As
before in what follows we shall abbreviate d2y/dt2 = y′′ and dy/dt = y′.

As we mentioned earlier, (3.2.1) can be written as an equivalent system of
2 first order equations by introducing new variables y1 = y, y2 = y′ = y′1,

y′1 = y2,

...
...

y′2 = −a1y2 − a0y1 + f(t).

Note that if (3.2.1) was supplemented with the initial conditions y(t0) =
y0, y′(t0) = y1, then these conditions will become natural initial conditions
for the system as y1(t0) = y0, y2(t0) = y1.

Let us first recall the theory for first order linear equations, specified to the
case of a constant coefficient a:

y′ + ay = f(t). (3.2.2)

By (2.3.14), the general solution to (3.2.2) is given by

y(t) = Ce−at + e−at

∫
easf(s)ds,

where the first term is the general solution of the homogeneous (f ≡ 0)
version of (3.2.2) and the second is a particular solution to (3.2.2). This
suggests that a sensible strategy for solving (3.2.1) is to look first for solu-
tions to the associated homogeneous equation

d2y

dt2
+ a1

dy

dt
+ a0y = 0. (3.2.3)

Let as denote by y0 the general solution to (3.2.3), that is, y0 is really a
class of functions depending on two constants. Next, let yp be a particular
solution of (3.2.1) and consider y(t) = yp(t) + z(t). Then

y′′ + a1y
′ + a0y = y′′p + a1y

′
p + a0yp + z′′ + a1z

′ + a0z

= f(t) + z′′ + a1z
′ + a0z,
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that is, y is a solution to (3.2.1) if and only if z is any solution to (3.2.3) or,
in other words, if and only if z is the general solution to (3.2.3), z = yc.

Accordingly, we shall first develop methods for finding general solutions to
homogeneous equations.

3.2.1 Homogeneous equations

Let us consider the homogeneous equation (3.2.3)

d2y

dt2
+ a1

dy

dt
+ a0y = 0. (3.2.4)

Since the space of solutions of the corresponding 2× 2 homogeneous system

y′1 = y2,

...
...

y′2 = −a1y2 − a0y1. (3.2.5)

is two-dimensional, the space of solutions to (3.2.4) is also two-dimensional,
that is, there are two independent solutions of (3.2.4) y1(t), y2(t) such that
any other solution is given by

y(t) = C1y1(t) + C2y2(t).

How can we recover the general solution to (3.2.4) from the solution y(t) of
the system? A function y(t) solves (3.2.4) if and only if y(t) = (y1(t), y2(t)) =
(y(t), y′(t)) solves the system (3.2.5), we see that the general solution to
(3.2.4) can be obtained by taking first components of the solution of the as-
sociated system (3.2.5). We note once again that if y1(t) = (y1

1(t), y
1
2(t)) =

(y1(t), dy1

dt (t)) and y1(t) = (y2
1(t), y

2
2(t)) = (y2(t), dy2

dt (t)) are two linearly in-
dependent solutions to (3.2.5), then y1(t) and y2(t) are linearly independent
solutions to (3.2.4). In fact, otherwise we would have y1(t) = Cy2(t) for
some constant C and therefore also dy1

dt (t) = C dy2

dt (t) so that the wronskian,
having the second column as a scalar multiple of the first one, would be zero,
contrary to the assumption that y1(t) and y2(t) are linearly independent.

Two find explicit formulae for two linearly independent particular solutions
to (3.2.4) we write the equation for the characteristic polynomial of (3.2.5):

∣∣∣∣
−λ 1
−a0 −a1 − λ

∣∣∣∣ = 0

that is
λ2 + a1λ + a0 = 0,
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which is also called the characteristic polynomial of (3.2.4). This is a
quadratic equation in λ which is zero when λ = λ1 or λ = λ2 with

λ1,2 =
−a1 ±

√
∆

2

where the discriminant ∆ = a2
1 − 4a0.

If ∆ > 0, then λ1 6= λ2, and we obtain two different solutions y1 = eλ1t and
y2 = eλ2t. Thus

y(t) = C1e
λ1t + C2e

λ2t

with two arbitrary constants is the sought general solution to (3.2.4). If
∆ < 0, then λ1 and λ2 are complex conjugates: λ1 = ξ+iω, λ2 = ξ−iω with
ξ = −a1/2 and ω = −√−∆/2. Since in many applications it is undesirable
to work with complex functions, we shall express the solution in terms of real
functions. Using the Euler formula for the complex exponential function,
we obtain

y(t) = C1e
λ1t + C2e

λ2t = C1e
ξt(cosωt + i sinωt) + C2e

ξt(cosωt− i sinωt)
= (C1 + C2)eξt cosωt + i(C1 − C2)eξt sinωt.

If as the constants C1 and C2 we take complex conjugates C1 = (A− iB)/2
and C2 = (A + iB)/2 with arbitrary real A and B, then we obtain y as a
combination of two real functions with two arbitrary real coefficients

y(t) = Aeξt cosωt + Beξt sinωt.

We have left behind the case λ1 = λ2 (necessarily real). In this case we have
only one function eλ1t with one arbitrary constant C1 so that y(t) = C1e

λ1t

is not the general solution to (3.2.4). Using the theory for systems, we obtain
the other solution in the form

y2(t) = teλ1t

with λ1 = −a1/2. Thus the general solution is given by

y(t) = (C1 + C2t)e−ta1/2.

Summarizing, we have the following general solutions corresponding to var-
ious properties of the roots of the characteristic polynomial λ1, λ2.

y(t) = C1e
λ1t + C2e

λ2t if λ1 6= λ2, λ1, λ2 real,

y(t) = C1e
ξt cosωt + C2e

ξt sinωt if λ1,2 = ξ ± iω,

y(t) = (C1 + C2t)e−tλ if λ1 = λ2 = λ.
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3.2.2 Nonhomogeneous equations

At the beginning of this section we have shown that to find the general
solution to

d2y

dt2
+ a1

dy

dt
+ a0y = f(t) (3.2.6)

we have to find the general solution to the homogeneous version (3.2.4) and
then just one particular solution to the full equation (3.2.6). In the previous
subsection we have presented the complete theory for finding the general
solution to homogeneous equations. Here we shall discuss two methods of
finding solutions to nonhomogeneous equation. We start with the so-called
variation of parameters method that is very general but sometimes rather
cumbersome to apply. The second method, of judicious guessing, can be
applied for special right-hand sides only, but then it gives the solution really
quickly.

Variation of parameters The method of variations of parameters was in-
troduced for systems of equations, specifying it for second order equations
would be, however, quite cumbersome. Thus, we shall derive it from scratch.
Let

y0(t) = C1y1(t) + C2y2(t)

be the general solution to the homogeneous version of (3.2.6). We are looking
for a solution to (3.2.6) in the form

y(t) = u(t)y1(t) + v(t)y2(t), (3.2.7)

that is, we allow the arbitrary parameters C1 and C2 to depend on time. To
determine v(t) and u(t) so that (3.2.7) is a solution to (3.2.6), we substitute
y(t) to the equation. Since there is only one equation, this will give one
condition to determine two functions, giving some freedom to pick up the
second condition is such a way that the resulting equation becomes the
easiest. Let us work it out. Differentiating (3.2.7) we have

y′ = uy′1 + vy′2 + u′y1 + v′y2,

and
y′′ = u′y′1 + v′y′2 + uy′′1 + vy′′2 + u′′y1 + v′′y2 + u′y′1 + v′y′2.

We see that there appear second order derivatives of the unknown functions
and this is something we would like to avoid, as we are trying to simplify a
second order equation. For the second order derivatives not to appear we
simply require that the part of y′ containing u′ and v′ to vanish, that is,

u′y1 + v′y2 = 0.
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With this, we obtain

y′ = uy′1 + vy′2,
y′′ = u′y′1 + v′y′2 + uy′′1 + vy′′2 .

Substituting these into (3.2.6) we obtain

u′y′1 + v′y′2 + uy′′1 + vy′′2 + a1(uy′1 + vy′2) + a0(uy1 + vy2)
= u(y′′1 + a1y

′
1 + a0y1) + v(y′′2 + a1y

′
2 + a0y2) + u′y′1 + v′y′2

= f(t).

Since y1 and y2 are solutions of the homogeneous equation, first two terms
in the second line vanish and for y to satisfy (3.2.6) we must have

u′y′1 + v′y′2 = f(t).

Summarizing, to find u and v such that (3.2.7) satisfies (3.2.6) we must solve
the following system of equations

u′y1 + v′y2 = 0, (3.2.8)
u′y′1 + v′y′2 = f(t) (3.2.9)

System (3.2.9) is to be solved for u′ and v′ and the solution integrated to
find u and v.

