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Preface

Engineers, natural scientists and, increasingly, researchers and
practitioners working in economics and other social sciences, use
mathematical modelling to solve problems arising in their disci-
plines. There are at least two identifiable kinds of mathematical
modelling. One is translating the rules of nature or society into
mathematical formulae, apply mathematical methods to analyse
them and then try to understand the implications of the obtained
results for the original disciplines. The other kind is to use mathe-
matical reasoning to solve practical industrial or engineering prob-
lems without necessarily building a mathematical theory for them.

This book is predominantly concerned with the first kind of
modelling: that is, with the analysis and interpretation of mod-
els of phenomena and processes occurring in the real world. It is
important to understand, however, that models only give simpli-
fied descriptions of real-life problems but, nevertheless, they can
be expressed in terms of mathematical equations and thus can be
solved in one way or another.

Mathematical modelling is a difficult subject to teach but it
is what applied mathematics is all about. The difficulty is that
there are no set rules and the understanding of the ‘right’ way to
model can be only reached by familiarity with a number of ex-
amples. Therefore in this book we shall discuss a wide range of
mathematical models referring to real life phenomena and intro-
duce basic techniques for solving and interpreting the solutions of
the resulting equations. It is, however, fair to emphasize that this
is not a conventional textbook on mathematical modelling. We do
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viii Preface

not spend too much time on building the models but a central role
is played by difference and differential equations and their analy-
sis. However, within the space limitations, we try to describe the
origin of the models and interpret the results of analysing them.

Nevertheless, let us briefly describe the full process of mathe-
matical modelling. First, there must be a phenomenon of interest
that one wants to describe or, more importantly, explain and make
predictions about. Observation of this phenomenon allows one to
make hypotheses about those quantities that are most relevant
to the problem and what the relations between them are so that
one can devise a hypothetical mechanism that can explain the
phenomenon. At this stage one has to decide how to quantify,
or assign numbers to, the observations, e.g. whether the problem
is to be set in absolute space-time or in relativistic setting, or
whether time should be continuous or discrete, etc. The choice is
not always obvious or unique but one needs to decide on a partic-
ular approach before one begins to build a model. The purpose of
building the model is to formulate a description of the mechanism
driving the phenomenon of interest in quantitative terms that is,
as mathematical equations which can be mathematically analysed.
After that, it is necessary important to interpret the solution, or
any other information extracted from the equations, as statements
about the original problem so that they can be tested against ob-
servations. Ideally, the model also leads to predictions which, if
verified, serve as a further validation of the model. It is important
to realize that modelling is usually an iterative procedure as it is
very difficult to achieve a proper balance between the simplicity
and meaningfulness of the model. Often the model turns out to be
too complicated to yield itself to analysis or it is over-simplified
so that there is insufficient agreement between actual experiment
and the results predicted from the model. In both these cases one
has to return to the first step of the modelling process to try to
remedy the problem.

This first step in modelling is the most creative but also the
most difficult, often involving a concerted effort of specialists in
many diverse fields. Hence, as we said earlier, though we describe
a number of models in detail, starting from first principles, the
main emphasis of the course is on the later stages of the mod-
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elling process; that is, on analysing and solving the equations, in-
terpreting their solutions in the language of the original problem
and reflecting on whether the answers seem reasonable.

In most cases discussed here the model is a representation of a
process; that is, it describes a change in the states of some system
in time. This description could be discrete and continuous. The
former corresponds to the situation in which we observe a system
at regular finite time intervals, say, every second or every year,
and relate the observed state of the system to the states at the
previous instants. Such a system could be modelled by difference
equations. In the continuous cases we treat time as a continuum
allowing for observations of the system at any time. In such a
case the model can express relations between the rates of change
of various quantities rather than between the states at various
times and, since the rates of change are given by derivatives, the
model is represented by differential equations.

Furthermore, models can describe the evolution of a given sys-
tem either in a non-interacting environment, such as a popula-
tion of bacteria in a Petri dish, or else engaged in interactions
with other systems. In the first case the model consists of a single
equation and we say that the model is one-dimensional, while in
the second case we have to deal with several (sometimes infinitely
many) equations describing the interactions; then the model is
said to be multidimensional.

In this book we only discuss one-dimensional models. Multi-
dimensional models will be the subject of a companion volume.

This book has been inspired and heavily draws on several excel-
lent textbooks such as (Braun, 1983; Elaydi, 2005; Friedman and
Littman, 1994; Glendinning, 1994; Strogatz, 1994), to mention but
a few. However, I believe that the presented blend of discrete and
continuous models and the combination of a detailed description
of the modelling process with mathematical analysis of the result-
ing equations makes it different from any of them. I hope that the
readers will find it fills a gap in the existing literature.

This book is based on lectures given, at various levels and for
various courses, at the University of KwaZulu-Natal in Durban,
at the African Institute of Mathematical Sciences in Muizenberg,
South Africa, and at the Technical University of ÃLódź, Poland.
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Mathematical toolbox

This book is about mathematical models coming from several
fields of science and economics that are described by difference
or differential equations. Therefore we begin by presenting basic
concepts and tools from the theory of difference and differential
equations, which will allow us to understand and analyse these
models. The multitude of problems that can be dealt with using
so few techniques is a testimony to the unifying power of mathe-
matics.

1.1 Difference equations

Since difference equations are conceptually simpler, we begin with
them. The reader should be aware that we present here a bare
minimum of results that are necessary to analyse of the examples
in this book. A comprehensive theory of difference equations can
be found for example in (Elaydi, 2005).

We consider difference equations which can be written in the
form

xn+k = F (n, xn, . . . , xn+k−1), n ∈ N0, (1.1)

where k ∈ N0 = {0, 1, 2, . . .} is a fixed number and F is a given
function of k + 1 variables. Such an equation is called a differ-
ence equation of order k. If F does not explicitly depend on n,
then we say that the equation is autonomous. Furthermore, if F

depends linearly on xn, . . . , xn+k−1, then we say that (1.1) is a
linear equation. Otherwise, we say that it is nonlinear.

1



2 Mathematical toolbox

If we are given k initial values x1, . . . , xk, then the term xk+1

is uniquely determined by (1.1) and then all other terms can
be found by successive iterations. These terms form a sequence
(xn)n∈N0 which we call a solution to (1.1). Thus the problems of
existence and uniqueness of solutions, which play an essential role
in the theory of differential equations, are here largely irrelevant.
The problem, however, is to find a closed form of the solution;
that is, a formula defining the terms of the sequence (xn)n∈N0 ex-
plicitly in terms of the variable n. While, in general, finding such
an explicit solution is impossible, we shall discuss several cases
when it can be accomplished. In more difficult situations we have
to confine ourselves to qualitative analysis which will be discussed
in Chapter 4.

1.1.1 First-order linear difference equations

The general first-order difference equation has the form

xn+1 = anxn + gn, n ≥ 0, (1.2)

where (an)n∈N0 and (gn)n∈N0 are given sequences. It is clear that
using (1.2) we may calculate any element xn provided we know
only one initial point, so that we supplement (1.2) with an initial
value x0. It is easy to check, by induction, that the solution is
given by

xn = x0

n−1∏

k=0

ak +
n−1∑

k=0

gk

n−1∏

i=k+1

ai, (1.3)

where we adopt the convention that
n−1∏

n
= 1. Similarly, to simplify

notation, we put
j∑

k=j+1

= 0.

Exercise 1.1 Show that if in (1.2) we have an = a for all n ≥ 0,

then (1.3) takes the form

xn = anx0 +
n−1∑
k=0

an−k−1gk. (1.4)
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If, moreover gn = g for n ≥ 0, then

xn =
{

anx0 + g an−1
a−1 if a 6= 1,

x0 + gn if a = 1.
(1.5)

1.1.2 Linear difference equations of higher order

Though the book mainly is concerned with equations of first order,
in some examples we will need solutions to higher-order linear
equations with constant coefficients; that is, equations of the form

xn+k + a1xn+k−1 + · · ·+ akxn = 0, n ∈ N0, (1.6)

where k is a fixed number, called the order of the equation, and
a1, . . . , ak are known numbers. This equation determines the val-
ues of xm, m > k, by k preceding values. Thus, we need k initial
values x0, x1, . . . , xk−1 to start iterations. The general theory of
such equations requires tools from linear algebra, which are be-
yond the scope of this book, see (Elaydi, 2005). Therefore we only
will present basic results which easily can be checked to hold true
in particular examples.

To find the general solution to (1.6), we build the so-called
characteristic equation

λk + a1λ
k−1 + · · ·+ ak = 0. (1.7)

If this equation has k distinct roots λ1, . . . , λk, then the general
solution is given by

xn = C1λ
n
1 + · · ·+ Ckλn

k , n ≥ k, (1.8)

where C1, . . . , Ck are constants that are to be determined so that
(yn)n∈N0 satisfies the initial conditions for n = 0, . . . k − 1. If,
however, there is a multiple root, say λi, of multiplicity ni, then in
the expansion (1.8) we must use ni terms {λn

i , nλn
i , . . . , nni−1λn

i }.

1.1.3 Nonlinear equations

As we said earlier, most difference equations cannot be solved ex-
plicitly. In some case, however, a smart substitution could reduce
them to a simpler form. In this subsection we present two classes



4 Mathematical toolbox

of solvable nonlinear equations, which will be used later. Some
other cases are discussed in Section 2.4.

The homogeneous Ricatti equation. Consider the equation

xn+1xn + anxn+1 + bnxn = 0, n ∈ N0, (1.9)

where (an)n∈N0 and (bn)n∈N0 are given sequences with non-zero
elements. Then the substitution

yn =
1
xn

transforms (1.9) into

bnyn+1 + anyn + 1 = 0, (1.10)

which is a first-order linear equation. We note that in the above
transformation we had to assume xn 6= 0. If, however, xn = 0 for
some n, then xm = 0 for m > n.

The inhomogeneous Ricatti equation. The inhomogeneous
Riccati equation

xn+1xn + anxn+1 + bnxn = cn, n ∈ N0, (1.11)

where (an)n∈N0 , (bn)n∈N0 and (cn)n∈N0 are given sequences, upon
substitution

xn =
yn+1

yn
− an,

becomes
(

yn+2

yn+1
− an+1

) (
yn+1

yn
− an

)
+ an

(
yn+2

yn+1
− an+1

)

+ bn

(
yn+1

yn
− an

)
= cn.

Simplifying, we obtain the second-order linear equation

yn+2 + (bn − an+1)yn+1 − (cn + anbn)yn = 0. (1.12)

In particular, if the sequences (an)n∈N0 , (bn)n∈N0 and (cn)n∈N0

are constant, then the above equation is explicitly solvable by the
method described in Section 1.1.2.
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1.2 Differential equations – an introduction

The present book is mostly about applying differential equations
to concrete models, thus we refer the reader to dedicated texts,
such as (Braun, 1983; Glendinning, 1994; Schroers, 2011; Strogatz,
1994), to learn more about the theory of differential equations.
However, to make the presentation self-consistent, we provide ba-
sic facts and ideas.

In this book we shall be solely concerned with ordinary differ-
ential equations (ODEs) that can be written in the form

y(n) = F (t, y, y′, . . . , y(n−1)) = 0, (1.13)

where F is a given scalar function of n + 1 variables and y(k),

for k = 1, . . . , n, denotes the derivative of order k with respect to
t. For lower order derivatives we will use the more conventional
notation y(1) = y′, y(2) = y′′, etc. As with the difference equations,
we say that (1.13) is autonomous if F does not depend on t and it
is linear if F is linear in y, y′, . . . , y(n−1). The order of the equation
is the order of the highest derivative appearing in it.

To solve the ODE (1.13) means to find an n-times continuously
differentiable function y(t) such that for any t (from some inter-
val), (1.13) becomes an identity. Thus, if we are given a function
y, it is easy to check whether it is a solution of (1.13) or not.
However, in contrast to difference equations, finding a solution to
(1.13) is a difficult, and often impossible, task. A quick reflection
brings to mind three questions relevant to solving a differential
equation:

(i) can we be sure that a given equation possesses a solution at
all?

(ii) if we know that there is a solution, are there systematic
methods for finding it?

(iii) having found a solution, can we be sure that there are no
other solutions?

Question (i) is usually referred to as the existence problem
for differential equations, and Question (iii) as the uniqueness
problem. Unless we deal with very simple situations, these two
questions should be addressed before attempting to find a solution.
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After all, what is the point of trying to solve an equation if we
do not know whether the solution exists, or whether the one we
found is unique. Let us discuss briefly Question (i) first. Roughly
speaking, we can come across the following situations:

(a) no function exists which satisfies the equation;

(b) the equation has a solution but no one knows what it looks
like;

(c) the equation can be solved in a closed form.

Case (a) is not very common in mathematics and it should never
happen in mathematical modelling. Indeed, if a given equation
was an exact reflection of a real life phenomenon, then the fact
that this phenomenon exists would ensure that this equation can
be solved. However, models are imperfect reflections of the real-
ity and therefore it may happen that in the modelling process we
missed some crucial facts, rendering the final equation unsolvable.
Thus, establishing solvability of the equation constructed in the
modelling process serves as an important first step in validating
the model. Unfortunately, these problems are usually very diffi-
cult and require quite advanced mathematics that is beyond the
scope of this course. We shall, however, provide basic theorems
pertaining to this question that are sufficient for the discussed
problems.

Case (b) may look somewhat enigmatic but, as we said above,
there are advanced theorems allowing us to ascertain the existence
of solutions without actually displaying them. Actually, many of
the most interesting equations appearing in applications do not
have known explicit solutions. It is important to realize that even
if we do not know a formula for the solution, the fact that one does
exist means we can find its numerical or graphical representation
with any reasonable accuracy. Also, very often we can find impor-
tant features of the solution without knowing its explicit formula.
These features include e.g., long time behaviour; that is, whether
it settles at a certain equilibrium value or oscillates, whether it is
monotonic or periodic, etc. These questions will be studied in the
final part of the book.

Some examples, when the situation described in (c) occurs,
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which thus also partially address Question (ii), are discussed in
Section 1.3 below.

Having dealt with Questions (i) and (ii) let us move to the
problem of uniqueness. Typically (1.13) determines a family of
solutions, parametrised by several constants, rather than a single
function. Such a class is called the general solution of the equa-
tion. By imposing an appropriate number of side conditions we
specify the constants thus obtaining a special solution – ideally
one member of the class.

A side condition may take all sorts of forms, such as ‘at t = 15,
y must have the value of 0.4’ or ‘the area under the curve y = y(t)
between t = 0 and t = 24 must be 100’. Very often, however, it
specifies the initial value y(0) of the solution and the derivatives
y(k)(0) for k = 1, . . . , n − 1. In this case the side conditions are
called the initial conditions. Problems consisting of (1.13) with
initial conditions are called initial value problems or Cauchy prob-
lems

1.3 Some equations admitting closed form solutions

In this section we shall provide a brief overview of methods for
solving differential equations which will appear in this book. This
shows that in some situations the answer to Question (ii) of the
previous section is affirmative. It is important to understand, how-
ever, that there is a deeper theory behind each method and due
caution should be exercised when applying the formulae listed be-
low, see (Braun, 1983; Schroers, 2011; Strogatz, 1994).

1.3.1 Separable equations

Separable equations are equations which can be written as

y′ = g(t)h(y), (1.14)

where g and h are known functions. Constant functions y ≡ ȳ, such
that h(ȳ) = 0, are solutions to (1.14). They are called stationary
or equilibrium solutions.

To find the general solution, we assume that h(y) is finite and
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non-zero, and divide both sides of (1.14) by h(y) to get

1
h(y)

y′ = g(t). (1.15)

Denoting H(y) =
∫

dy/h(y), (1.15) can be written as

(H(y(t)))′ = g(t).

Integrating, we obtain the solution in the implicit form,

H(y(t)) =
∫

g(t)dt + c, (1.16)

where c is an arbitrary constant. Since, by assumption, H ′(y) =
h−1(y) 6= 0, we can use the inverse function theorem, (Courant
and John, 1999), to claim that the function H is locally invertible
and thus the explicit solution can be found, at least locally, as

y(t) = H−1

(∫
g(t)dt + c

)
, (1.17)

with c depending on the side conditions.

1.3.2 First-order linear differential equations

The general first-order linear differential equation is of the form

y′ + a(t)y = b(t), (1.18)

where a and b are known continuous functions of t. One method
of solving (1.18) is to multiply both sides of (1.18) by the so-called
integrating factor µ which is a solution to

µ′ = µa(t),

i.e., µ(t) = e
∫

a(t)dt. Then

µ(t)y′ + µ(t)a(t)y = µ(t)b(t)

can be written as

(µ(t)y(t))′ = µ(t)b(t),
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and thus

y(t) =
1

µ(t)

(∫
µ(t)b(t)dt + c

)
(1.19)

= exp
(
−

∫
a(t)dt

)(∫
b(t) exp

(∫
a(t)dt

)
dt + c

)
,

where c is a constant of integration which is to be determined from
the initial conditions. It is worthwhile noting that the solution is
the sum of the general solution to the homogeneous equation (that
is, with b(t) ≡ 0),

c exp
(
−

∫
a(t)dt

)
,

and a particular solution to the full equation (1.18).

1.3.3 Equations of homogeneous type

A differential equation that can be written in the form

y′ = f
(y

t

)
, (1.20)

where f is a function of the single variable z = y/t is said to be of
homogeneous type. To solve (1.20), let us make the substitution

y = tz, (1.21)

where z is the new unknown function. Then, by the product rule,

y′ = z + tz′

and (1.20) becomes

tz′ = f(z)− z. (1.22)

Equation (1.22) is a separable equation and so it can be solved as
in Section 1.3.1.

1.3.4 Equations that can be reduced to first-order
equations

Some higher-order equations can be reduced to first-order equa-
tions. We shall discuss two such cases for second-order equations.
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Equations that do not contain the unknown function. If
we have an equation of the form

F (t, y′, y′′) = 0, (1.23)

then the substitution z = y′ reduces this equation to the first-
order equation

F (t, z, z′) = 0. (1.24)

If

z = φ(t, C)

is the general solution to (1.24), where C is an arbitrary constant,
then y is the solution of

y′ = φ(t, C),

so that

y(t) =
∫

φ(t, C)dt + C1.

Equations that do not contain the independent variable.
Let us consider the equation

F (y, y′, y′′) = 0, (1.25)

that does not involve the independent variable t. Such an equation
also can be reduced to a first-order equation as long as y′ 6= 0;
that is, if there are no turning points of the solution. Then the
derivative y′ locally is a function of y; that is, we can write y′ =
g(y) for some function g. Indeed, by the inverse function theorem,
see (Courant and John, 1999), the function y = y(t) is locally
invertible provided y′ 6= 0 and, writing t = t(y), we can define
g(y) = y′(t(y)). Using the chain rule we obtain

y′′ =
d

dt
y′ =

dg

dy

dy

dt
= y′

dg

dy
= g(y)

dg

dy
. (1.26)

Substituting (1.26) into (1.25) gives a first-order equation with y

as an independent variable,

F

(
y, g, g

dg

dy

)
= 0. (1.27)
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If g(y) = φ(y, C) is the solution to (1.27), then y satisfies the
separable equation

dy

dt
= φ(y, C)

which can be solved by (1.17).
The above procedure can be best explained by interpreting t

as time, y as the distance travelled by a particle moving with
velocity y′ and acceleration y′′. If the particle does not reverse the
direction of motion (y′ = 0 at any turning point!), then its speed
can be expressed as a function of the distance instead of time.
This is precisely what we have done above.

1.4 The Cauchy problem – existence and uniqueness

In most cases in this book we will be concerned with the first-order
Cauchy problem

y′ = f(t, y), y(t0) = y0, (1.28)

where t0 and y0 are some given numbers. For unspecified or very
complicated functions f, none of the methods described in Section
1.3 is applicable and we have to resort to an abstract approach.
The following general existence result is known as the Peano the-
orem, see (Robinson, 2001).

Theorem 1.2 (Peano) If the function f in (1.28) is continuous
in some neighbourhood of the point (t0, y0), then the problem (1.28)
has at least one solution in some interval (t1, t2) containing t0.

Since the equation in (1.28) is a first order equation and we have
one initial condition, one would expect that it would be uniquely
solvable. Unfortunately, in general this is not so as demonstrated
in the following example.

Example 1.3 The Cauchy problem

y′ =
√

y, t > 0,

y(0) = 0,

has at least two solutions: y ≡ 0 and y(t) = 1
4 t2.
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Fortunately, there is a large class of functions f for which (1.28)
does have exactly one solution. This result is down to Picard’s
theorem which we state below.

