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1 Background

It has been suggested that the classical logistic growth model be used to
describe the progression of the SARS-CoV-2 virus infection. This is probably
inspired by figures released by various authorities in the form of total number

infected so far. The logistic model, however, does not take removal by
immunity or death into account. Published figures, in some instances, reveal
cured, but that information is likely to be incomplete. We present a simple
model that could lead, qualitatively, to some understanding. It is based on
the hypothesis that immunity occurs some time after infection.

2 The nature of logistic growth

There are two elementary linear growth models. First is exponential growth
which states that rate of increase (of an infection) is directly proportional to
what is infected. In mathematical terms, if f(t) is the intensity of infection
at time t,

f ′(t) := d

dt
f(t) = rf(t), (1)

with r a positive constant, the infection rate.
The other is the limited resources model which states that rate of in-

crease is directly proportional to what is left to be infected. The differential
equation here is

f ′(t) = r[A− f(t)]. (2)

Here A > 0 is the resource available for infection. That is, the part A of
the population that can be infected is finite and at time t, only A − f(t)
can still be infected. The quantity A may reflect the entire population but
could also mean that part not immune to the infection.

If at time t = 0 the infection has intensity f
0
> 0, the solution for the

exponential growth model (1) is

f(t) = f
0
ert,
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which represents “a total wipe-out in no time” (e > 2.718). When unin-
formed writers use the term exponential growth this is probably not what
we should understand.

If, in the limited resources model the available resource A is constant,
the solution of the equation (2) is

f(t) = f
0
e−rt +A[1− e−rt].

Because of the negative exponentials in this expression, it is seen that the
infection tends to wipe out all that is available as time increases. Fig.1
illustrates.
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Figure 1: Limited growth

The figure also demonstrates what administrators might mean with “the
flattening of the curve”.

Compared to what is often observed, the curve in Fig.1 initially rises too
rapidly. The logistic growth model compensates for that. The underlying
assumption is: rate of increase is proportional to what is infected and to what
remains to be infected. The differential equation to reflect this assumption
is

f ′(t) = rf(t)[A− f(t)]. (3)

This equation has dimensional difficulties which, for constant A, can be
overcome by considering the ratio f(t)/A as a new unknown. This entails
the replacements f/A → f and Ar → r so that the equation becomes

f ′(t) = rf(t)[1− f(t)] (4)

in which f signifies the ratio of “infected” to “available”. For 0 < f
0
< 1

the solution of equation (4) is

f(t) =
f
0

f
0
+ (1− f

0
)e−rt

.
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Figure 2: Logistic growth

It is seen that for large t the solution approaches 1. We illustrate in Fig.2.
The graph is an example of the logistic curve first introduced by the Belgian
mathematician P R Verhulst in 1838 — in the context of population growth.
We note once again that the whole available population is “consumed” as
time goes on. Administrators will gleefully notice the flattening of the curve
everyone is waiting for.

3 Immunity

Although logistic growth shows “flattening” it offers the ironic consolation
that the entire susceptible population will be wiped out. If the infection
is of such a nature that immunity can be achieved after infection, one can
be more optimistic. We propose a modification of the logistic model (3).
In analogy to the principle of fading memory in continuum mechanics, we
assume that the availability A is time dependent in a specific way:

A = A(t) = A
0
− f(t− τ) (5)

with A
0
> 0 a constant. The immunity period τ > 0 is thought of as the time

from infection to immunity, and the form of A(t) suggests that availability
decreases due to the onset of immunity. Thus the “raw” equation (3) may
now be expressed in the form

f ′(t) = rf(t)[A
0
− f(t− τ)− f(t)].

Scaling by the constant A
0
gives rise to the following analogue of (4):

f ′(t) = rf(t)[1− f(t− τ)− f(t)]. (6)

The equation (6) is a differential equation with delay. This means that the
initial condition f(0) = f

0
is insufficient. In fact one needs to know the
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history of the epidemic over a time span of length τ . This we specify as
follows:

f(t) = φ(t) > 0 for − τ ≤ t ≤ 0, (7)

with φ a given function.

4 The solution

To solve the equation (6) with the initial condition (7) we make the (stan-
dard) substitution

f(t) =
1

g(t)
. (8)

This leads to the differential equation

g′(t) + r[1− f(t− τ)]g(t) = r.