Remark 3.2.1. System (3.2.9) can be solved by determinants. The main
determinant

W (t) =
∣∣∣∣

y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y′2(t)− y2(t)y′1(t) (3.2.10)

is the wronskian and plays an important rôle in the general theory of dif-
ferential equations. Here we shall only not that clearly for (3.2.9) to be
solvable, W (t) 6= 0 for all t which is ensured by y1 and y2 being linearly in-
dependent which, as we know, must be the case if y0 is the general solution
to the homogeneous equation, see Remark 3.1.5.

Example 3.2.2. Find the solution to

y′′ + y = tan t

on the interval −π/2 < t < π/2 satisfying the initial conditions y(0) = 1
and y′(0) = 1.

Step 1.
General solution to the homogeneous equation

y′′ + y = 0
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is obtained by finding the roots of the characteristic equation

λ2 + 1 = 0.

We have λ1,2 = ±i so that ξ = 0 and ω = 1 and we obtain two independent
solutions

y1(t) = cos t, y2(t) = sin t.

Step 2.
To find a solution to the nonhomogeneous equations we first calculate wron-
skian

W (t) =
∣∣∣∣

cos t sin t
− sin t cos t

∣∣∣∣ = 1.

Solving (3.2.9), we obtain

u′(t) = − sin t tan t, v′(t) = cos t tan t.

Then

u(t) = −
∫

sin t tan tdt = −
∫

sin2

cos t
dt = −

∫
1− cos2

cos t
dt

=
∫

cos tdt−
∫

dt

cos t
= sin t−

∫
dt

cos t

= sin t− ln | sec t + tan t| = sin t− ln(sec t + tan t),

where the absolute value bars can be dropped as for −π/2 < t < πt sec t +
tan t > 0. Integrating the equation for v we find

v(t) = − cos t

and a particular solution the non-homogeneous equation can be taken to be

yp(t) = u(t)y1(t) + v(t)y2(t) = cos t(sin t− ln(sec t + tan t)) + sin t(− cos t)
= − cos t ln(sec t + tan t).

Note that we have taken the constants of integration to be zero in each case.
This is allowed as we are looking for particular integrals and we are free to
pick up the simplest particular solution.

Thus, the general solution to the non-homogeneous equation is

y(t) = C1 cos t + C2 sin t− cos t ln(sec t + tan t).

Step 3.
To solve the initial value problem we must find the derivative of y:

y′(t) = −C1 sin t + C2 sin t + sin t ln(sec t + tan t)− 1
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so that we obtain

1 = y(0) = C1, 1 = y′(0) = C2 − 1,

hence C1 = 1 and C2 = 2. Therefore

y(t) = cos t + 2 sin t− cos t ln(sec t + tan t).

Judicious guessing

The method of judicious guessing, called also the method of undetermined
coefficients, is based on the observation that for some functions the oper-
ations performed on the left-hand side of the differential equation, that is,
taking derivatives, multiplying by constants and addition, does not change
the form of the function. To wit, the derivative of a polynomial is a poly-
nomial, the derivative of an exponential function is an exponential function
and, in general the derivative of the product of an exponential function and
a polynomial is again of the same form. Trigonometric functions sin t and
cos t are included into this class by Euler’s formulae sin t = eit−e−it

2i and
cos t = eit+e−it

2 . Thus, if the right-hand side is of this form, then it makes
sense to expect that the same of the solution. Let us test this hypothesis on
the following example.

Example 3.2.3. Find a particular solution to

y′′ − 2y′ − 3y = 3t2.

The right-hand side is a polynomial of the second degree so we will look for
a solution amongst polynomials. To decide polynomial of what degree we
should try we note that if we try polynomials of zero or first degree then
the left-hand side will be at most of this degree, as the differentiation lowers
the degree of a polynomial. Thus, the simplest candidate appears to be a
polynomial of second degree

y(t) = At2 + Bt + C,

where A,B, C are coefficients to be determined. Inserting this polynomial
into the equation we get

y′′ − 2y′ − 3y = 2A− 2B − 3C − (4A + 3B)t− 3At2 = 3t2,

from which we obtain the system

−3A = 3,

−4A− 3B = 0,

2A− 2B − 3C = 0.

Solving this system, we obtain A = −1, B = 4/3 and C = −14/9 so that
the solution is

y(t) = −t2 − 4
3
t− 14

9
.
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Unfortunately, there are some pitfalls in this method, as shown in the fol-
lowing example.

Example 3.2.4. Find a particular solution to

y′′ − 2y′ − 3y = e−t.

Using our method, we take y(t) = Ae−t but inserting it into the equation
we find that

y′′ − 2y′ − 3y = Ae−t + 2Ae−t − 3Ae−t = 0 6= e−t,

so that no choice of the constant A can turn y(t) into the solution of our
equation. The reason for this is that e−t is a solution to the homogeneous
equation what could be ascertained directly by solving the characteristic
equation λ2 − 2λ− 3 = (λ + 1)(λ− 3). A way of this trouble is to consider
y(t) = Ate−t so that y′ = Ae−t −Ate−t and y′′ = −2Ae−t + Ate−t and

y′′ − 2y′ − 3y = −2Ae−t + Ate−t − 2(Ae−t −Ate−t)− 3Ate−t

= −4e−t,

which agrees with e−t if A = −1
4 . Thus we have a particular solution

y(t) = −1
4
te−t.

In general, it can be proved that the following procedure always produces
the solution to

y′′ + a1y
′ + a0y = tmeat (3.2.11)

where a0 6= 0 and m is a non-negative integer.

I. When a is not a root of the characteristic equation λ2 + a1λ + a0 = 0,
then we use

y(t) = eat(Amtm + Am−1t
m−1 + . . . + A0); (3.2.12)

II. If a is a single root of the characteristic equation, then use (3.2.12)
multiplied by t and if a is a double root, then use (3.2.12) multiplied
by t2.

Remark 3.2.5. Note that if a0 = 0, then (3.2.11) is reducible to a first order
equation by methods of Subsection 2.3.4.

Also, equations with right-hand sides of the form

y′′ + a1y
′ + a0y = f1(t) + f2(t) . . . + fn(t), (3.2.13)
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can be handled as if yi(t) is a particular solution to

y′′ + a1y
′ + a0y = fi(t), i = 1, . . . , n,

then the sum yp(t) = y1(t) + y2(t) . . . + yn(t) is a particular solution to
(3.2.13) as my be checked by direct substitution.

Example 3.2.6. Find a particular solution of

y′′ + 4y = 32t cos 2t− 8 sin 2t.

Let us first find the characteristic roots. From the equation λ2 + 4 = 0 we
find λ = ±2i. Next we convert the RHS of the equation to the exponential
form. Since cos 2t = (ei2t + e−i2t)/2 and sin 2t = (ei2t− e−i2t)/2i, we obtain

32t cos 2t− 8 sin 2t = (16t + 4i)ei2t + (16t− 4i)e−i2t.

In both cases we have the exponent being a single root of the characteristic
equation so that we will be looking for solutions in the form y1(t) = t(At +
B)ei2t and y2(t) = t(Ct+D)e−i2t. For y1 we obtain y′1(t) = (2At+B)ei2t +
2it(At+B)ei2t and y′′1(t) = 2Aei2t +4i(2At+B)ei2t−4t(At+B)ei2t so that
inserting these into the equation we obtain

2Aei2t + 4i(2At + B)ei2t − 4(At2 + Bt)ei2t + 4t(At + B)ei2t = (16t + 4i)ei2t

which gives 2A + 4iB = 4i and 8iA = 16. Thus A = −2i and B = 2.
Similarly, C = 2i and D = 2 and we obtain the particular solution in the
form

y(t) = t(−2it + 2)ei2t + t(2it + 2)e−i2t = 4t2 sin 2t + 4t cos t,

where we used Euler’s formula to convert exponential into trigonometric
functions once again.

3.2.3 An application

Second order equations appear in many applications involving oscillations
occurring due to the existence of an elastic force in the system. The reason
for this is that the elastic force, at least for small displacements, is propor-
tional to the displacement so that according to Newton’s second law

my′′ = −ky

where k is a constant. In general, there is a damping force (due to the
resistance of the medium) and some external force, and then the full equation
for oscillation reads

y′′ + cy′ + ky = F (t). (3.2.14)
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Fig 2.8 Forced free vibrations: non-resonance case with ω0 = 0.5 and
ω = 0.4 (dashed line), ω = 0.45 (dotted line) and ω = 0.49 (solid line).