Theorem 1.4 (Picard) Assume that there is a rectangle R :
|t− t0| ≤ a, |y − y0| ≤ b for some a, b > 0, such that the function
f in (1.28) is continuous in R and satisfies there the Lipschitz
condition with respect to y; i.e. there exists 0 ≤ L < +∞ such that
for all (t, y1), (t, y2) ∈ R

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|. (1.29)

Let

M := max
(t,y)∈R

|f(t, y)|

and define α = min{a, b/M}. Then the initial value problem (1.28)
has exactly one solution defined at least on the interval t0 − α ≤
t ≤ t0 + α.

Remark 1.5 If f is such that its partial derivative with respect
to y, namely fy, is bounded in R, then (1.29) is satisfied.

Picard’s theorem gives local existence and uniqueness; that is,
for any point (t0, y0) around which the assumptions are satisfied,
there is an interval over which there is only one solution of the
given Cauchy problem. This interval can be very small, smaller
than [t0 − a, t0 + a] on which f satisfies the assumptions of the
theorem. However, using Picard’s theorem we can glue solutions
together to obtain a solution defined on a possibly larger interval.
More precisely, if y(t) is a solution to (1.28) defined on an interval
[t0 − α, t0 + α] and (t0 + α, y(t0 + α)) is a point around which
the assumptions of Picard’s theorem are satisfied, then there is
a solution passing through this point, defined on some interval
[t0 + α − α′, t0 + α + α′], α′ > 0. By uniqueness, these two solu-
tions constitute a solution to the original Cauchy problem, defined
at least on [t0−α, t0+α+α′]. By continuing this process we obtain
a solution defined on the maximal interval of existence [t0, t0+α∗).
In other words, [t0, t0 + α∗) is the (forward) maximal interval of
existence for a solution y(t) to (1.28) if there is no solution y1(t)
on an interval [t0, t0 +α+), where α+ > α∗, satisfying y(t) = y1(t)
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Figure 1.1 Extension of the solution from [t0 − α, t0 + α] to [t0 −
α, t0 + α + α′]

for t ∈ [t0, t0 + α∗). We can also consider backward intervals try-
ing to extend the solution for t < t0. We note that the forward
(backward) maximal interval of existence is open from the right
(left). Assume now that f satisfies the assumptions of the Picard
theorem on each rectangle R ⊂ R2 (possibly with different Lips-
chitz constants). The important question of whether the solution
exists for all times; that is, whether α∗ = ∞, is addressed in the
following theorem.

Theorem 1.6 If we assume that f in (1.28) satisfies the as-
sumptions of the Picard theorem on any rectangle R ⊂ R2, then
[t0, t0 + α∗) is a finite forward maximal interval of existence of
y(t) if and only if

lim
t→t0+α∗

|y(t)| = ∞. (1.30)

In other words, a solution to an equation with a regular right
hand side either exists for all times, or blows up (becomes infinite)
in a finite time. A classical proof of this result can be found in e.g.,
(Robinson, 2001). In Section 4.1.1 we derive it from the general
description of the dynamics of a scalar equation.

These theorems are of great theoretical and practical impor-
tance. We discuss some applications below.
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Example 1.7 We consider the first-order linear differential equa-
tion

y′ = ay. (1.31)

This is an example of a separable equation, discussed in Section
1.3.1. Thus, if y(t) 6= 0 for any t, then (1.16) gives

ln |y(t)| = at + c1,

where c1 is an arbitrary constant of integration. Taking exponen-
tials of both sides yields

|y(t)| = exp (at + c1) = c2 exp (at) ,

where c2 is an arbitrary positive constant: c2 = exp c1 > 0. We
would like to discard the absolute value bars at y(t). To do this,
observe that in the derivation we required that y(t) 6= 0 for any t,
thus y, being a continuous function, must be of a constant sign.
Hence,

y(t) = ±c2 exp (at) = c3 exp (at) (1.32)

where this time c3 can be either positive or negative.
Are these all possible solutions to (1.31)? Solution (1.32) was

derived under provision that y 6= 0. We clearly see that y ≡ 0 is
a solution to (1.31) but, fortunately, this solution can be incorpo-
rated into (1.32) by allowing c3 to be zero.

However, we still have not ruled out the possibility that the
solution can cross the x-axis at one or more points. We cannot
use here (1.32), as it was derived under the assumption that this
cannot happen. Thus we must resort to the Picard theorem. First
of all we note that the function f(t, y) is given by f(t, y) = ay and
|f(t, y1)− f(t, y2)| = a|y1 − y2| so that f satisfies assumptions of
the Picard theorem on any closed rectangleR ⊂ R2 with Lipschitz
constant L = a. If there was a solution satisfying y(t0) = 0 for
some t0 then, from the uniqueness part of the Picard theorem,
this solution should be identically zero, as y(t) ≡ 0 is a solution
to this problem. In other words, if a solution to (1.31) is zero at
some point, then it is identically zero.

In many applications it is important to know that if the initial
condition is non-negative, then so is the corresponding solution.
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For instance, in population dynamics the solution of a differen-
tial equation is the number of individuals in a population and
thus typically a model which admits negative solutions for posi-
tive data cannot be correct. Below we will see how a variant of
the argument used in Example 1.7 can be used to establish that
the above property holds for a class of differential equations.

Example 1.8 Let us consider the Cauchy problem

y′ = yg(t, y), y(t0) = y0, (1.33)

where g is a continuous function on some neighbourhood of [t0 −
a, t0 +a)×(y0−b, y0 +b], a, b > 0 and let y be a solution to (1.33),
defined on an interval [t0, t1), with some t0 < t1 < t0 + b. Then
y0 > 0 implies y(t) > 0. To prove this we employ a trick which is
often used to prove properties of solutions of differential equations.
It uses the fact that since we know that the solution exists, we
can treat some of the unknowns y in (1.33) as known functions,
thus reducing the complexity of the equation. To explain this in
detail, we note that if y is a solution, then we have the identity

y′(t) ≡ y(t)g(t, y(t)), t ∈ [t0, t1).

Since, in principle, y is a known function, then we can define
g̃(t) = g(t, y(t)) and re-write (1.33) as the linear Cauchy problem

y′ = yg̃(t), y(t0) = y0, (1.34)

where g̃ is a continuous function. Then, as in Example 1.7, we see
that yg̃(t) satisfies the assumptions of the Picard theorem (note
that g̃ only is a function of t). Hence, again arguing as in Example
1.7, we see that if y0 > 0, then

y(t) = y0 exp

t∫

t0

g̃(s)ds

and clearly y(t) > 0 for all t for which it is a solution to (1.33).

To illustrate applications of Theorem 1.6, let us consider some
examples.

Exercise 1.9 Consider the Cauchy problem

y′ = 1 + y2, y(0) = 0, (1.35)
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Show that the Picard theorem ensures the existence of a unique
solution to (1.35) for |t| ≤ 1

2 .

Next, show that the explicit solution to (1.35) is y(t) = tan t

which is defined on |t| < π/2.

This exercise shows that, in general, the Picard theorem does
not give the best possible answer – that is why it is sometimes
referred to as the local existence theorem. On the other hand,
the right hand side of the equation satisfies the assumptions of
the Picard theorem everywhere and thus the solution ends its
existence at finite t = +π/2 with a ‘bang’, in accordance with
Theorem 1.6.

Let us assume that (1.28) describes evolution of a population.
Furthermore, let its right hand side satisfies the assumptions of
the Picard theorem and let positive initial data produce positive
solutions, as in Example 1.8. Then, according to Theorem 1.6, the
population either exists for all time or suffers an explosion in a
finite time. In other words, within this framework the only way
for a population to exist only for a finite time is to blow up. Since,
clearly, real populations can become extinct (that is, reach zero)
in finite time, the above results are not satisfactory. One possible
remedy is to consider equations whose solutions can change sign
(e.g., for which y ≡ 0 is not a solution). Then we can interpret the
first time the solution becomes zero as the time of the extinction
of the population. Another possibility is to weaken the assumption
on the right hand side of (1.28) so that Theorem 1.6 will cease to
be applicable. Such a scenario is described in the next example.

Example 1.10 Consider the following Cauchy problem

y′ = − 1
2y

, y(0) = 1.

It is a separable equation which can be transformed to

−1 = 2yy′ = (y2)′

and, upon integration, yields the solution y2 = −t + C. Hence,
using the initial condition y(0) = 1 > 0, we obtain

y(t) =
√

1− t, t < 1.

Therefore, the solution y(t) exists only on the open interval t < 1,
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Figure 1.2 The graph of the solution in Example 1.10

however, contrary to Exercise 1.9, the solution simply vanishes at
the endpoint. We note that this does not violate Theorem 1.6 as
at the point (1, 0), where the solution vanishes, the right hand
side is not Lipschitz continuous.

It is equally important to have easy-to-use criteria ensuring that
solutions of (1.28) are defined for all t ∈ R. One of the most often
used criteria is that f is globally Lipschitz continuous; that is,
that f satisfies assumptions of the Picard theorem on R2 with the
constant L in (1.29) independent of the rectangleR. In such a case
the solution y exists for all t ∈ R. Usually this result is proved by
combining Theorem 1.6 with the so-called Gronwall lemma, see
e.g., (Robinson, 2001). Later, in Remark 4.4, we shall see how it
follows from the general description of the dynamics of a scalar
equation.



2

Basic difference equations models and
their analysis

In this chapter we first introduce discrete mathematical models
of phenomena happening in the real world. We begin with some
explanatory words. Apart from the simplest cases such as the com-
pound interest equation, where the equation is a mathematical ex-
pression of rules created by ourselves, the mathematical modelling
attempts to find equations describing events happening according
to their own rules, our understanding of which is far from com-
plete. At best, the model can be an approximation of the real
world. This understanding guides the way in which we construct
the model: we use the principle of economy (similar to the Ockham
razor principle) to find the simplest equation which incorporates
all relevant features of the modelled events. Such a model is then
tested against experiment and only adjusted if we find that its
description of salient properties of the real phenomenon we try to
model is unsatisfactory.

This explains why we often begin modelling by fitting a lin-
ear function to the data and why such linear, or only slightly
more complicated, models are commonly used, although every-
body agrees that they do not properly describe the real world.
The reason is that often they supply sufficient, if not exact, an-
swers at a minimal cost. One must remember, however, that using
such models is justified only if we understand their limitations and
that, if necessary, are ready to move in with more fine-tuned ones.

18
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2.1 Difference equations of financial mathematics

2.1.1 Compound interest

Compound interest is relevant to loans or deposits made over long
periods. The interest is added to the initial sum at regular inter-
vals, called the conversion periods, and the new amount, rather
than the initial one, is used for calculating the interest for the
next conversion period. The fraction of a year occupied by the
conversion period is denoted by α. Thus the conversion period of
1 month is given by α = 1/12. Instead of saying that the conver-
sion period is 1 month we also say that the interest is compounded
monthly.

For an annual interest rate of p% and the conversion period
equal to α, the interest earned for the period is equal to αp% of
the amount deposited at the start of the period; that is,





amount
deposited
after k + 1
conversion

periods





=





amount
deposited
after k

conversion
periods





+
αp

100





amount
deposited
after k

conversion
periods





.

To express this as a difference equation, for each k let Sk denote
the amount on deposit after k conversion periods. Thus

Sk+1 = Sk +
αp

100
Sk = Sk

(
1 +

αp

100

)
(2.1)

which is a simple first-order linear difference equation. Using (1.5)
with g = 0 (or simply noting that Sk follows the geometric pro-
gression), we get

Sk =
(
1 +

αp

100

)k

S0, (2.2)

which is called the compound interest formula. If we want to mea-
sure time in years, then k = t/α, where t is the number of years.
Then (2.2) takes the form

St =
(
1 +

αp

100

)t/α

S0. (2.3)

It is worth introducing here the concept of effective interest rate.
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First we note that in (2.3), with S0 = 1,

S1 =
(
1 +

αp

100

)1/α

= 1 +
p

100
+ · · · > 1 +

p

100
,

so if the interest is compounded several times per year, the increase
in savings is bigger than if it was compounded annually. This is
the basis of defining the effective interest rate peff (relative to the
conversion period), often used in banks’ commercials. Namely

1 + peff =
(
1 +

αp

100

)1/α

, (2.4)

that is, peff is the interest rate which, compounded annually, would
give the same return as the interest p compounded with conversion
period α.

Exercise 2.1 In some banks the interest depends on the amount
in the account. Derive the difference equation describing the growth
of your deposit in such a case, taking the conversion period α and
interest rate p(N).

Exercise 2.2 Modify (2.1) to describe the situation, when you
have to pay an administrative fee of q(N) every time the interest
is added.

2.1.2 Loan repayment

A slight modification of the above argument can be used to find
the equation governing loan repayments. The scheme described
below usually is used for the repayment of house or car loans.
Repayments are made at regular intervals in equal amounts to
reduce the loan and to pay the interest on the amount still owing.

It is supposed that the compound interest at p% is charged
on the outstanding debt, with the conversion period equal to the
same fraction α of the year as the period between the repayments.
Between the payments, the debt increases because of the interest
charged on the debt still outstanding after the last repayment.
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Hence,
{

debt after
k + 1 payments

}
=

{
debt after

k payments

}

+
{

interest
on this debt

}
− {payment},

where it is assumed that the payment is made at the end of each
conversion period. To write this as a difference equation, let D0 be
the initial debt to be repaid and, for each k, let the outstanding
debt after the kth repayment be Dk. Then

Dk+1 = Dk +
αp

100
Dk −R = Dk

(
1 +

αp

100

)
−R.

We note that if the instalment was paid at the beginning of the
conversion period, the equation would take a slightly different
form

Dk+1 = Dk −R +
αp

100
(Dk −R) = (Dk −R)

(
1 +

αp

100

)
.

The reason for the change is that the interest is calculated from
the debt Dk reduced by the payment R done at the beginning of
the conversion period.

These equations fit into theory presented in Section 1.1.1. To
simplify notation, we put r = αp/100 and, by (1.5), we obtain the
solution

Dk = (1 + r)k
D0 −R

k−1∑
i=0

(1 + r)k−i−1

= (1 + r)k
D0 −

(
(1 + r)k − 1

) R

r
. (2.5)

Exercise 2.3 Show that the formula for the monthly instalment
on a loan D0 to be repaid in n instalments is

R =
rD0

1− (1 + r)−n
. (2.6)

Hint. Solve (2.5) subject to Dn = 0.
Calculate the instalments on a mortgage of $200000 to be repaid

over 20 years in monthly instalments at the annual interest rate
of 3%.
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2.1.3 Gambler’s ruin

The next money-related problem involves a different type of mod-
elling with roots in probability theory. Problems of this type are
common in the theory of Markov chains, see e.g. (Feller, 1968).

A gambler plays a sequence of games against an adversary. The
probability that the gambler wins $1 in any given game is q and
the probability of him losing $1 is 1− q. He quits the game if he
either wins a prescribed amount of $N , or loses all his money; in
the latter case we say that he has been ruined. Let pn denote the
probability that the gambler will be ruined if he starts gambling
with $n. We build the difference equation satisfied by pn, using the
following argument. Firstly, note that we can start observations at
any moment; that is, the probability of the gambler being ruined
with $n at the start is the same as the probability of him being
ruined if he acquires $n at any moment during the game. If at
some moment during the game he has $n, he can be ruined in two
ways: by winning the next game and be ruined with $n + 1, or by
losing and then being ruined with $n− 1. Thus

pn = qpn+1 + (1− q)pn−1. (2.7)

Replacing n by n + 1 and dividing by q, we obtain

pn+2 − 1
q
pn+1 +

1− q

q
pn = 0, (2.8)

with n = 0, 1 . . . , N . This is a second-order linear difference equa-
tion which requires two side conditions. While in the previous
cases the initial conditions were a natural choice and thus we
have not pondered on them, here the situation is slightly untyp-
ical. Namely, we know that the probability of ruin starting with
$0 is 1, hence p0 = 1. Further, if the player has $N , then he quits
and cannot be ruined, so that pN = 0. These are not initial condi-
tions but an example of two-point conditions, that is, conditions
prescribed at two arbitrary points. Such problems do not always
have a solution.

To find the general solution of (2.8) we can use the method
described in Section 1.1.2. The characteristic equation

λ2 − q−1λ + (1− q)q−1 = 0
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has roots λ1 = 1−q
q and λ2 = 1. Thus, according to the discussion

in Section 1.1.2, if q 6= 1/2, then the general solution is

pn = c1 + c2

(
1− q

q

)n

,

while if q = 1/2, then λ1 = λ2 = 1 and pn = c1 + c2n, where c1

and c2 are constants. To find the solution for the given boundary
conditions, we denote Q = (1− q)/q so that for q 6= 1/2

1 = c1 + c2, 0 = c1 + QNc2,

from where c2 = 1/(1−QN ), c1 = −QN/(1−QN ) and hence

pn =
Qn −QN

1−QN
.

Analogous considerations for q = 1/2 yield pn = 1 − n/N. For
example, if q = 1/2 and the gambler starts with n = $20 with the
target N = $1000, then p(20) = 1 − 20/1000 = 0.98; that is, his
ruin is almost certain.

In general, if the gambler plays a long series of games, which
can be modelled here as taking N → ∞, then he will be ruined
almost certainly even if the game is fair (q = 1

2 ).

Exercise 2.4 You play the following game: on each play, the
probability that you win $2 is 0.1, the probability that you win
$1 is 0.3, and the probability that you lose 1 is 0.6. Suppose that
you quit when either you are broke or when you have at least
$N . Write the third-order equation (together with the boundary
conditions) that describes the probability pn of eventually going
broke if you have $n.

2.2 Difference equations of population theory

The modelling process in the examples discussed above was rela-
tively simple and only involved translation of the given rules into
mathematical relations. This was due to the fact that there was
no need to discover these rules as they were explicitly stated in
the bank’s or game’s regulations. In this section we shall attempt
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to model behaviour of more complicated systems, when the mod-
elling involves making some hypotheses about the rules governing
them.

2.2.1 Single equations for unstructured population
models

In many fields of human endeavour it is important to know how
various populations grow and what factors influence their growth.
Knowledge of this kind is important in studies of bacterial growth,
wildlife management, ecology and harvesting.

Many animals tend to breed only during a short, well-defined,
breeding season. If we neglect death, it is then natural to think
of the population as only changing intermittently and to measure
time discretely, using positive integers corresponding to the breed-
ing seasons. Hence the obvious approach for describing the growth
of such a population is to write down a suitable difference equa-
tion relating the size of the population in a given season to the
size in the preceding ones. Later we shall also look at populations
of species that breed continually, such as humans.

We begin with the simplest population models, discuss their
advantages and drawbacks and build more realistic variants to
address the latter.

2.2.2 Exponential growth – linear first-order difference
equations

Let us start with semelparous populations; that is, ones charac-
terized by a single reproductive episode before death. Typical
examples of such populations are insects, who often have well-
defined annual non-overlapping generations – adults lay eggs in
spring/summer and then die. The eggs hatch into larvae which
feed and grow and later undergo metamorphosis to spend win-
ter in the so-called pupal stage. The adults, also called imago,
emerge from the pupae in spring. We take the census of adults in
the breeding seasons. Then it is natural to describe the population
as the sequence of numbers

N0, N1, . . . , Nk,
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where Nk is the number of adults in the kth breeding season.
The simplest assumption to make is that there is a functional

dependence between subsequent generations

Nn+1 = f(Nn), n = 0, 1, . . . . (2.9)

Let us introduce the number R0, which is the average number of
eggs laid by an adult. We call R0 the intrinsic growth rate. The
simplest functional dependence (2.9) is

Nn+1 = R0Nn, n = 0, 1, . . . , (2.10)

which describes the situation in which the size of the population
is determined only by its fertility. Note, that the fact that there
are no surviving adults after breeding is implicit in the form of
(2.10) and the definition of R0.

The exponential (or Malthusian) equation (2.10) has a much
larger range of applications than the one described above. For
instance, in most populations the generations, in general, do over-
lap. To adapt (2.10) to such a situation, we will look at large
populations, in which individuals give birth to new offspring but
also die after some time. We treat such a population as a whole,
assuming that its growth is governed by the average behaviour of
its individual members. Thus, we make the following assumptions:

• each member of the population produces on average the same
number of offspring;

• each member has an equal chance of dying (or surviving) before
the next breeding season;

• the ratio of females to males remains the same in each breeding
season.

We also assume

• Age differences between members of the population can be ig-
nored;

• The population is isolated – there is no immigration or emigra-
tion.

Suppose that, on average, each member of the population gives
birth to the same number of offspring, β, each season. The con-
stant β is called the per capita birth rate. We also define µ as the
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probability that an individual will die before the next breeding
season and call it the per capita death rate. Thus, denoting by Nk

the number of individuals of the population at the start of the kth
breeding season, we obtain Nk+1 = Nk − µNk + βNk; that is

Nk+1 = (1 + β − µ)Nk = RNk, (2.11)

where R is the net growth rate. This equation reduces to (2.10) by
putting µ = 1 (so that the whole adult population dies) and β =
R0. Mathematically, (2.10) and (2.11) are the same equation, the
only difference being the interpretation of the growth parameter.