Use of the integrating factor

I(t) = r

∫

t

0
[1− f(s− τ)]ds = rt− r

∫

t

0
f(s− τ)ds (9)

leads to the representation

eI(t)g(t) = g
0
+ r

∫

t

0
eI(σ) dσ, (10)

with g
0
= 1/f

0
= 1/φ(0).

The representation (10) can be sub-dived in two parts, one for 0 ≤ t ≤ τ
and the other for t > τ . This is achieved by splitting the expression (9) as
follows:

I(t) =















rt− r

∫

t

0
φ(s− τ)ds if 0 ≤ t ≤ τ,

I(τ) + r(t− τ)− r

∫

t

τ

f(s− τ)ds if t > τ.

(11)

For 0 ≤ t ≤ τ the solution depends only on the initial function φ. The
second part of the solution depends on the values of f in the interval [0, t−τ ],
already known. We see that the model assumption (5) leads to “failure of
short term memory”. Once these integrals are calculated, g(t) can be found
from (10) and f(t) from (8).
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5 An illustrative example

We illustrate qualitatively with a special case in which φ(t) = f
0
for −τ ≤

t ≤ 0. For this choice of φ the expressions in (11) become more explicit:

I(t) =











(1− f
0
)rt if 0 ≤ t ≤ τ,

r(t− f
0
τ)− r

∫

t

τ

f(s− τ)ds if t > τ.
(12)

The crucial integrals in (12) can be computed approximately by use of the
trapezium rule. This is facilitated by the recursion

I(t+ h) = I(t) + rh− r

∫

t+h

t

f(s− τ)ds

≈ I(t) + rh−
1
2rh[f(t− τ) + f(t+ h− τ)].

In a similar way for the integrals in (10), G(t) := r
∫

t

0 e
I(σ) dσ:

G(t+ h) ≈ G(t) + 1
2rh[e

I(t) + eI(t+h)].

The result of calculations with r = 0.25, f
0
= 0.01, τ = 10 and h = 0.2 is

shown in Fig.3.
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Figure 3: Logistic growth and immunity: τ = 10

Also shown is the logistic curve calculated for the same values of the param-
eters r and f

0
. Of course, in logistic growth the parameter τ has no role to

play. The role of the immunity period τ in our model is illustrated in Fig.4
below. As can be expected, a longer period before immunity means a more
unstable outcome.
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Figure 4: The role of τ

Once the levels of infection f(t) have been calculated, the rate of infection
can be obtained from the governing equation (6). This is shown in Fig.5.
Indeed, the zeros of this graph correspond to the turning points of the growth
curve.
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Figure 5: Growth rate

Notes

1. Figure 3 has some interesting features. One is a damped oscillation
around f = 1/2. To explain this in terms of the model we need to
consider the term 1− f(t− τ)− f(t) in the governing equation (6). At
times t when this term is zero, the growth curve turns — it “flattens”.
This could spell danger for decision makers. The favourable flattening
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is the asymptote f
∞

= limt→∞ f(t). In this case 1 − 2f
∞

= 0 or
f
∞

= 1/2.

2. The model (5) for availability is perhaps too simple and could be
modified to

A(t) = A
0
− ℓf(t− τ)− f(t)

with ℓ denoting the fraction of infections where immunity is achieved.
This would have the effect that f

∞
= 1/(1 + ℓ).

3. Published data often present growth rate as number of new cases. This
can be visualized in a meaningful way as the ratio: new cases to new

tests. If suitable data on number of recoveries were available, this
could be brought in line with the model discussed here.

4. The model presented here does not take infection by diffusion — from
higher to lower concentration — into account. For this a formidable
amount of additional information, including population density, would
be needed. Without diffusion we are simply looking at a “well-stirred”
environment.

5. A physical analogue of the limited resources model is the build-up of
charge in a capacitor though a resistor with a battery of fixed potential
(voltage) supplying charge. This is a little too simple though. The
potential of the battery is depleted in the process of charging the
capacitor, and that brings us closer to the model discussed above.

6. My sincere thanks to Jean Lubuma who brought to my attention a
paper that reviews the rich and diverse literature on differential equa-
tions with delay as applied to population dynamics. The reference
is:

Ruan, S. Delay differential equations in single species dynamics. In:
O. Arino et al. (eds), Delay Differential Equations and Applications,
Springer, Berlin, 2006, pp.477–517.
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