Note the increase in amplitude of vibrations as the frequency of the
external force approaches the natural frequency of the system

We shall discuss in detail a particular example of this equation describing
the so-called forced free vibrations. In this case we have

y′′ + ω2
0y =

F0

m
cosωt, (3.2.15)

where we denoted ω2
0 = k/m and introduced a special periodic force F (t) =

F0 cosωt with constant magnitude F0 and period ω.

The characteristic equation is λ2 + ω2
0 = 0 so that we have imaginary roots

λ1,2 = ±iω0 and the general solution to the homogeneous equations is given
by

y0(t) = C1 cosω0t + C2 sinω0t.

The frequency ω0 is called the natural frequency of the system. The case
ω 6= ω0 gives a particular solution in the form

yp(t) =
F0

m(ω2
0 − ω2)

cosωt

so that the general solution is given by

y(t) = C1 cosω0t + C2 sinω0t +
F0

m(ω2
0 − ω2)

cosωt, (3.2.16)

that is the solution is obtained as a sum of two periodic motions, as shown
in Figure 2.8. Though there is nothing unusual here, we can sense that a
trouble is brewing – if the the natural frequency of the system is close to
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Fig 2.9 Forced free vibrations: the resonance case. The amplitude of
vibrations increases to infinity.

the frequency of the external force, then the amplitude of vibrations can
become very large, because the denominator in the last term in (3.2.16)
is very small. Let us find out what happens if ω0 = ω. In this case we
convert F (t) = F0 cosωt = F0 cosω0t = F0(eiω0t + e−iω0t)/2 and look for
the particular solution in the form yp(t) = t(Aeiω0t + Be−iω0t). We obtain
y′p(t) = Aeiω0t + Be−iω0t + tiω0(Aeiω0t −Be−iω0t) and

y′′p(t) = i2(Aeiω0t −Be−iω0t)− tω2
0(Aeiω0t + Be−iω0t).

Inserting these into the equation and comparing coefficients we find that
A = B = −F0/4iω0 so that

yp(t) =
F0

2ω0

eiω0t − e−iω0t

2i
=

F0

2ω0
t sinω0t

and the general solution is given by

y(t) = C1 cosω0t + C2 sinω0t +
F0

2ω0
t sinω0t.

A graph of such a function is shown in Figure 2.9. The important point of
this example is that even small force can induce very large oscillations in
the system if its frequency is equal or even only very close to the natural
frequency of the system. This phenomenon is called the resonance and is
responsible for a number of spectacular collapses of constructions, like the
collapse of Tacoma Bridge in the USA (oscillations induced by wind) and
Broughton suspension bridge in England (oscillations introduced by soldiers
marching in cadence).
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Chapter 4

Difference equations: models
and solutions

4.1 First order difference equations

The general form of a first order difference equation is

x(n + 1) = f(n, x(n)), (4.1.1)

where f is any function of two variables defined on N0 × R, where N0 =
{0, 1, 2 . . .} is the set of natural numbers enlarged by 0. In this chapter we
will be concerned only with linear difference equations and systems of them,
where x(n) is a vector and f is a matrix.

4.1.1 Methods of solution

The simplest difference equations are these defining geometric and arith-
metic progressions:

x(n + 1) = ax(n),

and
y(n + 1) = y(n) + a,

respectively, where a is a constant. The solutions of these equations are
known to be

x(n) = anx(0),

and
y(n) = y(0) + na.

We shall consider the generalization of both these equations: the general
first order difference equation,

x(n + 1) = a(n)x(n) + g(n) (4.1.2)

97



98 Chapter 4

with the an initial condition x(0) = x0. Calculating first few iterates, we
obtain

x(1) = a(0)x(0) + g(0),
x(2) = a(1)x(1) + g(1) = a(1)a(0)x(0) + a(1)g(0) + g(1),
x(3) = a(2)x(2) + g(2) = a(2)a(1)a(0)x(0) + a(2)a(1)g(0) + a(2)g(1) + g(2),
x(4) = a(3)x(3) + g(3)

= a(3)a(2)a(1)a(0)x(0) + a(3)a(2)a(1)g(0) + a(3)a(2)g(1) + a(3)g(2) + g(3).

At this moment we have enough evidence to conjecture that the general
form of the solution could be

x(n) = x(0)
n−1∏

k=0

a(k) +
n−1∑

k=0

g(k)
n−1∏

i=k+1

a(i) (4.1.3)

where we adopted the convention that
n−1∏

n
= 1. Similarly, to simplify no-

tation, we agree to put
j∑

k=j+1

= 0. To fully justify this formula, we shall

use mathematical induction. Constructing (4.1.3) we have checked that the
formula holds for a few initial values of the argument. Assume now that it
is valid for n and consider

x(n + 1) = a(n)x(n) + g(n)

= a(n)

(
x(0)

n−1∏

k=0

a(k) +
n−1∑

k=0

g(k)
n−1∏

i=k+1

a(i)

)
+ g(n)

= x(0)
n∏

k=0

a(k) + a(n)
n−1∑

k=0

g(k)
n−1∏

i=k+1

a(i) + g(n)

= x(0)
n∏

k=0

a(k) +
n−1∑

k=0

g(k)
n∏

i=k+1

a(i) + g(n)
n∏

i=n+1

a(i)

= x(0)
n∏

k=0

a(k) +
n∑

k=0

g(k)
n∏

i=k+1

a(i)

which proves that (4.1.3) is valid for all n ∈ N.

Two special cases

There are two special cases of (4.1.2) that appear in many applications. In
the first, the equation is given by

x(n) = ax(n) + g(n), (4.1.4)
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with the value x(0) given. In this case
k2∏

k=k1

a(k) = ak2−k1+1 and (4.1.3) takes

the form

x(n) = anx(0) +
n−1∑
k=0

an−k−1g(k). (4.1.5)

The second case is a simpler form of (4.1.4), given by

x(n) = ax(n) + g, (4.1.6)

with g independent of n. In this case the sum in (4.1.5) can be evaluated in
an explicit form giving

x(n) =
{

anx(0) + g an−1
a−1 if a 6= 1,

x(0) + gn.
(4.1.7)

Example 4.1.1. Assume that a dose D0 of a drug, that increases it’s con-
centration in the patient’s body by c0, is administered at regular time inter-
vals t = 0, T, 2T, 3T . . .. Between the injections the concentration c of the
drug decreases according to the differential equation c′ = −γc, where γ is
a positive constant. It is convenient here to change slightly the notational
convention and denote by cn the concentration of the drug just after the
nth injection, that is, c0 is the concentration just after the initial (zeroth)
injection, c1 is the concentration just after the first injection, that is, at
the time T , etc. We are to find formula for cn and determine whether the
concentration of the drug eventually stabilizes.

In this example we have a combination of two processes: continuous between
the injections and discrete in injection times. Firstly, we observe that the
process is discontinuous at injection times so we have two different values for
c(nT ): just before the injection and just after the injection (assuming that
the injection is done instantaneously). To avoid ambiguities, we denote by
c(nT ) the concentration just before the nth injection and by cn the concen-
tration just after, in accordance with the notation introduced above. Thus,
between the nth and n + 1st injection the concentration changes according
to the exponential law

c((n + 1)T ) = cne−γT

so that over each time interval between injection the concentration decreases
by a constant fraction a = e−γT < 1. Thus, we are able to write down the
difference equation for concentrations just after n + 1st injection as

cn+1 = acn + c0, (4.1.8)

where c0 is the dose of each injection. We can write down the solution using
(4.1.7) as

cn = c0a
n + c0

an − 1
a− 1

= − c0

1− a
an+1 +

c0

1− a
.
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Fig 3.1 Long time behaviour of the concentration c(t).

Since a < 1, we immediately obtain that c̄ = lim
n→∞ cn = c0

1−a = c0
1−e−γT .

Similarly, the concentration just before the nth injection is

c(nT ) = cn−1e
−γT = e−γT

(
c0

e−γT − 1
e−γTn +

c0

1− e−γT

)

=
c0

1− eγT
e−γTn +

c0

eγT − 1

and for the long run c = lim
n→∞ c(nT ) = c0

eγT−1
.

For example, using c0 = 14 mg/l, γ = 1/6 and T = 6 hours we obtain
that after a long series of injections the maximal concentration, attained
immediately after injections, will stabilize at around 22 mg/l. The minimal
concentration, just before injection, will stabilize at around c = 14/e− 1 ≈
8.14 mg/l. This effect is illustrated at Fig. 3.1.