Equation (2.11) is easily solved, yielding

Nk = RkN0, k = 0, 1, 2 . . . , (2.12)

with R replaced by R0 in semelparous populations. We see that
the behaviour of the model depends on R. If R < 1, then the pop-
ulation decreases towards extinction, but with R > 1 it grows in-
definitely. Such behaviour over long periods of time is not observed
in any population so it is clear that the model is over-simplified
and requires corrections.

Exercise 2.5 A population of birds on an island has constant
per capita birth (β) and death (µ) rates. Also a constant number
I of birds migrate to the island each year. Find the difference
equation describing the growth of birds’ population on this island,
assuming that the newcomers start laying eggs only one year after
arrival on the island.

2.2.3 The death rate µ and the average lifespan of an
individual

The death rate µ introduced above can be given another interpre-
tation. Denote by P (k) the probability that an individual, born
at k = 0, is alive at time k; that is, at the end of the kth sea-
son. Now, in order to be alive at time k, the individual had to be
alive at the end of the k − 1th season and could not die between
k− 1 and k. Since the set of individuals alive at k− 1 is a disjoint
union of the sets of individuals alive at k and those who died be-
tween k−1 and k, the probability of dying between k−1 and k is
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P (k−1)−P (k), see e.g. (Feller, 1968). On the other hand, assum-
ing that the probability µ of dying in a given season is constant
in time, we see that that the probability that an individual dies
at k is µP (k− 1). Indeed, to die at the end of the kth season, the
individual had to be alive at time k − 1 and then die. Comparing
these two expressions, we arrive at

P (k) = (1− µ)P (k − 1), P (0) = 1;

that is

P (k) = (1− µ)k.

The average lifespan L means the expected duration of life. To find
it, we observe that, by the above considerations, the probability
of dying at age k is µP (k − 1) = µ(1 − µ)k−1. Without using
probability theory, it can be explained as follows: after first year
a proportion µ of the population dies and 1 − µ survives, then
after second year a proportion µ of them die; that is, a proportion
µ(1 − µ) of the initial population lives just 2 years and (1 − µ)2

lives on, etc. Thus, the average life span is found to be

L = µ

∞∑

k=1

k(1− µ)k−1 =
1
µ

, (2.13)

where we used
∞∑

k=1

kzk−1 =
∞∑

k=1

k∑

j=1

zk−1 =
∞∑

j=1

∞∑

k=j

zk−1

=
∞∑

j=1

zj−1
∞∑

r=0

zr =
1

(1− z)2

for z = 1− µ.

2.2.4 Models leading to nonlinear difference equations

In real populations, some of the R0 offspring produced on average
by each adult will not survive to be counted as adults in the next
census. If we denote by S(N) the survival rate; that is, the fraction
of the population that survives over the season, then the Malthu-
sian equation for semelparous populations, (2.10), is replaced by a
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more general equation which can be written in one of the following
forms

Nk+1 = R0S(Nk)Nk = F (Nk)Nk = f(Nk), (2.14)

k = 0, 1, . . . , where F (N) is the effective per capita reproduc-
tion rate when the population is of size N . Again we emphasise
that here we describe semelparous populations; appropriate terms
would have to be added to (2.14) to describe populations with
adults surviving the breeding season, as in (2.18).

Such models typically lead to nonlinear equations. We introduce
some typical nonlinear models by specifying the reproduction rates
in (2.14).

Beverton–Holt type models. Let us look at the model (2.14).
We would like it to display a compensatory behaviour; that is, the
mortality should balance the increase in number of individuals.
For this we should have NS(N) ≈ const. Also, for small N , S(N)
should be approximately 1 as we expect very small intra-species
competition and therefore the growth should be exponential with
the growth rate R0. A simple function of this form is

S(N) =
1

1 + aN
,

leading to

Nk+1 =
R0Nk

1 + aNk
.

Let us introduce the concept of the carrying capacity of the envi-
ronment. This is the number K such that if the population reaches
K, it will stay there or, in other words, if Nk = K for some k,
then Nk+m = K for all m ≥ 0. Substituting Nk+1 = Nk = K in
the equation above gives

K(1 + aK) = R0K,

leading to a = (R0 − 1)/K and the resulting model, called the
Beverton–Holt model, takes the form

Nk+1 =
R0Nk

1 + R0−1
K Nk

. (2.15)

As we said earlier, this model is compensatory.
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A generalization of this model is called the Hassell, or again
Beverton–Holt, model and reads

Nk+1 =
R0Nk

(1 + aNk)b
. (2.16)

Substituting xk = aNk reduces the number of parameters in
(2.16), giving

xk+1 =
R0xk

(1 + xk)b
(2.17)

which will be analysed in Section 4.2.5.

Remark 2.6 While the derivation of the Beverton–Holt equa-
tion presented above may seem to be ad hoc, we shall see in
Sections 5.1.4 and 5.2.2 that it appears in a natural way as a
discretization of well-established population models.

The logistic equation. The Beverton–Holt models are best ap-
plied to semelparous insect populations but have been also used
in fisheries models. For populations surviving to the next cycle, it
is more informative to write the difference equation in the form

Nk+1 = Nk + F (Nk)Nk, (2.18)

so that the per capita increase in the population is given by
F (N) = R0S(N). Note that the first term on the right hand side
of (2.18) was not present in (2.14) due to the fact that in semel-
parous populations we have no adult survivals from one season to
another. Here, in contrast, we assume that no adults die (though
death can be incorporated, e.g., by introducing a factor d < 1 in
front of the first Nk).

As before, the function F can have different forms but should
satisfy the following requirements:

• Due to overcrowding, F (N) must decrease as N increases until
N equals the carrying capacity K; then F (K) = 0 and, as
above, N = K stops changing.

• Since for N much smaller than K there is small intra-species
competition, we should observe an exponential growth of the
population so that F (N) ≈ R0 as N → 0; here R0 is called the
unrestricted growth rate of the population.
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The constants R0 and K are usually determined experimentally.
In the spirit of mathematical modelling we start with the sim-

plest function satisfying these requirements. This is a linear func-
tion. To satisfy the above conditions, it must be chosen as

F (N) = −R0

K
N + R0.

Substituting this formula into (2.18) yields the so-called discrete
logistic equation

Nk+1 = Nk + R0Nk

(
1− Nk

K

)
, (2.19)

which is still one of the most often used discrete equations of
population dynamics.

By substitution

xk =
R0

1 + R0

Nk

K
, µ = 1 + R0,

we can reduce (2.19) to a simpler form

xk+1 = µxk(1− xk), (2.20)

which typically is used for mathematical analysis.

Exercise 2.7 Show that the logistic equation (2.19) can be de-
rived from the general equation (2.11) by assuming that the mor-
tality µ is not constant but equals

µ = µ0 + µ1N.

Here µ0 corresponds to death by natural causes and µ1 could
be attributed to e.g. cannibalism, where one adult eats/kills on
average a portion µ1 of the population.

Exercise 2.8 Show that for Nk close to K in (2.19), subsequent
iterations can produce negative values for the population. What
can be an interpretation of negative values of Nk?

Exercise 2.9 Show that the equation

N(k + 1) = Nker(1−Nk
K ), (2.21)

called the Ricker equation, satisfies the assumption introduced in



2.3 Some applications of discrete population models 31

constructing the logistic equation but does not allow for nega-
tive solutions. What happens if Nk is (a) slightly smaller and (b)
slightly larger than K?

Exercise 2.10 Another drawback of the previous models is that
they describe situations in which the growth rate only decreases
when the population increases. However, in 1931 Warder Clyde
Allee, see e.g., (Thieme, 2003), noticed that in small, or dispersed,
populations, individual chances of survival decrease which can lead
to their extinction. This effect could be due to the difficulties in
finding a mating partner or a more difficult cooperation in orga-
nizing defence against predators. Consider a population described
by

Nk+1 = Nk(1 + r(L−Nk)(Nk −K)), (2.22)

where 0 < L < K. Show that Nk+1 < Nk if 0 < Nk < L and
Nk+1 > Nk if L < Nk < K so that (2.22) gives an example of the
behaviour described by Allee.

2.3 Some applications of discrete population models

In this section we discuss some problems, the solution of which
requires a good understanding of the model without necessarily
solving the relevant equations. Thus, the approach presented here
could serve as an introduction to the qualitative theory considered
in Chapter 4.

2.3.1 Estimates of parameters in population models

Most population models contain parameters which are not given
and must be determined by fitting the model to the observable
data. We consider two problems of this type.

Growth rate in an exponential model. A total of 435 fish
were introduced in 1979 and 1981 into a lake. In 1989, the com-
mercial net catch alone was 4 000 000 kg. Since the growth of this
population was so fast, it is reasonable to assume that it obeyed
the Malthusian law Nk+1 = RNk. Assuming that the average
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weight of a fish is 1.5 kg, and that in 1999 only 10% of the fish
population was caught, we seek lower and upper bounds for R.

The solution is based on a realization that we have two extreme
cases: either all fish introduced in 1979 died or all fish introduced
in 1981 died. For a given output, the former scenario would give
the lowest growth rate while the highest would follow from the lat-
ter. To put this in mathematical terms, we recall equation (2.12).
We have

Nk = N0R
k,

where we measure k in years and R > 1 (as we have growth).
Let us denote by N (1) and N (2) the numbers of fish introduced in
1979 and 1981, respectively, so that N (1) + N (2) = 435. Thus, we
can write the equation

N1989 = N (1)R1989−1979 + N (2)R1989−1981 = N (1)R10 + N (2)R8.

Since we know neither N (1) nor N (2), we observe that R2 > 1 and
thus

N1989 ≤ N (1)R10 + N (2)R10 = 435R10.

Similarly

N1989 ≥ N (1)R8
0 + N (2)R8 = 435R8.

Hence

10

√(
N1989

435

)
≤ R ≤ 8

√(
N1989

435

)
.

Now, the data of the problem give N1989 = 10 × 4000000/1.5 ≈
2666666 and so

2.39 ≤ R ≤ 2.97.

Exercise 2.11 A population grows according to the logistic
equation

Nk+1 = Nk + R0Nk

(
1− Nk

K

)
,

with R0 and K unknown. Show that to determine R0 and K, it is
enough to know three subsequent measurements of the population
size, when it is not in equilibrium.
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2.3.2 Sustainable harvesting

Let us consider a population of fish living in a pond, which grows
according to the logistic equation (2.19),

Nk+1 = Nk + R0Nk

(
1− Nk

K

)
.

This equation only can be solved in some particular cases, see
Section 2.4. However, even without solving it, we can draw a con-
clusion of some importance for fisheries.

The basic idea of a sustainable economy is to find an optimal
level of fishing: too much harvesting would deplete the fish pop-
ulation beyond recovery and too little would provide insufficient
return for the community. To maintain the population at a con-
stant level, only the increase in the population should be har-
vested during any one season. In other words, the harvest should
be Hk = Nk+1 −Nk. Using the logistic equation, we find

Hk = R0Nk (1−Nk/K) .

Hence, to maximize the harvest at each k, the population should
be kept at the size Nk = N for which the right hand side attains
the absolute maximum. We note that the right hand side is a
quadratic function, f(N) = R0N (1−N/K) , and it is easy to
find that the maximum is attained at N = K/2; that is, the
population should be kept at around half of the carrying capacity
of the environment. Thus, the maximum sustainable yield is

H = R0K/4. (2.23)

Exercise 2.12 A more realistic version of the above problem
can be derived by introducing actual fishing in the model. Then
we obtain

Nk+1 = Nk + R0Nk

(
1− Nk

K

)
− qENk,

where E is the fishing effort (e.g., the number of fishing vessels
in the area) and q is the fishing efficiency; that is, the fraction of
the total fish population caught by one vessel in the season. Using
an argument as above,
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(i) show that the fishing, which keeps the population at a con-
stant size, is possible only if qE < R0 and find the size of
the population in this case;

(ii) find the fishing yield for such a population;
(iii) given that q,R0 and K are constant, show that the maxi-

mum sustainable yield of R0K/4 (compare with (2.23)) is
attained for the fishing effort E = R0/2q;

(iv) show that if E > R0/2q, then the yield decreases with grow-
ing E.

Using (iv), draw the conclusion that greed does not pay.

2.4 Some explicitly solvable nonlinear models

We complete this chapter by presenting some nonlinear models
which can be explicitly solved by appropriate substitutions.

2.4.1 The Beverton–Holt model

We recall that the Beverton–Holt equation, (2.16), can be simpli-
fied to

xn+1 =
R0xn

(1 + xn)b
. (2.24)

While for general b this equation can display very rich dynamics,
which will be looked at in Section 4.2.5, for b = 1 it can be solved
explicitly. So, let us consider

xn+1 =
R0xn

1 + xn
. (2.25)

We can recognize this equation as an equation of the Ricatti type
(1.9) so that the substitution yn = 1/xn converts (2.25) into

yn+1 =
1

R0
+

1
R0

yn.

Using (1.5), we find

yn =
1

R0

R−n
0 − 1

R−1
0 − 1

+ R−n
0 y0 =

1−Rn
0

Rn
0 (1−R0)

+ R−n
0 y0



2.4 Some explicitly solvable nonlinear models 35

if R0 6= 1 and

yn = n + y0

for R0 = 1. From these equations, we see that xn → R0−1 if R0 >

1 and xn → 0 if R0 ≤ 1 as n → ∞. It is maybe surprising that a
population faces extinction if R0 = 1 (which corresponds to every
individual giving birth to one offspring on average). However, the
density depending factor causes some individuals to die between
reproductive seasons which means that the population with R0 =
1 in fact decreases with every cycle.

2.4.2 The logistic equation

In general, the discrete logistic equation does not admit closed
form solutions and also displays a very rich dynamics, see Section
4.2.4. However, some special cases can be solved by an appropriate
substitution. We will look at two such cases. First consider

xn+1 = 2xn(1− xn) (2.26)

and use the substitution xn = 1/2− yn. Then

1
2
− yn+1 = 2

(
1
2
− yn

)(
1
2

+ yn

)
=

1
2
− 2y2

n,

so that yn+1 = 2y2
n. We see that if y0 = 0, then yn = 0 for all

n ≥ 1. Furthermore, the solution yn for n ≥ 1 does not change if
we change the sign of y0. Thus, we can take |y0| > 0 as the initial
condition. Then yn > 0 for n ≥ 1 and we can take the logarithm
of both sides getting, for n ≥ 1, ln y(n + 1) = 2 ln yn + ln 2 which,
upon substituting zn = ln yn, becomes the inhomogeneous linear
equation zn+1 = 2zn +ln 2. Using (1.5), we find the solution to be
zn = 2nz0 + ln 2(2n − 1). Hence

yn = ezn = e2n ln |y0|eln 2(2n−1) = y2n

0 22n−1,

where we dropped the absolute value bars as we raise y0 to even
powers. Thus

xn =
1
2
−

(
1
2
− x0

)2n

22n−1.
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We note that for x0 = 1/2 we have xn = 1/2 for all n, so that
we obtain a constant solution. In other words, x = 1/2 is an
equilibrium point of (2.26), see Section 4.2.

Another particular logistic equation which can be solved by
substitution is

xn+1 = 4xn(1− xn). (2.27)

First we note that since f(x) = 4x(1 − x) ≤ 1 for 0 ≤ x ≤ 1,
we have 0 ≤ xn+1 ≤ 1 if xn has this property. Thus, assuming
0 ≤ x0 ≤ 1, we can use the substitution

xn = sin2 yn (2.28)

which yields

xn+1 = sin2 yn+1 = 4 sin2 yn(1− sin2 yn)

= 4 sin2 yn cos2 yn = sin2 2yn.

This gives the family of solutions

yn+1 = ±2yn + kπ, k ∈ Z.

However, bearing in mind that our aim is to find xn given by (2.28)
and using the periodicity and symmetry of the function sin2, we
can discard kπ as well as the minus sign and focus on yn+1 = 2yn.

This is a geometric progression and we get yn = C2n, where C ∈ R
is arbitrary, as the general solution. Hence

xn = sin2 C2n,

where C is to be determined from x0 = sin2 C. What is remarkable
in this example is that, despite the fact that there is an explicit
formula for the solution, the dynamics generated by (2.27) is very
irregular (chaotic), see Section 4.2.
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Basic differential equations models

In the previous section we have seen that difference equations can
be used to model quite a diverse phenomena but their applica-
bility is limited by the fact that the system should not change
between subsequent time steps. These steps can vary from frac-
tions of a second to years or centuries but they must stay fixed
in the model. On the other hand, there are numerous situations
when changes can occur at all times. These include the growth of
populations in which breeding is not restricted to specific seasons,
motion of objects, where the velocity and acceleration may change
at every instant, spread of an epidemic with no restriction on in-
fection times, and many others. In such cases it is not feasible to
model the process by relating the state of the system at a par-
ticular instant to a finite number of earlier states (although this
part remains as an intermediate stage of the modelling process).
Instead, we have to find relations between the rates of change of
quantities relevant to the process. The rates of change typically
are expressed as derivatives and thus continuous time modelling
leads to differential equations which involve the derivatives of the
function describing the state of the system.

In what follows we shall derive several differential equations
models trying to provide continuous counterparts of some discrete
systems described above.

37
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3.1 Equations related to financial mathematics

In this section we shall provide continuous counterparts of equa-
tions (2.2) and (2.5) and compare the results.

3.1.1 Continuously compounded interest and loan
repayment

Many banks advertise continuous compounding of interest. This
means that the conversion period α of Section 2.1 tends to zero so
that the interest is added to the account on a continual basis. Let
us measure time in years, let ∆t be the conversion period and p

the annual interest rate. Then the increase in the deposit between
time instants t and t + ∆t is

S(t + ∆t) = S(t) + ∆t
p

100
S(t). (3.1)

Dividing this relation by ∆t and passing with ∆t to zero, as
suggested by the definition of continuously compounded interest,
yields the differential equation

dS

dt
= p̄S, (3.2)

where p̄ = p/100. We note that here and elsewhere in this book we
assume that the function describing the state of the system (such
as S(t) in this model) is differentiable so that the passage to the
derivative is justified. It is important to realize that, in general,
this property is far from obvious and sometimes we have to work
with discrete equations even in continuous models.

Eq. (3.2) is a first order linear equation. It is easy to check that
it has the solution

S(t) = S0e
p̄t, (3.3)

where S0 is the initial deposit made at time t = 0.
To compare this formula with the discrete one (2.2), we note

that in t years we have k = t/α conversion periods

S(t) = Nk = (1 + p̄α)kS0 = (1 + p̄α)t/αS0 =
(
(1 + p̄α)1/p̄α

)p̄t

.

From calculus we know that

lim
x→0+

(1 + x)1/x = e,
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and that the function x → (1 + x)1/x is monotonically increasing.
Thus, if the interest is compounded very often (almost continu-
ously), then practically

S(t) ≈ S0e
p̄t, (3.4)

which is exactly (3.3). It is clear that after 1 year the initial invest-
ment will increase by the factor ep̄ and, recalling (2.4), we have
the identity

1 + peff = ep̄, (3.5)

which can serve as the definition of the effective interest rate when
the interest is compounded continuously. This relation can, of
course, be obtained by passing with α to 0 in (2.4). Typically,
contrary to (2.2), the exponential can be calculated even on a
simple calculator, which makes (3.4) easier to use. Of course, it
does not give the exact solution for any relevant discrete equation
but, due to the monotonicity of the limit, the continuously com-
pounded interest rate is the best one can get and the difference
between the result obtained by the continuous and the discrete
formulae is negligible. A short calculation reveals that if one in-
vests $10000 at p = 15% in banks with conversion periods of 1
year, 1 day and with continuously compounded interest, then the
return will be, respectively, $11500, $11618 and $11618.3. That is
why the continuous formula (3.3) can be used as a good approx-
imation for the real returns with small, but non-zero, conversion
periods.

3.1.2 Continuous loan repayment

Let us assume that an annual interest p% is being paid off con-
tinuously at a rate of ρ > 0 per annum. Applying to the discrete
equation (2.5) an argument similar to the one used in the previ-
ous subsection, we find that the equation governing the continuous
loan repayment is

dD

dt
− p̄D = −ρ, (3.6)

where D(t) is the outstanding debt at time t, where p̄ = p/100.
Assume further that the original amount borrowed from a bank
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is D(0) = D0. This is a Cauchy problem for an inhomogeneous
linear equation, discussed in Section 1.3.2. The integrating factor
is exp(−p̄t) and hence we can write the equation as

(De−p̄t)′ = −ρe−p̄t

which, upon integration from 0 to t and using the initial condition,
yields

D(t) = D0e
p̄t +

ρ

p̄
(1− ep̄t).