Example 4.1.2. In Subsection 1.2.1 we discussed the difference equation
governing long-term loan repayment:

D(k + 1) = D(k) +
αp

100
D(k)−R = D(k)

(
1 +

αp

100

)
−R, (4.1.9)

where D0 is the initial debt to be repaid, for each k, D(k) is the outstand-
ing debt after the kth repayment, the payment made after each conversion
period is R, α% is the annual interest rate and p is the conversion period,
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that is, the number of payments in one year. To simplify notation we denote
r = αp/100

Using again (4.1.7) we obtain the solution

D(k) = (1 + r)k D0 −R
k−1∑
i=0

(1 + r)k−i−1

= (1 + r)k D0 −
(
(1 + r)k − 1

) R

r

This equation gives answers to a number of questions relevant in taking a
loan. For example, if we want to know what will be the monthly instalment
on a loan of D0 to be repaid in n payments, we observe that the loan is
repaid in n instalments if D(n) = 0, thus we must solve

0 = (1 + r)n D0 − ((1 + r)n − 1)
R

r

in R, which gives

R =
rD0

1− (1 + r)−n
.

For example, taking a mortgage of R200000 to be repaid over 20 years in
monthly instalments at the annual interest rate of 13% we obtain α = 1/12,
hence r = 0.0108, and n = 20× 12 = 240. Therefore

R =
0.0108 · 200000
1− 1.0108−240

≈ R2167.

4.2 Systems of difference equations and higher or-
der equations

4.2.1 Homogeneous systems of difference equations

We start with the homogeneous system of difference equations

y1(n + 1) = a11y1(n) + a12y2(n) + . . . + a1kyk(n),
...

...
..., (4.2.1)

yk(n + 1) = ak1y1(n) + ak2y2(n) + . . . + akkyk(n),

where, for n ≥ 0, y1(n), . . . , yk(n) are unknown sequences, a11, . . . , akk are
constant coefficients and g1(n) . . . , gk(n) are known. As with systems of
differential equations, we shall find it more convenient to use the matrix
notation. Denoting y = (y1, . . . , yk), A = {aij}1≤i,j≤k, that is,

A =




a11 . . . a1k
...

...
ak1 . . . akk


 ,
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(4.2.1) can be written as

y(n + 1) = Ay(n). (4.2.2)

Eq. (4.2.2) is usually supplemented by the initial condition y(0) = y0. By
induction, to see that the solution to (4.2.2) is given by

y(n) = Any0. (4.2.3)

The problem with (4.2.3) is that it is rather difficult to give an explicit form
of An. We shall solve this problem in a way similar to Subsection 3.1.4,
where we were to evaluate the exponential function of A.

To proceed, we assume that the matrix A is nonsingular. This means,
in particular, that if v1, . . . ,vk are linearly independent vectors, then also
Av1, . . . ,Avk are linearly independent. Since Rk is k-dimensional, it is
enough to find k linearly independent vectors vi, i = 1, . . . , k for which
Anvi can be easily evaluated. Assume for a moment that such vectors have
been found. Then, for arbitrary x0 ∈ Rk we can find constants c1, . . . , ck

such that
x0 = c1v1 + . . . + c2vk.

Precisely, let V be the matrix having vectors vi as its columns, and let
c = (c1, . . . , ck), then

c = V−1x0. (4.2.4)

Note, that V is invertible as the vectors vi are linearly independent.

Thus, for an arbitrary x0 we have

Anx0 = An(c1v1 + . . . + c2vk) = c1Anv1 + . . . + ckAnvk. (4.2.5)

Now, if we denote byAn the matrix whose columns are vectorsAnv1, . . . ,Anvk,
then we can write

An = AnV−1 (4.2.6)

Hence, the problem is to find k linearly independent vectors vi, i = 1, . . . , k,
on which powers of A can be easily evaluated. As before, we use eigenvalues
and eigenvectors for this purpose. Firstly, note that if v1 is an eigenvector of
A corresponding to an eigenvalue λ1, that is, Av1 = λ1v1, then by induction

Anv1 = λn
1v

1.

Therefore, if we have k linearly independent eigenvectors v1, . . . ,vk cor-
responding to eigenvalues λ1, . . . , λk (not necessarily distinct), then from
(4.2.5) we obtain

Anx0 = c1λ
n
1v

1 + . . . + ckλ
n
kv

k.

with c1, . . . , ck given by (4.2.4). Note that, as for systems of differential
equations, if λ is a complex eigenvalue with eigenvector v, then both <(λnv)
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and =(λnv) are real valued solutions. To find explicit expressions for them
we write λ = reiφ where r = |λ| and φ = Argλ. Then

λn = rneinφ = rn(cosnφ + i sinnφ)

and

<(λnv) = rn(cosnφ<v − sinnφ=v),
=(λnv) = rn(sinnφ<v + cosnφ=v).

Finally, if for some eigenvalue λi the number νi of linearly independent
eigenvectors is smaller than its algebraic multiplicity ni, then we follow the
procedure described in Subsection 3.1.4, that is, we find all solutions to

(A− λiI)2v = 0

that are not eigenvectors and, if we still do not have sufficiently many inde-
pendent vectors, we continue solving

(A− λiI)jv = 0

with j ≤ ni; it can be proven that in this way we find ni linearly independent
vectors. Let vj is found as a solution to (A−λiI)jvj = 0 with j ≤ ni. Then,
using the binomial expansion we find

Anvj = (λiI +A− λiI)nvj =
n∑

r=0
λn−r

i

(
n
r

)
(A− λiI)rvj

=
(
λn

i I + nλn−1
i (A− λiI) + . . .

+
n!

(j − 1)!(n− j + 1)!
λn−j+1

i (A− λiI)j−1

)
vj, (4.2.7)

where (
n
r

)
=

n!
r!(n− r)!

is the Newton symbol. It is important to note that (4.2.7) is a finite sum
for any n; it always terminates at most at the term (A− λ1I)ni−1 where ni

is the algebraic multiplicity of λi.

We shall illustrate these considerations by the following example.

Example 4.2.1. Find An for

A =




4 1 2
0 2 −4
0 1 6


 .
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We start with finding eigenvalues of A:

p(λ) =

∣∣∣∣∣∣

4− λ 1 2
0 2− λ −4
0 1 6− λ

∣∣∣∣∣∣
= (4− λ)(16− 8λ + λ2) = (4− λ)3 = 0

gives the eigenvalue λ = 4 of algebraic multiplicity 3. To find eigenvectors
corresponding to λ = 3, we solve

(A− 4I)v =




0 1 2
0 −2 −4
0 1 2







v1

v2

v3


 =




0
0
0


 .

Thus, v1 is arbitrary and v2 = −2v3 so that the eigenspace is two dimen-
sional, spanned by

v1 =




1
0
0


 , v2 =




0
−2
1


 .

Therefore

Anv1 = 4n




1
0
0


 , Anv2 = 4n




0
−2
1


 .

To find the last vector we consider

(A− 4I)2v =




0 1 2
0 −2 −4
0 1 2







0 1 2
0 −2 −4
0 1 2







v1

v2

v3




=




0 0 0
0 0 0
0 0 0







v1

v2

v3


 =




0
0
0


 .

Any vector solves this equation so that we have to take a vector that is not
an eigenvalue. Possibly the simplest choice is

v3 =




0
0
1


 .

Thus, by (4.2.7)

Anv3 =
(
4nI + n4n−1(A− 4I)

)
v3

=







4n 0 0
0 4n 0
0 0 4n


 + n4n−1




0 1 2
0 −2 −4
0 1 2










0
0
1




=




2n4n−1

−n4n

4n + 2n4n−1


 .



Differential Equations 105

To find explicit expression for An we use (4.2.6). In our case

An =




4n 0 2n4n−1

0 −2 · 4n −n4n

0 4n 4n + 2n4n−1


 ,

further

V =




1 0 0
0 −2 0
0 1 1


 ,

so that

V−1 =




1 0 0
0 −1

2 0
0 1

2 1


 .

Therefore

An = AnV−1 =




4n n4n−1 2n4n−1

0 4n − 2n4n−1 −n4n

0 n4n−1 4n + 2n4n−1


 .

The next example shows how to deal with complex eigenvalues.

Example 4.2.2. Find An if

A =
(

1 −5
1 −1

)
.

We have ∣∣∣∣
1− λ −5

1 −1− λ

∣∣∣∣ = λ2 + 4

so that λ1,2 = ±2i. Taking λ1 = 2i, we find the corresponding eigenvector
by solving (

1− 2i −5
1 −1− 2i

)(
v1

v2

)
=

(
0
0

)
;

we get

v1 =
(

1 + 2i
1

)

and

x(n) = Anv1 = (2i)n

(
1 + 2i

1

)
.

To find real valued solutions, we have to take real and imaginary parts of
x(n). Since i = cos π

2 + i sin π
2 , we have by de Moivre’s formula

(2i)n = 2n
(
cos

π

2
+ i sin

π

2

)n
= 2n

(
cos

nπ

2
+ i sin

nπ

2

)
.
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Therefore

<x(n) = 2n

(
cos

nπ

2

(
1
1

)
− sin

nπ

2

(
2
0

))

=x(n) = 2n

(
cos

nπ

2

(
2
0

)
+ sin

nπ

2

(
1
1

))
.

The initial values for <x(n) and =x(n) are, respectively,
(

1
1

)
and

(
2
0

)
.

Since An is a real matrix, we have <Anv1 = An<v1 and =Anv1 = An=v1,
thus

An

(
1
1

)
= 2n

(
cos

nπ

2

(
1
1

)
− sin

nπ

2

(
2
0

))
= 2n

(
cos nπ

2 − 2 sin nπ
2

cos nπ
2

)

and

An

(
2
0

)
= 2n

(
cos

nπ

2

(
2
0

)
+ sin

nπ

2

(
1
1

))
= 2n

(
2 cos nπ

2 + sin nπ
2

sin nπ
2

)
.

To find An we use again (4.2.6). In our case

An = 2n

(
cos nπ

2 − 2 sin nπ
2 2 cos nπ

2 + sin nπ
2

cos nπ
2 sin nπ

2

)
,

further

V =
(

1 2
1 0

)
,

so that

V−1 = −1
2

(
0 −2
−1 1

)
.

Therefore

An = AnV−1 = −2n−1

( −2 cos nπ
2 − sin nπ

2 5 sin nπ
2

− sin nπ
2 −2 cos nπ

2 + sin nπ
2

)
.

4.2.2 Nonhomogeneous systems

Here we shall discuss solvability of the nonhomogeneous version of (4.2.1)

y1(n + 1) = a11y1(n) + a12y2(n) + . . . + a1kyk(n) + g1(n),
...

...
..., (4.2.8)

yk(n + 1) = ak1y1(n) + ak2y2(n) + . . . + akkyk(n) + gk(n),
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where, for n ≥ 0, y1(n), . . . , yk(n) are unknown sequences, a11, . . . akk are
constant coefficients and g1(t) . . . , gk(n) are known. As before, we write it us-
ing the vector-matrix notation. Denoting y = (y1, . . . , yk), g = (g1, . . . , gk)
and A = {aij}1≤i,j≤k, we have

y(n + 1) = Ay(n) + g(n). (4.2.9)

Exactly as in Subsection 4.1.1 we find that the solution to (4.2.9) satisfying
the initial condition y(0) = y0 is given by the formula

y(n) = Any0 +
n−1∑
r=0

An−r−1g(r). (4.2.10)

Example 4.2.3. Solve the system

y1(n + 1) = 2y1(n) + y2(n) + n,

y2(n + 1) = 2y2(n) + 1

with y1(0) = 1, y2(0) = 0. Here

A =
(

2 1
0 2

)
, g(n) =

(
n
1

)
, y0 =

(
1
0

)
.

We see that

p(λ) =
∣∣∣∣

2− λ 1
0 2− λ

∣∣∣∣ = (2− λ)2,

so that we have double eigenvalue λ = 2. To find eigenvectors corresponding
to this eigenvalue, we have to solve the system

(
0 1
0 0

)(
v1

v2

)
=

(
0
0

)

so that we have one-dimensional eigenspace spanned by v1 = (1, 0). To find
the second linearly independent vector associated with λ = 2 we observe
that

(A− 2I)2 =
(

0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)

so that we can take v2 = (0, 1). Thus, we obtain two independent solutions
in the form

y1(n) = Anv1 = 2n

(
1
0

)

and

y2(n) = Anv2 = (2I + (A− 2I)nv2 =
(

2nI + n2n−1

(
0 1
0 0

))(
0
1

)

=
(

n2n−1

2n

)
.
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Since v1 and v2 happen to be the canonical basis for R2, that is, x0 =
(x0

1, x
0
2) = x0

1v
1 + x0

2v
1, we obtain immediately

An =
(

2n n2n−1

0 2n

)
.

To find the solution of the nonhomogeneous equation, we use formula (4.2.10).
The first term is easily calculated as

Anx0 =
(

2n n2n−1

0 2n

) (
1
0

)
=

(
2n

0

)
.

Next,

n−1∑
r=0

An−r−1g(r) =
n−1∑
r=0

(
2n−r−1 (n− r − 1)2n−r−2

0 2n−r−1

)(
r
1

)

=
n−1∑
r=0

(
r2n−r−1 + (n− r − 1)2n−r−2

2n−r−1

)

= 2n




1
4

n−1∑
r=1

r2−r + n−1
4

n−1∑
r=0

2−r

1
2

n−1∑
r=0

2−r




= 2n

(
1
2

(
1− (

1
2

)n−1
)
− (n− 1)

(
1
2

)n+1 + n−1
2

(
1− (

1
2

)n)

1− (
1
2

)n

)

= 2n

( −n
(

1
2

)n + n
2

1− (
1
2

)n

)

=
( −n + n2n

2
2n − 1

)

Remark 4.2.4. Above we used the following calculations

n−1∑
r=1

rar = a(1 + a + . . . + an−2) + a2(1 + a + . . . + an−3) + . . . + an−1

=
1

1− a

(
a(1− an−1) + a2(1− an−2) + . . . + an−1(1− a)

)

=
1

1− a

(
a + a2 + . . . + an−1 − (n− 1)an

)

=
a(1− an−1)− (n− 1)an(1− a)

(1− a)2

Thus, the solution is given by

y(n) =
(

2n − n + n2n

2
2n − 1

)
.
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4.2.3 Higher order equations

Consider the linear difference equation of order k:

y(n + k) + a1y(n + k − 1) + . . . + aky(n) = g(n), n ≥ 0 (4.2.11)

where a1, . . . , ak are known numbers and g(n) is a known sequence. This
equation determines the values of y(N), N > k by k preceding values of
y(r). Thus, it is clear that to be able to solve this equation, that is, to start
the recurrence procedure, we need k initial values y(0), y(1), . . . , y(k − 1).
Equation (4.2.11) can be written as a system of first order equations of
dimension k. We let

z1(n) = y(n),
z2(n) = y(n + 1) = z1(n + 1),
z3(n) = y(n + 2) = z2(n + 1),

...
...

...,
zk(n) = y(n + k − 1) = zk−1(n− 1), (4.2.12)

hence we obtain the system

z1(n + 1) = z2(n),
z2(n + 1) = z3(n),

...
...

...,
zk−1(n + 1) = zk(n),

zk(n + 1) = −a1z1(n)− a2z2(n) . . .− akzk(n) + g(n),

or, in matrix notation,

z(n + 1) = Az(n) + g(n)

where z = (z1, . . . , zk), g(n) = (0, 0, . . . , g(n)) and

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−ak −ak−1 −ak−2 . . . −a1


 .

It is clear that the initial values y(0), . . . , y(k − 1) give the initial vector
z0 = (y(0), . . . , y(k − 1)). Next we observe that the eigenvalues of A can be
obtained by solving the equation∣∣∣∣∣∣∣∣∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0
...

...
...

...
...

−ak −ak−1 −ak−2 . . . −a1 − λ

∣∣∣∣∣∣∣∣∣
= (−1)k(λk + a1λ

k−1 + . . . + ak) = 0,
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that is, the eigenvalues can be obtained by finding roots of the character-
istic polynomial. Consequently, solutions of higher order equations can be
obtained by solving the associated first order systems but there is no need
to repeat the whole procedure. In fact, to solve a k × k system we have
to construct k linearly independent vectors v1, . . . ,vk so that solutions are
given by z1(n) = Anv1, . . . zk(n) = Anvk and coordinates of each zi are
products of λi and polynomials in n of degree strictly smaller than the alge-
braic multiplicity of λi. To obtain ni solutions of the higher order equation
corresponding to the eigenvalue λi, by (4.2.12) we take only the first co-
ordinates of all zi(n) that correspond to λi. On the other hand, we must
have here ni linearly independent scalar solutions of this form and therefore
we can use the set {λn

i , nλn
i , . . . , nni−1λn

i } as a basis for the set of solutions
corresponding to λi, and the union of such sets over all eigenvalues to obtain
a basis for the set of all solutions.