As in Section 2.1.2, let us determine the instalments for a given
loan D0, annual interest rate p and repayment period T . Setting
D(T ) = 0, we get

ρ =
p̄D0e

p̄T

ep̄T − 1
. (3.7)

Let us test this formula against the numerical data used in Section
2.1.2. We have D0 = $200000, p̄ = 0.13 and T = 20 (remember
that we use years, and not the conversion period as in the discrete
case, as units of time). Then we get ρ = 28086.1. This is, however,
the annual instalment, thus the amount paid per month is R =
$2340.5. This gives a slightly better rate than if instalments were
paid on a monthly basis but still (3.7) can be used as a good
approximation of the real instalments.

Indeed, taking in the discrete formula (2.6) the annual payment
ρα = R/α and n = T/α, where T is time in years and 1/α is the
number of payments in a year, we get

lim
α→0

ρα = lim
α→0

p̄D0

(1− (1 + αp̄)1/αp̄)−T p̄
=

p̄D0

1− e−p̄T
,

which, after simple algebra, becomes (3.7). Moreover, the limit is
monotonic, so that indeed ρα < ρ for any α > 0.

3.2 Radiocarbon dating

Exponential growth models appear in numerous processes, when-
ever the rate of change of some quantity is proportional to the
amount present. One of them is radioactive decay.

Radioactive substances undergo a spontaneous decay due to the
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emission of α particles. The mass of α particles is small in compar-
ison with the mass of the sample of the radioactive material so it
is reasonable to assume that the function N, giving the number of
particles in the sample, is continuous. Experiments indicate that
the rate of decrease of the mass of the sample is proportional to
its mass. This principle immediately leads to the equation

N ′ = −kN, (3.8)

where N is the number of radioactive particles present in the
sample and k is a proportionality constant.

One of the best known applications of this model is the ra-
diocarbon dating used for finding the age of samples which once
contained a living matter, like fossils, etc. It is based on the ob-
servation that the element carbon appears in nature as a mixture
of stable Carbon-12 (C12) and radioactive Carbon-14 (C14) and
the ratio between them has remained constant throughout his-
tory. Thus, while an animal or a plant is alive, the ratio C14/C12

in its tissues is a known constant. When it dies, however, there is
no new carbon absorbed by the tissues and, since the radioactive
C14 decays, the ratio C14/C12 decreases as the amount of C14

decreases.
To be able to use (3.8) we note that, similarly to (3.3), its

solution is given by

N(t) = N(t0)e−k(t−t0). (3.9)

Then we we must find a way to determine the value of k for C14.
What can be directly measured is the number of particles which
remain in the sample after some time (through the mass of the
sample). The parameter which is most often used when dealing
with radioactive materials is the so-called half-life defined as the
time T after which only half of the original number of particles
remains. This is a constant, depending only on the material and
not on the original number of particles or the moment in time at
which we started to observe the sample. The relation between k

and T can be found from the equation

N(T + t0) = 0.5N(t0) = N(t0)e−kT ;
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that is, kT = ln 2 so that the solution is given by

N(t) = N(t0)e−(t−t0) ln 2/T . (3.10)

It is clear that after time T, the number of radioactive particles in
a sample halves, irrespective of the initial amount and the initial
time t0, so that indeed the number of particles halves after every
period of length T .

To demonstrate how this formula is applied in a concrete case,
we estimate the age of a charcoal sample found in 2003 in a pre-
historic cave, in which the ratio C14/C12 was 14.5% of its original
value. The half-life of C14 is 5730 years.

The crucial step here is to translate the absolute numbers of
C14 appearing in (3.10) into the ratio C14/C12 which is the only
information available from the experiment. Imagine a reference
sample containing a certain amount N14(t0) of C14 and N12(t0) of
C12 at some time t0. Then, at time t, we will have N14(t) of C14

but for C12 the amount does not change: N12(t) = N12(t0). Thus,
dividing

N14(2003) = N14(t0)e−(2003−t0) ln 2/5730

by the constant N12, we will get the equation governing the evo-
lution of the ratio C14/C12

0.145
N14(t0)
N12(t0)

=
N14(2003)
N12(2003)

=
N14(t0)
N12(t0)

e−(2003−t0) ln 2/5730.

Thus 0.145 = e−(2003−t0) ln 2/5730; that is,

t0 = 2003 +
5730 ln 0.145

ln 2
= −13960

so that the sample dates back to around 14000 BC.

3.3 Differential equations for population models

In this section we will study first-order differential equations which
appear in population theory. At first glance it appears that it is
impossible to model the growth of a species by differential equa-
tions since the population of any species always changes by integer
amounts. Hence the population of any species can never be a dif-
ferentiable function of time. However, similarly to the argument
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in the previous section, if the population is large and it increases
by one, then the change is very small when compared to the size
of this population. Thus often we may assume that large popu-
lations change continuously (and even in a differentiable way) in
time and, if the final answer is not an integer, we shall round it
to the nearest integer.

Another way of accepting non-integer entries in population mod-
els is by considering – not the whole population – but its density;
that is, the number if individuals present in a unit area or volume
of space. As so defined, the density of a population typically is
not an integer.

A similar justification applies to our use of t as a real variable:
in the absence of specific breeding seasons, reproduction can occur
at any time and for sufficiently large populations it is natural to
think of reproduction as occurring continuously.

Let N(t) denote the size of a population of a given isolated
species at time t and let ∆t be a small time interval. Then the
population at time t + ∆t can be expressed as

N(t + ∆t)−N(t) = number of births in ∆t

− number of deaths in ∆t.

It is reasonable to assume that the number of births and deaths
in a short time interval is proportional to the population at the
beginning of this interval and proportional to the length of this
interval, thus

N(t+∆t)−N(t) = β(t,N(t))N(t)∆t−µ(t,N(t))N(t)∆t. (3.11)

Taking r(t,N) to be the difference between the birth and death
rate coefficients at time t for the population of size N, we obtain

N(t + ∆t)−N(t) = r(t,N(t))∆tN(t).

Note that this step is the same as in the discrete time modelling
with ∆t being the unit of time. We are, however, interested in
changes occurring over time intervals of arbitrary length. Thus,
dividing by ∆t and taking the limit ∆t → 0, we obtain the differ-
ential equation

N ′ = r(t,N)N. (3.12)
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Here both the coefficient r(t, N) and N are unknown. To solve
the equation we need to make some assumptions on r, which are
guided by the experimental data. We will discuss several typical
cases now.

3.3.1 Exponential growth

The simplest possible r(t,N) is a constant and in fact such a model
is used in short-term population forecasts. So, let us assume that
r(t,N(t)) = r which gives

N ′ = rN. (3.13)

This is exactly the same equation as (3.2), (3.8) or (5.17) and thus
we can use the same mathematical techniques as for the former
models. As in (3.9), the solution to it is given by

N(t) = N(t0)er(t−t0), (3.14)

where N(t0) is the size of the population at some fixed time t0.
To be able to give some numerical illustration for this equation,

we need the coefficient r and the population at some time t0.
Following (Braun, 1983), we use the data of the U.S. Department
of Commerce: it was estimated that the Earth’s population in
1965 was 3.34 billion and that the population was increasing at
an average rate of 2% per year during the decade 1960–1970. Thus
N(t0) = N(1965) = 3.34×109 with r = 0.02, and (3.14) takes the
form

N(t) = 3.34× 109e0.02(t−1965). (3.15)

To test the accuracy of this formula, let us calculate when the
population of the Earth is expected to double. To do this, we
solve the equation

N(T + t0) = 2N(t0) = N(t0)e0.02T .

Hence 2 = e0.02T and T = 50 ln 2 ≈ 34.6 years. This is in an
excellent agreement with the present observed value of the Earth’s
population and also gives a good agreement with the observed
data, provided in table below, if we do not go too far into the
past, see Fig. 3.1.
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Year Population in billions

1500 0.5

1804 1

1927 2

1960 3.335

1965 4

1999 6

2010 6.972

1400 1500 1600 1700 1800 1900 2000

2

4

6

8

Figure 3.1 Comparison of actual population figures (points) with

those obtained from (3.15)

On the other hand, if we try to extrapolate this model into a
distant future, then we see that, say, in the year 2515, the popula-
tion will reach 199980 ≈ 200000 billion. To realize what it means,
let us recall that the Earth’s total surface area is 510072000 square
kilometres, 70.8% of which is covered by water, thus we have only
148940000 billion square kilometres to our disposal (or even less
if water level rises) and there will be only 0.7447m2 (86.3 cm×
86.3 cm) per person. Therefore we can only hope that this model
is not valid for all times.
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3.3.2 The death rate and the average lifespan

Here we will show that the average lifespan is given by the same
formula as in the discrete case, obtained in Section 2.2.3. Let µ

be the death rate; that is, the probability that an individual dies
in a time interval ∆t is approximately equal to µ∆t. Let p(t) be
the probability that the individual is alive at time t. Then the
probability p(t + ∆t) of being alive at t + ∆t, provided he was
alive at t, is p(t + ∆t) = (1−µ∆t)p(t) which, as above, yields the
differential equation

p′ = −µp,

with p(0) = 1 (expressing the fact that the individual was born,
and thus alive, at t = 0.) Hence we obtain p(t) = e−µt. Argu-
ing as in Section 2.2.3, we see that the average life span can be
approximated by

∑

j=1

sj(p(tj)− p(tj+1)),

where we took an arbitrary partition of the maximum life span
(here [0,∞)), 0 = t0 < t1 < · · · with sj ∈ [tj , tj+1]. Then, using
the definition of the Riemann integral, (Courant and John, 1999),
and the differentiability of p we find, as in (2.13),

L =

∞∫

0

s
d

ds
e−µsds = −µ

∞∫

0

se−µsds =
1
µ

. (3.16)

3.3.3 Logistic differential equation

As for discrete models, it has been observed that the exponen-
tial model for the population growth is satisfactory as long as the
population is not too large. When the population gets very large
(with regard to its habitat), these models cannot be very accurate,
since they don’t reflect the fact that the individual members have
to compete with each other for limited living space, resources and
food and then birth rate and death rate will depend on other vari-
ables. It is reasonable to assume that a given habitat can sustain
only a finite number K of individuals, and the closer the popula-
tion is to this number, the slower is its growth. As in the discrete
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case (2.19), the simplest way to take this into account is to employ
the linear function r(t,N) = R0(K − N), where R0 is the unre-
stricted growth rate. This choice yields the so-called continuous
logistic model

N ′ = R0N

(
1− N

K

)
, (3.17)

which has proved to be one of the most successful models for
describing a single species population.

Exercise 3.1 Logistic equations appear in various contexts, see
e.g. (Braun, 1983). Let us suppose that we have a community of
constant size C and N(t) members of this community have some
important information at a time t. Assuming that

• the information is passed on when a person knowing it meets a
person that does not,

• the rate at which one person meets other people is a constant
f,

show that

N ′ = fN

(
1− N

C

)
;

that is, that the rate at which an information spreads in a closed
community is governed by a logistic equation.

Exercise 3.2 Show that, by taking in (3.11) a constant birth
rate β but a density-dependent mortality rate µ(N) = µ0 + µ1N,

one obtains the logistic equation (3.17).
In general, show that taking in (3.11) a constant β and µ(N) =

µ0 + µ1N
θ, θ > 0, yields the equation

N ′ = (β − µ0)N − µ1N
θ+1, (3.18)

which is an equation of Bernoulli type.

Next we consider the Cauchy problem for (3.17),

N ′ = R0N

(
1− N

K

)
,

N(t0) = N0. (3.19)
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This is an example of a separable equation. Using the approach
described in Section 1.3.1, we separate the variables to obtain

K

R0

N∫

N0

ds

(K − s)s
= t− t0.

To integrate the left hand side, we use partial fractions

1
(K − s)s

=
1
K

(
1
s

+
1

K − s

)
,

so that

t− t0 =
K

R0

N∫

N0

ds

(K − s)s
=

1
R0

ln
N

N0

∣∣∣∣
K −N0

K −N

∣∣∣∣ .

Since N(t) ≡ K and N(t) ≡ 0 are solutions of the logistic equa-
tion, the Picard theorem ensures that N(t) cannot reach K in any
finite time so, if N0 < K, then N(t) < K for any t, and if N0 > K,
then N(t) > K for all t > 0. Therefore (K − N0)/(K − N(t)) is
always positive and, exponentiating, we get

eR0(t−t0) =
N(t)
N0

K −N0

K −N(t)
,

which, solved with respect to N(t), yields

N(t) =
N0K

N0 + (K −N0)e−R0(t−t0)
. (3.20)

Let us examine (3.20) to see what kind of population behaviour
it predicts. First observe that we have

lim
t→∞

N(t) = K,

hence our model correctly reflects the initial assumption that K

is the maximal capacity of the habitat. Next,

N ′ =
R0N0K(K −N0)e−R0(t−t0)

(N0 + (K −N0)e−R0(t−t0))2
:

thus, if N0 < K, the population monotonically increases, whereas
if we start with a population which is larger than the capacity of
the habitat, then such a population will decrease towards K. Also

N ′′ = R0(N(K −N))′ = N ′(K − 2N) = N(K −N)(K − 2N)
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Figure 3.2 Logistic curve with N0 = 1, K = 10 and R0 = 0.02

from which it follows that if we start from N0 < K, then the
population curve is convex down for N < K/2 and convex up for
N > K/2. Thus, as long as the population is small (less then half
of the capacity K), then the rate of growth increases, whereas for
larger populations the rate of growth decreases. This results in the
famous logistic or S-shaped curve which is presented in Fig. 3.2 for
particular values of parameters R0 = 0.02,K = 10 and t0 = 0;
that is, as the graph of

N(t) =
10N0

N0 + (10−N0)e−0.2t
.

To show how this curve compares with the real data and with the
exponential growth, we take (3.20) with the coefficients which, for
the human population, are experimentally estimated as K = 10.76
billion and R0 = 0.029. Then the logistic equation for the growth
of the Earth’s population will read

N(t) =
N0(10.76× 109)

N0 + ((10.76× 109)−N0)e−0.029(t−t0)
.

We use this function with the value N0 = 3.34× 109 at t0 = 1965.
The comparison is shown on Fig. 3.3.

3.4 Equations of motion: second-order equations

Second-order differential equations appear often as equations of
motion. This is due to Newton’s law of motion that relates the ac-
celeration of a body – that is, the second derivative of its position
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Figure 3.3 Human population on Earth. Comparison of observa-

tional data (points), exponential growth (solid line) and logistic

growth (dashed line)

y with respect to time t – to the (constant) body mass m and the
forces F acting on it:

y′′ = F/m. (3.21)

We confine ourselves to a scalar, one-dimensional case with time-
independent mass. The modelling in such cases concerns the form
of the force acting on the body. We shall consider two such cases
in detail.

3.4.1 A waste disposal problem

Toxic or radioactive waste is often disposed of by placing it in
sealed containers that are then dumped at sea or deep lakes. Of
concern is that these containers could crack upon hitting the sea or
lake bed. Experiments confirmed that the drums can indeed crack
if the velocity exceeds 4m/s at the moment of impact. To make
this procedure feasible, one has to find out the velocity of the con-
tainer when it reaches the bed. Since typically the disposal takes
place in deep waters, direct measurement is rather expensive and
thus the problem should be solved by mathematical modelling.

As the container descends through the water, it is acted upon
by three forces W,B,D. The weight W is given by W = mg,
where g is the gravitational acceleration and m is the mass of the
container. The buoyancy force B is the force of displaced water
acting on the drum and its magnitude is equal to the weight of
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the displaced water; that is, B = gρV , where ρ is the density of
the water and V is the volume of the container. If the density
of the waste (together with its packaging) is smaller than the
density of the water then, of course, the container will float. Thus
we assume that the container is heavier than the displaced water
and therefore it will start sinking. We can easily observe that any
object moving through a medium like water, air, etc., experiences
some resistance, called drag. The drag force always acts in the
opposite direction to the motion of the object and its magnitude
increases with increasing velocity. If the object moves very slowly
in a viscous fluid, drag is proportional to the speed v of the moving
object, otherwise the drag force is proportional to the square of
the speed v and is magnitude is

D = cv2 :=
cdρA

2
v2, (3.22)

where ρ is the density of the fluid, A is the cross-sectional area
of the object perpendicular to the direction of the motion and cd

is the drag coefficient which depends on the shape of the body
and is determined experimentally. If we now set y = 0 at the sea
level and let the direction of increasing y be downwards, then from
(3.21)

y′′ = m−1
(
W −B − c(y′)2

)
. (3.23)

Since the container is simply dumped into the sea at the sea level,
we supplement (3.23) with the initial conditions

y(0) = 0, y′(0) = v(0) = 0.

Equation (3.23) is a nonlinear second-order equations but it is
reducible, see Section 1.3.4. Thus, we express the speed v(t) =
y′(t) as a function ν(y) of the depth y via

v(t) = ν(y(t)).

By the chain rule, as in (1.26), we find

y′′ =
dv

dt
=

dν

dy

dy

dt
= ν

dν

dy
.
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Substituting this formula into (3.23), we obtain

mν
dν

dy
=

(
mg−B − cν2

)
. (3.24)

We have to supplement this equation with an appropriate initial
condition. For this we have

ν(0) = ν(y(0)) = v(0) = 0.

Equation (3.24) is a separable equation which we can solve explic-
itly. First, we note that since

±νT = ±
√

mg−B

c

are (stationary) solutions to (3.24), by Picard’s theorem, any so-
lution with initial value in (−ηT , ηT ) is increasing and stays in
this interval. Thus, ν(0) = 0 implies mg − B − cν2(t) > 0 for all
t. Therefore we can divide both sides of (3.24) by mg − B − cν2

and, integrating, we get
ν∫

0

rdr

mg−B − cr2
=

1
m

y∫

0

ds =
y

m
.

Using z = mg−B − cr2 with dz = −2crdr, we obtain
∫

rdr

mg−B − cr2
= − 1

2c

∫
dz

z
= − 1

2c
ln(mg−B − cr2) + C,

so that

−2cy

m
= ln

mg−B − cν2

mg−B
.

Exponentiating and with some algebra we obtain

ν(y) =

√
mg−B

c

(
1− e−

2c
m y

)
, (3.25)

where we used the fact that the speed is positive. We observe that,
as expected, the speed monotonically increases to a limit value,
which is called the terminal velocity,

νT =

√
mg−B

c
.

It is the largest stationary solution to (3.24).
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Figure 3.4 The speed of the drum as a function of its depth

To answer the original question, we need concrete data. The
containers are dropped into the 100 m deep sea. The dimensions
of the cylinder are h = 1m and r = 0.25m so V = 0.196m3.
The average mass of the container and its contents is 500 kg. The
density of the sea water is taken to be 1021 kg/m3. Thus, the mass
of the water displaced by the container is 200.5 kg. The calculation
of the drag force is more complicated. Experiments show that the
drag coefficient cd in (3.22) for a flat bottomed cylinder may vary
between 0.6 (if the cylinder sinks horizontally) to over 1, if it is
released in the vertical position, see e.g., (Holland et al., 2004).
Since we are interested in the worst case scenario, we take cd = 0.6.
In this case, the cross-sectional area is 2rh = 0.5m2 and hence

c =
0.6 · 0.5 · 1021

2
= 153.15.

Thus, we obtain νT = 4.38m/s. This means that, though the
speed of the container cannot be larger than 4.38m/s, it will even-
tually exceed the safe speed of 4m/s. By direct calculations, we
find that this speed is already attained at y = 2.931m (see Fig.
3.4) and hence the container could crack on impact.

Is it possible to avoid the danger of the containers cracking upon
hitting the sea bed? One possibility is to use reinforced containers
which could withstand higher impact velocities without cracking.
However, this solution could be not feasible. Another option is
to change the parameters of the problem, so that the terminal
velocity becomes smaller than 4 m/s. Looking at the data of the
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problem, we see that, given the container’s properties and the lo-
cation, the only parameter which we can control is the mass of
the waste filling the container. Clearly, reduction of this mass will
decrease the resultant force acting on the container, thus decreas-
ing the terminal velocity, and it can be easily achieved by diluting
the waste with, e.g., water which is lighter than the waste.

Exercise 3.3 Show that if the mass of the container together
with the waste is smaller than 450 kg and the other parameters
are left unchanged, then the terminal velocity νT is smaller than
4m/s.

Exercise 3.4 Find the speed of a container of waste as a func-
tion of the depth y if the drag force is zero (c = 0). Since the
velocity ν0(y) of the drum without the drag is not smaller than
the velocity ν(y) with a drag, show that the container will not
crack upon impact if they are dropped into L meters of water
with (2g(mg−B)L/mg)1/2 < 4.

3.4.2 Motion in a changing gravitational field

According to Newton’s law of gravitation, two objects of masses
m and M attract each other with a force of magnitude F =
GmM/d2, where G is the gravitational constant and d is the dis-
tance between the objects’ centres. Since at any planet’s surface
the force is equal (by definition) to F = mg, where g is the gravi-
tational acceleration at the surface, the gravitational force exerted
on a body of mass m at a distance y above the surface is given by

F = − mgR2

(y + R)2
,

where the minus sign indicates that the force acts towards the
planet’s centre. The Cauchy problem for the equation of motion
of an object of mass m projected upward from the surface reads

my′′ = − mgR2

(y + R)2
− c(y)(y′)2,

y(0) = R, y′(0) = v0, (3.26)

where the last term in the equation represents the air resistance
which, in this case, is taken to be proportional to the square of the
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velocity of the object and we allow the air resistance coefficient to
change with height. The initial conditions tell us that the missile
was shot from the surface with the initial velocity v0.

Rather than solve the full Cauchy problem, we shall address the
question of the existence of the escape velocity; that is, whether
there exists an initial velocity which would allow the object to
escape from the planet’s gravitational field.

The equation in (3.26) is another example of the reducible equa-
tions discussed in Section 1.3.4. To simplify calculations, first
we shall change the unknown function with the substitution to
z = y +R (so that z is the distance from the centre of the planet)
and next introduce F (z) = z′ so that z′′ = FzF . Then the equa-
tion of motion takes the form

FzF + C(z)F 2 = −gR2

z2
, (3.27)

where C(z) = c(z − R)/m. Noting that 2FzF = (F 2)z and de-
noting F 2 = H, we reduce (3.27) to the inhomogeneous linear
equation, discussed in Section 1.3.2,

Hz + 2C(z)H = −2gR2

z2
. (3.28)

We shall consider three forms for C.

Case 1. C(z) ≡ 0 (an airless moon).
In this case (3.28) becomes Hz = −2gR2z−2 which can be imme-
diately integrated from R to z, giving

H(z)−H(R) = 2gR2

(
1
z
− 1

R

)
.

Returning to the old variables H(z) = F 2(z) = v2(z), where v

is the velocity of a missile at a distance z from the centre of the
moon, we can write

v2(z)− v2(R) = 2gR2

(
1
z
− 1

R

)
.

The missile will escape from the moon if its speed remains positive
for all times. In other words, if it stops at any finite z, then the
gravity pull will bring it back to the moon. Since v(z) is decreasing,
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its minimum value will be the limit at infinity so that, letting
z →∞, we must have

v2(R) ≥ 2gR

and the escape velocity is

v(R) =
√

2gR. (3.29)

Case 2. Constant air resistance.
If we are back on Earth, it is not reasonable to assume that there
is no air resistance during the motion. Let us investigate the next
simple case with constant c. Then we have

Hz + 2CH = −2gR2

z2
, (3.30)

where C = c/m. The integrating factor, see Section 1.3.2, is e2cz,

hence
(
e2czH(z)

)
z

= −2gR2 e2Cz

z2

and, upon integration,

v2(z) = e−2Cz


e2CRv2

0 − 2gR2

z∫

R

e2Css−2ds


 . (3.31)

Since lims→∞ e2Css−2 = ∞, also limz→∞
∫ z

R
e2Css−2 = ∞. Since

R∫
R

e2Css−2ds = 0 and because e2CRv2(R) is independent of z, from

the intermediate value theorem we see that, no matter what the
value of v0 is, for some z0 ∈ [R,∞) the right hand side of (3.31)
becomes 0 and thus v2(z0) = 0. Thus, there is no initial velocity
v0 for which the missile will escape the planet.

Case 3. Variable air resistance.
By passing from no air resistance at all (c = 0) to a constant air
resistance, we definitely overcompensated since the air becomes
thinner with height and thus its resistance decreases. Let us con-
sider one more case with C(z) = k/z, where k is a proportionality
constant. Then we obtain

Hz + 2kz−1H = −2gR2z−2.
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The integrating factor is z2k, hence we obtain
(
z2kH(z)

)
z

= −2gR2z2k−2,

and, upon integration,

z2kv2(z)−R2kv2
0 = −2gR2

z∫

R

s2k−2ds.

Using the same argument as previously, we see that the escape
velocity exists if and only if limz→∞

∫ z

R
s2k−2ds < +∞ and, from

the properties of improper integral, we infer that we must have
2k − 2 < −1 or k < 1

2 . Of course, from physics, k ≥ 0. Thus, the
escape velocity in such a case is given by v0 =

√
2gR/(1− 2k).

Clearly, apart from Case 1, which is perfectly applicable to air-
less objects, the other two models have been chosen for their math-
ematical tractability, so that we could present some examples of
a more advanced mathematical reasoning.

We conclude by discussing some numerical results related to
Case 1. Using (3.29), we find that the escape velocity from the
Moon (no air, R = 1737 km, g = 1.6m/s2) is v0 = 2.3 km/s. The
escape velocity from the Earth must be larger than if the Earth
was airless. Using g = 9.81m/s2 and R ≈ 6371km, we find v0 >

11.18 km/s. For comparison, modern guns can propel bullets up
to 1.7 km/s which is far too low to overcome the pull of gravity.
Moreover, because of the atmosphere, it is not useful, and hardly
possible, to give an object near the surface of the Earth the speed
of 11.2 km/s as it would cause most objects to burn up due to
atmospheric friction. This is the reason why currently deep space
trips are divided into two stages. First, a multistage rocket, which
provides a continual acceleration, is used to place a spacecraft at a
low Earth orbit. Then, the spacecraft is accelerated to the escape
velocity which in this altitude is much lower.

Exercise 3.5 A body of mass m moves from rest in a medium
offering resistance proportional to the speed, that is, D = cv.

(a) Suitably modifying the derivation of (3.23), write the equation
of motion of the body and the appropriate initial conditions.
(b) Find the velocity of the body v(t) and compute its terminal
velocity vT .
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Figure 3.5 Geometry of a reflecting surface

3.5 Equations arising from geometrical modelling

3.5.1 Satellite dishes

In many applications, like radar or TV/radio transmission, it is
important to find the shape of a surface that reflects parallel in-
coming rays into a single point, called the focus. Conversely, con-
structing a spotlight one needs a surface reflecting light rays com-
ing from a point source to create a beam of parallel rays. To find
an equation for a surface satisfying this requirement, we set the
coordinate system so that the rays are parallel to the x-axis and
the focus is at the origin. The sought surface must have axial
symmetry, that is, it must be a surface of revolution obtained by
rotating some curve C about the x-axis. We have to find the equa-
tion y = y(x) of C. Using the notation of Fig. 3.5, we let M(x, y)
be an arbitrary point on the curve and denote by T the point
at which the tangent to the curve at M intersects the x-axis. It
follows that the triangle TOM is isosceles and

tan^OTM = tan ^TMO =
dy

dx
,
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where the derivative is evaluated at P . By symmetry, we can as-
sume that y > 0. Thus we can write tan ^OTM = |MP |/|TP |,
but |MP | = y and, since the triangle is isosceles, |TP | = |OT | ±
|OP | = |OM | ± |OP | =

√
x2 + y2 + x, irrespectively of the sign

of x. Thus, the differential equation of the curve C is

y′ =
y√

x2 + y2 + x
. (3.32)

Exercise 3.6 Modifying suitably the argument above, find the
differential equation of a curve having the property that, given
two points A and B not on the curve, any ray of light shone from
A will be reflected by the curve to B.

It is interesting that the banqueting halls in many European me-
dieval castles had the ceilings designed using the (3-dimensional)
version of the above principle. The lord’s table was placed at the
point A while the table for the guests, whom the lord was inter-
ested to eavesdrop on, was placed at the point B, thus allowing
him to hear what was being discussed there independently of the
orientation of the speaker.

Observe that for x > 0 the right hand side of (3.32) can be
written as

y
x√

1 + ( y
x )2 + 1

,

so that it is an equation of the homogeneous type, see Section
1.3.3. Thus it can be solved by the substitution z = y/x > 0.
Using y′ = z′x + z and simplifying, we transform (3.32) into

z′
(

1
z

+
1

z
√

z2 + 1

)
= − 1

x
.

Integrating and using z, x > 0 we obtain

ln z +
∫

dz

z
√

1 + z2
= − ln x + c′. (3.33)

There are several ways to integrate the second term on the left
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hand side. We proceed as follows:
∫

dz

z
√

1 + z2
=

1
2

∫
du

u
√

1 + u
=

∫
dv

v2 − 1
=

1
2

ln
v − 1
v + 1

=
1
2

ln
√

u + 1− 1√
u + 1 + 1

=
1
2

ln
u

(
√

u + 1 + 1)2

= ln z − ln(1 +
√

z2 + 1),

where we used substitutions u = z2, v =
√

u + 1 ≥ 1 and also we
skipped the constant of integration as it already appears in (3.33).
Returning to (3.33), we obtain

ln
z2

1 +
√

z2 + 1
= − ln x/c

for some constant c > 0. Thus

z2

1 +
√

z2 + 1
=

c

x
,

and, returning to the original unknown function y = zx, after
some algebra we get

y2 − 2cx = c2. (3.34)

This is the equation of a parabola with vertex at x = −c/2 and
with focus at the origin.

Exercise 3.7 Equation (3.34) was obtained under the assump-
tion that x > 0 so, in fact, we do not have the full parabola at
this moment. Show that (3.34) follows from (3.32) also under as-
sumption that x < 0. How would you justify the validity of (3.34)
for x = 0?

3.5.2 The pursuit curve

What is the path of a dog chasing a rabbit or the trajectory of a
self-guided missile trying to intercept an enemy plane? To answer
this question we must first realize the principle used in controlling
the chase. This principle is that at any instant the direction of
motion (that is, the velocity vector) is directed towards the chased
object.

To avoid technicalities, we assume that the target moves with
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Figure 3.6 Different shapes of parabolic curves corresponding to

various values of the constant c. In each case the focus is at the

origin

Figure 3.7 The pursuit curve

a constant speed v along a straight line so that the pursuit takes
place on a plane. We introduce the coordinate system in such a
way that the target moves along the y-axis in the positive direc-
tion, starting from the origin at time t = 0, and the pursuer starts
from a point at the negative half of the x-axis, see Fig. 3.7. We
also assume that the pursuer moves with a constant speed u. Let
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M = M(x(t), y(t)) be a point on the curve C having the equa-
tion y = y(x), corresponding to the time t of the pursuit at which
x = x(t). At this moment the position of the target is (0, vt). From
the principle of the pursuit we obtain

dy

dx
= −vt− y

x
, (3.35)

where we have taken into account that x < 0. In this equation
we have too many variables and we shall eliminate t since we are
looking for the equation of the trajectory in x, y variables. Solving
(3.35) with respect to x, we obtain

x = −vt− y
dy
dx

. (3.36)

Using the assumption that v is constant, remembering that x =
x(t), y = y(x(t)) and

dy

dt
=

dy

dx

dx

dt
,

by differentiating (3.36) with respect to t, we get

dx

dt
=

(
−v + dy

dx
dx
dt

)
dy
dx + (vt− y) d2y

dx2
dx
dt(

dy
dx

)2 .

Multiplying out and simplifying yields

0 = −v
dy

dx
+ (vt− y)

d2y

dx2

dx

dt

whereupon, using (3.36) and solving for dx
dt , we obtain

dx

dt
= − v

x d2y
dx2

. (3.37)

On the other hand, we know that the speed of an object moving
according to the parametric equation (x(t), y(t)) is given by

u =

√(
dx

dt

)2

+
(

dy

dt

)2

=

√
1 +

(
dy

dx

)2 ∣∣∣∣
dx

dt

∣∣∣∣ . (3.38)

From the formulation of the problem it follows that dx
dt > 0 (it

would be unreasonable for the dog to start running away from
the rabbit), hence we can drop the absolute value bars in (3.37).
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Thus, combining (3.37) and (3.38) we obtain the equation of the
pursuit curve

x
d2y

dx2
= − v

u

√
1 +

(
dy

dx

)2

. (3.39)

Though this is a second-order equation, it is reducible to one of
first-order equations, see Section 1.3.4. To solve it, we introduce a
new unknown by z = dy/dx so that (3.39) becomes the first-order
equation

x
dz

dx
= −k

√
1 + z2,

where we denoted k = v/u. This is a separable equation with a
non-vanishing right hand side, so that we do not have stationary
solutions. Separating variables and integrating, we obtain

∫
dz√

1 + z2
= −k ln(−C ′x)

for some constant C ′ > 0, where we used the fact that x < 0 in the
model. Integration (for example, substituting z = 1/s and using
the integral from the previous subsection) gives

ln(z +
√

z2 + 1) = ln C(−x)−k,

with C = (C ′)−k, hence

z +
√

z2 + 1 = C(−x)−k,

from where, after some algebra,

z =
1
2

(
C(−x)−k − 1

C
(−x)k

)
. (3.40)

Returning to the original unknown function y, where dy/dx = z,
and integrating the above equation, we find

y(x) =
1
2

(
1

C(k + 1)
(−x)k+1 − C

(1− k)
(−x)−k+1

)
+ C1.

Let us express the constants C1 and C through the initial con-
ditions. We assume that the pursuer started from the position
(x0, 0), x0 < 0, and that at the initial moment the target was at
the origin (0, 0). Using the principle of the pursuit, we see that
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Figure 3.8 Pursuit curve for different values of k: k = 0.5 (solid

line), k = 0.9 (dashed line), k = 0.99 (dot-dashed line)

the initial direction was along the x-axis; that is, we obtain the
initial conditions in the form

y(x0) = 0, y′(x0) = 0.

Since dy/dx = z, substituting z = 0 and x = x0 in (3.40) yields

0 =
dy

dx
(x0) = z(x0) = C(−x0)−k − 1

C
(−x0)k

which gives C = (−x0)k, so that

y(x) = −x0

2

(
1

k + 1

(
x

x0

)k+1

− 1
1− k

(
x

x0

)−k+1
)

+ C1.

To find C1, we let x = x0 and y(x0) = 0 above, getting

0 = −x0

2

(
1

k + 1
+

1
k − 1

)
+ C1 :

thus C1 = kx0/(k2 − 1). Finally,

y(x) = −x0

2

(
1

k + 1

(
x

x0

)k+1

− 1
1− k

(
x

x0

)−k+1
)

+
kx0

k2 − 1
.

This formula can be used to obtain two important pieces of information:
the time and the point of interception. The interception occurs
when x = 0. Thus

y(0) =
kx0

k2 − 1
=

vux0

v2 − u2
.
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The duration of the pursuit can be calculated by noting that the
target moves with a constant speed v along the y-axis from the
origin to the interception point (0, y(0)) so that

T =
y(0)
v

=
ux0

v2 − u2
.

Exercise 3.8 (a) Find the initial conditions if a dog spots a
rabbit 20m from the origin (in the positive direction along the
y-axis) and hence find the solution of this problem.
(b) Let the dog spot the rabbit at the origin. The rabbit runs to
the burrow which is 100 m away along the y-axis with a speed
v = 20 km/h. What should be the smallest speed u of the dog if
it is to catch the rabbit?

Exercise 3.9 When a tractor trailer turns into a cross street or
driveway, its rear wheels follow a certain curve. Thus, to prevent a
kerb at an intersection from being destroyed by trailers, it should
be laid along this curve. Find the equation of this curve.



4

Qualitative theory for a single equation

In most cases it is impossible to find an explicit solution to a
given differential, or difference, equation. However, the power of
mathematics lies in the fact that one often can deduce properties
of solutions and answer some relevant questions just by analyzing
the right hand side of the equation.

4.1 Equilibria of first-order equations

One of the typical problems in the theory of differential and differ-
ence equations is to determine whether the system is stable; that
is, whether if we allow it to run for a sufficiently long time (which,
in the case of difference equations, means many iterations), it will
eventually settle at some state, which should be an equilibrium.

In both difference and differential equations, by equilibria or
stationary solutions we understand solutions which are constant
with respect to the independent variable. Since, however, in the
differential equation

x′ = f(x) (4.1)

the right hand side describes the rate of change of a given quantity,
whereas in the difference equation

xn+1 = f(xn) (4.2)

the right hand side gives the amount of the quantity in the state
n + 1 in relation to the amount present in the previous state, the
theories are different and will be treated in separately.

66
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As we will see below, finding equilibria of equations is consid-
erably easier than solving them. Thus, knowing that the system
will converge to a particular equilibrium allows us to regard this
equilibrium as an approximation of solutions originating in its
neighbourhood.

In the following subsections we will make these notions precise.

4.1.1 Stability of equilibria of autonomous differential
equations

We recall that the word autonomous refers to the fact that f

in (4.1) does not explicitly depend on time. To fix attention, we
shall assume that f is an everywhere-defined function satisfying
all assumptions of the Picard theorem on R.

In many problems it is important to emphasize the dependence
of the solution on the initial conditions. Thus we introduce the
notion of the flow x(t, t0, x0) of (4.1), which is the solution of the
Cauchy problem

x′(t, t0, x0) = f(x(t, t0, x0)), x(t0, t0, x0) = x0.

Henceforth we take t0 = 0 and write x(t, 0, x0) = x(t, x0).
If (4.1) has a stationary solution x(t) ≡ x∗ that, by definition,

is constant in time, then such a solution satisfies x′(t) ≡ 0 and
consequently

f(x∗) = 0. (4.3)

Conversely, if the equation f(x) = 0 has a solution, which we call
an equilibrium point then, since f is independent of time, such a
solution is a number, say x∗. If we now consider a function defined
by x(t) ≡ x∗, then x′(t) ≡ 0. Consequently,

0 ≡ x′(t) ≡ (x∗)′ = f(x∗)

and such a function is a stationary solution. Summarizing, equi-
librium points are solutions to the algebraic equation (4.3) and,
treated as constant functions, they are (the only) stationary, or
equilibrium, solutions to (4.1). Therefore usually we will not dif-
ferentiate between these terms.

Next we give a definition of stability of an equilibrium.
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Definition 4.1 (i) The equilibrium x∗ is stable if for given ε >

0 there is δ > 0 such that for any x0 |x0−x∗| < δ implies
|x(t, x0)− x∗| < ε for all t > 0. If x∗ is not stable, then it
is called unstable.

(ii) A point x∗ is called attracting if there is η > 0 such that
|x0−x∗| < η implies lim

t→∞
x(t, x0) = x∗. If η = ∞, then x∗

is called a global attractor or a globally attracting equi-
librium.

(iii) The equilibrium x∗ is called asymptotically stable if it is both
stable and attracting. If x∗ is globally attracting, then it
is said to be a globally asymptotically stable equilibrium.

Equilibrium points play another important role for differential
equations – they are the only limit points of bounded solutions
as t → ±∞. To make this precise, we begin with the following
lemma.

Lemma 4.2 If x0 is not an equilibrium point of (4.1), then
x(t, x0) is never equal to an equilibrium point. In other words,
f(x(t, x0)) 6= 0 for any t for which the solution exists.

Proof An equilibrium point x∗ generates a stationary solution,
given by x(t) ≡ x∗. Thus, if x(t1, x0) = x∗ for some t1, then
(t1, x0) belongs to two different solutions, which contradicts the
Picard theorem.

From the above lemma it follows that if f has several equilib-
rium points, then the stationary solutions corresponding to these
points divide the (t, x) plane into horizontal strips having the
property that any solution always remains confined to one of them.
We shall formulate and prove a theorem that strengthens this ob-
servation.

Theorem 4.3 Let x(t, x0) be a non-stationary solution of (4.1)
with x0 ∈ R and let Imax = (t−, t+) be its maximal interval of
existence. Then x(t, x0) is either a strictly decreasing or a strictly
increasing function of t. Moreover, x(t, x0) either diverges to +∞
or to −∞, or converges to an equilibrium point, as t → t±. In the
latter case t± = ±∞.

Proof Assume that for some t∗ ∈ Imax the solution x(t) :=
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x(t, x0) has a local maximum or minimum x∗ = x(t∗). Since x(t)
is differentiable, we must have x′(t∗) = 0 but then f(x∗) = 0
which makes x∗ an equilibrium point of f . This means that a
non-stationary solution x(t, x0) reaches an equilibrium in finite
time, which contradicts Lemma 4.2. Thus, if x(t, x0) is not a sta-
tionary solution, then it cannot attain local maxima or minima
and thus must be either strictly increasing or strictly decreasing.

Since the solution is monotonic, it either diverges to ±∞ (de-
pending on whether it decreases or increases) or converges to finite
limits as t → t±. Let us focus on the right end point t+ of Imax. If
x(t, x0) converges as t → t+, then t+ = ∞, by Theorem 1.6. Thus

lim
t→∞

x(t, x0) = x̄.