Example 4.2.5. Consider the Fibonacci equation (1.2.6), written here as

y(n + 2) = y(n + 1) + y(n) (4.2.13)

to be consistent with the notation of the present chapter. Introducing new
variables z1(n) = y(n), z2(n) = y(n + 1) = z1(n + 1) so that y(n + 2) =
z2(n + 1), we re-write the equation as the system

z1(n + 1) = z2(n),
z2(n + 1) = z1(n) + z2(n).

The eigenvalues of the matrix

A =
(

0 1
1 1

)

are obtained by solving the equation∣∣∣∣
−λ 1

1 1− λ

∣∣∣∣ = λ2 − λ− 1 = 0;

they are λ1,2 = 1±√5
2 . Since the eigenvalues are distinct, we immediately

obtain that the general solution of (4.2.13) is given by

y(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1−√5

2

)n

.

To find the solution satisfying the initial conditions y(0) = 1, y(1) = 2
(corresponding to one pair of rabbits initially) we substitute these values
and get the system of equations for c1 and c2

1 = c1 + c2,

2 = c1
1 +

√
5

2
+ c2

1−√5
2

,

the solution of which is c1 = 1 + 3
√

5/5 and c2 = −3
√

5/5.
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4.3 Miscellaneous applications

Gambler’s ruin

A gambler plays a sequence of games against an adversary. The probability
that the gambler wins R 1 in any given game is q and the probability of
him losing R 1 is 1 − q. He quits the game if he either wins a prescribed
amount of N rands, or loses all his money; in the latter case we say that he
has been ruined. Let p(n) denotes the probability that the gambler will be
ruined if he starts gambling with n rands. We build the difference equation
satisfied by p(n) using the following argument. Firstly, note that we can start
observation at any moment, that is, the probability of him being ruined with
n rands at the start is the same as the probability of him being ruined if
he acquires n rands at any moment during the game. If at some moment
during the game he has n rands, he can be ruined in two ways: by winning
the next game and ruined with n + 1 rand, or by losing and then being
ruined with n− 1 rands. Thus

p(n) = qp(n + 1) + (1− q)p(n− 1). (4.3.1)

Replacing n by n + 1 and dividing by q, we obtain

p(n + 2)− 1
q
p(n + 1) +

1− q

q
p(n) = 0, (4.3.2)

with n = 0, 1 . . . , N . We supplement (4.3.2) with the (slightly untypical)
side (boundary) conditions p(0) = 1 and p(N) = 0.

The characteristic equation is given by

λ2 − 1
q
λ +

1− q

q
= 0

and the eigenvalues are λ1 = 1−q
q and λ2 = 1. Hence, if q 6= 1/2, then the

general solution can be written as

p(n) = c1 + c2

(
1− q

q

)n

and if q = 1/2, then λ1 = λ2 = 1 and

p(n) = c1 + c2n.

To find the solution for the given boundary conditions, we denote Q =
(1− q)/q so that for q 6= 1/2

1 = c1 + c2,

0 = c1 + QNc2,
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from where

c2 =
1

1−QN
, c1 = − QN

1−QN

and

p(n) =
Qn −QN

1−QN
.

Analogous considerations for q = 1/2 yield

p(n) = 1− n

N
.

For example, if q = 1/2 and the gambler starts with n = 20 rands with the
target N = 1000, then

p(20) = 1− 20
1000

= 0, 98,

that is, his ruin is almost certain.

In general, if the gambler plays a long series of games, which can be modelled
here as taking N → ∞, then he will be ruined almost certainly even if the
game is fair (q = 1

2).



Chapter 5

Qualitative theory of
differential equations

5.1 Introduction

In this chapter we shall consider the system of differential equations

x′ = f(t,x) (5.1.1)

where, in general,

x(t) =




x1(t)
...

xn(t)


 ,

and

f(t,x) =




f1(t, x1, . . . , xn)
...

fn(t, x1, . . . , xn)


 .

is a nonlinear function of x. Our main focus will be on autonomous systems
of two equations with two unknowns

x′1 = f1(x1, x2),
x′2 = f2(x1, x2). (5.1.2)

Unfortunately, even for such a simplified case there are no known methods
of solving (5.1.2) in general form. Though it is, of course, disappointing,
it turns out that knowing exact solution to (5.1.2) is not really necessary.
For example, let x1(t) and x2(t) denote the populations, at time t, of two
species competing amongst themselves for the limited food and living space
in some region. Further, suppose that the rates of growth of x1(t) and x2(t)

113
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are governed by (5.1.2). In such a case, for most purposes it is irrelevant
to know the population sizes at each time t but rather it is important to
know some qualitative properties of them. Specifically, the most important
questions biologists ask are:

1. Do there exist values ξ1 and ξ2 at which the two species coexist in a
steady state? That is to say, are there numbers ξ1 and ξ2 such that
x1(t) ≡ ξ1 and x2(t) ≡ ξ2 is a solution to (5.1.2)? Such values, if they
exist, are called equilibrium points of (5.1.2).

2. Suppose that the two species are coexisting in equilibrium and sud-
denly a few members of one or both species are introduced to the
environment. Will x1(t) and x2(t) remain close to their equilibrium
values for all future times? Or may be these extra few members will
give one of the species a large advantage so that it will proceed to
annihilate the other species?

3. Suppose that x1 and x2 have arbitrary values at t = 0. What happens
for large times? Will one species ultimately emerge victorious, or will
the struggle for existence end in a draw?

Mathematically speaking, we are interested in determining the following
properties of system (5.1.2).

Existence of equilibrium solutions. Do there exist constant vectors x0 =
(x0

1, x
0
2) for which x(t) ≡ x0 is a solution of (5.1.2)?

Stability. Let x(t) and y(t) be two solutions of (5.1.2) with initial values
x(0) and y(0) very close to each other. Will x(t) and y(t) remain close
for all future times, or will y(t) eventually diverge from x(t)?

Long time behaviour. What happens to solutions x(t) as t approaches
infinity. Do all solutions approach equilibrium values? If they do not
approach equilibrium, do they at least exhibit some regular behaviour,
like e.g. periodicity, for large times.

The first question can be answered immediately. In fact, since x(t) is sup-
posed to be constant, then x′(t) ≡ 0 and therefore x0 is an equilibrium value
of (5.1.2) if and only if

f(x0) ≡ 0, (5.1.3)

that is, finding equilibrium solutions is reduced to solving a system of alge-
braic equations.
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Example 5.1.1. Find all equilibrium values of the system of differential
equations

x′1 = 1− x2,

x′2 = x3
1 + x2.

We have to solve the system of algebraic equations

0 = 1− x2,

0 = x3
1 + x2.

From the first equation we find x2 = 1 and therefore x3
1 = −1 which gives

x1 = −1 and the only equilibrium solution is

x0 =
( −1

1

)
.

5.2 The phase-plane and orbits

In this section we shall give rudiments of the ”geometric” theory of differen-
tial equations. The aim of this theory is to obtain as complete a description
as possible of all solutions of the system of differential equations (5.1.2)

x′1 = f1(x1, x2),
x′2 = f2(x1, x2), (5.2.1)

without solving it but by analysing geometric properties of its orbits. To
explain the latter, we note that every solution x1(t), x2(t) defines a curve in
the three dimensional space (t, x1, x2).

Example 5.2.1. The solution x1(t) = cos t and x2(t) = sin t of the system

x′1 = −x2,

x′2 = x1

describes a helix in the (t, x1, x2) space.

The foundation of the geometric theory of differential equations is the obser-
vation that every solution x1(t), x2(t), t0 ≤ t ≤ t1, of (5.2.1) also describes
a curve in the x1 − x2 plane, that is, as t runs from t0 to t1, the points
(x1(t), x2(t) trace out a curve in the x1 − x2 plane. This curve is called the
orbit, or the trajectory, of the solution x(t) and the x1−x2 plane is called the
phase plane of the solutions of (5.2.1). Note that the orbit of an equilibrium
solution reduces to a point.
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Example 5.2.2. The solution of the previous example, x1(t) = cos t, x2(t) =
sin t traces out the unit circle x2 + y2 = 1 when t runs from 0 to 2π, hence
the unit circle is the orbit of this solution. If t runs from 0 to ∞, then the
pair (cos t, sin t) traces out this circle infinitely often.

Example 5.2.3. Functions x1(t) = e−t cos t and x2(t) = e−t sin t, −∞ <
t < ∞, are a solution of the system

x′1 = −x1 − x2,

x′2 = x1 − x2.

Since r2(t) = x2
1(t) + x2

2(t) = e−2t, we see that the orbit of this solution is a
spiral traced towards the origin as t runs towards ∞.

One of the advantages of considering the orbit of the solution rather than the
solution itself is that it is often possible to find the orbit explicitly without
prior knowledge of the solution. Let x1(t), x2(t) be a solution of (5.2.1)
defined in a neighbourhood of a point t̄. If e.g. x′1(t̄) 6= 0, then we can solve
x1 = x1(t) getting t = t(x1) in some neighbourhood of x̄ = x1(t̄). Thus,
for t near t̄, the orbit of the solution x1(t), x2(t) is given as the graph of
x2 = x2(t(x1)). Next, using the chain rule and the inverse function theorem

dx2

dx1
=

dx2

dt

dt

dx1
=

x′2
x′1

=
f2(x1, x2)
f1(x1, x2)

.

Thus, the orbits of the solution x1 = x1(t), x2(t) = x2(t) of (5.2.1) are the
solution curves of the first order scalar equation

dx2

dx1
=

f2(x1, x2)
f1(x1, x2)

(5.2.2)

and therefore to find the orbit of a solution there is no need to solve (5.2.1);
we have to solve only the single first-order scalar equation (5.2.2).

Example 5.2.4. The orbits of the system of differential equations

x′1 = x2
2,

x′2 = x2
1. (5.2.3)

are the solution curves of the scalar equation dx2/dx1 = x2
1/x2

2. This is a
separable equation and it is easy to see that every solution is of the form
x2 = (x3

1 + c)1/3, c constant. Thus, the orbits are the curves x2 = (x3
1 + c)1/3

whenever x2 = x1 6= 0 as then x′1 = x′2 6= 0 and the procedure described
above can be applied, see the example below.
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Example 5.2.5. A solution curve of (5.2.2) is an orbit of (5.2.1) if and only
if x′1 6= 0 and x′2 6= 0 simultaneously along the solution. If a solution curve of
(5.2.2) passes through an equilibrium point of (5.2.1), where x′1(t̄) = 0 and
x′2(t̄) = 0 for some t̄, then the entire solution curve is not an orbit but rather
it is a union of several distinct orbits. For example, consider the system of
differential equations

x′1 = x2(1− x2
1 − x2

2), (5.2.4)
x′2 = −x1(1− x2

1 − x2
2). (5.2.5)

The solution curves of the scalar equation

dx2

dx1
= −x1

x2

are the family of concentric circles x2
1 + x2

2 = c2. Observe however that to
get the latter equation we should have assumed x2

1 + x2
2 = 1 and that each

point of this circle is an equilibrium point of (5.2.5). Thus, the orbits of
(5.2.5) are the circles x2

1 +x2
2 = c2 for c 6= 1 and each point of the unit circle.

Similarly, the full answer for the system (5.2.3) of the previous example is
that x2 = (x3

1 + c)1/3 are orbits for c 6= 0 as then neither solution curve
passes through the only equilibrium point (0, 0). For c = 0 the solution
curve x2 = x1 consists of the equilibrium point (0, 0) and two orbits x2 = x1

for x1 > 0 and x1 < 0.

Note that in general it is impossible to solve (5.2.2) explicitly. Hence, usually
we cannot find the equation of orbits in a closed form. Nevertheless, it is still
possible to obtain an accurate description of all orbits of (5.2.1). In fact, the
system (5.2.1) provides us with an explicit information about how fast and
in which direction solution is moving at each point of the trajectory. In fact,
as the orbit of the solution (x1(t), x2(t)) is a curve of which (x1(t), x2(t)) is a
parametric description, (x′1(t), x

′
2(t)) = (f1(x1, x2), f2(x1, x2)) is the tangent

vector to the orbit at the point (x1, x2) showing, moreover, the direction at
which the orbit is traversed. In particular, the orbit is vertical at each point
(x1, x2) where f1(x1, x2) = 0 and f2(x1, x2) 6= 0 and it is horizontal at
each point (x1, x2) where f1(x1, x2) 6= 0 and f2(x1, x2) = 0. As we noted
earlier, each point (x1, x2) where f1(x1, x2) = 0 and f2(x1, x2) = 0 gives an
equilibrium solution and the orbit reduces to this point.
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5.3 Qualitative properties of orbits

Let us consider the initial value problem for the system (5.1.2):

x′1 = f1(x1, x2),
x′2 = f2(x1, x2)

x1(t0) = x0
1, x2(t0) = x0

2, (5.3.1)

As we have already mentioned in Subsection 3.1.3, Picard’s theorem, The-
orem 2.2.4, can be generalized to systems. Due to the importance of it for
the analysis of orbits, we shall state it here in full.

Theorem 5.3.1. If each of the functions f1(x1, x2) and f2(x1, x2) have
continuous partial derivatives with respect to x1 and x2. Then the initial
value problem (5.3.1) has one and only one solution x(t) = (x1(t), x2(t)),
for every x0 = (x0

1, x
0
2) ∈ R2 defined at least for t in some neighborhood of

t0.

Firstly, we prove the following result.

Lemma 5.3.2. If x(t) is a solution to

x′ = f(x), (5.3.2)

then for any c the function x̂(t) = x(t + c) also satisfies this equation.

Proof. Define τ = t + c and use the chain rule for x̂. We get

dx̂(t)
dt

=
dx(t + c)

dt
=

dx(τ)
dτ

dτ

dt
=

dx(τ)
dτ

= f(x(τ)) = f(x(t + c)) = f(x̂(t)).

Example 5.3.3. For linear systems the result follows directly as x(t) = etAv
for arbitrary vector v, so that x̂(t) = x(t+ c) = e(t+c)Av = etAecAv = etAv′

for some other vector v′ so that x̂(t) is again a solution.

We shall now prove two properties of orbits that are crucial to analyzing
system (5.1.2).

Theorem 5.3.4. Assume that the assumptions of Theorem 5.3.1 are satis-
fied. Then

(i) there exists one and only one orbit through every point x0 ∈ R2. In
particular, if the orbits of two solutions x(t) and y(t) have one point
in common, then they must be identical.
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(ii) Let x(t) be a solution to (5.1.2). If for some T > 0 and some t0 we
have x(t0+T ) = x(t0), then x(t+T ) = x(t) for all t. In other words, if
a solution x(t) returns to its starting value after a time T > 0, then it
must be periodic (that is, it must repeat itself over every time interval
of length T ).

Proof. ad (i) Let x0 be any point in R2. Then from Theorem 5.3.1 we
know that there is a solution of the problem x′ = f(x),x(0) = x0 and the
orbit of this solution passes through x0 from the definition of the orbit.
Assume now that there is another orbit passing through x0, that is, there
is a solution y(t) satisfying y(t0) = x0 for some t0. From Lemma 5.3.2 we
know that ŷ(t) = y(t+ t0) is also a solution. However, this solution satisfies
ŷ(0) = y(t0) = x0, that is, the same initial condition as x(t). By the
uniqueness part of Theorem 5.3.1 we must then have x(t) = ŷ(t) = y(t+ t0)
for all t for which the solutions are defined. This implies that the orbits are
identical. In fact, if ξ is an element of the orbit of x, then for some t′ we
have x(t′) = ξ. However, we have also ξ = y(t′+ t0) so that ξ belongs to the
orbit of y(t). Conversely, if ξ belongs to the orbit of y so that ξ = y(t′′) for
some t′′, then by ξ = y(t′′) = x(t′′ − t0), we see that ξ belongs to the orbit
of x.

ad (ii) Assume that for some numbers t0 and T > 0 we have x(t0) = x(t0 +
T ). The function y(t) = x(t + T ) is again a solution satisfying y(t0) =
x(t0 + T ) = x(t0), thus from Theorem 5.3.1, x(t) = y(t) for all t for which
they are defined and therefore x(t) = x(t + T ) for all such t.

Example 5.3.5. A curve in the shape of a figure 8 cannot be an orbit. In
fact, suppose that the solution passes through the intersection point at some
time t0, then completing the first loop, returns after time T , that is, we have
x(t0) = x(t0 + T ). From (ii) it follows then that this solution is periodic,
that is, it must follow the same loop again and cannot switch to the other
loop.

Corollary 5.3.6. A solution y(t) of (5.1.2) is periodic if and only if its
orbit is a closed curve in R2.

Proof. Assume that x(t) is a periodic solution of (5.1.2) of period T , that
is x(t) = x(t + T ). If we fix t0, then, as t runs from t0 to t0 + T , the point
x(t) = (x1(t), x2(t)) traces a curve, say C, from ξ = x(t) back to the same
point ξ without intersections and, if t runs from −∞ to ∞, the curve C is
traced infinitely many times.