Without compromising generality, we further assume that x(t, x0)
is an increasing function. If x̄ is not an equilibrium point then, by
continuity, we can use the intermediate value property to claim
that the values of x(t, x0) must fill the interval [x0, x̄). This inter-
val cannot contain any equilibrium point as the existence of such
points would violate the Picard theorem. Thus, for any x ≤ x̄,
f(x) is strictly positive and hence, separating variables and inte-
grating, we obtain

t(x)− t(x0) =

x∫

x0

ds

f(s)
. (4.4)

Passing with t to infinity (since t(x̄) = ∞), we see that the left
hand side becomes infinite and so

x̄∫

x0

ds

f(s)
= ∞.

By assumption, the interval of integration is finite so that the only
way the integral could become infinite is if 1/f(s) = ∞; that is,
f(s) = 0, for some s ∈ [x0, x̄]. The only such point can be s = x̄,
thus x̄ is an equilibrium point.

Remark 4.4 We note that (4.4) is of independent interest as it
gives a formula for the blow-up time of the solution x(t, x0). To
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wit, let the interval [x0,∞) be free of equilibria and let x(t, x0) be
increasing for t > 0. Then limt→t+ x(t, x0) = ∞ so that, by (4.4),

t+ − t(x0) =

∞∫

x0

ds

f(s)

and, in particular, we see that if 1/f is integrable at +∞ (precisely,
if the improper integral above exists), then the maximal interval of
existence is finite and we have the blow-up of the solution in finite
time. On the other hand, if 1/f is not integrable, then tmax = +∞.
We note that the latter occurs if f(s) does not grow faster than s

as s → ∞. This occurs, e.g. if f is globally Lipschitz continuous;
that is, if the Lipschitz constant in (1.29) can be chosen to be
independent of the rectangleR. This provides a sketch of the proof
of the property mentioned after Example 1.10. If f(s) behaves, say,
as s2 for large s, then the integral on the right hand side is finite
and thus tmax < ∞, see Exercise 1.9.

Exercise 4.5 Assume that f : R → R is Lipschitz continuous
on each interval [−a, a]. Prove that if it is globally Lipschitz con-
tinuous, then there is M such that |f(y)| ≤ M |y| for any y ∈ R.

Show also that the converse statement does not hold.

Remark 4.6 It is important to emphasize that the assumption
that f satisfies the assumptions of the Picard theorem everywhere
is crucial. If there are non-Lipschitzian points, then the behaviour
of solutions close to such points is not covered by Theorem 4.3, as
we have seen in Example 1.10.

4.1.2 Application to the logistic equation

Consider the Cauchy problem for the logistic equation

y′ = y(1− y), y(0) = y0. (4.5)

We have solved this problem in Section 3.3.3. Let us now get as
much information as possible about the solutions to this problem
without actually solving it. First, we observe that the right hand
side is given by f(y) = y(1−y), which is a polynomial, and there-
fore at each point of R2 the assumptions of Picard’s theorem are
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satisfied; that is, only one solution of (4.5) passes through each
point (t0, y0). However, f is not a globally Lipschitz function, so
that this solution may be defined only on a finite time interval.

The equilibrium points are found solving y(1 − y) = 0, hence
y ≡ 0 and y ≡ 1 are the only stationary solutions. Moreover,
f(y) < 0 for y < 0 and y > 1 and f(y) > 0 for 0 < y < 1. Hence,
from Lemma 4.2, it follows that the solutions starting from y0 < 0
will stay strictly negative, those starting from 0 < y0 < 1 will
stay in this interval and those with y0 > 1 will be larger than
1, for all times of their respective existence, as they cannot cross
the equilibrium solutions. Then, from Theorem 4.3, we see that
the solutions with negative initial condition are decreasing and
therefore tend to −∞ if time increases. In fact, they blow-up in
finite time since, by integrating the equation, we obtain

t(y) =

y∫

y0

dη

η(1− η)

and we see, passing with y to −∞ on the right hand side, that we
obtain a finite time of the blow-up.

Next, solutions with 0 < y0 < 1 are bounded and thus, by
Proposition 1.6, they are defined for all times. They are increas-
ing and thus they must converge to the larger equilibrium; that
is, limt→∞ y(t, y0) = 1. Finally, if we start with y0 > 1, then
y(t, y0) decreases and thus is bounded from below, satisfying again
limt→∞ y(t, y0) = 1. The shape of the solution curves can be de-
termined as in Section 3.3.3. By differentiating (4.5) with respect
to time, we obtain

y′′ = y′(1− y)− yy′ = y′(1− 2y).

Since for each solution (apart from the stationary ones), y′ has
a fixed sign, we see that an inflection point can exist only for
solutions starting at y0 ∈ (0, 1) and it occurs at y = 1/2, where
the solution changes from being convex downward to being convex
upward. In the two other cases, the second derivative is of constant
sign, giving the solution convex upward for negative solutions and
convex downward for solutions larger than 1.
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We see that we got the same picture as when solving the equa-
tion but with much less work.

4.1.3 Crystal growth – a case study

In many applications, such as in photographic film production,
it is important to be able to manufacture crystals of a given size.
The process begins by adding a mixture of small crystals of various
sizes to a certain solvent and keeping it mixed. Then we apply the
so-called Ostwald ripening process, see (Friedman and Littman,
1994), which is based on the following observation: if one allows
the process to continue for a long time, then either all crystal
grains will dissolve into the solution, or all grains will become
of the same size. Hence, one has to arrange the conditions, such
as the concentration of the solution, for the second possibility to
occur.

To start our modelling process, we will make some simplifying
assumptions. First we assume that all crystals are of the same
shape and differ only in size which can be described by a single
real parameter, e.g., they may be boxes with edges (xa, xb, xc),
where a, b, c are fixed reference dimensions and x is a real positive
variable. If, instead of crystals, we apply the model to aerosols,
we would think about balls with radius x. As our interest is in
one-dimensional models, in what follows we assume that we deal
with crystals of one size only and find conditions under which they
will create crystals of the required size.

Consider a volume of fluid containing an amount of dissolved
matter (solute) with (uniform) concentration c(t) at time t. There
is a saturation concentration c∗, which is the maximum solute
per unit volume that the fluid can hold. If c(t) > c∗, then the
excess solute precipitates out in solid (crystal) form. Actually,
for the precipitation, c(t) must be bigger than a certain quantity
cx > c∗ which depends on the size of the precipitating grains. The
threshold constant cx is given by the Gibbs–Thomson relation,
cx = c∗eΓ/x, where Γ is a physical quantity that depends on the
shape of the crystals, its material properties and the temperature
(which here is assumed fixed). Hence, if c(t) > cx, then the mate-
rial will come out of the solution and will deposit onto the crystals,
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characterized by the size x, and if c(t) < cx, then the material will
dissolve back from the crystals. Using the Gibbs–Thompson rela-
tion, we define

L∗(t) =
Γ

log c(t)
c∗

. (4.6)

Note that L∗(t) < x if and only if c(t) > cx, so that the crys-
tals will grow if and only if L∗(t) < x. A semi-empirical law,
see (Friedman and Littman, 1994), taking this observation into
account yields the equation

x′ = G(x, c(t)), (4.7)

where

G(x, c(t)) =

{
kg

(
c(t)− c∗eΓ/x

)g
if x > L∗(t),

−kd

(
c∗eΓ/x − c(t)

)d
if x < L∗(t),

and where kg, kd, g, d are positive constants with 1 ≤ g, d ≤ 2. As
expected, for c(t) > c∗ we have x′ > 0; that is, the crystal grows.
Conversely, for c(t) < c∗ we have x′ < 0 and the crystal shrinks.

We assume that initially we have µ∗ crystals of size x(0) = x∗.
The crystals do not coalesce or split but may completely dissolve,
in which case we have x(t) = 0 for some time t. The formula for
c(t) can be obtained as the sum of the initial concentration c0 and
the amount which was dissolved from the crystals initially present
(in a unit volume):

c(t) = c0 + ρkvµ∗(x∗)3 − ρkvµ∗(x(t))3, (4.8)

where kv is a geometric parameter relating x3 to the crystal vol-
ume (kv = abc in the case of a box and kv = 4π/3 in the case of a
sphere), and ρ is the mass density of the solid phase of the mate-
rial. For further use, we introduce µ = ρkvµ∗ and c1 = c0+µ(x∗)3.
Note that c1 is the total amount of the material per unit volume,
in either crystal or solution, form. Thus, with some abuse of no-
tation, we can write

x′ = G(x), x(0) = x∗, (4.9)
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where

G(x) =

{
kg

(
c1 − µx3 − c∗eΓ/x

)g
if c1 − µx3 > c∗eΓ/x,

−kd

(
c∗eΓ/x − (c1 − µx3)

)d
if c1 − µx3 < c∗eΓ/x.

We observe that, since g, d ≥ 1, G is continuously differentiable
on each set {x > 0; c1 − µx3 − c∗eΓ/x < 0} and {x > 0; c1 −
µx3 − c∗eΓ/x > 0}. Thus, it is Lipschitz continuous for x > 0.
The first question is to determine the equilibrium points. Denote
f(x) = c1 − µx3 − c∗eΓ/x so that (4.9) can be written as

x′ =
{

kg(f(x))g if f(x) > 0,

−kd(−f(x))d if f(x) < 0.
(4.10)

Lemma 4.7 There exist at most two positive solutions of

f(x) = c1 − µx3 − c∗eΓ/x = 0. (4.11)

Proof We have limx→0+ f(x) = limx→∞ f(x) = −∞. Further,

f ′(x) = −3µx2 +
Γc∗

x2
eΓ/x

and

f ′′(x) = −6µx− Γc∗

x3
eΓ/x − Γ2c∗

x4
eΓ/x,

so that f ′′(x) < 0 for all x > 0. Therefore, f ′ has at most one zero
and thus, by Rolle’s theorem, f can have at most two solutions.

In what follows we focus on the case when we have exactly two
solutions, denoted 0 < ξ1 < ξ2. Note that in practice this can
be always achieved by taking the initial concentration c0 large
enough, so that f(x0) > 0 for some chosen x0. Then ξ1 < x0 < ξ2.

Proposition 4.8 (i) If x∗ > ξ2, then x(t) decreases and lim
t→∞

x(t) =
ξ2;

(ii) If ξ1 <x∗<ξ2, then x(t) increases and lim
t→∞

x(t)=ξ2;

(iii) If x∗ < ξ1, then x(t) decreases and there is finite time t0
such that x(t0) = 0.

Proof Items (i) and (ii) follow directly from Theorem 4.3 (note
that the solutions exist for all positive times as they are bounded).
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We have to reflect on (iii) as Theorem 4.3 is not directly applica-
ble here (G does not satisfy assumptions of the Picard theorem
on the whole real line; in fact, x = 0 clearly is not a point of
Lipschitz continuity). However, the idea of the proof is still ap-
plicable. Indeed, clearly x(t) decreases, that is, x(t) ≤ x∗ < ξ1

for all t ∈ [0, tmax) and, as f increases for x < ξ1 we have
x′(t) = G(x(t)) ≤ G(x∗) =: c < 0. Thus, x(t) ≤ ct + x∗ and
x(t0) = 0 for t ≤ −x∗/c.

The above result is a basis for the analysis of a more realistic
case, where we have crystals of several sizes in the original solution,
(Friedman and Littman, 1994). If, however, we are lucky to have
crystals of only one size x∗ and we want to produce crystals of
a required size ξ2 then, according to Proposition 4.8, we simply
have to place these crystals in a solution with parameters c1 and
c∗, chosen so that ξ2 is the larger root of (4.11) and x∗ is larger
than the other root ξ1. Otherwise, if x∗ < ξ1, then the crystals
will dissolve in the solution.

Exercise 4.9 Give an alternative proof of (iii) using (4.4), to
estimate t0 for which x(t0) = 0.

4.2 Equilibrium points of difference equations

Consider the autonomous first-order difference equation

xn+1 = f(xn), n ∈ N0, (4.12)

with the initial condition x0. It is clear that the solution to (4.12)
is given by iterations

xn = f(f(· · · f(x0))) = fn(x0) (4.13)

and henceforth we will be using both notations.
A point x∗ in the domain of f is said to be an equilibrium point

of (4.2) if it is a fixed point of f ; that is, if f(x∗) = x∗. In other
words, the constant sequence (x∗, x∗, . . .) is a stationary solution
of (4.2). As in the case of differential equations, here also we shall
not differentiate between these concepts.
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Example 4.10 Consider the logistic equation

xn+1 = 3xn(1− xn). (4.14)

The equation for the equilibrium points is x = 3x(1 − x), which
gives x0 = 0 and x1 = 2/3. Clearly, if x0 = 0, then xn = 0 for any
n ∈ N. Similarly, if x0 = 2/3, then x1 = 3 · (2/3) · (1− 2/3) = 2/3
and, by iteration, xn = 2/3 for any n ∈ N.

Graphically, an equilibrium is the x-coordinate of any point
where the graph of f intersects the diagonal y = x. This is the
basis of the cobweb method of finding and analysing equilibria,
described in the next subsection.

Definition 4.11 1. The equilibrium x∗ is stable if for given ε >

0 there is δ > 0 such that for any x and for any n > 0, |x−x∗| <
δ implies |fn(x)−x∗| < ε for all n > 0. If x∗ is not stable, then
it is called unstable (that is, x∗ is unstable if there is ε > 0 such
that for any δ > 0 there are x and n such that |x−x∗| < δ and
|fn(x)− x∗| ≥ ε.)

2. A point x∗ is called attracting if there is η > 0 such that |x0 −
x∗| < η implies lim

n→∞
fn(x0) = x∗. If η = ∞, then x∗ is called

a global attractor or globally attracting.
3. The point x∗ is called an asymptotically stable equilibrium if

it is stable and attracting. If η = ∞, then x∗ is said to be a
globally asymptotically stable equilibrium.

4.2.1 The cobweb diagrams

We describe an important graphical method, the so-called cobweb
diagrams, for analysing the stability of equilibrium (and periodic)
points of (4.2). Since xn+1 = f(xn), we may draw a graph of f in
the (xn, xn+1) system of coordinates. Then, given x0, we pinpoint
the value x1 by drawing a vertical line through x0 so that it also
intersects the graph of f at (x0, x1). Next, we draw a horizontal
line from (x0, x1) to meet the diagonal line y = x at the point
(x1, x1). A vertical line drawn from the point (x1, x1) will meet
the graph of f at the point (x1, x2). In this way we may find any
xn. This is illustrated in Fig. 4.1, where we present several steps
of drawing the cobweb diagram for the logistic equation (4.14)
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Figure 4.1 Cobweb diagram of a logistic difference equation

with x0 = 0.2. On the basis of the diagram we can conjecture that
x1 = 2/3 is an asymptotically stable equilibrium as the solution
converges to it as n becomes large. However, to be sure, we need
to develop analytical tools for analysing stability.

4.2.2 Analytic criterion for stability

Theorem 4.12 Let x∗ be an isolated equilibrium point of the
difference equation

xn+1 = f(xn), (4.15)

where f is continuously differentiable in some neighbourhood of
x∗. Then,

(i) if |f ′(x∗)| < 1, then x∗ is asymptotically stable;
(ii) if |f ′(x∗)| > 1, then x∗ is unstable.

Proof Suppose |f ′(x∗)| < M < 1. Then |f ′(x)| ≤ M < 1 over
some interval J = (x∗− γ, x∗+ γ) by the property of local preser-
vation of sign for continuous functions, (Courant and John, 1999).
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Let x0 ∈ J . We have

|x1 − x∗| = |f(x0)− f(x∗)|
and, by the mean value theorem, for some ξ ∈ [x0, x

∗]

|f(x0)− f(x∗)| = |f ′(ξ)||x0 − x∗|.
Hence, |x1−x∗| = |f(x0)−f(x∗)| ≤ M |x0−x∗|. Since M < 1, the
inequality shows that x1 is closer to x∗ than x0 and consequently
x1 ∈ J . By induction,

|xn − x∗| ≤ Mn|x0 − x∗|.
For given ε, define δ = ε. Then |xn − x∗| < ε for n > 0 provided
|x0 − x∗| < δ (since M < 1). Furthermore xn → x∗ and n → ∞
so that x∗ is asymptotically stable.

To prove the second part of the theorem, we observe that, as
in the first part, there is ε > 0 such that on J = (x∗ − ε, x∗ + ε)
we have |f ′(x)| ≥ M > 1. Take an arbitrary δ > 0 smaller than ε

and choose x satisfying |x− x∗| < δ. Again using the mean value
theorem, we get |f(x) − x∗| = |f ′(ξ)||x − x∗| for some ξ between
x∗ and x so that |f(x) − x∗| ≥ M |x − x∗|. If f(x) is outside J ,
then we are done. If not, we can repeat the argument getting
|f2(x) − x∗| ≥ M2|x − x∗|; that is, f2(x) is further away from
x∗ than f(x). If f2(x) is still in J, we continue the procedure till
|fn(x)− x∗| ≥ Mn|x− x∗| > ε for some n.

Equilibrium x∗ with |f ′(x∗)| 6= 1 is called hyperbolic.
What happens if the equilibrium point x∗ is not hyperbolic?

To simplify the considerations, we assume that f is at least three
times continuously differentiable in a neighbourhood of x∗. First,
let us reflect on the geometry of the situation. In this discussion
we assume that f ′(x∗) > 0. The equilibrium x∗ is stable if the
graph of y = f(x) is less steep than the graph of y = x; that is,
if the graph of f crosses the line y = x from above to below as
x increases. This ensures that the cobweb iterations from the left
are increasing, and from the right are decreasing, while converging
to x∗. In contrast, x∗ is unstable if the graph of f crosses y = x

from below – then the cobweb iterations will move away from x∗.
If f ′(x∗) = 1, then the graph of f is tangent to the line y = x
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at x = x∗, but the stability properties follow from the geometry.
If f ′′(x∗) 6= 0, then f is convex (resp. concave) close to x∗ and
the graph of f will be (locally) entirely above (resp. entirely be-
low) the line y = x. Therefore the picture is the same as in the
unstable case either to the left, or to the right, of x∗. Hence, x∗

is unstable in this case (remember that for instability it is suffi-
cient to display, for any neighbourhood of x∗, only one diverging
sequence of iterations emanating from this neighbourhood). On
the other hand, if f ′′(x∗) = 0, then x∗ is an inflection point and
the graph of f crosses the line y = 0. This case is essentially the
same as when |f ′(x∗)| 6= 1: the equilibrium is stable if the graph
of f crosses y = x from above and unstable if it does it from
below. A quick reflection ascertains that the former occurs when
f ′′′(x∗) < 0, while the latter if f ′′′(x∗). Summarising, we have:

Theorem 4.13 Let x∗ be an isolated equilibrium with f ′(x∗) = 1
and let f be at least three times continuously differentiable in a
neighbourhood of x∗. Then:

(i) if f ′′(x∗) 6= 0, then x∗ is unstable;
(ii) if f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable;
(iii) if f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically

stable.

The case of f ′(x∗) = −1 is more difficult. First we note that
if g(x) = −x + 2x∗ – that is, if g is a linear function giving an
equilibrium at x = x∗ with f ′(x∗) = −1 – then the iterations
starting from x0 6= x∗ produce a solution taking on only two val-
ues oscillating around x∗. Thus, if −1 < f ′(x∗) < 0, then f passes
from below the line y = −x + 2x∗ to above as x increases. Hence,
the stability follows from the fact that subsequent iterations os-
cillate around x∗ getting closer to x∗ with each iteration. If, on
the other hand, f ′(x∗) < −1, then the oscillating iterations move
away from x∗. If f ′(x∗) = −1, then the graph of f crosses the line
y = x at a right angle. Hence, the stability depends on fine detail
of the shape of f close to x∗. Unfortunately, using an argument
similar to the case with f ′(x∗) = 1 and, considering the relation
of the graph of f with the graph of y = −x + 2x∗, only produces
a partial result: x∗ will be stable if f ′′(x∗) = 0 and f ′′′(x∗) > 0
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(because then the graph of f will have the same shape as in the
stable case, crossing the line y = −x+2x∗ from below). However,
the stability of x∗ can be achieved in a more general situation.
First, we note that x∗ is also an equilibrium of g(x) := f(f(x))
and it is a stable equilibrium of f if and only if it is stable for g.
This statement follows from the continuity of f : if x∗ is stable for
g, then |gn(x0) − x∗| = |f2n(x0) − x∗| is small for x0 sufficiently
close to x∗. But then |f2n+1(x0) − x∗| = |f(f2n)(x0) − f(x∗)|
is also small by continuity of f . The reverse is obvious. Since
g′(x) = f ′(f(x))f ′(x) with g′(x∗) = 1, we can apply Theorem
4.13 to the function g. The second derivative of g is given by

g′′(x) = f ′′(f(x))[f ′(x)]2 + f ′(f(x))f ′′(x)

and, since f(x∗) = x∗ and f ′(x∗) = −1, we have g′′(x∗) = 0.