Conversely, suppose that the orbit is a closed curve (containing no equi-
librium points). The point x(t) moves along this curve with a speed of
magnitude v(x1, x2) =

√
f2
1 (x1, x2) + f2

2 (x1, x2). The curve is closed and,
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since there is no equilibrium point on it, that is, f1 and f2 are not simul-
taneously zero at any point, the speed v has a non-zero minimum on it.
Moreover, as the parametric description of this curve if differentiable, it has
a finite length. Thus, the point x(t) starting from a point ξ = x(t0) will
traverse the whole curve in finite time, say T , that is x(t0) = x(t0 + T ) and
the solution is periodic.

Example 5.3.7. Show that every solution z(t) of the second order differ-
ential equation

z′′ + z + z3 = 0

is periodic. We convert this equation into a system: let z = x1 so that

x′1 = x2,

x′2 = −x1 − x3
1.

The orbits are the solution curves of the equation

dx2

dx1
= −x1 + x3

1

x2
,

so that
x2

2

2
+

x2
1

2
+

x4
1

4
= c2

is the equation of orbits. If c 6= 0, then none of them contains the unique
equilibrium point (0, 0). By writing the above equation in the form

x2
2

2
+

(
x2

1

2
+

1
2

)2

= c2 +
1
4

we see that for each c 6= 0 it describes a closed curve consisting of two
branches x2 = ± 1√

2

√
4c2 + 1− (x2

1 + 1)2 that stretch between x1 = ±
√

1 +
√

4c2 + 1.
Consequently, every solution is a periodic function.

5.4 An application

In this section we shall discuss the predator-prey model introduced in Section
1.3.5. It reads

dx1

dt
= (r − f)x1 − αx1x2,

dx2

dt
= −(s + f)x2 + βx1x2 (5.4.1)

where α, β, r, s, f are positive constants. In the predator-prey model x1 is
the density of the prey, x2 is the density of the predators, r is the growth rate
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of the prey in the absence of predators, −s is the growth rate of predators in
the absence of prey (the population of predators dies out without the supply
of the sole food source – prey). The quadratic terms account for predator–
prey interaction and f represents indiscriminate killing of both prey and
predators. The model was introduced in 1920s by Italian mathematician
Vito Volterra to explain why, in the period of reduced (indiscriminate) fish-
ing, the relative number predators (sharks) significantly increased.

Let us consider first the model without fishing

dx1

dt
= rx1 − αx1x2,

dx2

dt
= −sx2 + βx1x2 (5.4.2)

Observe that there are two equilibrium solutions x1(t) = 0, x2(t) = 0 and
x1(t) = s/β, x2(t) = r/α. The first solution is not interesting as it cor-
responds to the total extinction. We observe also that we have two other
solutions x1(t) = c1e

rt, x2(t) = 0 and x1(t) = 0, x2(t) = c2e
−st that cor-

respond to the situation when one of the species is extinct. Thus, both
positive x1 and x2 semi-axes are orbits and, by Theorem 5.3.4 (i), any orbit
starting in the first quadrant will stay there or, in other words, any solution
with positive initial data will remain strictly positive for all times.

The orbits of (5.4.2) are the solution curves of the first order separable
equation

dx2

dx1
=

x2(−s + βx1)
x1(r − αx2)

(5.4.3)

Separating variables and integrating we obtain

r ln x2 − αx2 + s ln x1 − βx1 = k

which can be written as
xr

2

eαx2

xs
1

eβx1
= K. (5.4.4)

Next, we prove that the curves defined by (5.4.4) are closed. It is not an easy
task. To accomplish this we shall show that for each x1 from a certain open
interval (x1,m, x1,M ) we have exactly two solutions x2,m(x1) and x2,M (x1)
and that these two solutions tend to common limits as x1 approaches x1,m

and x1,M .

First, let as define f(x2) = xr
2e
−αx2 and g(x1) = xs

1e
−βx1 . We shall analyze

only f as g is of the same form. Due to positivity of all the coefficients,
we see that f(0) = 0, limx2→∞ f(x2) = 0 and also f(x2) > 0 for x2 > 0.
Further

f ′(x2) = xr−1
2 e−αx2(r − αx2),
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so that f is increasing from 0 to x2 = r/α where it attains global maximum,
say M2, and then starts to decrease monotonically to 0. Similarly, g(0) =
limx1→∞ g(x1) = 0 and g(x1) > 0 for x1 > 0 and it attains global maximum
M1 at x1 = s/β. We have to analyze solvability of

f(x2)g(x1) = K.

Firstly, there are no solutions if K > M1M2, and for K = M1M2 we have
the equilibrium solution x1 = s/β, x2 = r/α. Thus, we have to consider
K = λM2 with λ < 1. Let us write this equation as

f(x2) =
λ

g(x1)
M2. (5.4.5)

From the shape of the graph g we find that the equation g(x1) = λ has no
solution if λ > M1 but then λ/g(x1) ≥ λ/M1 > 1 so that (5.4.5) is not
solvable. If λ = M1, then we have again the equilibrium solution. Finally,
for λ < M1 there are two solutions x1,m and x1,M satisfying x1,m < s/β <
x1,M . Now, for x1 satisfying x1,m < x1 < x1,M we have λ/g(x1) < 1
and therefore for such x1 equation (5.4.5) has two solutions x2,m(x1) and
x2,M (x1) satisfying x2,m < r/α < x2,M , again on the basis of the shape of
the graph of f . Moreover, if x1 moves towards either x1,m or x1,M , then
both solutions x2,m and x2,M move towards r/α, that is the set of points
satisfying (5.4.5) is a closed curve.

Summarizing, the orbits are closed curves encircling the equilibrium solu-
tion (s/β, r/α) and are traversed in the anticlockwise direction. Thus, the
solutions are periodic in time. The evolution can be described as follows.
Suppose that we start with initial values x1 > s/β, x2 < r/α, that is, in the
lower right quarter of the orbit. Then the solution will move right and up
till the prey population reaches maximum x1,M . Because there is a lot of
prey, the number of predators will be still growing but then the number of
prey will start decreasing, slowing down the growth of the predator’s popu-
lation. The decrease in the prey population will eventually bring the growth
of predator’s population to stop at the maximum x2,M . From now on the
number of predators will decrease but the depletion of the prey population
from the previous period will continue to prevail till the population reaches
the minimum x1,m, when it will start to take advantage of the decreasing
number of predators and will start to grow; this growth will, however, start
to slow down when the population of predators will reach its minimum.
However, then the number of prey will be increasing beyond the point when
the number of predators is the least till the growing number of predators will
eventually cause the prey population to decrease having reached its peak at
x1,M and the cycle will repeat itself.

Now we are ready to provide the explanation of the observational data.
Including fishing into the model, according to (5.4.1), amounts to changing
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parameters r and s to r− f and s + f but the structure of the system does
not change, so that the equilibrium solution becomes

(
s + f

β
,
r − f

α

)
. (5.4.6)

Thus, with a moderate amount of fishing (f < r), in the equilibrium solution
there is more fish and less sharks in comparison with no-fishing situation.
Thus, if we reduce fishing, the equilibrium moves towards larger amount
of sharks and lower amount of fish. Of course, this is true for equilibrium
situation, which not necessarily corresponds to reality, but as the orbits
are closed curves around the equilibrium solution, we can expect that the
amounts of fish and sharks in a non-equilibrium situation will change in
a similar pattern. We can confirm this hypothesis by comparing average
numbers of sharks and fish over the full cycle. For any function f its average
over an interval (a, b) is defined as

f̄ =
1

b− a

b∫

a

f(t)dt,

so that the average numbers if fish and sharks over one cycle is given by

x1 =
1
T

T∫

0

x1(t)dt, x2 =
1
T

T∫

0

x2(t)dt.

It turns out that these averages can be calculated explicitly. Dividing the
first equation of (5.4.2) by x1 gives x′1/x1 = r−αx2. Integrating both sides,
we get

1
T

T∫

0

x′1(t)
x1(t)

dt =
1
T

T∫

0

(r − αx2(t))dt.

The left-hand side can be evaluated as

T∫

0

x′1(t)
x1(t)

dt = ln x1(T )− ln x1(0) = 0

on account of the periodicity of x1. Hence,

1
T

T∫

0

(r − αx2(t))dt = 0,

and
x2 =

r

α
. (5.4.7)
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In the same way,
x1 =

s

β
, (5.4.8)

so that the average values of x1 and x2 are exactly the equilibrium solu-
tions. Thus, we can state that introducing fishing is more beneficial to prey
than predators as the average numbers of prey increases while the average
number of predators will decrease in accordance with (5.4.6), while reducing
fishing will have the opposite effect of increasing the number of predators
and decreasing the number of prey.