Using again the chain rule, we find

g′′′(x∗) = −2f ′′′(x∗)− 3[f ′′(x∗)]2.

Hence, we can write

Theorem 4.14 Suppose that at an equilibrium point x∗ we have
f ′(x∗) = −1. Define S(x∗) = −f ′′′(x∗) − 3(f ′′(x∗))2/2. Then x∗

is asymptotically stable if S(x∗) < 0 and unstable if S(x∗) > 0.

Example 4.15 Consider the equation

xn+1 = x2
n + 3xn.

Solving f(x) = x2 + 3x = x, we find that x = 0 and x = −2 are
the equilibrium points. Since f ′(0) = 3 > 1, we conclude that the
equilibrium at x = 0 is unstable. Next, f ′(−2) = −1. We calculate
f ′′(−2) = 2 and f ′′′(−2) = 0 so that S(−2) = −12 < 0. Hence,
x = −2 is an asymptotically stable equilibrium.

Exercise 4.16 Consider the equation xn+1 = Txn, where

T (x) =
{

2x for 0 ≤ x ≤ 1/2,

2(1− x) for 1/2 < x ≤ 1.

is the so-called tent map. Find the equilibria and determine their
stability.
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Figure 4.2 Unstable character of the equilibrium x = 0 in Example

4.15. Initial point x0 = 0.5

Remark 4.17 We can fine tune the notion of stability by noting
that if f ′(x∗) < 0, then the solution behaves in an oscillatory way
around x∗ and if f ′(x∗) > 0, then it is monotonic. Indeed, consider
(in a neighbourhood of x∗ where f ′(x) < 0)

f(x)− f(x∗) = f(x)− x∗ = f ′(ξ)(x− x∗), ξ ∈ (x∗, x).

Since f ′ < 0, f(x) > x∗ if x < x∗ and f(x) < x∗ if x > x∗, hence
each iteration moves the point to the other side of x∗. If |f ′| < 1
over this interval, then fn(x) converges to x∗ in an oscillatory way,
while if |f ′| > 1, the iterations will move away from the interval,
also in an oscillatory way.

Based on this observation, we may say that the equilibrium is
oscillatory unstable or stable if f ′(x∗) < −1 or −1 < f ′(x∗) < 0,
respectively, and monotonically stable or unstable depending on
whether 0 < f ′(x∗) < 1 or f ′(x∗) > 1, respectively.

Exercise 4.18 Consider the Allee model (2.22).

(i) Investigate stability of the equilibria 0, L and K in this model.
(ii) Show that if N0 > 0, then Nk > 0 for all k ∈ N, provided

0 < r < min{1/KL, 1/K(K − L)}.

4.2.3 Periodic points and cycles

Theorem 4.3 tells us that a solution to a scalar autonomous dif-
ferential equation must be monotonic. We have already seen that
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Figure 4.3 2-cycle for the tent map

solutions to scalar autonomous difference equations can be oscil-
latory. In fact, such equations may admit periodic solutions which
cannot occur in the continuous case.

Definition 4.19 Let b be a point in the domain of f . Then,

(i) b is called a periodic point of f if fk(b) = b for some k ∈ N. The
periodic orbit of b , O(b) = {b, f(b), f2(b), . . . , fk−1(b)} is called a
k-cycle,
(ii) We say b is eventually k-periodic if, for some integer m, fm(b)
is a k-periodic point.

Example 4.20 Consider xn+1 = T 2xn, where T is the tent map
introduced in Exercise 4.16. Then

T 2(x) =





4x for 0 ≤ x ≤ 1/4,

2(1− 2x) for 1/4 < x ≤ 1/2,

2x− 1 for 1/2 < x ≤ 3/4,

4(1− x) for 3/4 < x ≤ 1.

There are four equilibrium points, 0, 2/5, 2/3 and 4/5, two of
which are equilibria of T . Hence {2/5, 4/5} is the only 2-cycle
of T .

Definition 4.21 Let b be a k-periodic point of f . Then b is said
to be:

(i) stable, if it is a stable fixed point of fk,
(ii) asymptotically stable, if it is an asymptotically stable fixed

point of fk,
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(iii) unstable, if it is an unstable fixed point of fk.

This definition, together with Theorem 4.12, yields the following
classification of the stability of k-cycles.

Theorem 4.22 Let O(b) = {x0 = b, x1 = f(b), . . . , xk−1 =
fk−1(b)} be a k-cycle of a continuously differentiable function f .
Then:

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x0)f ′(x1) . . . f ′(xk−1)| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x0)f ′(x1) . . . f ′(xk−1)| > 1.

Proof Follows from Theorem 4.12 by the Chain Rule applied to
fk.

Exercise 4.23 Determine the stability of the 2-cycle of the tent
map.

4.2.4 The logistic equation and bifurcations

Consider the logistic equation

xn+1 = Fµ(xn) := µxn(1− xn), x ∈ [0, 1], µ > 0. (4.16)

Our aim is to investigate the properties of equilibria of (4.16) with
respect to the parameter µ. The values of µ for which there is a
qualitative change of the properties of the equilibria are called
bifurcation points.

To find the equilibrium points, we solve Fµ(x∗) = x∗ which
gives x∗ = 0, (µ− 1)/µ.

We investigate the stability of each point separately.

(a) For x∗ = 0, we have F ′µ(0) = µ and thus x∗ = 0 is asymptoti-
cally stable for 0 < µ < 1 and unstable for µ > 1. To investigate
the stability for µ = 1, we find F ′′µ (0) = −2 6= 0 and thus x∗ = 0
is unstable in this case. However, the instability comes from the
negative values of x, which we discarded from the domain. If we
restrict our attention to the domain [0, 1], then x∗ = 0 is stable.
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Figure 4.4 Asymptotically stable equilibrium x = 2/3 for µ = 3.

Such points are called semi-stable.
(b) The equilibrium point x∗ = (µ − 1)/µ belongs to the do-
main [0, 1] only if µ > 1. Here, F ′((µ − 1)/µ) = 2 − µ and
F ′′((µ − 1)/µ) = −2µ. Thus, using Theorems 4.12 and 4.13, we
obtain that x∗ is asymptotically stable if 1 < µ ≤ 3 and it is
unstable if µ > 3.

Further, by Remark 4.17, we observe that for 1 < µ < 2, the
population approaches the carrying capacity monotonically from
below. However, for 2 < µ ≤ 3 the population can go over the
carrying capacity but it will eventually stabilize around it.

Exercise 4.24 Determine whether the solution for µ = 2 is
monotonic.

What happens for µ = 3? Consider 2-cycles. We have F 2
µ(x) =

µ2x(1− x)(1− µx(1− x)) so that we are looking for solutions to
µ2x(1− x)(1− µx(1− x)) = x, which can be rewritten as

x(µ3x3 − 2µ3x2 + µ2(1 + µ)x + (1− µ2) = 0.

To simplify, we observe that any equilibrium is also a 2-cycle (and
any k-cycle for that matter). Thus, we can divide this equation
by x and x− (µ− 1)/µ, getting

µ2x2 − µ(µ + 1)x + µ + 1 = 0.

Solving this quadratic equation, we obtain a 2-cycle

x± =
(1 + µ)±

√
(µ− 3)(µ + 1)
2µ

. (4.17)
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Clearly, these points determine a 2-cycle provided µ > 3 (in fact,
for µ = 3, these two points collapse into the equilibrium point
x∗ = 2/3. Thus, we see that when the parameter µ passes through
µ = 3, the stable equilibrium becomes unstable and bifurcates into
two 2-cycles.

The stability of 2-cycles can be determined by Theorem 4.22.
We have F ′(x) = µ(1− 2x) so the 2-cycle is stable, provided

−1 < µ2(1− 2x+)(1− 2x−)) < 1.

Using Viète’s formulae we find that the above is satisfied provided
−1 < −µ2 + 2µ + 4 < 1 and, upon solving this inequality, we
get µ < −1 or µ > 3 and 1 − √

6 < µ < 1 +
√

6 which yields
3 < µ < 1 +

√
6.

In a similar fashion, we find that for µ1 = 1 +
√

6, the 2-cycle
is still attracting but becomes unstable for µ > µ1.

To find 4-cycles, we solve F 4
µ(x) = 0. However, in this case

the algebra becomes analytically intractable and we should re-
sort to numerical approximations. It turns out that there is a
4-cycle, when µ > 1 +

√
6, which is attracting for 1 +

√
6 < µ <

3.544090 . . . =: µ2. When µ = µ2, the 22-cycle bifurcates into a
23-cycle which is stable for µ2 ≤ µ ≤ µ3 := 3.564407 . . .. Continu-
ing, we obtain a sequence of numbers (µn), such that the 2n-cycle
bifurcates into a 2n+1-cycle passing through µn. In this particu-
lar case, limn→∞ µn = µ∞ = 3.57 . . .. A remarkable observation,
made by Feigenbaum, is that for any sufficiently smooth family
Fµ of mappings of an interval into itself, the number

δ = lim
n→∞

µn − µn−1

µn+1 − µn
= 4.6692016 . . . ,

in general does not depend on the family of maps, provided they
have single maximum. The interested reader should consult e.g.
(Elaydi, 2005) for further information on dynamics of the logistic
map.

Feigenbaum’s result expresses the fact that the picture obtained
for the logistic equation is to a large extent universal. What hap-
pens for µ∞? Here we find a densely interwoven region with both
periodic and very irregular orbits. In particular, a 3-cycle appears
and, by a celebrated theorem of Šarkovsky, see e.g. (Glendinning,
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Figure 4.5 Chaotic orbit for x = 0.9 and µ = 4.

1994), this implies the existence of orbits of any period. In fact,
what we observe is the emergence of the so-called chaotic dy-
namics. The discussion of this topic is beyond the scope of this
book and the reader is referred to e.g. (Elaydi, 2005) (discrete
dynamics) and (Glendinning, 1994; Strogatz, 1994) (continuous
dynamics) for a more detailed account of it.

Exercise 4.25 Show that 3-cycles appear if µ = 4.

4.2.5 Stability in the Beverton–Holt equation

We conclude with a brief description of the stability of equilib-
rium points for the Beverton–Holt equation which was discussed
in Subsections 2.2.4 and 2.4.1. Let us recall this equation

xn+1 = f(xn, R0, b) =
R0xn

(1 + xn)b
.

Writing x∗(1+x∗)b = R0x
∗, we find a steady state x∗ = 0 and we

observe that if R0 ≤ 1, then this is the only steady state (at least
for positive values of x). If R0 > 1, then there is another steady
state given by x∗ = R

1/b
0 − 1. Evaluating the derivative at x∗, we

have

f ′(x∗, R0, b) =
R0

(1 + x∗)b
− R0bx

∗

(1 + x∗)b+1
= 1− b +

b

R
1/b
0

.

Clearly, with R0 > 1, we always have f ′ < 1. Hence, for mono-
tone stability we must have 1−b+bR

−1/b
0 > 0, whereas oscillatory

stability requires −1 < 1− b+ bR
−1/b
0 < 0. Solving these inequal-
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Figure 4.6 Monotonic stability of the equilibrium for the Beverton–

Holt model with b = 3 and R0 = 2; see (4.18).
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Figure 4.7 Oscillatory stability of the equilibrium for the Beverton–

Holt model with b = 2 and R0 = 8; see (4.18).

ities, we obtain that the borderlines between different types of
behaviour are given by

R0 =
(

b

b− 1

)b

and R0 =
(

b

b− 2

)b

. (4.18)

Let us consider the existence of 2-cycles. The second iteration of
the map H(x) = R0x/(1 + x)b is given by

H(H(x)) =
R2

0x(1 + x)b2−b

((1 + x)b + R0x)b
,

so that 2-cycles can be obtained by solving H(H(x)) = x. This
can be rewritten as

xR2
0(1 + x)b2−b = x((1 + x)b + R0x)b,

or, discarding x = 0 and taking the bth root,

(1 + x)b−1R
2/b
0 = (1 + x)b + R0x.
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Figure 4.8 Regions of stability of the Beverton–Holt model de-

scribed by (4.18)
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Figure 4.9 2-cycles for the Beverton-Holt model with b = 3 and

R0 = 28; see Eqn (4.18).

Introducing the change of variables z = 1+x, we see that we have
to investigate the existence of positive roots of

f(z) = zb − zb−1R
2/b
0 + R0z −R0.

Clearly, we have f(R1/b
0 ) = 0, since any equilibrium of H is also

an equilibrium of H2. First, let us consider 1 < b ≤ 2 (the case
b = 1 yields an explicit solution obtained in Section 2.4).

We have f ′(z) = bzb−1 − (b − 1)zb−2R
2/b
0 + R0 and f ′′(z) =

(b−1)zb−3(bz+(2−b)R2/b
0 ), hence we see that f ′′ > 0 for all z > 0.

Furthermore, f(0) = −R0 < 0. Hence, the region Ω, bounded from
the left by the line z = 0 and lying above the graph of f for z > 0,

is convex. Thus, the z-axis, being perpendicular to the line z = 0,

cuts the boundary of Ω in exactly two points, one being (0, 0) and
the other (R1/b

0 , 0). Hence, there are no additional equilibria of H2

for 1 < b < 2 and therefore H does not have 2-cycles for b ≤ 2.
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Exercise 4.26 Prove the above statement directly if b = 2.

Consider next b > 2. Then f ′′ has exactly one positive root
zi = (b − 2)R2/b

0 /b. The fact that the equilibrium x∗ = R
1/b
0 − 1

loses stability at R0,crit = (b/(b− 2))b suggests that a 2-cycle can
appear, when R0 increases passing through this point.

The analysis of this case rests on the following observation.

Lemma 4.27 Let g be a differentiable function on an interval
[α, β] such that g(α) > 0, g(β) ≥ 0 and the only zero of g′ is at
x = α or at x = β. Then g(x) > 0 for all x ∈ [α, β).

Proof Assume there is α < x0 < β where g(x0) ≤ 0. It cannot
be the local minimum of g as then g′(x0) = 0, contrary to the
assumption. Thus, for some x1 > x0 we have g(x1) < 0 and there-
fore there is x2 ∈ (x1, β] with g(x2) = 0 and, by Rolle’s theorem,
there is x3 < β for which g′(x3) = 0, again contradicting the
assumption.

Let us discuss the stable region R0 ≤ bb(b − 2)−b. Then zi ≤
(b−2)/2 = R

1/b
0 , that is, zi is below the original equilibrium R

1/b
0 ;

it is easy to see that, when R0 passes through the value R0,crit, zi

passes through R
1/b
0 and moves on to take on values larger than

the original equilibrium. Let us evaluate the first derivative at zi

f ′
(

b− 2
b

R
2/b
0

)
= R0

(
1−

(
b− 2

b

)b−2

R
(b−2)/b
0

)
.

Thus we see that f ′
(

b−2
b R

2/b
0

)
> 0 provided zi < R

1/b
0 and be-

comes negative as zi moves through R
1/b
0 . Furthermore, we see

that f ′(R1/b
0 ) = R0(bR

−1/b
0 − (b − 2)) and f ′(R1/b

0 ) > 0 provided
R0 < (b(b− 2))b, that is, for zi < R

1/b
0 .

Now, consider the case with R0 < (b(b−2))b. Since then f ′(0) =
R0 > 0, f ′

(
b−2

b R
2/b
0

)
> 0, f ′(R1/b

0 ) > 0, 0 < b−2
b R

2/b
0 < R

1/b
0 and

b−2
b R

2/b
0 is the only zero of f ′′ on [0, R

1/b
0 ], we can apply the lemma

above (to g = f ′ on the intervals [0, zi] and [zi, R
1/b
0 ]). Hence,

f ′ is positive on the interval [0, R
1/b
0 ] and R

1/b
0 is the only zero

of f in this interval. Consider now the interval [R1/b
0 ,∞). Since

f ′(R1/b
0 ) > 0 and f(z) tends to +∞ for z → ∞, for f to have
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Figure 4.10 Function f for b = 3 and, from left to right, R0 =

8, 27, 30. Notice the emergence of 2-cycles represented here by new

zeros of f besides z = 3√R0.

zeroes in this interval, it would have to have a local maximum,
then take on 0, and then to have a local minimum before crossing
the axis again to move to infinity. This would give another zero of
f ′′ between the local extrema, but then this zero would be greater
than R

1/b
0 , which is impossible.

For R0 = (b(b− 2))b, the points zi and R
1/b
0 coalesce and, anal-

ogously, we see that there is only one zero of f .
Let us consider the case with R0 > (b(b−2))b. Then f ′(R1/b

0 ) <

0 and hence f takes on negative values for z > R
1/b
0 . Since, how-

ever, f(z) tends to +∞ for z → ∞, there must be z∗ > R
1/b
0 ,

for which f(z∗) = 0. Also, by f ′(R1/b
0 ) < 0, f(z) > 0 in a left

neighbourhood of R
1/b
0 and hence there must be another zero

1 < z# < R
1/b
0 , by f(1) = 1 − R

1/b
0 < 0. Since R

1/b
0 − 1 and

0 were the only equilibria of H, x∗ = z∗− 1 and x# = z#− 1 > 0
must give a 2-cycle.

Figure 4.10 shows, for b = 3, how the point zi moves with R0

through the equilibrium point z = 3 to produce new zeros of f,

giving rise to 2-cycles. With much more, mainly computer aided,
work we can establish that, as with the logistic equation, we obtain
period doubling and transition to chaos.

The Beverton–Holt models is mostly used to describe insect or
fish populations. Experiments are in quite good agreement with
the model, see (Britton, 2003). Most models fall into the stable
region. On the other hand, it is obvious that a high reproduc-
tive ratio R0 and highly over-compensating density dependence
(large b) are capable of provoking periodic or chaotic fluctuations
in the population density. This can be demonstrated mathemat-
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ically (before the advent of the mathematical theory of chaos it
was assumed that these irregularities were of stochastic nature)
and it is observed in the fluctuations of the populations of the
Colorado beetle.

The question of whether chaotic behaviour does exist in ecology
is still an area of active debate. Observational time series are al-
ways finite and inherently noisy, thus it can be argued that always
a regular model can be found to fit the data. However, in several
laboratory host–parasitoid systems good fits were obtained be-
tween the data and chaotic mathematical models and therefore it
is reasonable to treat these systems as chaotic.



5

From discrete to continuous models and
back

Unless a given phenomenon occurs at well-defined and evenly-
spaced time intervals, it is up to us whether we describe it using
difference or differential equations. Each choice has both advan-
tages and disadvantages which, however, are closely intertwined.
Indeed, as we have seen, continuous models are obtained using
the same principles as the corresponding discrete models and, in
fact, a discrete model, represented by a difference equation, is an
intermediate step in deriving a differential equation. Furthermore,
since most interesting differential equations cannot be solved ex-
plicitly, we have to resort to numerical methods which, in fact,
reduce differential equations to difference equations. Interestingly,
these often are not the same difference equations which we used
earlier in the modelling process to derive the differential equations!

Thus, an important question is whether discrete and continuous
models are equivalent in the sense that they describe (approxi-
mately) the same dynamics of the modelled process.

5.1 Discretizing differential equations

There are several ways of discretizing differential equations. We
shall discuss two commonly used methods.

92
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5.1.1 The Euler method

It is standard in numerical practice to replace the derivative by
the difference quotient:

df

dt
≈ f(t + ∆t)− f(t)

∆t
.

Then, for instance, the exponential growth equation N ′ = rN,

can be approximated by

N(t + ∆t) ≈ N(t) + rN(t)∆t

or, introducing, for a fixed t, the notation nk = N(t + k∆t), by

nk+1 ≈ nk + rnk∆t.

This is a difference equation yielding an approximate value of N

at t+k∆t, k = 1, 2, . . . , provided the initial value at k = 0 is given.
Note, however, that here we do not have any guarantee that nk is
equal to the true value of N at t + k∆t at any time step.

5.1.2 The time-one map

Another method is based on the observation that solutions of au-
tonomous differential equations display the so-called semigroup
property: if x(t, x0) is the flow of the autonomous Cauchy prob-
lem

x′ = g(x), x(0) = x0, (5.1)

then x(t1 + t2, x0) = x(t1, x(t2, x0)). In other words, the process
can be stopped at any time and restarted, using the final state of
the first time interval as the initial state of the next one, without
changing the final output. The semigroup property is sometimes
referred to as the causality property. Using it we can write

x((n + 1)∆t, x0) = x(∆t, x(n∆t, x0)). (5.2)

This amounts to saying that the solution after n + 1 time steps
can be obtained as the solution after one time step with the initial
condition given by the solution after n time steps. In other words,
denoting xn = x(n∆t, x0), we have

xn+1 = f∆t(xn),
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where by f∆t we denote the operation of getting the solution of
the Cauchy problem (5.1) at t = ∆t with the initial condition
which appears as the argument of f∆t.

We note that, in contrast to the Euler method, the time-one
map method is exact; that is, xn+1 = x(n∆t, x0). However, its
drawback is that we have to know the solution of (5.1) and thus
its practical value is limited.

To simplify the following discussion we shall set ∆t = 1.

5.1.3 Discrete and continuous exponential growth

Let us consider the Cauchy problem

N ′ = rN, N(0) = N0,

the solution of which is given by N(t) = N0e
rt, and compare it

with the discrete model (2.11). As we have seen above, the Euler
discretization yields nk+1−nk = rnk, the solution of which is given
by nk = (1 + r)kN0. Clearly, the Euler approximation (nk)k∈N0

does not match the solution to the continuous problem N0e
rt at

t = 1, 2, . . . . However, their qualitative behaviour is similar, as
both grow at an exponential rate and can be mapped to each
other by adjusting the growth rates.

On the other hand, consider the time-one discretization which
amounts to assuming that we take census of the population in
evenly spaced time moments t0 = 0, t1 = 1, . . . , tk = k, . . . , so
that

N(k) = erkN0 = (er)k
N0.

Comparing this equation with (2.12), we see that it corresponds
to the discrete model (2.11) with net growth rate R = er. Thus,
if we observe a continuously growing population in discrete time
intervals and the observed (discrete) net growth rate is R, then
the real (continuous) growth rate is given by r = ln R.

5.1.4 Logistic growth in discrete and continuous time

Consider the logistic differential equation

y′ = ay(1− y), y(0) = y0. (5.3)
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Figure 5.1 Comparison of solutions to (5.3) and (5.4) with a = 4.

The Euler discretization (with ∆t = 1) gives

yn+1 = (1 + a)yn

(
1− ayn

1 + a

)
, (5.4)

which is a discrete logistic equation. We have already solved (5.3)
and we know that its solutions monotonically converge to the equi-
librium y = 1. However, if we plot solutions to (5.4) with, say,
a = 4, we obtain the picture presented in Fig. 5.1. Hence, in gen-
eral, it seems unlikely that we can use the Euler discretization as
an approximation to the continuous logistic model.

Let us, however, write down the complete Euler scheme:

yn+1 = yn + a∆tyn(1− yn), (5.5)

where yn = y(n∆t) and y(0) = y0. Then

yn+1 = (1 + a∆t)yn

(
1− a∆t

1 + a∆t
yn

)

and the substitution

xn =
a∆t

1 + a∆t
yn (5.6)

reduces (5.5) to

xn+1 = µxn(1− xn), (5.7)

where µ = 1 + a∆t. Thus the parameter µ, which controls the
long-term behaviour of solutions to the discrete equation (5.7), see
Section 4.2.4, depends on ∆t and, by choosing a suitably small ∆t,

we can get solutions of (5.7) to mimic the behaviour of solutions to
(5.3). Indeed, by taking 1+a∆t ≤ 3, we obtain the convergence of
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Figure 5.2 Comparison of solutions to (5.3) with a = 4 and (5.7)

with µ = 3 (∆t = 0.5).
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Figure 5.3 Comparison of solutions to (5.3) with a = 4 and (5.7)

with µ = 2 (∆t = 0.25).

solutions xn to the equilibrium x∗ = a∆t/(1 + a∆t) which, revert-
ing to (5.6), gives the discrete approximation yn which converges
to 1, as the solution to (5.3). However, as seen in Fig 5.2, this
convergence is not monotonic, hence the approximation is rather
poor. This can be remedied by taking 1 + a∆t ≤ 2, in which case
the qualitative features of y(t) and yn are the same, see Fig. 5.3.

These features of the discrete logistic model can, to a certain
extent, be explained by interpreting it as a game between the
population and the environment, in which the response of the
environment to the population size yn comes only after the full
time step, resulting in the population of yn+1. It is then natural
to expect that the system is more likely to lose stability if the
response times are long. On the other hand, in the continuous
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logistic model the responses are instantaneous, resulting in its
monotonic and smooth behaviour.

We note that the above problems can also be resolved by intro-
ducing the so-called non-standard difference schemes consisting
of replacing the derivatives and/or nonlinear terms by more so-
phisticated expressions which, though equivalent when the time
step size goes to 0, nevertheless produce a qualitatively different
discrete picture. In the case of the logistic equation such a non-
standard scheme can be constructed by replacing y2 not by y2

n but
by ynyn+1:

yn+1 = yn + a∆t(yn − ynyn+1).

In general, such a substitution yields an implicit scheme, but in
our case the resulting recurrence can be solved for yn+1, producing

yn+1 =
(1 + a∆t)yn

1 + a∆tyn

in which we recognize the Beverton–Holt equation (2.15) with
R0 = 1 + a∆t (and K = 1). We have seen in Section 2.4.1 that
(yn)n∈N0 monotonically converges to an equilibrium and, as we
shall see below, it exactly follows the solution of the continuous
logistic equation. In the spirit of the game interpretation of the
model, discussed above, this stability can be attributed to the
fact that the environment response is based on the input ynyn+1

combining the previous and the current time instants, in contrast
to y2

n in the case of the Euler discretization above.
We complete this section by deriving the time-one map dis-

cretization of (5.3). In this situation, the solution (3.20) is

y(t) =
y0e

at

1 + (eat − 1)y0

which, upon writing ea = R0, gives the time-one map

y(1, y0) =
y0R0

1 + (R0 − 1)y0
.

Defining yn = y(n, y0) (remember ∆t = 1), we obtain

yn+1 =
ynR0

1 + (R0 − 1)yn
,

in which again we recognize the Beverton–Holt model with the
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intrinsic growth rate related to the continuous growth rate in the
same way as in the exponential growth equation.

5.2 Discrete equations in continuous time models

In the previous section we saw that often it is difficult to describe
processes occurring in continuous time using difference equations.
This is because instantaneous changes in a continuous process can
accumulate in an irregular manner between consecutive observa-
tion times and result in large errors. On the other hand, difference
equations usually are easier to handle. Here we shall describe two
situations in which continual changes yield to a discrete descrip-
tion. First we discuss models with periodic coefficients. They allow
for a discrete time modelling, provided one is satisfied with only
knowing the state of the system at time instants, corresponding
to the period of the coefficients. The second case concerns hybrid
models, in which we have a continuous repetitive process inter-
spersed with instantaneous events at evenly spaced time intervals.

5.2.1 Discrete models of seasonally changing
populations

So far we have considered models in which the laws of nature are
independent of time. In most real processes we have to take into
account phenomena which depend on time, such as the seasons of
the year. Here we use the same modelling principles as in Section
3.3, but with time-dependent birth and death coefficients β(t) and
µ(t). We also consider emigration, which also is supposed to be
proportional to the total population, and immigration, which is
just a given flux of individuals into the system. Then, instead of
(3.13), we have

N ′(t) = (β(t)− µ(s))N(t)− e(t)N(t) + c(t), (5.8)

where e is a (time-dependent) per capita emigration rate and c is
the global immigration rate.

Closed systems. Here we are interested in populations in which
the coefficients change periodically with the same period, e.g. with
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the seasons of the year. As we shall see, contrary to naive expecta-
tions, in general this assumption does not yield periodic solutions.
We start with a closed population; that is, we do not consider em-
igration or immigration processes. As in Section 3.3, we define
r(t) = β(t) − µ(t) to be the net growth rate of the population
and assume that it is a periodic function with a period T . Un-
der this assumption, we introduce the average growth rate of the
population by

r̄ =
1
T

T∫

0

r(t)dt. (5.9)

Hence, let us consider the initial value problem

N ′(t) = r(t)N(t), N(t0) = N0, (5.10)

the solution of which is given by

N(t) = N0 exp

t∫

t0

r(s)ds. (5.11)

Since, by the periodicity of r,

t+T∫

t0

r(s)ds =

t∫

t0

r(s)ds +

t+T∫

t

r(s)ds =

t∫

t0

r(s)ds + r̄T,

we have

N(t + T ) = N(t)er̄T

and hence the solution is not periodic. However, we may provide a
better description of the evolution by identifying a periodic com-
ponent in it. In other words, let us try to find what is ‘missing’ in
the function R(t) :=

∫ t

t0
r(s)ds which stops it being periodic. We

observe that

R(t + T ) =

t+T∫

t0

r(s)ds =

t∫

t0

r(s)ds +

t+T∫

t

r(s)ds = R(t) + r̄T,

so that

R(t + T )− r̄(t + T − t0) = R(t)− r̄(t− t0),
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and therefore the function R(t), complemented by −r̄(t− t0), be-
comes periodic.

Using this result, we can write

N(t) = N0 exp

t∫

t0

r(s)ds = N0e
r̄(t−t0)Q(t), (5.12)

where

Q(t) = exp

t∫

t0

r(s)ds− r̄(t− t0) (5.13)

is a periodic function satisfying Q(t0) = 1.
In particular, if we observe the population in discrete time in-

tervals of length T , we get

nk := N(t0 + kT ) = N0e
r̄kT Q(t0) = N0[er̄T ]k,

which is the exponential discrete model with the growth rate given
by er̄T .

Open systems. Consider next an open population described by

N ′(t) = r(t)N(t) + c(t), (5.14)

where r(t) = β(t)−µ(t)−e(t) and c(t) are continuous and periodic
functions with period T . Let the constant r̄ and the periodic func-
tion Q(t) be defined as in (5.9) and (5.13). Using the integrating
factor, we find the general solution to (5.14) to be

N(t) = N(t0) exp




t∫

t0

r(s)ds


 (5.15)

+ exp




t∫

t0

r(s)ds




t∫

t0

exp


−

u∫

t0

r(s)ds


c(u)du.

If there is a periodic solution of period T , say N̄ , there should be
an initial condition Np satisfying Np = N̄(t0) = N̄(t0 + T ). Using
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(5.15), we obtain

Np = N(t0)

= N(t0) exp




t0+T∫

t0

r(s)ds




+exp




t0+T∫

t0

r(s)ds




t0+T∫

t0

exp


−

u∫

t0

r(s)ds


c(u)du.

For simplicity we assume r̄ 6= 0. By (5.13),

N(t0) =
er̄T

1− er̄T

t0+T∫

t0

e−r̄(u−t0)c(u)
Q(u)

du.

Let us define N̂(t) = N(t + T ), where N(t0) = Np. Then

N̂ ′(t) = N ′(t + T ) = r(t + T )N(t + T ) + c(t + T )

= r(t)N̂(t) + c(t)

and, since N̂(t0) = N(t0 + T ) = N(t0) = Np, the uniqueness of
solutions of linear differential equations yields

N(t + T ) = N̂(t) = N(t)

for any t ∈ R. Hence N is periodic.
By Section 1.3.2, the general solution to an inhomogeneous lin-

ear equation can be expressed as a sum of an arbitrary solution of
the inhomogeneous equation and the general solution of the homo-
geneous equation. Hence, since N is a solution of the inhomoge-
neous equation (5.14) and the general solution of its homogeneous
version is given (5.12), we have

N(t) = Ker̄(t−t0)Q(t) + N(t),

where K = N(t0)−Np. Finally

N(t) = (N(t0)−Np)er̄(t−t0)Q(t) + N̄(t). (5.16)

This formula yields, in particular, that if r̄ < 0, then

lim
t→∞

(N(t)−N(t)) = 0;
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that is, with negative average growth rate, an arbitrary solution
is asymptotically periodic.

Exercise 5.1 Find the difference equation satisfied by the pop-
ulation described by (5.16) if it is observed at times kT , k =
0, 1, . . . .

Exercise 5.2 Find an analogous representation of solutions to
(5.14), if r̄ = 0.

5.2.2 Hybrid models

Absorption of drugs. An important process which leads to an
exponential decay model is the absorption of drugs from the blood-
stream into the body tissues. The significant quantity to monitor is
the concentration of the drug in the bloodstream, which is defined
as the amount of the drug per unit volume of blood. Observations
show that the rate of absorption of the drug, which is equal to
the rate of decrease of the above concentration, is proportional to
the said concentration. Arguing as in Section 3.2, we see that this
concentration, c, satisfies

c′ = −γc, (5.17)

with γ being the proportionality constant.
We shall consider a process which is a combination of a contin-

uous process of drug absorption with a discrete process of drug
injection.

Assume that a dose D0 of a drug increases the drug’s concentra-
tion in the patient’s body by c0 and that it is injected at regular
time intervals t = 0, T, 2T, 3T . . .. Between the injections the con-
centration c of the drug decreases according to the differential
equation (5.17). It is convenient here to slightly change the nota-
tion and denote by cn the concentration of the drug just after the
nth injection; that is, c0 is the concentration just after the initial
(zeroth) injection, c1 is the concentration just after the first in-
jection, at the time T , etc. We need to find a formula for cn and
to determine whether the concentration of the drug eventually
stabilizes.
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First, we observe that the process is discontinuous at the injec-
tion times so that we have two different values for the value of c

around the time of injection: just before and just after (assuming
that the injection is done instantaneously). To avoid ambiguity,
we denote by Cn the concentration just before the nth injection
and by cn the concentration just after it, in accordance with the
notation introduced above. Thus, using (3.3), we see that between
the nth and n+1th injection the concentration changes according
to the exponential law

Cn+1 = cne−γT ,

so that over each time interval between injections the concentra-
tion decreases by a constant fraction a = e−γT < 1. Thus, we are
able to write down the difference equation for concentrations just
after the n + 1th injection as

cn+1 = acn + c0. (5.18)

The solution, using (1.5), is given by

cn = c0a
n + c0

an − 1
a− 1

= − c0

1− a
an+1 +

c0

1− a
.

Since a < 1, we immediately obtain that

c̄ = lim
n→∞

cn =
c0

1− a
=

c0

1− e−γT
.

Similarly, the concentration just before the nth injection is

Cn = cn−1e
−γT = e−γT

(
c0

e−γT − 1
e−γTn +

c0

1− e−γT

)

=
c0

1− eγT
e−γTn +

c0

eγT − 1

and, in the long run, c = lim
n→∞

Cn = c0
eγT−1

.

For example, using c0 = 14 mg/l, γ = 1/6 and T = 6 hours,
we see that after a long series of injections, the maximal con-
centration, attained immediately after injections, will stabilize at
around 22mg/l. The minimal concentration, just before the injec-
tions, will stabilize at around c = 14/e − 1 ≈ 8.14mg/l. This is
illustrated in Fig. 5.4.
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Figure 5.4 Long time behaviour of the concentration c(t).

Population with discrete breeding seasons. Consider a pop-
ulation which reproduces once a year and reproductive season is
of a negligible length. Let Pn be the population size in the nth
year immediately after the reproductive season. During the year,
outside the reproductive season, the population only is subjected
to mortality and then the size N of the population obeys the
equation

N ′ = −µ(N)N = −(µ0 + µ1N)N, N(0) = Pn, µ0, µ1 > 0,

see Exercise 3.2, where t denotes the time that has elapsed since
the end of the previous reproductive season (with one year as
the time unit). Thus, N(1) gives the population after one year,
immediately before the reproductive season. Then, after the repro-
ductive season, the population enters the next year with Pn+1 =
R0N(1) individuals, where R0 is the intrinsic growth rate. To
solve the above equation, we separate variables and, integrating,
we obtain

−t =

N(t)∫

Pn

ds

s(µ0 + µ1s)
=

1
µ0µ1

ln
N(t)(µ0 + µ1Pn)
(µ0 + µ1N(t))Pn

.

Exponentiating and solving for N(t) gives

N(t) =
µ0Pn

µ0eµ0µ1t + µ1Pn(eµ0µ1t − 1)
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and, using the reproduction law,

Pn+1 = R0N(1) =
R0µ0Pn

µ0eµ0µ1 + µ1Pn(eµ0µ1 − 1)

which again is the Beverton–Holt model (2.15).

Exercise 5.3 Find the difference equations for Pn if:

(a) µ(N) = µ0;
(b) µ(N) = −(µ0 + µ1N

θ), θ > 0.

5.3 Stability of differential and difference equations

Let us consider a phenomenon in a static environment which can
be described in both continuous and discrete time. In the first case
we have the (autonomous) differential equation

y′ = f(y), y(0) = y0, (5.19)

and, in the second case, the difference equation

yn+1 = g(yn), (5.20)

with the initial datum y0. In all considerations of this section we
assume that both f and g are sufficiently regular functions so as
not to have any problems with the existence of solutions, their
uniqueness etc.

First we note that, while in both cases y is the number of indi-
viduals in the population, the equations (5.19) and (5.20) refer to
two different aspects of the process. In fact, while (5.19) describes
the (instantaneous) rate of the change of the population’s size,
(5.20) gives the size of the population after each cycle. Thus, to
make the comparison easier, (5.20) should be written as

yn+1 − yn = −yn + g(yn) =: f̄(yn), (5.21)

which would describe the rate of change of the population size per
unit cycle. However, typically, difference equations are written and
analysed in the form (5.20).

First let us consider differential equations. From Theorem 4.3, it
follows that if f has several equilibrium points, then the stationary
solutions corresponding to these points divide the (t, y)-plane into
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Figure 5.5 Monotonic behaviour of solutions to (5.19) depends on

the right hand side f of the equation.

strips such that any solution always remains confined to one of
them, see Fig. 5.5.

Remark 5.4 If the reader is familiar with the language of the
phase space and orbits, then the last statement can be expressed
by saying that the phase space is the real line R, divided by the
equilibrium points and thus the orbits are open segments (possibly
stretching to infinity) between the equilibria.

Furthermore, we observe that if f(y) > 0, then the solution y(t)
is increasing at any point t, when y(t) = y; conversely, f(y) < 0
implies that the solution y(t) is decreasing when y(t) = y. This
also implies that any equilibrium point y∗ with f ′(y∗) < 0 is
asymptotically stable and it is unstable if f ′(y∗) > 0. In particular,
there are no stable equilibria which are not asymptotically stable.

If we now look at the difference equation (5.20), then firstly
we note some similarities. Equilibria are defined as g(y) = y, (or
f̄(y) = 0) and, while in the continuous case we compared f with
zero, in the discrete case we compare g(x) with x: g(y) > y means
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Figure 5.6 Eventual equilibrium x = 1/8 for the tent map.

that yn+1 = g(yn) > yn so that the iterates are increasing, while
if g(x) < x, then they are decreasing. Also, the stability of equi-
libria is characterized in a similar way: if |g′(y∗)| < 1, then y∗ is
asymptotically stable and if |g′(y∗)| > 1, then y∗ is unstable. In
fact, if g′(y∗) > 0, then we have exact equivalence: y∗ is stable
provided f̄ ′(y∗) < 0 and unstable if f̄ ′(y∗) > 0. Indeed, in such a
case, if we start on one side of the equilibrium y∗, then no itera-
tion can overshoot this equilibrium since for, say, y < y∗ we have
g(y) < g(y∗) = y∗. Thus, as in the continuous case, the solutions
are confined to the intervals between successive equilibria.

However, the similarities end here, as the dynamics of difference
equations is much richer than that of the corresponding differential
equations.

First, unlike in Theorem 4.3(i), a solution of a difference equa-
tions can reach an equilibrium in a finite time, as demonstrated in
Example 5.5. The points which can reach an equilibrium in finite
time are called eventual equilibria.

Example 5.5 Consider the tent map T, introduced in Exercise
4.16. As we know, there are two equilibrium points, 0 and 2/3.
Looking for eventual equilibria is not as simple. Taking x0 = 1/8,
we find x1 = 1/4, x2 = 1/2, x3 = 1 and x4 = 0, and hence 1/8 (as
well as 1/4, 1/2 and 1) are eventual equilibria, see Fig. 5.6. It can
be checked that all points of the form x = n/2k, with n, k ∈ N,

satisfying 0 < n/2k < 1, are eventual equilibria.

Further, recalling Remark 4.17, we see that if −1 < g′(y∗) <

0, then the solution can overshoot the equilibrium and create
damped oscillations towards it, whereas in any autonomous scalar
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Figure 5.7 Change of the type of convergence to the equilibrium

from monotonic if 0 < g′(y∗) < 1 to oscillatory for −1 < g′(y∗) < 0

.

differential equations a reversal of the direction of motion is im-
possible. Also, as we have seen, difference equations may have
periodic solutions which are precluded from occurring in the con-
tinuous case. Finally, no chaotic behaviour can occur in scalar
differential equations (partly because they do not admit periodic
solutions, an abundance of which is a sign of chaos). In fact, it can
be proved, see e.g. (Hirsch et al., 2004), that chaos in differential
equations may occur only if the dimension of the state space is at
least 3.
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